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Phase diagram of the hexagonal lattice quantum dimer model
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We discuss the phase diagram of the quantum dimer model on the hexagonal~honeycomb! lattice. In
addition to the columnar and staggered valence-bond solids which have been discussed in previous work, we
establish the existence of a plaquette valence-bond solid. The transition between the plaquette and columnar
phases atv/t520.260.05 is argued to be first order. We note that this model should describe valence-bond-
dominated phases of frustrated Heisenberg models on the hexagonal lattice and discuss its relation to recent
exact diagonalization work by Fouetet al. on theJ1-J2 model on the same lattice. Our results also shed light
on the properties of the transverse field Ising antiferromagnet on the triangular lattice and the classical Ising
antiferromagnet on the stacked triangular lattice, which are related to dimer models by duality.
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I. INTRODUCTION

Quantum dimer models~QDM’s! were introduced to de
scribe the physics of Heisenberg antiferromagnets in a
gime dominated by valence bonds.1 This regime is best real
ized in cases where the conventional Ne´el state is
destabilized by quantum fluctuations or prohibited by fru
tration. The most prominent appearance of such dimer m
els has been in the context of the superconductivity of
cuprates, where the QDM on the square lattice was in
duced by Rokhsar and Kivelson1 ~RK! to describe the phys
ics of the short-range flavor2 of resonating valence bon
~RVB! physics.3 Subsequently, Read and Sachdev show
that QDM’s arise naturally in certain ‘‘extreme quantum lim
its’’ of generalizations of SU~2! magnets to SU(N) or Sp(N)
symmetry with largeN.4

More recently, an exact duality between QDM’s ind52
and frustrated Ising models in a weak transverse field
explored by the present authors.5 This mapping connects th
QDM not only to transverse field Ising models but also to
class of ferromagnetically stacked frustrated Ising magnet
dimensiond5211, which are of independent interest
they also have a range of experimental realizations.6 The
connection between QDM’s, short-ranged RVB physics, a
Ising gauge theories has also been discussed recentl
Fradkin and two of the present authors~R.M. and S.L.S.!.7

From the work to date, it appears that the QDM on t
square lattice does not realize the disordered phase envis
in the short-ranged RVB scenario of high-temperature su
conductivity. Rather, it is ordered everywhere except a
point, a possibility already noted in RK’s original work1 and
fleshed out from various viewpoints by differe
authors.8–10,4,11,12,5While some evidence has been presen
dissenting from this scenario,13,11as will become clear in the
following, we believe there no longer is any real basis
doubting it.

The physics of the square lattice QDM is closely co
nected to the physics of the hexagonal lattice QDM—b
lattices exhibit critical classical dimer correlations which c
be traced, via height representations, to their bipartite nat
~In contrast the nonbipartite triangular lattice exhibits dis
0163-1829/2001/64~14!/144416~7!/$20.00 64 1444
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dered classical correlations and an RVB phase in its QDM14!
This connection was discussed first by Read and Sach
~see Ref. 4! and has more recently been discussed by us
the context of a study of frustrated transverse field Is
models.5

Whereas the general structure of the phase diagram
both problems has been in place for some time, settling
detailed structure has turned out to be difficult. Approach
based on mappings to height models or Landau-Ginzbu
Wilson theory contain undetermined parameters upon wh
the detailed nature of the ordering pattern depends. From
point of view of numerics, the problems of simulating th
quantum problem have been restrictive in that the stud
thus far have been limited to diagonalizations of systems
rather small size,8,11 from which subtle differences in corre
lations have been difficult to read off.

In this paper, we solve this problem for the the QDM o
the hexagonal~honeycomb! lattice and map out its phas
diagram. This is done with the aid of the above-mention
mapping to aclassicalstacked triangular Ising magnet. Th
mapping gives access to a number of analytical results
more importantly, allows efficient numerical simulations
systems much larger than the ones previously studied.

Our central result is that the QDM on the hexagonal l
tice has three phases, namely, a staggered, a plaquette,
columnar valence-bond solid~VBS!. The transitions between
these phases are a first-order transition between the colum
and plaquette phases and a combination of a first-order
continuous transition in the case of the plaquette and s
gered phases; the latter involves fluctations in the gro
state on one side of the transition but not on the other.

