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Stabilization of d-band ferromagnetism by hybridization with uncorrelated bands

S. Schwieger and W. Nolting
Lehrstuhl Festko¨rpertheorie, Institut fu¨r Physik, Humboldt Universita¨t zu Berlin, 10115 Berlin, Germany

~Received 10 April 2001; published 19 September 2001!

We investigate the influence ofs-d or p-d hybridization tod-band ferromagnetism to estimate the impor-
tance of hybridization for the magnetic properties of transition metals. To focus our attention on the interplay
between hybridization and correlation we investigate a simple model system consisting of two nondegenerate
hybridized bands, one strongly correlated and the other one quasifree. To solve this extended Hubbard model,
we apply simple approximations, namely the spectral density approach and the modified alloy analogy, that,
concerning ferromagnetism in the single-band model, are known to give qualitatively satisfactory results. This
approach allows us to discuss the underlying mechanism by whichd-band ferromagnetism is influenced by
hybridization on the basis of analytical expressions. The latter clearly display the order and the functional
dependencies of the important effects. It is found that spin-dependent interband particle fluctuations cause a
spin-dependent band shift and a spin-dependent band broadening of the Hubbard bands. The shift stabilizes and
the broadening tends to destabilize ferromagnetism. Stabilization requires relatively high band distances and
small hybridization matrix elements. Superexchange and Ruderman-Kittel-Kasuya-Yosida coupling are of
minor importance.

DOI: 10.1103/PhysRevB.64.144415 PACS number~s!: 75.10.Lp
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I. INTRODUCTION

The issue of magnetism in band ferromagnets such as
Co, and Ni is far from being settled. Magnetism in the
materials is due to correlations within itinerant electr
bands. The simplest model that comprises this aspect is
single-band Hubbard model. Although it was introduc
to gain a first qualitative understanding of band ferrom
netism 1–3 it took almost 30 years to answer the questi
whether it is a generic model for ferromagnetism at a
About 10 years ago a dynamical mean field theory4–7

~DMFT! was developed, which allows a consistent~mean
field! description of the whole parameter range of the sing
band Hubbard model. DMFT-based calculations confirm
the existence of ferromagnetism for a wide parame
range.8–10Today there is a general consensus that the sin
band Hubbard model exhibits ferromagnetism.

There is also consensus, however, that this model o
simplifies the situation in band ferromagnets, for instance
restricting the correlations to the on-site elements. But
even more drastic simplification is the restriction to a sin
nondegenerate electron band. The fivefold degeneracy o
d electrons certainly influences the magnetic properties
the system. Consequently, a lot of effort is being done
transferring certain treatments, once developed for
single-band model, to multiband models. Let us mention
Gutzwiller approximation11 or various treatments within th
DMFT frame.12,13

Besides the degeneracy of thed electrons, the single-ban
model also neglects weakly correlateds and p bands, al-
though they are located around the Fermi energy in 3d tran-
sition metals. The interplay between correlated and unco
lated electrons is known to give rise to a variety
phenomena such as the Kondo effect or heavy fermio14

and is the central point of widely used models such as
Anderson model. In the case of the periodic Anderson mo
~PAM!, correlations in combination with the hybridization
0163-1829/2001/64~14!/144415~8!/$20.00 64 1444
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an uncorrelated band can cause ferromagnetism15–17 as
shown rigorously for the one-dimensional case at qua
filling.18 This indicates that uncorrelated bands may infl
ence the magnetic phase diagram of the Hubbard model,
and this most likely occurs if the band distance is sma
than the on-site Coulomb energy~charge-transfer regime19!.
Recent experiments indeed seem to indicate that ferrom
netism can be stabilized if additionalp orbitals are doped
into aRCo2 system (R5Ho,Er).20 The aim of this paper is to
decide, whether the neglect ofs andp bands is justified when
modeling band ferromagnets such as Fe, Co, or Ni. The
fluence of the hybridization ofd electrons with these orbital
shall be investigated systematically.

