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Weak localization in ferromagnets with spin-orbit interaction
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Weak localization corrections to conductivity of ferromagnetic systems are studied theoretically in the case
when spin-orbit interaction plays a significant role. Two cases are analyzed in digtéle case when the
spin-orbit interaction is due to scattering from impurities diigl the case when the spin-orbit interaction
results from reduced dimensionality of the system and is of the Bychkov-Rashba type. Results of the analysis
show that the localization corrections to conductivity of ferromagnetic metals lead to a negative
magnetoresistance—also in the presence of the spin-orbit scattering. Positive magnetoresistance due to weak
antilocalization, typical of nonmagnetic systems, does not occur in ferromagnetic systems. In the case of
two-dimensional ferromagnets, the quantum corrections depend on the magnetization orientation with respect
to the plane of the system.
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[. INTRODUCTION tions instead of destroying them totally. Very likely, one can
expect only a slight effect oB;,,; in the case of newly de-

Owing to the giant magnetoresistance effect discovered ineloped magnetic semiconductors like GaMnAs alltys.
artificially layered structures? transport properties of low- Spin-orbit (SO) scattering from paramagnetic impurities
dimensional magnetic systems were extensively studied im nonmagnetic metals is known to have a significant influ-
the past decade. The huge interest was stimulated by appknce on the quantum corrections. It can reverse the sign of
cations of the effect in magnetoelectronics, particularly inthe localization correctiofso-called weak antilocalization
read-write heads, field sensors, random access memory eleffect), which results in a positive magnetoresistance at weak
ments, and othersSince the effect exists also at room tem- magnetic field$®~2* However, SO interaction may also re-
peraturgwhich is important for applicationsthere was only  sult from other sources, like, for example, the Dressefffaus
a little interest in the low-temperature regime, where quaner Bychkov-Rashb® terms in the relevant Hamiltonian.
tum corrections to conductivity may play a certain role. ThisThese terms are related to the lack of inversion symmetry in
regime, however, may be important in view of possible ap-certain crystals or to reduced dimensionality in quantum-
plications of metallic and/or semiconducting magnetic sysconfined structures, respectively. In the context of weak lo-
tems in spintronicsand quantum computiry. calization theory, this type of spin-orbit interaction has been

The quantum corrections to electrical conductivity, relatedstudied by Aronov and Lyanda-Gelf&:2
to scattering of electrons from impurities in nonmagnetic Recently, there is a large interest in SO interaction in
metals and doped semiconductors, were extensively studigdagnetically ordered materials. First, the SO scattering is
in the past two decadés® However, the problem of quan- believed to be responsible for the anomalous Hall effect in
tum corrections in ferromagnetic metals is still unexplored.ferromagnet$/=2° Second, the SO interaction is one of the
Only a few works on this subject can be found in the relevanmain interactions which determine the spin diffusion length.
literature. These include two theoretical wafk¥'and a few  The latter quantity plays a crucial role in the dependence of
reports on experiment$; 1’ which prove the existence and the giant magnetoresistance effect on the sublayer thick-
importance of the quantum corrections related to both weakesses, when the current flows perpendicularly to the
localization and electron-electron interaction effects. Thefilms. 393!
theoretical description, however, was restricted to the effects In this paper we study the localization corrections to con-
of localization on the spin-density fluctuations in the vicinity ductivity of ferromagnetic systems in the presence of SO
of the ferromagnetic transitidfhand to electron-electron in- scattering from defects and also in the presence of the
teraction effects in spin-dependent quantum wells. Bychkov-Rashba term. It is well known that in nonmagnetic

It is well known that the quantum corrections due to weakmaterials the spin-orbit scattering is crucial for the localiza-
localization in nonmagnetic systems are suppressed by a sufen correction. As was already mentioned above, the SO
ficiently large magnetic inductioB. One may then expect a scattering leads to weak antilocalization, i.e., to positive
similar suppression of weak localization by an internal mag-magnetoresistance at small magnetic fiékig! The situa-
netic inductionB;,; in ferromagnets. But this point is still not tion in ferromagnetic metals, however, is significantly differ-
definitely clear from the experimental point of view, at leastent. We show that the processes, leading to weak antilocal-
for some kinds of ferromagnetic materials. It is then reasonization in nonmagnetic systems, are totally suppressed in
able to assume that the internal magnetic induction existinferromagnets, so in the presence of SO interaction we have
inside the ferromagnets may reduce the localization corremnly a negative magnetoresistance.
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In Secs. Il and Ill we derive the formula for the Cooperon ~,
and quantum correction to conductivity in three-dimensional 7
(3D) ferromagnets. Two dimension&D) ferromagnets are a, k 6, k
considered in Sec. IV, while quantum wells and the possible
crossover from the 2D to 3D case are discussed in Sec. V.
The influence of SO interaction in the form of Bychkov-
Rashba term is studied in Sec. VI. In Sec. VIl we discuss the
effect of internal magnetization on the localization correc-
tions. Finally, conclusions and summary are in Sec. VIII.

