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We discuss the phase diagram of the quantum dimer model on the hexdgonalycomb lattice. In
addition to the columnar and staggered valence-bond solids which have been discussed in previous work, we
establish the existence of a plaquette valence-bond solid. The transition between the plaquette and columnar
phases ab/t=—0.2+0.05 is argued to be first order. We note that this model should describe valence-bond-
dominated phases of frustrated Heisenberg models on the hexagonal lattice and discuss its relation to recent
exact diagonalization work by Fouet al. on theJ;-J, model on the same lattice. Our results also shed light
on the properties of the transverse field Ising antiferromagnet on the triangular lattice and the classical Ising
antiferromagnet on the stacked triangular lattice, which are related to dimer models by duality.
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[. INTRODUCTION dered classical correlations and an RVB phase in its Gf)M.
This connection was discussed first by Read and Sachdev

Quantum dimer model€QDM'’s) were introduced to de- (see Ref. #and has more recently been discussed by us in
scribe the physics of Heisenberg antiferromagnets in a rethe context of a study of frustrated transverse field Ising
gime dominated by valence bonti$his regime is best real- models’
ized in cases where the conventional eNestate is Whereas the general structure of the phase diagram for
destabilized by quantum fluctuations or prohibited by frus-both problems has been in place for some time, settling the
tration. The most prominent appearance of such dimer moddetailed structure has turned out to be difficult. Approaches
els has been in the context of the superconductivity of thédased on mappings to height models or Landau-Ginzburg-
cuprates, where the QDM on the square lattice was introwilson theory contain undetermined parameters upon which
duced by Rokhsar and KivelsbfRK) to describe the phys- the detailed nature of the ordering pattern depends. From the
ics of the short-range flavbrof resonating valence bond point of view of numerics, the problems of simulating the
(RVB) physics® Subsequently, Read and Sachdev showedjuantum problem have been restrictive in that the studies
that QDM’s arise naturally in certain “extreme quantum lim- thus far have been limited to diagonalizations of systems of
its” of generalizations of S(2) magnets to SU{) or Sp(N) rather small siz&* from which subtle differences in corre-
symmetry with largeN.* lations have been difficult to read off.

More recently, an exact duality between QDM’sdr-2 In this paper, we solve this problem for the the QDM on
and frustrated Ising models in a weak transverse field wathe hexagonalhoneycomb lattice and map out its phase
explored by the present authdr$his mapping connects the diagram. This is done with the aid of the above-mentioned
QDM not only to transverse field Ising models but also to amapping to aclassicalstacked triangular Ising magnet. This
class of ferromagnetically stacked frustrated Ising magnets imapping gives access to a number of analytical results but,
dimensiond=2+1, which are of independent interest as more importantly, allows efficient numerical simulations of
they also have a range of experimental realizatfoiie  systems much larger than the ones previously studied.
connection between QDM's, short-ranged RVB physics, and Our central result is that the QDM on the hexagonal lat-
Ising gauge theories has also been discussed recently lige has three phases, namely, a staggered, a plaquette, and a
Fradkin and two of the present authd®.M. and S.L.S.’ columnar valence-bond sol{BS). The transitions between

From the work to date, it appears that the QDM on thethese phases are a first-order transition between the columnar
square lattice does not realize the disordered phase envisagaadd plaquette phases and a combination of a first-order and
in the short-ranged RVB scenario of high-temperature supereontinuous transition in the case of the plaquette and stag-
conductivity. Rather, it is ordered everywhere except at agjered phases; the latter involves fluctations in the ground
point, a possibility already noted in RK’s original wdrind  state on one side of the transition but not on the other.
fleshed out from various viewpoints by different  We further discuss the implications of these results for the
authors$~19411123)/hile some evidence has been presentegroperties of stacked triangular Ising magnets with nearest-
dissenting from this scenarid;'* as will become clear in the neighbor interaction$~22®for which our algorithm allows
following, we believe there no longer is any real basis forus to avoid some numerical limitations encountered in pre-
doubting it. vious studies and where extension to the QDM provides con-

The physics of the square lattice QDM is closely con-siderable insight into the stability of the low-temperature
nected to the physics of the hexagonal lattice QDM—Dbothphase. This phase turns out to be one with three inequivalent
lattices exhibit critical classical dimer correlations which cansublattices, one of which is disordered, in accordance with
be traced, via height representations, to their bipartite natureéhe results of some, but not all, previous studies.