The paper is organized as follows. In the next sectio
suitable Hamiltonian is formulated and we try to give
qualitative overview of the interplay between the two diffe
ent kinds of electrons. In Sec. III we will apply certain a
proximations to the Hamiltonian. Thereby we will try to g
as much insight as possible into the mechanisms, by wh
thed-band magnetism is altered. While the above-mention
DMFT-based treatments give certainly reliable values
magnetic properties, it is challenging to give a direct phy
cal meaning to auxiliary quantities used in this theory~e.g.,
the energy- and spin-dependent hybridization function!. For
this reason we will formulate the much simpler Hubbard
decoupling2 ~Hu-I!, the spectral density approach21 ~SDA!,
and the modified alloy analogy22 ~MAA ! for the described
multiband model. These theories are conceptually restric
to high-energy excitations in the strong-coupling regim
This is, however, the interesting regime, where band fer
magnetism occurs. For the single-band model in the limit
infinite spatial dimensions the theories are thoroughly tes
against numerical exact results available in this limit.23 It is
found that the SDA as well as the MAA systematically ove
estimates magnetic quantities such as the Curie tempera
but turns out to give a qualitative satisfying description
band ferromagnetism.23,17 For our purpose the main advan
©2001 The American Physical Society15-1
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S. SCHWIEGER AND W. NOLTING PHYSICAL REVIEW B64 144415
tage of these theories is the possibility for analytical estim
tions.

In Sec. IV the main results concerning thep-band influ-
ence on ferromagnetism are shown. Within the SDA we w
derive analytical expressions for the quasiparticle band st
ture in the strong coupling limit. This allows a vivid physic
interpretation of the mechanism by which the properties
the correlated subsystem are influenced by uncorrel
bands. We will see that the main impact is due to sp
dependent interband fluctuations, which may enhance o
duce the spin asymmetry of the interacting density of sta
Finally we discuss alternative mechanisms that involve
new states, such as superexchange and Rudermann-K
Kasuya-Yosida~RKKY ! coupling.

II. GENERAL CONSIDERATIONS

We want to study the influence of weakly correlated ban
on d-band ferromagnetism within the following extension
the single-band Hubbard model:

H5(
i j s

~Ti j
d 2m!dis

† dj s1
U

2 (
is

nis
d ni 2s

d

1(
i j s

~Ti j
p 2m!pis

† pj s1V(
is

~dis
† pis1pis

† dis!. ~1!

This Hamiltonian is similar to those used, e.g., in Ref. 19 a
reduces to the periodic Anderson model~PAM! in the limit
Ti j

d →0 for iÞ j . The weakly correlated electrons are d
scribed by a quasifree ‘‘p band,’’ with the hopping integrals
Ti j

p , while the single-band Hubbard model describes thd
system.Ti j

d are the hopping integrals within thed band andU
is the local Coulomb interaction. The bands are coupled b
hybridization V. The hopping integrals are the Fourie
transformed Bloch energies andm denotes the chemical po
tential. the free band structureek

p;d shall be the result of a
tight-binding approximation. The relative position of th
bands is characterized by two parameters: the differenc
the free centers of gravityDT0 and the ratio of the free
bandwidthsa:

DT05T0
p2T0

d , a5
W 0

p

W 0
d

. ~2!

T0
p,d5Tii

p,d are the centers of gravity of the free bands.
achieve a realistic description of transition metals we cho
a.1 and DT0.0. As a consequence of the tight-bindin
approximation the dispersions are connected via

ek
p5T0

p1a~ek
d2T0

d!. ~3!

Let us now discuss the possible influences of thep band on
the d system within this model.

First of all, there is a rather trivial particle numbe
effect.24 Magnetism depends sensitively on thed-particle
density. If now the new band is added while the total parti
number in the system stays fixed, the electron density wi
the correlated subsystem is changed. The same holds i
parametersV or DT0 are tuned. We do not want to addre
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these effects here. Note that our intention is not to desc
effects resulting from an experimental tuning of the hybr
ization strength, e.g., by applying pressure. Rather we w
to decide if the neglect of thes,p-d hybridization is a good
approximation for many-body model calculations. In th
context it is assumed that even when thes andp electrons are
neglected the correctd-particle number per site is used. Th
generally noninteger number is already the result of the
bridization to other bands. Thus we will regard this ca
~where the change of thed-particle number due to the hy
bridization is already considered! and the case of an explic
itly treated hybridization~where additionally all other effects
resulting from the two-band situation are taken into accou!.
To compare these cases properly we have to fix thed-particle
density in our calculations.