We further discuss the implications of these results for
properties of stacked triangular Ising magnets with near
neighbor interactions,15–22,6 for which our algorithm allows
us to avoid some numerical limitations encountered in p
vious studies and where extension to the QDM provides c
siderable insight into the stability of the low-temperatu
phase. This phase turns out to be one with three inequiva
sublattices, one of which is disordered, in accordance w
the results of some, but not all, previous studies.

We also review the connection of the QDM under study
©2001 The American Physical Society16-1
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frustrated Heisenberg antiferromagnets on the hexagona
tice. Such magnets are prime candidates for being descr
by the quantum dimer model, and it turns out that t
Heisenberg model with competing interactions does ind
seem to realize the order present in two of the phases o
QDM.23

Turning to the QDM, its Hilbert space consists of har
core dimer coverings of the hexagonal lattice. The Ham
tonian acts on each hexagonal plaquette of the lattice. It c
tains two terms, a kinetic (T̂) and a potential (V̂) one. The
former generates a plaquette resonance move by rotati
triplet of dimers by 60°~see Fig. 1!, in analogy to the ben-
zene resonance.24 The latter is diagonal in the dimer bas
and simply counts the number of plaquettes able to reso
~‘‘flippable plaquettes’’!.

The Hamiltonian of the QDM can thus be represented a
sum over plaquettes of the following plaquette Hamiltonia

~1!

It has one free parameter, namely, the ratio of the strengt
the potential and kinetic terms,v/t.

The structure of this paper is as follows. In Sec. II, w
discuss the phases which one might expect to encounte
the model under consideration. Section III contains a su
mary of the methods used to establish the results that fol
The numerical results on the QDM are presented in Sec.
from which the phase diagram~Sec. V! follows. We then
discuss implications for the study of magnets, namely, tri
gular stacked Ising~Sec. VI! andS51/2 hexagonal Heisen
berg ~Sec. VII! models. We close with a conclusion in Se
VIII.

II. CANDIDATE PHASES

As mentioned above, the QDM on the hexagonal lattice
closely connected to its square lattice version. Hence a n
ber of known exact statements on the square lattice c
over mutatis mutandisto the hexagonal lattice. First, forv
.t, the ground state is the staggered state,uw&, depicted in

FIG. 1. Dimer patterns on the hexagonal lattice:~a! staggered,
~b! plaquette, and~c! columnar. The marked links have a high pro
ability of being occupied by a dimer in the respective phases. N
that in each case, there are only two inequivalent sets of link

dimer plaquette move effected byT̂ consists of rotating the thre
dimers surrounding a plaquette~like the one labeled with a plus! by
60°.
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Fig. 1~a!. This follows from the fact that a lower bound o
the energy per plaquette is min$0,v2t%, and onlyuw& satu-
rates this bound forv.t, with HQDMuw&50. The dimer con-
figuration corresponding touw& turns out to constitute a to
pological sector of its own.~Two configurations belong to
the same topological sector if one can be obtained from
other by strictly local rearrangements of the dimers.1!

As one decreasesv throught, the ground state moves int
another sector, which contains an exponentially large num
of dimer configurations. The two candidate phases in t
sector are depicted in Figs. 1~b! and 1~c!; these are the
plaquette and columnar valence-bond solids, respectively
fact, for v/t→2`, one can see that the ground state will
the columnar state, as this maximizes the number of flippa
plaquettes favored by the potential term.

The point v/t51 is the RK point where each equa
amplitude superposition over a winding number sector i
ground state. An analysis in terms of height representatio25

shows that there is a diverging correlation length as one
proaches this point fromv,t and that the critical theory is
Gaussian. In the same language the two candidate s
mentioned above forv,t are flat but the competition be
tween them cannot be settled in the same analysis. We
turn to an alternative mapping of the physics of the QD
which will allow us to settle that question by computation

III. USEFUL MAPPINGS AND NUMERICAL METHOD

This alternative, duality, mapping crisply distinguish
between the different phases. This mapping takes the Q
in d52 onto a classical, stacked, frustrated, anisotropic Is
magnet ind5211 on itsdual lattice.5 The Hamiltonian for
that model reads

bCHIsing5Kj(̂
i j &

s is j2Kt (
^ i i 8&

s is i 81bCvC(
i

dBi ,0
.