\',

/

II. COOPERON IN A 3D FERROMAGNET

We consider the following model Hamiltonian of a ferro-
magnet with SO scattering:

v? 8,-k v, -k
~ 5 Mo V) (), 1)

/

H=f d3ryf(r)

~ ~
where the axiz is assumed to be along the magnetization -~ -
M, ¢ is a spinor field with the componenis and | , and
we puta=1. In the presence of a magnetic inductiBn

=rotA, the gradient operatov is replaced byV—ieA/c. Validity of this approach is confirmed by the following
Note that the exchange termM o, acts only on the spin and  gstimations. If we assume parameters typical for puréFe,
has therefore no direct effect on the orbital motion of thej s M=25 ev and TT:Tl25X10713 s. we obtain

electrons. _ _ N _ (M7, ) *=5x10"*. In dirty Fe, this value would be in-

The random potentia¥/(r) of impurities consists of two creagéd by one or two orders of magnitude, but will still
statistically independent components—the component ind&emain small as compared to unity. The exclusion of the
pendent of the electron spin, described by the random poteit-goperon in the singlet channel is the crucial point of our
tial Vo(r), and the spin-orbit componelt(r). Matrix ele-  gescription, which leads to the absence of weak antilocaliza-
ments of the latter component have the form tion in ferromagnets. In the folllowilng, we will omit the spin

>
(Vo p=1Va(kXK')- g @ :\ljl<j>>e>;lri.the inequalitie>r, =, 7=, and will write simply
for the transitions K, ) — (k’, 8), whereV, is a constantk _ In the case of Weal_< scattering p_otential and upon averag-
andk’ are the initial and final electron wave vectorsand ~ I"g over the random fielt/(r), one finds the following bare
B describe the corresponding spin states, and Scattering amplitudésee Fig. 1
=(oy,0y,0,) are the Pauli matrices.

The key component of the weak localization theory is the
Cooperorf,”® which can be presented by a ladder in thewhere t,4,, is a diagonal matrix in the space of
particle-particle channel with two propagators describing(11),(11),(11).(]]) states,
electrons with almost vanishing total momentum and with
very close energy parameteiso-called Cooper channeln t=diagd,,d3,ds,d>), (4)
the case of ferromagnets and as londves 7{1 ,le , Where
7, and 7, are the momentum relaxation times of the spin-up

FIG. 1. The bare scattering amplitude.

0 _
[ apys=a0a505,=b(07s507,+ 03,505,) ~tagys, (3)

and we introduced the following definitions:

and -down electrons at the Fermi surface, this channel does , 1 1
not include ladder elements with Green functions corre- a=NiVo=5 ———=5———, )
sponding to the opposite spin orientations. Indeed, using the reor Lrol
standard method of calculation of the Coopetdnpne CN2Y K2 12
should evaluate the integral b=N;Vikoke ke, , ©®
d3k d;=N; VN okg, = ()
_ R A _ 1 iV1NoREy )
1P J (ZW)BGU(SIk)Gg-’(Si k), ZWVTTEOT
whereGXA(¢ k) are the retarded and advanced Green func- N2 L4
. T . o C dy=N;ViAokg = , (8
tions of an electron with spir=T,|. This givesIl,, /I, ! 2my 7y,
=1Mr,<1 andIl; /Il ,=1/Mr <1, which corresponds
to vanishingly small contribution of the smgle} channel. Thls_ dy=— NinXokﬁTk;Z:L , 9)
result can also be understood as a suppression of singlet pairs
by the exchange field. with Ao defined as
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FIG. 2. Ladder diagram for the Copperon in the 3D case.

)\O:(nkx nk/))2(= 9 (10)

In the above equation; is the concentration of scattering

centers, and; andv| are the densities of states at the Fermi

level for spin-up(majority) and spin-down(minority) elec-
trons, whilekg; and kg, are the Fermi wave vectors for
spin-up and spin-down electrons. The relaxation timgs
and 7o, defined by Eq(5), are the momentum relaxation

times in the absence of SO scattering, whereas the relaxati

times 75, and 75, , defined by Eqgs(7) and(8), are due to
the SO scattering. The averaging in E#0) is over all ori-
entations of the unit vectorg, andn,,, wheren,=k/k and
ne=k'/k’.
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FIG. 3. Self-energy diagrams.

spin up electrons. Equatiqi4) was derived in the diffusion
limit, i.e., whenw<1/7; andq<(D,7;) "2

The relaxation timer; can be found by calculating the
self-energy, presented by the diagrams of Fig. 3. The self-
energy contains nonzero spin-flip vertices of the singlet type,
as shown in Fig. 4. After calculating the imaginary part of
the self-energy, we find

ZVJ.
a+d;+—~>b].
4]

(15

1
— =27,
L

Using Egs.(5)—(14), we finally obtain the following for-
mula for the renormalized scattering amplitude in the Cooper
channel(Cooperon:

on

T —ilw+ DTq2+ 1E-SOT ,

I'i(w,q)= (16)

Using Eq.(3), we find the following bare scattering am- where the effective SO relaxation time of the Cooperon,

plitudes for the spin-up and spin-down electrons:

1
rf=r?,,=a—d= - , (1Y
2wy 7oy 2’7TVT’T§0T
1 1
o_10 _ _

ZWVLTOl 277Vl7-§01

One should note at this point that the bare eIem(ﬂﬁ’tigl

andl“?m do not contribute to the Cooper-channel diagrams

in the case of ferromagnetic systems as londvias 1/7, as
we already stated before. Apart from this, in a 3D chSe
does not contain the componeri§, || andI'{|,,, which
vanish due to the rotational symmetry in they plane, as
can also be concluded from E().