What further effects can be expected? Naively, one wo
believe that an uncorrelated and thereforea priori ‘‘nonmag-
netic’’ p band would destabilize ferromagnetism by ‘‘redu
ing the average correlation.’’ This reasoning, however, is
simple. Particle fluctuations between the bands will influen
the propagation of electrons within thed band and thus thed
projected density of states. It is known that ferromagneti
depends sensitively on the shape of the density of state25

This effect will be most important if the fluctuation rate
spin dependent. This would cause different alterations of
spin-up and spin-down density of states and directly infl
ence its spin asymmetry.

Let us look at this mechanism in the trivial limiting cas
of uncorrelated bandsU→0. For small hybridizations the
excitation energies are

Ek1~V!5ek
d2

V2

uek
p2ek

du
,

Ek2~V!5ek
p1

V2

uek
p2ek

du
. ~4!

For the lower bandEk1(V) this causes a band asymmetry,
band shift to lower energies, and a band broadening in
quasiparticle density of states. For nonoverlapping ban
i.e., DT0.max(ek

p2T0
p), we insert Eq.~3! into Eq. ~4! and

expandEk1(V) in powers of (a21)(ek
d2T0

d)/DT0. Equation
~4! becomes

Ek1~V!5T0
d1DTV

d1~ek
d2T0

d!xV
d ~5!

with the band shift

DTV
d52

V2

DT0
~6!

and the band broadening factor

xV
d511

V2

DT0
2 ~a21!. ~7!

The broadening as well as the shift are also present if thd
electrons are correlated as can be seen by studying a two
cluster out of Eq.~1! with the intersite hoppingstd and tp
5-2
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STABILIZATION OF d-BAND FERROMAGNETISM BY . . . PHYSICAL REVIEW B64 144415
5atd. For smallV one can perform a canonical transform
tion that decouples thep andd band to first order inV. The
calculation is lengthy but straightforward. ForU→`, DT0

.t (p;d), and T0
d,m,T0

p the d electrons are well approxi
mated by a two-site Hubbard Hamiltonian with a renorm
ized center of gravityT̂0

d(V), renormalized hopping integral

t̂ d(V), and a renormalized interactionÛ(V). We find the
parameters

T̂0
d~V!5T0

d2
V2

DT0
,

t̂ d~V!5tdS 11
V2

DT0
2 ~a21!D , ~8!

Û~V!5U1
V2

DT0
.

The broadening as well as the shift is clearly recognized
Eq. ~8!. Our preceding qualitative considerations indica
that interband particle fluctuations indeed modify thed pro-
jected density of states. These modifications are expecte
influence also the magnetic properties. Up to now we o
investigated spin symmetric limiting cases allowing only
spin-symmetric fluctuation rate. Regarding ferromagnetism
will be most important whether one of the effects becom
spin dependent in the full system.

III. THEORY

The magnetic properties of Eq.~1! can be studied using
retarded single-electron Green functions

Gks
dd5^^dks ;dks

† &&, Gks
pp5^^pks ;pks

† &&,

Gks
dp5Gks

pd5^^dks ;pks
† &&5^^pks ;dks

† &&,

which fulfill the following equations of motion~natural units
are used throughout this paper; hence\51!:

EGks
dd511~ek

d2m!Gks
dd1SksGks

dd1VGks
pd ,

EGks
pd5~ek

p2m!Gks
pd1VGks

dd , ~9!

EGks
pp511~ek

p2m!Gks
pp1VGks

dp .