~2!

Here, thes is the Ising variable defined on the sites of
stacked triangular lattice; the sum on^ i j & runs over nearest
neighbor pairs in the plane, whereas the one on^ i i 8& is over
pairs in adjacent layers.Bi is the in-plane exchange fiel
experienced by spini; if it is zero, the corresponding dime
plaquette is flippable.

To generate equivalent Hilbert spaces, one has to take
limit of infinite exchange in the planes,Kj→1`, as there is
a one-to-one correspondence between the hard-core d
coverings on the hexagonal lattice and the Ising mo
ground states on the triangular lattice, up to a global s
reversal.26

The equivalence then holds in the scaling limitKt

→1`, with the quantum inverse temperaturebQ given by
bQt5exp(2Kt)/N[l/N, whereN is the number of stacked
layers, so that the zero-temperature limit corresponds t
system with infinite extent in the stacking direction. The co
version of parameters between the classical~C! and quantum
~Q! problems proceeds via the formulavQ /t5bCvCl. In the
following, the quoted values ofv/t are to be understood a
referring to the quantum problem. Note thatl ~which we
will quote in the following! quantifies the discretization
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PHASE DIAGRAM OF THE HEXAGONAL LATTICE . . . PHYSICAL REVIEW B 64 144416
error—it gives a rough measure of a typical correlati
length in the stacking direction.

For the casev50, this model has been studied in the pa
by several groups. In an influential piece of work, Blan
schtein and co-workers15 have carried out a Landau
Ginzburg-Wilson~LGW! analysis for this model, which un
covered anXY-symmetric action with an~in d5211
dangerously irrelevant! sixfold clock term, which breaks the
XY symmetry at sixth order.

The ordering pattern obtained by this method is a thr
sublattice ordering pattern; depending on the sign of the
fold clock term, the three sublattices have the ordering p
tern (1M ,0,2M ) or (1m,2n,2n), where the amplitudes
M, m, andn are undetermined in the most general scenari27

Translating these back to dimer correlations, one finds
the former pattern corresponds to the plaquette VB
whereas the latter corresponds to the columnar VBS.

SimulatingHIsing is evidently straightforward in principle
using classical Monte Carlo simulations ind53. The only
complication arises from the scaling limit which has to
taken, requiring long correlation lengths in the stacking
rection. Here, we use a cluster algorithm,28 the implementa-
tion of which is easy in Ising language, but would have be
rather hard to guess at for simulations of a stacked di
model. The mapping onto the stacked classical Ising mo
together with the cluster algorithm, is what enables us
simulate system sizes which are substantially in exces
those treated so far in numerical studies of the QDM.

IV. NUMERICAL RESULTS

In this section, we display the results of our numeric
simulations, which we argue demonstrate the existence
phase transition from the columnar to the plaquette V
aroundv/t520.260.05.

Since we know that the columnar phase is encountere
the limit v/t→2`, we can rephrase the question of wheth
there also is the plaquette phase by asking whether there
phase transition asv/t is increased towards11. From the
discussion in the previous section, it is apparent that, in s
language, the plaquette state has zero magnetization wh
the columnar state does not. All we therefore have to do i
look for restoration of the Ising symmetry to discov
whether there exists a plaquette phase.

To give an impression of the general phase diagram, c
sider Fig. 2, where we plot the root-mean-square magne
tion mrms of the equivalent Ising model for small to mode
ate system sizes over a broad range of the parameterv/t. We
quote system sizes in terms of number of sites. This is
number of unit cells of the hexagonal lattice, which equ
the number of dimers and also the number of spins of
dual triangular lattice. From this plot, a number of importa
features are already visible.