(In contrast the nonbipartite triangular lattice exhibits disor- We also review the connection of the QDM under study to
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Fig. 1(a). This follows from the fact that a lower bound on
the energy per plaquette is njdw —t}, and only|¢) satu-
rates this bound fay>t, with Hopy|@)=0. The dimer con-
figuration corresponding tpp) turns out to constitute a to-
pological sector of its own(Two configurations belong to
the same topological sector if one can be obtained from an-
other by strictly local rearrangements of the dimbrs.
(@) (b) © As one decreaseasthrought, the ground state moves into
FIG. 1. Dimer patterns on the hexagonal latti¢a: staggered, another sector, which contains an exponentially large number

(b) plaquette, andc) columnar. The marked links have a high prob- of dimer configurations. The two candidate phases in this
ability of being occupied by a dimer in the respective phases. Not§ector are depicted in Figs.(H and Xc); these are the
that in each case, there are only two inequivalent sets of links. Alaquette and columnar valence-bond solids, resPECtiV_eW- In
dimer plaguette move effected By consists of rotating the three fact, forv/t——o, one can see that the ground state will be
dimers surrounding a plaquettiéke the one labeled with a pludy the columnar state, as this maximizes the number of flippable
60°. plaguettes favored by the potential term.
The pointv/t=1 is the RK point where each equal-

frustrated Heisenberg antiferromagnets on the hexagonal lagmplitude superposition over a winding number sector is a
tice. Such magnets are prime candidates for being describefound state. An analysis in terms of height representations
by the quantum dimer model, and it turns out that theshows that there is a diverging correlation length as one ap-
Heisenberg model with competing interactions does indee@roaches this point frora <<t and that the critical theory is
seem to realize the order present in two of the phases of th@aussian. In the same language the two candidate states
QDM.% mentioned above foo<t are flat but the competition be-

Turning to the QDM, its Hilbert space consists of hard-tween them cannot be settled in the same analysis. We now
core dimer coverings of the hexagonal lattice. The Hamil-turn to an alternative mapping of the physics of the QDM
tonian acts on each hexagonal plaquette of the lattice. It corwhich will allow us to settle that question by computation.

tains two terms, a kineticT) and a potential {) one. The
former generates a plaquette resonance move by rotating a !l USEFUL MAPPINGS AND NUMERICAL METHOD

triplet of dimers by 60°(see Fig. 1, in analogy to the ben-  1hig aiternative, duality, mapping crisply distinguishes
zene _resonangé.The latter is diagonal in the dimer basis ponveen the different phases. This mapping takes the QDM
and simply counts the number of plaquettes able to resonajf 4— 5 gnto a classical, stacked, frustrated, anisotropic Ising

(“flippable plaquettes. magnet ind=2+1 on itsdual lattice® The Hamiltonian for
The Hamiltonian of the QDM can thus be represented as ﬁwatgmodel reads ’

sum over plaquettes of the following plaguette Hamiltonian:
Hopu = —tT + vV BcHising= Kg(% (Tin_KTZ O'io'i"",BCUCZ 8,0
1
— —t(|9)(] +H.c) + v (|2)(2] + |2)(0]). " @
Here, theo is the Ising variable defined on the sites of a
(1)  stacked triangular lattice; the sum ¢ij) runs over nearest-
It has one free parameter, namely, the ratio of the strength dfeighbor pairs in the plane, whereas the ongiof) is over
the potential and kinetic terms/t. pairs in adjacent layers; is the in-plane exchange field
The structure of this paper is as follows. In Sec. I, weexperienced by spif if it is zero, the corresponding dimer
discuss the phases which one might expect to encounter iaquette is flippable.
the model under consideration. Section Ill contains a sum- T0 generate equivalent Hilbert spaces, one has to take the
mary of the methods used to establish the results that followiimit of infinite exchange in the planek‘— +, as there is
The numerical results on the QDM are presented in Sec. I\& one-to-one correspondence between the hard-core dimer
from which the phase diagrartBec. V) follows. We then coverings on the hexagonal lattice and the Ising model
discuss implications for the study of magnets, namely, trianground states on the triangular lattice, up to a global spin
gular stacked IsingSec. V) andS=1/2 hexagonal Heisen- reversal

berg (Sec. VI) models. We close with a conclusion in Sec. The equivalence then holds in the scaling linkt"
VIII. — +o0, with the quantum inverse temperatysg given by