Summing up the ladder diagrams contributing to the

renormalized scattering amplitudg (w,q)=I";;1;(®,q) in
the Cooper channel with small transferred enanggnd mo-
mentumq (Refs. 6 and Y (see Fig. 2, one obtains the equa-
tion

' (0,0)=T+T(0,q) 1 (0,9), (13
where
3
(w,q)= f WGRw.Hq)G?(O,— k)
=27v;7(1-D0’r +iwT). (19

Here, DT:%U,Z:TTT is the diffusion coefficientpg, is the
Fermi velocity, andr; is the momentum relaxation time of

Tsor » is introduced,

1 _ 2 d1+(V1/VT)b
o T a—dp

(17)

;soT T
Let us now definery,, and 75, as lkg,=2mv;b and
17so=27v|b. In the limit of weak SO scatteringrsy
>, one may then write

~. N
~ 7~
| k Y
| K | k
~ ~
7~ 7~

FIG. 4. Spin-flip vertex.
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FIG. 5. Localization corrections to conductivity.

1
I'(w,q)= = ,
e ZWVTT% —ilw+ DTq2+ Urgor+ LUty
(18
where
1 1 v, 1
.._:2 Z_ — |, (19)
Tsol Tsof 4 T>s<oT

and a phase relaxation time,,, related to some inelastic
scattering processes of electrénéjis added into Eq(18).

The analogous formulas can also be derived for the spi
down Cooperor” | (w,q)=I"| ||| (w,q). This formula can be
obtained from Eqgs(18) and(19) by inverting the direction
of the arrows.

III. CONDUCTIVITY AND MAGNETOCONDUCTIVITY IN
THE 3D CASE

The localization correction o to the static conductivity
is determined by the diagrafhSshown in Fig. 5. Upon cal-

culating the corresponding contributions, one finds the fol-

lowing formula forA o

2
Ao=——

€ 2 2Df
o\ ST

3

d>q

wﬂ(oﬂ)

d3
+27TVlele —qSZWVlFl(O,q)), (20
(27)
which is a straightforward generalization of the localization
correction in a nonmagnetic case. Using Ed®) and (20),

we obtain

e[ 11 1\"
Ao=const- — | —=| = —
472| D %/2 Tsop ¢l )
+ ! ! ! )1/21 (21
D:J_/Z ;sol Tgol ,

where the constant part is related to the contribution from th
largest momenta of the Cooperaq;- (D7)~ %2, and cannot
be calculated exactly within the diffusion approximatfshit
can be estimated as

e2

const= — _2[(DTTT)_1/2+(DlTl)_1/2]
4

14442
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Thus, the constant term is negative and, sincg,

<~7'so,7'¢, it is larger in magnitude than the second term of
Eq. (22). Therefore, the total correctiaf21) is negative. By

decreasingrs, and/or7,, we suppress the localization cor-
rection to conductivity.

The magnetic inductiofboth external and internasup-
presses the localization corrections. If the magnitude of the
total magnetic induction 8, then, following the method
developed by Kawabat,we find

2 eB Not

D1 5 2,

e = dq

_ 2T

4eBD,

Aoc(B)=— c

D%+

w

1 1 -1 No|
t—t—

Ts ol T‘PT

eB

o dq
+Dl 2mcC n=0

1
n+- —

x|nts

27T

)

L
)

1 1

4eBD,
t—t—

X|Dg*+

(22

Nwhere 15=(c/eB)*2 is the magnetic lengthc is the light

velocity, and the sums over the Landau levels are cut off at

2
Nop()=la/(D1()T1(1))- u

After eliminating theAo(B=0) part;” we find a formula
which is a generalization of the Kawabata’s low-field mag-
netoresistance to the ferromagnetic case,

Aa(B)—Ac(0)

oo

2 1

(n+1/2+ 5,12

e

- 16’772|B n=0

—2(n+1+6)Y 4+ 2(n+ )V ———
! T (nt 12+ 82

—2(n+1+58)Y%+2(n+6))Y2 (23

’

where

2
IB

5T(“:4Dm>

1 1

+

= (24
TsoT(l) T‘PT(U

In accordance with Eq(22), the magnetic induction sup-
presses the negative correction to the conductivity. Thus, the

resulting sign of EQ.(23) is positive, and its magnitude
Aco(B)—Aa(0) increases with increasing magnetic field.

This means that one finds a negative magnetoresistance, de-

spite the presence of the spin-orbit interaction. The reason
for this is the fact that we have excluded the singlet Coop-
eron, which contributes to the localization correction with
the opposite sign and usually gives rise to a positive magne-
toresistancéweak antilocalizationin weak magnetic fields

in nonmagnetic materiafs’°

3-4
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FIG. 7. Equation for the Cooperon in a 2D ferromagnet with
FIG. 6. Two-dimensional ferromagnet with in-plane magnetiza-in-plane magnetization.
tion.
In a strictly 2D case and when both spin subbands are popu-
The obtained result is in agreement with the results orated with electrons, the density of states is independent of
magnetoconductivity of nonmagnetic metals in a magneti¢he spin orientationy, = v, =». This follows from the model
field if both Zeeman splitting and spin-orbit scattering areassumed in Eg(2). In that case also the relaxation times in
taken into accourtt® Indeed, the exchange field of a ferro- the absence and/or presence of the SO scattering are inde-
magnet enters the Hamiltonian, E(l), like the Zeeman pendent of the electron spirmg; =79 =7y and 75, = 754
term. Thus, the strong-exchange-field limit of a ferromagnet= 7.
corresponds to the case of a large magnetic field in the Zee- Contrary to the 3D case considered above, we have now
man term. At these conditions, the effect of a magnetic fieldo include the spin-flip processes in the Cooperon ladder.
is associated with a negative magnetoresistance due to thais is due to the fact that now we do not have the rotational
suppression of the singlet Cooperon by magnetic fieldssymmetry in thex-y plane. According to Eqg25)—(27), the
through the Zeeman splitting. bare amplitudes are now