First, for large2v/t, mrms approaches its limiting value
within the ground states of the Ising model, which is 1
Deviations are well captured perturbatively int/v, as de-
picted by the dashed line, which shows the lowest-order
sult. Just to the left ofv/t50, one can witness the vanishin
of mrms , which gets sharper with increasing system size
14441
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Finally, at the Rokhsar-Kivelson pointv/t51, there is a
kink in mrms , which indicates the further transition to th
staggered state. The staggered state has strictly zero ma
tization, but since it is in a different sector from the other tw
states, this shows up as a depression ofmrms as v is swept
throught, as the system tries to accommodate local stagge
correlations within the wrong topological sector as bes
can.

To get a handle on the details of the transition, we exa
ine the same plot for a much narrower range ofv/t near the
vanishing ofmrms , for a wider range of system sizes, a
depicted in Fig. 3. As the system size increases, the trans
sharpens up into a discontinuous drop inmrms . This drop
separates the region on the left, withmrms decreasing with an
almost constant slope, from that on the right, withmrms be-
ing near constant and close to zero. The phase transition
appears to be of first order, as will be discussed in m
detail below.

To underline this result, we plot the scaling ofmrms as a
function of inverse linear system size for a number of valu
of v/t near the transition in Fig. 4. This plot shows thatmrms

FIG. 2. mrms as a function ofv/t, in the sector containing the
columnar and plaquette phases. In this sector, the actual transiti
v/t51 to a state with strictly zeromrms shows up as a depressio
thereof.bQt50.083,l510.

FIG. 3. Enlarged view of phase transition region. Note the fir
order nature of the transition. The solid line is through the points
to the largest system size.bQt50.083,l510.
6-3
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settles down to a nonzero value on the left of the transiti
at v/t520.25, whereas it scales to zero on the right,
v/t>20.15. The transition is located aroundv/t520.2,
where the scaling appears inconclusive. From this, we th
it is conservative to estimate the transition point between
two phases to be located atv/t520.260.05.

We conclude this section by addressing potential syst
atic errors arising from the introduction of the discretizati
in the stacking direction, since the mapping to the quant
dimer model is exact in the continuum limit only.

In Fig. 5, we show the plots ofmrms vs v/t for a system of
2304 sites using different couplings in the stacking directi
Kt, thus varyingl, at a fixed quantum temperature. It can
seen that the transition sharpens up asl is increased, but
moves only little asl changes from 10 to 20. As the qua
tum temperature is lowered by a factor of 2 atl520, the
transition sharpens further but again does not move sig
cantly. These effects are therefore certainly within the er
bars we give for the value of the critcalv/t. The case of the
largest system we have studied~also displayed in Fig. 5!
clearly also falls into this range.

We note that the absence of finite-size effects atv50,
upon increasing the number of layers,N, at fixedbC andL,

FIG. 4. Scaling ofmrms as a function ofL21, the inverse of the
linear system size.bQt50.083,l510.

FIG. 5. Development ofmrms as a function ofl andbQ . The
dashed line is for 5184 sites; the others are for 2304 sites. Redu
the discretization error~increasingl! and lowering the quantum
temperature~increasingN) sharpen up the transition.
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implies the existence of a gap in this part of the phase d
gram. This is not surprising since at that point, we are
away from the phase transition, which is first order at a
rate. However, this observation makes the existence of a
less excitation at this point, suggested in Ref. 13, seem ra
unlikely. More generally, our results fit snugly into the e
pectations from the height representation analysis as wel
analysis of the transverse field Ising models~see below as
well! and so there seems little doubt that the analysis in R
13 is flawed.

V. PHASE DIAGRAM

The phase diagram we have thus obtained is depicte
Fig. 6. The columnar-plaquette phase transition is of fi
order, whereas the one at the RK point is a second-order
albeit with the somewhat peculiar feature that, coming fro
the right, it appears to be first order as no fluctuations
visible leading up to the critical point. However, comin
from the left, a gap closes, giving rise to the gapless reso
excitations.1

There are a number of theoretical reasons which lead u
conclude that the transition from plaquette to columnar V
is first order, as the simulations suggest. Within the fram
work of the Landau-Ginzburg-Wilson theory,15 the critical
point corresponds to the vanishing of the coefficent of
sixfold clock term, so that the system could in principle flu
tuate between all the degenerateXY states~including the
columnar and plaquette ones! without encountering any bar
riers. However, higher ‘‘harmonics’’~clock terms! will pre-
sumably come into play as they are unlikely to vanish
exactly the same point as the leading one; it is these wh
will prevent the barriers between the plaquette and colum
state from vanishing.