Bat=exp(X")/N=N/N, whereN is the number of stacked

layers, so that the zero-temperature limit corresponds to a

system with infinite extent in the stacking direction. The con-
As mentioned above, the QDM on the hexagonal lattice issersion of parameters between the clasgi€aland quantum

closely connected to its square lattice version. Hence a num@) problems proceeds via the formulg /t=BcvcA. In the

ber of known exact statements on the square lattice carrfollowing, the quoted values af/t are to be understood as

over mutatis mutandigo the hexagonal lattice. First, far  referring to the guantum problem. Note that(which we

>t, the ground state is the staggered sthte, depicted in  will quote in the following quantifies the discretization

Il. CANDIDATE PHASES
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error—it gives a rough measure of a typical correlation

length in the stacking direction. 03 r ——= perturbative
For the case =0, this model has been studied in the past .
by several groups. In an influential piece of work, Blank- /. 225 sites
<4—<4729 sites

schtein and co-workel$ have carried out a Landau-
Ginzburg-Wilson(LGW) analysis for this model, which un-
covered anXY-symmetric action with an(in d=2+1
dangerously irrelevajpsixfold clock term, which breaks the
XY symmetry at sixth order. 0.1 ¢
The ordering pattern obtained by this method is a three-
sublattice ordering pattern; depending on the sign of the six-
fold clock term, the three sublattices have the ordering pat- g . . :
tern (+M,0,—M) or (+m,—n,—n), where the amplitudes -3 -2 -1 0 1
M, m, andn are undetermined in the most general scerfdrio. vit
Translating these back to dimer correlations, one finds that
the former pattern corresponds to the plaquette VBScqumnar and plaquette phases. In this sector, the actual transition at
Whe_reas the latter qorrgsponds to t_he COIumna_r VB_S'_ v/t=1 to a state with strictly zerm,,,s shows up as a depression
.Slmulatln.gHmmg is ewdently stralg_htforyvard in principle thereof. Bot=0.083, A = 10.
using classical Monte Carlo simulations i+ 3. The only
complication arises from the scaling limit which has to be ) ) ] )
taken, requiring long correlation lengths in the stacking di- Finally, at the Rokhsar-Kivelson pointt=1, there is a
rection. Here, we use a cluster algorit&frthe implementa- kink in m,,s, which indicates the further transition to the
tion of which is easy in Ising language, but would have beerftaggered state. The staggered state has strictly zero magne-
rather hard to guess at for simulations of a stacked dimetization, b.ut since itis in a different ;ectorfrom th_e other two
model. The mapping onto the stacked classical Ising modeptates, this shows up as a depressiomgfs asv is swept
together with the cluster algorithm, is what enables us tdhroughj[, as the system tries to accommodate local staggered
simulate system sizes which are substantially in excess diorrelations within the wrong topological sector as best it

those treated so far in numerical studies of the QDM. can. _ N
To get a handle on the details of the transition, we exam-

ine the same plot for a much narrower range fif near the
IV. NUMERICAL RESULTS vanishing ofm, s, for a wider range of system sizes, as

In this section, we display the results of our numericaldepicted in Fig. 3.As t_he system size incr_eases, the transition
simulations, which we argue demonstrate the existence of $1arPens up into a discontinuous dropnmy,s. This drop
phase transition from the columnar to the plaquette VBSS€Parates the region on the left, withy,s decreasing with an
aroundy/t= — 0.2+ 0.05. almost constant slope, from that on the right, with, s be-

Since we know that the columnar phase is encountered ilng near constant a_nd close to zero. The phase trans_ition thus
the limit v/t— — o, we can rephrase the question of whether2PP€ars to be of first order, as will be discussed in more
there also is the plaquette phase by asking whether there isdgtail below. _ _
phase transition as/t is increased towards- 1. From the To underline this result, we plot the scalingofys as a
discussion in the previous section, it is apparent that, in spifnction of inverse linear system size for a number of values
language, the plaquette state has zero magnetization whergs/t near the transition in Fig. 4. This plot shows thaf,s
the columnar state does not. All we therefore have to do is to
look for restoration of the Ising symmetry to discover
whether there exists a plaquette phase.