IV. TWO-DIMENSIONAL FERROMAGNETS

I{=rf=r°= : (28)
In this section we consider a two-dimensional ferromag- 2mvTg
net. In such a case there is no electron motion in the direction
perpendicular to the plane, and consequently the electron
wave vectors are in the plane of the ferromagnet. We con- I, =T =Tg=—- .
sider first the case of in-plane magnetization, as shown sche- 2wy,
matically in Fig. 6. The bare scattering amplitude has then
the form The equations for the renormalized vertices can be writ-
ten as two coupled ladders fdf;;;/(w,q)=I" | (w,q)
0 4,6= 208,505, ~bokso’s,, 25 =l'(w.q) and I'y(0,q)=T i (0,q)=Ts(w.q), as
shown in Fig. 7. From these equations we find

(29

where

1 1
1 F ’ = — '
(26) (@.9) 4wy —iw+Dg?+1r,

(30

27T

and WhEI’ED:%(DT-‘rDl), and the diffusion constan®; and
D, are defined a@m):%vémﬁ- The electron relaxation
1 time 7 in Eqg. (30) is independent of the electron spin,
= vt (27 =71,=7, and can be calculated in the same way as in the 3D
2TV Tg, case, which gives
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X 1 2 2

~ = z = z ] (35)
Tsol(l)  Tsol(1) " 271(1)  Tsoi(l)

provided thatrgom)> 71(,)- By comparing the resulté30)
and(33), both obtained for a 2D case but for different mag-
netic configurations, we see that the effect of the SO inter-
action significantly depends on the orientation of the magne-
tization fieldM with respect to the plane of the ferromagnet.
The quantum correction to the conductivity of a 2D fer-

M romagnet takes the form
—+— | —+=—|¢,
Tel  Tsor Tel  Tso|
(363

which is a direct generalization of the corresponding formula
in the 2D nonmagnetic ca$é:® Here, 7, (), and 7 () are
defined, respectively, by E¢31) and?som)zo for the in-
plane magnetization and by E¢84) and(35) for the case of
perpendicular magnetization.

The 2D localization correction, described by E863), is
FIG. 8. Two-dimensional ferromagnet with magnetization Per-negative sincer<~rso, - and, in addition, we take here

pendicular to its plane. <7’SO,T¢. The latter inequality means that the momentum
relaxation time of electrong;, is mainly due to the potential
scattering.
We can also present an expression for the conductivity in
the case of nonzero magnetic inductiBn perpendicular to
It is worth noting that the spin-orbit scattering enters thethe plane, by generalizing the result for a nonmagnetic two-
Cooperon only through the one-particle relaxation timend ~ dimensional systeff
has no influence on the pole of the Cooperon.
Consider now the case when the magnetization fiél B ¢< 1 N 1 N 1 )
2 ;soTaT T‘PTaT
w( 111 )
2 ;solal T‘Plal

2
e
z AO'=—2||n T +In

41

T

1 1

1
TT_TL

=—+—.
o s

1
- 31
-

2

Ao(B)=— —
e &
41

s
w- E ’TTaT

perpendicular to the plane of the ferromagnet, as shown
schematically in Fig. 8. The calculations are similar to those
in the case of in-plane magnetization, so we write down only
the results. The only bare scattering amplitudes are E@W + ¢(§+
andl“‘f, which generally are different and have the form

’

T8,
(36b)

1 _ 1 32 where aw=4eBDm/c, and #(x) is the digamma
2mvT) 27TVT§0T(L). function®* which has the property(x)= In(x) for x>1.
The magnetic induction suppresses the negative correc-
The Cooperon$’;(w,q) andI' (w,q) can be written as tion to the conductivity, which leads to the negative magne-
toresistance. It should be noted that in the strongly 2D case,
the in-plane magnetic induction does not affect the localiza-
> tion correction to conductivity. The reason is that in the two-
TVT(]) dimensional case, the flux of magnetic induction does not
penetrate through any closed electron paths. Correspond-
> 1~ , ingly, the in-plane induction does not break the interference
—iw+ Dm)qZ_,. Utsory+ Urgr()y of closed trajectories of electrons moving in opposite direc-
33 tions, responsible for the weak-localization efféct.

0 _
iy=

I'iy(w,0)=

where the relaxation times, and 7, are given by V. QUANTUM WELLS

In the quasi-2D case the electrons are confined within a
1 _ i+ 1 (34) quantum well and the numbét: of 2D subbands populated
i) 7o Téom) with electrons is larger than Ng>1. The situation with a
large number of occupied subbands is typical for metals,
and whereas the situation with only a few populated subbands is

144423-6
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— 1

=N.V?2 YA€) e —
characteristic of semiconductor quantum wells. The effect of do=NiVi(kxk’); 2y A (40
SO scattering on the magnetoresistance of nonmagnezgic ma- Lisol
terials at such conditions has been studied by Hikeinail: dy=— Nivim(”)- (41)

We consider here a ferromagnetic quantum well in the
geometry shown in Fig. 6, i.e., when the magnetization fieldThe averages in Eq$38)—(41) include averaging over dis-
M is in the film plane. The scattering amplitude has then therete subbands due to quantization of the electron motion
following form: along the axisx (normal to the film plang In this notation,
the expressions for bare vertic€§ and F(f coincide with
Egs.(11) and(12), whereas for the spin-flip verte]SZgf we
have

FSBw:aﬁa(gﬁﬁy—baz(ga')éy—CO'igaéy—talgyg, (37)
with a, b, andt,z, s defined by Eqs(4)—(6) and