Further, we note that the symmetry groups of the t
VBS’s are not such that one of them is a subgroup of anot
which would be a criterion within Landau theory for a co
tinuous transition. This is in fact a somewhat subtle point
both phases break translational symmetry and retain a six
rotational symmetry. However, when trying to form domai
of one phase within another, it turns out that the centers
rotational symmetry lie in distinct places for the two phas

This point, incidentally, is somewhat simpler in the squa
lattice, where the columnar phase breaks translational s
metry in one direction and also rotational symmetry, wher
the plaquette phase breaks translational symmetry in b
directions but retains a fourfold rotational symmetry.

VI. STACKED MAGNETS

Our simulations apply equivalently to the hexagon
dimer model and to the stacked triangular magnets.

ng

FIG. 6. Phase diagram of the quantum dimer model on the h
agonal lattice. The nature of the ordered phases is indicated a
the axis.
6-4
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therefore briefly digress here to note some implications
our results to the latter system, on which a good deal of w
has been done, in great part inspired by the existenc
experimental compounds realizing this model; for a revi
of both theory and experiment, see Ref. 6.

Recall that HIsing at vC50 reduces precisely to thi
model; there, the presence of the plaquette VBS correspo
to the three-sublattice (1M ,0,2M ) ordering pattern for the
triangular magnet. This agrees with the results of Refs. 1
20, whereas it partially disagrees with Refs. 15 and 16.

This result is somewhat surprising, as even in the lo
temperature limit it appears that one ends up with onl
partially ordered state~spins on one sublattice are st
equally likely to point up or down in this phase!, rather than
the apparently more fully ordered state (m,2n,2n). How-
ever, note that in either case, fluctuations are present dow
zero temperature—in fact, these states are stabilized by t
fluctuations in the first place.17,5 In the absence of fluctua
tions, the energy of any ferromagnetically stacked grou
state configuration of the triangular magnet would be
same. Such a selection of an ordered state by fluctuation
known as order by disorder.29 It has the feature that, althoug
weak fluctuations are needed for stabilizing the state, t
strengthening will lead to a melting of the order they the
selves established in the first place.

In the present case, it now so happens that the interm
ate phase with a disordered sublattice can benefit from
fluctuations and survive them. As fluctuations are suppres
~e.g., by adding a negativev or a magnetic field; see below!,
one enters the phase with a higher degree of ordering.

We can be reasonably confident that upon lowering
temperature even further, there will not be a transition to
(m,2n,2n), mainly because the criticalv/t seems to move
very little, if at all, in the right direction, as the temperatu
is lowered. Nonetheless, we are not entirely clear how
resolve the discrepancies with Refs. 15 and 16. As for
hard-spin mean-field theory,16 it is conceivable that the fluc
tuations are somewhat underestimated there, thus landi
on the wrong side of the fine dividing line between the tw
states. At any rate, we have explicitly simulated temperatu
lower than the expected transition temperature and found
transition: for a system of size 2732731024 spins atKt

52.3 (l.100), we find sublattice root-mean-square mag
tizations of (0.95,0.12,0.95). The early simulations
Blankschteinet al.15 may have run into problems as ergo
icity is lost for single-spin updating at low temperature w
an increasing correlation length in the stacking direction,30 a
problem only since remedied with the development of m
advanced Monte Carlo simulation technology.28,31 However,
our results are fully consistent with the mean-field analy
of Ref. 15, provided the coefficient of the clock term rema
of the same sign throughout the ordered phase.

To illustrate the closeness of the two phases,16,22 in Fig. 7
we display the sublattice correlation matrix for a system
2304 spins in a stack of height 120. It can be seen that u
application of a small magnetic field, one leaves t
(1M ,0,2M ) phase and enters the (m,2n,2n) one. Note
that in the classical model, the proximity of the phases
artificially enhanced as the strength of the field is effectiv
14441
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multiplied by l as the correlation length in the stacking d
rection increases. For this reason, the abscissa of the pl
scaled up byl.