To give an impression of the general phase diagram, con- &
sider Fig. 2, where we plot the root-mean-square magnetiza-
tion m,,,s of the equivalent Ising model for small to moder- 01
ate system sizes over a broad range of the paramétewe

\\
0.2 | \

m ms

FIG. 2. m,,s as a function ofu/t, in the sector containing the

2

guote system sizes in terms of number of sites. This is the EE .
number of unit cells of the hexagonal lattice, which equals 81 sites
the number of dimers and also the number of spins of the 005 || SEe e
dual triangular lattice. From this plot, a number of important :gggg e
features are already visible. —= 5184 sites
First, for large—v/t, m,,s approaches its limiting value 0 ; ‘ :
within the ground states of the Ising model, which is 1/3. =t ~0:3 —\?/-t? =01 0

Deviations are well captured perturbatively tifv, as de-

picted by the dashed line, which shows the lowest-order re- F|G. 3. Enlarged view of phase transition region. Note the first-
sult. Just to the left of/t=0, one can witness the vanishing order nature of the transition. The solid line is through the points for
of m,s, Which gets sharper with increasing system size. to the largest system siz8ot=0.083,\=10.
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| |
columnar plaquette ' staggered
f T f |
0.2 0 1 v/t
0.10 transverse field point RK point
2 FIG. 6. Phase diagram of the quantum dimer model on the hex-
=3 agonal lattice. The nature of the ordered phases is indicated above
0.05 P — the axis.
F—Flvit=-0.2 . . . . . .
*—@i=-0.15 implies the existence of a gap in this part of the phase dia-
- gram. This is not surprising since at that point, we are far
away from the phase transition, which is first order at any
.00 55 0.05 0.10 015 rate. However, this observation makes the existence of a gap-
1L less excitation at this point, suggested in Ref. 13, seem rather

_ _ . _ unlikely. More generally, our results fit snugly into the ex-
~ FIG. 4. Scaling oim;ns as a function oL ~*, the inverse of the  pectations from the height representation analysis as well the
linear system sizg3,t=0.083, A = 10. analysis of the transverse field Ising modéise below as

. well) and so there seems little doubt that the analysis in Ref.
settles down to a nonzero value on the left of the transitionq 3 is flawed.

at v/t=—0.25, whereas it scales to zero on the right, for
v/t=—0.15. The transition is located aroundt=—0.2,
where the scaling appears inconclusive. From this, we think _ ] ) _ _
it is conservative to estimate the transition point between the The phase diagram we have thus obtained is depicted in
two phases to be located @tt= — 0.2+ 0.05. Fig. 6. The columnar-plaquette phe_xse. transition is of first

We conclude this section by addressing potential systenferder, whereas the one at the RK point is a second-order one,
atic errors arising from the introduction of the discretization@lbeit with the somewhat peculiar feature that, coming from
in the stacking direction, since the mapping to the quantunth€ right, it appears to be first order as no fluctuations are
dimer model is exact in the continuum limit only. visible leading up to the cr_|t|_cal point. However, coming

In Fig. 5, we show the plots afy, s vsv/t for a system of ~ rom the left, a gap closes, giving rise to the gapless resonon
2304 sites using different couplings in the stacking direction€xcitations: _ .
K7, thus varying\, at a fixed quantum temperature. It can be ~ 1here are a number of theoretical reasons which lead us to
seen that the transition sharpens uphass increased, but conclude that the transition from plaquette to columnar VBS
moves only little as\ changes from 10 to 20. As the quan- 'S first order, as the S|r_nulat|ons suggest. Within th_e_ frame-
tum temperature is lowered by a factor of 2)at 20, the wo_rk of the Landau-Glnzburg-Wllson theoﬁ/,the. critical
transition sharpens further but again does not move signifiPCint corresponds to the vanishing of the coefficent of the
cantly. These effects are therefore certainly within the erropxfold clock term, so that the system could in principle fluc-
bars we give for the value of the critcalt. The case of the tuate between all the degenerae states(including the
largest system we have studi¢dlso displayed in Fig. 5 c_olumnar and plaquette“or)esnhput encountering any bar-
clearly also falls into this range. riers. However, .hlgher harmonics(clock tgrm$ will pre-