1 1

., (39 ro=

c=N;Vi(kxk")7D= (42)

= + .
27TVTT¥0T 27Tvlr3s'ol 2’7TVTT>S(0T 27TVT7¥0T

1 The ladder equations forl';(w,q), I'|(w,q), and
d;=N;Va(kxk')2N=—F— (390 TI'i(w,q) have the form shown in Fig. 7. From these equa-
27TVTT§0¢ tions one finds the following solution fdr,(w,q):

(2% (0,0)+I[1-T11 (w,0)]

I'i(w,q9)= - (43
[1-T9 (0,q) [ 1= T (0,q)]— (T32M(@,a)T (0,q)
In the case of a weak SO interaction, the final expressiol'f¢w,q) takes the form
' (0,q) Ar (44)
w, = ~ ~ ’
e ZWVTT% _i“’+DTq2+1/TSOT+1/T<pT
where
A 2/7@01 + 1/7)5(OT + 1/735’0T s
! 2/T§0T+ 2/T§ol + (1/7'§0T + 1/T)S/OT)(1+ v lvy) ,
5 _ D (20780, + Uty + Utle)) + D | (21750 + Urgo + 7Ly ) 49
! 2rég+27e0 + (Urg + Ul ) (14 v 1)) ’
i _ 22/( TEOT Tgoi) + (1/7-xsoT + 1/T>SIOT)[1/T§OT + Vl /( VTT)slol)] + 2/( 7)s(oT Tgol) (47)

Tsot 2/T§0T+2/T§ol+(1/7§m+1/T¥0T)(1+ v lvy)

and the spin-up relaxation time is between spin-up and spin-down states, a “mixed” case is

possible, with a 3D correction for one spin orientation and a

1 1 1 1 1 2D correction for the opposite spin orientation.

—=—t—t——t—.
T To1 T T)s(ol T,

(48)
VI. SPIN-ORBIT INTERACTION OF THE BYCHKOV-

The corresponding expression fbr(w,q) can be obtained RASHBA TYPE

from Egs.(44)—(48) by changing the arrow direction inthese  The case when the spin-orbit coupling enters the Hamil-
formulas. It is worth noting, that according to E@6), the  tonian also in the absence of scattering defects needs a spe-
spin-orbit interaction renormalizes the diffusion coefficients.cial treatment. In the following we will consider a system

The correction to conductivity is described either by Eq.described by the Hamiltonian including the Bychkov-Rashba

(21) or by Eq. (36), in dependence on the ratio @fg¢s
=[D/(7sg+ 7,512 to the width of the quantum wel.

For L.ss<L we have effectively a 3D case described by Eq.

(21), whereas fot_.>L one finds effectively 2D behavior,

Eq. (369. It is worth noting that due to a strong asymmetry

interaction ternt3

k2
f lﬂlﬁ[ﬁ_MUz'i'g(kyUz_ kzo'y) i,

(49

d%
(2m)®
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FIG. 9. The energy spectrum
m 15 m 1S E(k) of a ferromagnet with the
Bychkov-Rashba SO coupling,
shown as a function ok, at k,
=k,=0 (a) and as a function of
ky atk,=k,=0 (D).

1.0 1.0
0.5 0.5

0.0 0.0 \
0.5 0.5

3 4 2 0 2 4 6 e 4 2 2 4 6

_kz 10" cm™
1em) (b)

where the magnetizatiod is assumed to be in the plane of where x is the chemical potential. Accordingly, the self-
the systenmthe geometry of Fig. pandg=g(k) is the spin- energy is also a matrix in this basis. It is, however, more
orbit coupling parameter. This Hamiltonian can describeconvenient to consider the electron self-ene¥dy, k) in the
electrons in low-dimensional structures close to interfaces dbasis of the eigenfunction$1) and(52). The self-energy is

0
7 -1
k, (10" cm )

electrons in a quantum well with variable doping. then diagonal and the imaginary parts ®f(0kg;) and
The energy spectrum of the Hamiltoni@d9) has two  3,(0Kkg,) give the relaxation times; and, in the presence
branches of defects.

Using Egs.(51) and (52), one can calculate the matrix

? elements of the impurity potenti&y(r),

81(2)(k)=ﬁi[(M—gky)ergzkﬁ]m, (50

which are no longer pure spin-up and spin-down states, but Vo(4M?+gg'kk})
corres_pond to spi_n-mixed states. The ei_genfunctions corre- Y1kIk'™ 2k:2k’_(4M 21 g2k2)Y3(4M 2+g’2k;2)1’2’
sponding to the eigenvalugS0) can be written as (54)

|1k) = (4M%+g%k2) " Y2 —igk,|kT)+2M]|k])), (51)
v v 2iVoM(gk,+g'ky)
_ 2 21,2\ —1/2, H = - )= s
|2k>—(4M +g kZ) (2M|kT>+|ng|kl>) (52) 1k, 2K 2k, 1k (4M2+92k§)1/2(4M2+g/2k£2)l/2

Due to the terms linear ik, and forM #0, the energy spec- (55

trum (50) is not symmetrical with respect to the— —k ) ,

transformation, as can also be seen in Figa) &nd 9b). In ~ Whereg’=g(k’). _

the absence of an external electric fi€dthere are nonvan- To find the self-energy one needs to calculate the dia-

ishing spin currents, associated with each branch of the spe8/@ms shown in Fig. 10. In what follows we consider the

trum s, (k). However, it can be verified that the total charge ¢25€ When SO is small as compared to the magnetic splitting,

current is zero iE=0. so we can expand the self-energy in a small parameter
In the basis of the spin-up and spin-down states, the ele@kr/M<1. Then, we find

tron Green function has the matrix form

,,,,,

Go(e,k) / \ / 3

_ e—K’l2m+ pu—Mo,+gkyo,— gk,oy 1k 1 1k 1k 2K 1k
[e—e1(k)+u+idsgre][e—ex(k)+u+idsgre]’