VII. RELATION TO THE HEISENBERG
ANTIFERROMAGNET

The QDM was conceived to describe the physics of aS
51/2 Heisenberg antiferromagnet in a phase dominated
nearest-neighbor singlet bonds~valence bonds or dimers!.
The question thus arises under what circumstances a
phase is energetically competitive compared to the N´el
state. Note that a spin can form a valence bond with only
of its neighbors, whereas it gains energy from all its an
aligned neighbors in a Ne´el state. It is via the resonanc

moves, captured byT̂, that it might make up the energ
difference.

One step towards destabilizing the the Ne´el state is to
maximize quantum fluctuations, that is to say, consider s
S51/2 systems. The original idea of Anderson32 was to
choose a frustrated~triangular! magnet, as this does not pe
mit a Néel state in the first place. In addition, in a lattice wi
low coordination the disadvantage of each spin forming o
one VB is relatively less severe, thus favoring a VB state

Moreover, it is advantageous not to have closed loo
which are very short. This can be seen from within t
framework of the QDM,1 which, formally, is an expansion in
the overlap between distinct VB configurations. This over
is exponentially small in the number of VB’s in which the
differ. The shortest closed loop of even length on the latt
on which the VB’s reside determines the lowest-order te
in this expansion. This length is 4 for the square and tri
gular lattice, but 6 for the hexagonal lattice, thus favoring
latter. Furthermore, introducing frustrating further neare
neighbor exchanges yields a smaller prefactor~but not a
smaller expansion parameter! in the RK expansion.

The hexagonal lattice with frustrating further neighb

FIG. 7. Correlation matrix of sublattice magnetizatio
(M1 ,M2 ,M3), with M1.M2.M3, as a function of magnetic field
for a stack of 120 layers of 2304 sites.Kt51.15, so thatl510. For
h50 one finds the (1M ,0,2M ) phase, which rapidly gives way to
the (m,2n,2n) phase.
6-5
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exchanges33 would thus seem to be a good candidate
being described by some sort of QDM. In fact, this expec
tion appears to be borne out by very recent work of Fo
et al.,23 who did exact diagonalization studies on aJ1-J2-J3
S51/2 Heisenberg model on the hexagonal lattice. They
deed found valence-bond phases. For frustratingJ2 /J1
50.4, they found a staggered phase, which gives way to a~at
least short-range ordered! columnar or plaquette phas
aroundJ2 /J150.3; the numerics, while not being entire
conclusive, is suggestive of the latter phase.34

This is in keeping with the QDM analysis, which indee
suggests that this transition corresponds to crossing the
point between the plaquette and staggered phases. We s
note, however, that carrying out the perturbation the
within the dimer manifold in the spirit of Ref. 1 does n
place the pointv5t in between those two values ofJ2 /J1,
and so a more microscopic prediction of the properties
Heisenberg models will probably require going beyond t
by including any renormalizations needed to obtain an eff
tive QDM with nearest-neighbor bonds only.

VIII. CONCLUSIONS

We have mapped out the phase diagram of the QDM
the hexagonal lattice. We have established the existence
plaquette VBS intermediate between a columnar and a s
gered one. This was achieved by combining a duality m
.
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ping to a classical model with a Monte Carlo cluster alg
rithm. In the process, we were also able to go well beyo
the limitations of previous numerical work on the stack
triangular magnet to confirm the nature of the low
temperature phase in that model. Based on the close con
tions between the properties of dimer models on the hexa
nal and square lattices,5 we expect the square lattice QDM
which can be obtained from similar simulations on a stack
magnet,35 to behave in an analogous manner. As detailed
Sec. VII for the hexagonal lattice, this could shed some li
on the properties of aJ1-J2 square lattice Heisenber
model,36 for which the derivation of the RK model is totall
analogous. Nevertheless, the competition between
plaquette and columnar phases is a matter of microsc
detail and so a thorough study of the latter would appea
be in order definitively to settle the issue. We expect to tac
this question in future work.
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