We note that the absence of finite-size effects at0, sumably come into play as they are unlikely to vanish at

upon increasing the number of layel, at fixed 8¢ andL, e>_<act|y the same pc_Jint as the leading one; it is these which
will prevent the barriers between the plaguette and columnar

V. PHASE DIAGRAM

0.15

0.10

r.nrms

0.05

0.00

©—@)=5, p=0.083
B—H =10, B,t=0.083
*— )20, B_1=0.083
A—AN=20, B 1=0.042
——= )=10, B_t=0.083

state from vanishing.

Further, we note that the symmetry groups of the two
VBS'’s are not such that one of them is a subgroup of another,
which would be a criterion within Landau theory for a con-
tinuous transition. This is in fact a somewhat subtle point as
both phases break translational symmetry and retain a sixfold
rotational symmetry. However, when trying to form domains
of one phase within another, it turns out that the centers of
rotational symmetry lie in distinct places for the two phases.

This point, incidentally, is somewhat simpler in the square
lattice, where the columnar phase breaks translational sym-
metry in one direction and also rotational symmetry, whereas

203 02 Y 0.0 the plaquette phase breaks translational symmetry in both
vit directions but retains a fourfold rotational symmetry.

FIG. 5. Development ofn,s as a function o\ and 8o . The
dashed line is for 5184 sites; the others are for 2304 sites. Reducing
the discretization errofincreasing\) and lowering the quantum
temperaturdincreasingN) sharpen up the transition.

VI. STACKED MAGNETS

Our simulations apply equivalently to the hexagonal
dimer model and to the stacked triangular magnets. We
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therefore briefly digress here to note some implications of 1.0
our results to the latter system, on which a good deal of work
has been done, in great part inspired by the existence of
experimental compounds realizing this model; for a review
of both theory and experiment, see Ref. 6.

Recall thatH,s,y at vc=0 reduces precisely to this
model; there, the presence of the plaquette VBS corresponds
to the three-sublattice{ M,0,— M) ordering pattern for the
triangular magnet. This agrees with the results of Refs. 18— ~05 |
20, whereas it partially disagrees with Refs. 15 and 16.

This result is somewhat surprising, as even in the low- )
temperature limit it appears that one ends up with only a -1.0
partially ordered statgspins on one sublattice are still
equally likely to point up or down in this phaseather than
the apparently more fully ordered state,(—n,—n). How- FIG. 7. Correlation matrix of sublattice magnetizations
ever, note that in either case, fluctuations are present down {®,,M,,M3), with M;>M,>M3, as a function of magnetic field,
zero temperature—in fact, these states are stabilized by thos® a stack of 120 layers of 2304 sité6’= 1.15, so thak = 10. For
fluctuations in the first placE:® In the absence of fluctua- h=0 one finds the  M,0,— M) phase, which rapidly gives way to
tions, the energy of any ferromagnetically stacked groundthe (m,—n,—n) phase.
state configuration of the triangular magnet would be the
same. Such a selection of an ordered state by fluctuations fﬁultiplied by \ as the correlation length in the stacking di-

known as order by disordét.It has the feature that, although e rion increases. For this reason, the abscissa of the plot is
weak fluctuations are needed for stabilizing the state, thelgCaled up by

strengthening will lead to a melting of the order they them-
selves established in the first place.

In the present case, it now so happens that the intermedi-
ate phase with a disordered sublattice can benefit from the VII. RELATION TO THE HEISENBERG
fluctuations and survive them. As fluctuations are suppressed ANTIFERROMAGNET

(e.g., by adding a negativeor a magnetic field; see below The QDM was conceived to describe the physics & a

one enters the phase with a higher degree of ordering. -~ _ Heisenberg antiferromagnet in a phase dominated by
We can be reasonably confident that upon lowering th%earest-neighbor singlet bondgalence bonds or dimers

temperature even further, there will not be a transition to thel_he question thus arises under what circumstances a VB