FIG. 10. Self-energy in the case of the Bychkov-Rashba SO
(53 interaction.
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g%k’ j
4M?

d3k’
(2m)®

g/2k£2

SR(e,k)=N;V3 Y

1+

+N;V3

X
e—gy(k)+u+id
XJ' dSkr 912k£2 1
(2m)° AM? e—ex(kK )+ pu+is
(56)

and a similar expression ch?(s,k). In these formulas we
can pute=0, k=Kg (1) and average over the Fermi sur-

PHYSICAL REVIEW B64 144423
sk=[(M—gk,)?+g%kZ]*2 (62

Expanding in powers o ks /M <1 and calculating the inte-
grals in Eq.(60), we find

m’g> mg

_ L |
and

m?g? mq?

— r_ 31

faces. This leads to the relaxation times for electrons corre-

sponding to bands 1 and 2,

2,2
_; _ﬁgT_kFT (57)
1T 2 o 2|
270N V2 | 12M
1 v gzk2
= 1- 2 (58)
20NV T v 12m

whereg; =g(kg;) andg,=g(kg|). The above formulas ex-

plicitly show the contribution of SO interaction to the relax-

ation time.
We also need to calculate the densities of stateand v,

The relaxation times; and 7, enter the expressions for
the renormalized retardedsf) and advancedG”) Green
functions:

e—k?2m+pu—Mao,+ gkyo,—gk,oy

[e—e1(K)+uxil2T][e—ea(K)+ u=i/275]"
(65)

GRA(e, k)=

Now we have already all quantities necessary to calculate the
renormalized verteX’ ,z,5. The general ladder-type equa-
tion for such a vertex reads

Paﬁyé(w!q)

at the Fermi surfaces and to relate them to the ones in the

absence of the spin-orbit interaction, and v, . To do this
we write

=NiV%6a56ﬁy+NiVS25 5@, 1sy5(@,9), (66)

d3k whereV,, is the matrix element of the short-range impurity
V1(2): J —5(/L_81(2)(k)), (59) pOtentia| and
(2m)°
and then, upon integrating ovky, we obtain 3
Pon Integrating oveg ol 0.)= | SRS G0,
(2m)*2 dk,dk, m 67
1@ g JS. W-ulpsh o &
12 Hoa1@) As before, we will restrict ourselves by considering the cou-
where pling constang to be small as compared to the spin splitting,
s 2 gke /M <1.
I _ ky+ ks - Using Eqgs(66) and(67), and integrating ovek, , we find
12K = 50 =S ©)  for q,0=0
I (0,0 = i(2m)1/2 J dk dk[Sk_Ma'z+g(ky0'z_kzo'y)]av[sk_Mo'z_g(kyo'z_kzo'y)]ﬁs
avps 8w | Jelo<u T s(sctso) (o= Sc+il ) p— (K2 +K2)/2m—s, 112
—-s,— Mo, +g(kyo,—k wl—sk—Mao,—g(kyo,—k
+J| dkydkz[ k o, +9( yOz zo'y)-] [—sk 20'2 zg( yOz lj:'y)]ﬁs 69)
ey(K)<u Sk(sk+ S_k)(sk_S_k+|/72)[,lL_(ky+ kz)/2m+ Sk]
|
If we put g=0 in Eq. (68), we find that only two matrix by the terms of the expansion in smgland o,
elements are nonzero: namely;,,(0,0) andII,(0,0).
AssumingDg?7,w7<1, we can just supplement this result HTTM(Q),Q):ZWVTTT(].—DquTT‘FinT), (69
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and a similar one fofl | || |(w,q). In the limit of small SO interactiongks7<<1, and for

Let us consider now the limit of weak SO coupling and M =1, we can neglect in Eq68) all terms of the order of
expandll,,gs(q,w) in powers ofgks /M. The first nonvan- gk /M. As a result, we find only two nonvanishing matrix
ishing term of this expansion is quadratic in this parameterelements
According to Eq.(68), the other small parameter in the limit
of g—0 isgkg 7. Thus, if we assumd 7<1, we can neglect
the terms~ (gke7)2 and keep the terms-gke/M. In the
opposite limit,M 7>1 (clean ferromagngtwe should keep
terms~ (gkge7)2 and neglect terms-gke /M. Since our con-
siderations of the localization corrections are limited by (70
eg>>1, the dirty case is possible only for some weak ferro-
magnets, wherM <gg (in other words, for ferromagnets
with very low polarizatiop. (0= (w,q)

In view of Eq.(49), gk is the amplitude of the spin-flip
process. In the classical pictugkr is the angle of spin
rotation in the unit time. Hencgkg 7 is just the angle of the (72
classical spin rotation due to the Bychkov-Rashba perturba-
tion at the mean free pathof the electron. Thus, the small- \yhich give rise to the Cooperdh; (w,q) in the form of Eq.

ness of the parametgyke7 corresponds to a small spin ro- (1g), with the effective spin-orbit relaxation time
tation angle at the length

Since considerations in this paper are restricted to the case
M 7>1, we will not discuss here the opposite linMtr<<1. 1 4 ,,
Such a case needs a special treatment. Indeed, as we pointed ~T_ = §ngFTTT '
out in Sec. I, only the conditioim =1 allows us to restrict sof
ourselves to the triplet Cooper channel. The result on the g
only nonvanishing matrix elementsll,;;;(0,0) and Similar expressions can be obtained fo(w,q) and 75, .
IT,,,,(0,0) forg=0 [see Eqs(68) and (69)] also refers to If we take the limitgkg7>1, then forM 7>1 we still can
the caseM =1 since in Egs(65) and (68) we account for consider the SO interaction as a small perturbatidg,/M
the self-energy as a small shift of poles of the Green function<1. Calculating the integral68) up to the second order in

i111(0,q)=111(,q)

: 2 2,2
ZZWVTTT(].—DTQZTT-FICUTT— %gTTTkFT)'

: 2 2,2
=27TVlTL(1_qu27'l+IwTL_ %nglkFL)'

(72

from the real axis. this parameter, we find
|
3mv T mg® g’kZ,  mg? g°k?
_ 171 _ 2 P _ | STF] 1 _ _ _91%FL y oy
I, z(w,q)=——| | 1-Dg°ny +iwr (1=0,) 4(1—0y,) ———— 0,0
psl@,q 8(ngFiTl)2|: 19711 17 2M  3me2 2k,2;l z 2B 2 Bs
21,2 21,2 2
97ks, 9'kg, mg;
+ 6M2 5av(l_0'z)ﬁs+ 6M2 (1_0-2)&1)533_W(l_oz)av(l_{—az)ﬁs
3wy, T mg® g’k2, m’g?
172 2 T 910 1
+——— 1| 1-D,@Prtiont 5o — (14 07) gu(1+ )
8(ngFTrz>2{ TR ame T 2, ‘ e
21,2 2,2 2,2 2
g7ke, 97kg; g7ke, mg;
- 3M2 U}clwo%s GMZ 5av(1+0z),83+ W(1+Uz)avaﬁs+ V(l—i_oz)av(l_oz)ﬁs . (73)
|
Using Eq.(73), we can find all nonvanishing matrix elements e?n m2a2 m 2)2
of T, 55(,q) and then solve the ladder equations of Fig. 7. o= 171 ( 2gT - ¢ _n 8K
We do not make this calculation since we notice that the m Kg; M vy 12M?
presence of the small factor #-7)? leads to complete - 5 o
suppression of the Cooperon. Thus, the localization correc- e’n 7, m-g; mgf vy O7KE,
tions exist only forgke7<1. R kéi Y _V_L 1oM2] (74)

Finally, we present the calculation of a classical correction
to the conductivity due to the SO interaction in Hamiltonian This expression contains corrections related to renormaliza-
(49). After calculating the loop diagram with the Green func-tion of the density of stateecond and third terms in each
tions (65), and using Eqs(57), (58), (63), and(64), we find  set of brackefsand of the scattering timéourth termg.
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We should also take into account a renormalization of theamorphous materials, one can expect a much shorter mean
chemical potential.. For this purpose we calculate the total free path, likd =106 cm, which is still large enough for the
number of spin-up and -down electrons and impose the corecalization corrections to be smakgl>1). In the case of
dition of constant particle number. After simple calculationsI=10"% c¢cm, one findsB.,;;=7 T, which is significantly
we find the correction to the chemical potential larger than the internal induction of 2 T and, therefore,
makes the localization corrections observable.

In the case of thin magnetic films, the demagnetizing fac-
tor is of crucial importance. For example, when the magne-

. . . . tization vectorM is perpendicular to the interface, the de-
Calculating the qorrespondmg _correctlon_s to Fermi mo'magnetizing factor is unity,,= 1 (z axis is perpendicular to
mem‘?’kFTvl’ we f_m_d_ the corrections to spin-up ar_nd -_down the plane; other components of demagnetizing tensor are
classical _conductlvme.s connected with renormalization Ofvery smalj, and we havé8™=0. In this case, the results of
the chemical potential: Sec. IV can be applied with the magnetic induct®requal

to the external magnetic fielti®*'. The critical magnetic
field, oriented perpendicular to the plane, which suppresses

_ g%kgT + gfkgl m(g%kFT + gfkm)

Au= _
o 8M (ke +ke)  2(Ke +Ke))

(79

Aa'g% _ m(g?kgﬁ-gfkﬁl) B 3m2(9%km+gfkﬂ)

o C2M kﬁT(kFTJrkH) ZkET(kFTﬂLkH) ,(76) the localization correction, can be estimated as in the 3D
case.

On the other hand, in the case of in-plane magnetization,

Acd) - m(g?kE, +g7k?)) - 3m2(gke; + 97k ) the demagnetizing factor is much smaller than unity, and the

nonvanishing internal magnetic inducti@{"'=4=M, is di-
77 rected along the film. However, the effect of parallel mag-
netic induction on the localization corrections in a strongly
It should be noted that the classical correctiér® and(77)  two-dimensional system is absei®@ec. I\). For a quasi-2D
can be of any sign since the inequaliy>1/r does not system like a quantum well, the effect of parallel induction is
necessarily imply any relations between the magnitudel of nonvanishing but weak. We can write the corresponding ex-
and the Fermi energies of majority and minority electrons. pressions for localization corrections in the presence of in-
The total correction to conductivity includes all correc- plane magnetic induction by simply generalizing the results
tions to the classical part, Eq§4), (76), and(77), as wellas  of Refs. 36 and 37.