(m,—n, =n), mainly because the critical't seems to move hase is energetically competitive compared to theslNe
very little, if at all, in the right direction, as the temperature P 9 y P P

is lowered. Nonetheless, we are not entirely clear how tcf'ta.te' the that a spin can fprm gvalence bond with pnly one
resolve the discrepancies with Refs. 15 and 16. As for thé’f, Its nelghbors, Wherea}s It gains energy from all its anti-
hard-spin mean-field theofit is conceivable that the fluc- alignéd neighbors in a et state. It is via the resonance
tuations are somewhat underestimated there, thus landingroves, captured by, that it might make up the energy
on the wrong side of the fine dividing line between the twodifference.
states. At any rate, we have explicitly simulated temperatures One step towards destabilizing the théeNstate is to
lower than the expected transition temperature and found nmaximize quantum fluctuations, that is to say, consider spin
transition: for a system of size XR27x1024 spins aK”™  S=1/2 systems. The original idea of Anderddbwas to
=2.3 (\=100), we find sublattice root-mean-square magnechoose a frustratedriangulay magnet, as this does not per-
tizations of (0.95,0.12,0.95). The early simulations bymita Neel state in the first place. In addition, in a lattice with
Blankschteinet al® may have run into problems as ergod- low coordination the disadvantage of each spin forming only
icity is lost for single-spin updating at low temperature with one VB is relatively less severe, thus favoring a VB state.
an increasing correlation length in the stacking directfoa, Moreover, it is advantageous not to have closed loops
problem only since remedied with the development of morewhich are very short. This can be seen from within the
advanced Monte Carlo simulation technold§y: However,  framework of the QDM which, formally, is an expansion in
our results are fully consistent with the mean-field analysishe overlap between distinct VB configurations. This overlap
of Ref. 15, provided the coefficient of the clock term remainsis exponentially small in the number of VB’s in which they
of the same sign throughout the ordered phase. differ. The shortest closed loop of even length on the lattice
To illustrate the closeness of the two phae&,in Fig. 7 on which the VB'’s reside determines the lowest-order term
we display the sublattice correlation matrix for a system ofin this expansion. This length is 4 for the square and trian-
2304 spins in a stack of height 120. It can be seen that upogular lattice, but 6 for the hexagonal lattice, thus favoring the
application of a small magnetic field, one leaves thelatter. Furthermore, introducing frustrating further nearest-
(+M,0,—M) phase and enters then(—n,—n) one. Note neighbor exchanges yields a smaller prefadiout not a
that in the classical model, the proximity of the phases issmaller expansion paramekén the RK expansion.
artificially enhanced as the strength of the field is effectively The hexagonal lattice with frustrating further neighbor

0.5

0.0

<MiMJ>
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exchange¥ would thus seem to be a good candidate forping to a classical model with a Monte Carlo cluster algo-
being described by some sort of QDM. In fact, this expectarithm. In the process, we were also able to go well beyond
tion appears to be borne out by very recent work of Fouethe limitations of previous numerical work on the stacked
et al,>> who did exact diagonalization studies odaJ,-J;  triangular magnet to confirm the nature of the low-
S=1/2 Heisenberg model on the hexagonal lattice. They intemperature phase in that model. Based on the close connec-
deed found valence-bond phases. For frustratibdJ;  tions between the properties of dimer models on the hexago-
=0.4, they found a staggered phase, which gives way(& a nal and square latticEswe expect the square lattice QDM,
least short-range orderedcolumnar or plaquette phase which can be obtained from similar simulations on a stacked
aroundJ,/J;=0.3; the numerics, while not being entirely magnet® to behave in an analogous manner. As detailed in
conclusive, is suggestive of the latter phase. Sec. VIl for the hexagonal lattice, this could shed some light
This is in keeping with the QDM analysis, which indeed on the properties of al;-J, square lattice Heisenberg
suggests that this transition corresponds to crossing the RKodel®® for which the derivation of the RK model is totally
point between the plaquette and staggered phases. We sho@ldalogous. Nevertheless, the competition between the
note, however, that carrying out the perturbation theoryplaquette and columnar phases is a matter of microscopic
within the dimer manifold in the spirit of Ref. 1 does not detail and so a thorough study of the latter would appear to
place the point =t in between those two values d§/J;,  be in order definitively to settle the issue. We expect to tackle
and so a more microscopic prediction of the properties ofhis question in future work.
Heisenberg models will probably require going beyond this
by including any renormalizations needed to obtain an effec-
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