o) 2MKE (ker+Ke)  2KE (KeytKe))

the quantum correction in the form of Eq21) or (369 and If the film thicknesdL is large with respect to the electron
(36b) with 7., given by Eq.(72) for gker<1. mean free path, but still small enough to consider the film
as a 2D systerfi® | <L<[(D7¢,) 1+ (D7,) 1] Y2 we can
VII. EFFECT OF INTERNAL MAGNETIC INDUCTION IN obtain, using Ref. 36, the dependence of the localization
A FERROMAGNET correction on magnetic induction in the limit of smadd|
i.e., forlg>L:

In our model we have taken into account the effect of

magnetic inductionB, which enters the kinetic energy of )

electrons through a vector potentialand leads to the sup- Ao(B)—Ag(0)= e nl 1+ LZDT(7501T+ Twl) !
pression of localization corrections, E¢22) and(36b). The o(B) (0) A2 n 124

total magnetic inductiom inside a ferromagnet includes the .

external magnetic fielth®*' and the internal magnetic induc- LZDLGS—olﬁ T‘f)‘l

tion B, B=H®*'+B", whereB!"=4m(8;—n;)Mo;, Mo +In| 1+ y— :

is the magnetization vector, ang; is the demagnetizing 12

factor tensof®> The magnitude of the internal magnetic (78

induction may be rather high in strong ferromagnets.
Nevertheless, weak localization corrections were observed; shows a weaker dependence on the magnetic induction, as
e.g., in Ni films®® compared to the 3D case. For larger valuesBpfvhenlg

We can present some numerical estimations of the mag<L, the dependence on magnetic induction is as for the 3D
nitude of B™. For example, in the case of Fe we tdke case, Eq(22). The critical valueB,,;, can also be estimated
4mMo=2 T. Thus, for the bulk Fe, when the demagnetizingas for the 3D case. Thus, for thick clean magnetic films, such
field is negligibly small, we have8™'=2 T. The critical thatL>I, andl>l,=[c/(4emM,)]*? the in-plane internal
magnetic inductiorB®"", which can totally suppress the lo- magnetic induction suppresses the localization corrections
calizations correction, is determined differently in the 3D completely. But in dirty or amorphous thick films with

and 2D cases. In the 3D case we can estimate®f hy=| <lq, they can be observed. Using the parameters of Fe, we
(I'is the electron mean free pathror the parameters of very find 1,=1.8x10 ¢ cm.
pure bulk Fe n=4m, and 7=5x10 * s),*? we find | =4 If the film thicknessL is smaller than the mean free path

X 10~° cm and, consequentlf3 ;=50 Oe. This estimation | (ballistic regime, we use the result of Ref. 37, which can
shows that the localization corrections in pure bulk Fe arébe presented in a simple form for some intervalsBo®®
totally suppressed by the internal magnetic induction. On th&o avoid cumbersome formulas, we introduce the following
other hand, in not so pure metals or in magnetic alloys anchotation:
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1 1
=t
Tell Tsop,|

_ 112
o Ler, =(Dy 7o, )™ (79
WhenL,,l3/L>1, we obtain
Ac(B)—Aa(0)
[.L3 7 I L% T
In| 1+-= =+ [ 1+ =t |, (80)
l6g 7 l6lg 7|

whenL.,I>13/L,

e2
472

Ao(B)—Ac(0)

2 2
e Le 7
In 1+—2ﬂ
3lg 71

2

L TCL

+inl 1+ — =2, (81)
2

3lg 7

472

and whenl ,13/L>L,

Ao(B)—Ac(0)=

& Tyl Lol®
472 48 |é 71 I‘é T )
(82
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scattering. As a result, the quantum correction to conductiv-
ity is always negative in ferromagnets and leads to negative
magnetoresistance.

The strength of SO interaction, together with the phase
relaxation time due to inelastic processes, determines the
magnitude of these corrections. In the case when the SO
interaction is associated with scattering from impurities

and/or other defects, the effective SO scattering tigeen-
tering the Cooperon depends on the dimensionality of the
system and on the magnetization orientation with respect to
the plane of the systerfin the case of two-dimensional or
quasi-two-dimensional systejns$n the case of strongly two-
dimensional ferromagnets with in-plane magnetization, the

inverse time 17, is zero. This increases the magnitude of

the localization correction. The vanishing value ofg/is
essentially related to the spin-flip scattering of the Cooperon;
the usual contribution from the spin-conserving scattering is
canceled by the spin-flip contribution, which enters the
Cooperon with an opposite sign. In the quasi-two-
dimensional case both contributions are present, but they do
not cancel each other.

We have also found the effective spin relaxation time in
the case of Bychkov-Rashba SO interaction. It contains con-

We also find that the critical in-plane magnetic induction gy, ions from both spin-flip and spin-conserving scattering

in the case of. <| can be estimated fromg=L, which gives
rise to a much larger critical value of magnetic induction,

crit crit__

B fim/Bsh =(1/L)?>>1. In other words, even for clean ca

processes.
We think that good candidates for observations of the lo-
lization corrections are also semiconducting ferromagnets

magnetic films, the in-plane magnetic induction does nofjke GamnAs!® which are recently extensively studied in
suppress completely the localization corrections if the filmyjew of their possible applications in spintronics. Another

width is sufficiently small.

example is a new ferromagnetic semiconductor GaBere

_In view of the above considerations, the best configuray yery small magnetization can be combined with a small
tion for observing weak-localization effects in a ferromagnetg|ectron densits®

is to use a thin film with perpendicular easy axis and apply a

perpendicular magnetic field.

VIIl. SUMMARY AND CONCLUSIONS
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