The self-energySks is introduced as usual via

SksGks
dd5K K Fdks ,

U

2 (
is

nis
d ni 2s

d G
2

;dks
† L L , ~10!

where@ . . . , . . .#2 denotes the commutator. Solving Eq.~9!
gives all Green functions:

S Gks
dd Gks

dp

Gks
pd Gks

ppD 21

5S E2ek8
p 2V

2V E2ek8
d2Sks

D , ~11!

whereek8 is used as an abbreviation forek2m.
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In the ferro- and paramagnetic phase we can calculate
spin-dependent average occupation numbersns

d5^nis
d & and

ns
p5^nis

p & using the Green functions~11!:

ns
(p;d)52ImS 1

pE2`

`

dE f2~E!Gii s
(pp;dd)~E2m! D . ~12!

f 2(E) is the Fermi function andGii s
(pp;dd) are the local Green

functions. Obviously we can calculate the phase bound
between para- and ferromagnetism as soon as we have f
an ~approximate! expression for the self-energy.

To this aim we will formulate the Hu-I, SDA, and MAA
for the two-band problem~1!. By comparing the influence o
the hybridization within different approximations we ca
minimize the risk of an artificialp-band influence. The two
‘‘simple’’ approximations Hu-I and SDA can give excellen
insight into the working mechanisms. Due to their expli
structure of the self-energy, one can perform some dem
strative analytical estimations. The SDA gives qualitative
convincing results concerning ferromagnetism. This is due
the fact that it reproduces the correct values for the center
gravity and weights of the Hubbard bands in the strong c
pling limit U→`. Compared to Hu-I, an additional correla
tion function is considered that describes the itineracy
electrons of opposite spin direction and allows for a sp
dependent band shift. The MAA is a first systematic im
provement of the SDA, since it allows quasiparticle dam
ing, which is completely neglected within the SDA. B
comparing MAA and SDA results one can see if the mec
nisms derived within the SDA are also present in a m
complex theory.

A. Hubbard-I decoupling

Let us start with the Hubbard-I approximation. Straigh
forward decoupling of the real space equations of motion
the Green’s functions~11! yields the Hu-I self-energy

Hu-ISs5Un2s
d

E2T0
d1m

E2T0
d1m2U~12n2s

d !
, ~13!

which is formally identical to the single-band case. The se
energy isV dependent vian2s

d , which is calculated using
Eqs. ~11! and ~12!. Equation~13! gives three excitation en
ergies in every point of the Brillouin zone, corresponding
the three-peak structure of the spectral density in the ato
limit V→0, Ti j

iÞ j→0. Finite values of the hopping and hy
bridization change the positions and weights of thed peaks
and lead to a mixing ofp andd spectral density.

B. SDA

For the single-band model, the SDA is the simplest the
that yields the correct strong-coupling and high-energy
havior, which seems to be decisive for the existence of
romagnetism. The general structure of the spectral den
and the self-energy is the same as in Hu-I. The energy p
tions and weights of thed peaks in the spectral density a
obtained by fitting it to the first four spectral moments:
5-3
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~14!

@ . . . , . . .#1 is the anticommutator. For the two-band mod
we will apply this concept directly to the self-energy rath
than to the spectral density. Therefore we choose the s
structure as in Eq.~13! for a SDA self-energy ansatz:

SDASks5
!

g1

E2g2

E2g3
. ~15!

The parametersg i shall now be fitted to the spectral mo
ments. To this end we expand the Green function and
self-energy with respect to powers of 1/E:

Gks
dd5 (

n50

` ddMks
(n)

En11
; Sks5 (

n50

` Cks
(n)

En
. ~16!

The high-energy coefficients of the Green function are
spectral moments~14!. This can easily be seen by expandi
the spectral representation of the Green function

Gks
dd~E!5E

2`

`

dE8
Sks

dd~E8!

E2E81 i01
~17!

with respect to 1/E and comparing the resulting expressio
with the definition of the moments~14!. The self-energy co-
efficients Cks

(n) are obtained as functions of the momen
ddMks

(0)
•••

ddMks
(n11) by inserting the expansions~16! into

Eq. ~11! ~or equivalently into the Dyson equation! and by
comparing the coefficients of the 1/En terms. With the right-
hand side~r.h.s.! of Eq. ~14!, we find the first four correlated
spectral moments:

ddMks
(0)51,

ddMks
(1)5ek8

d1Un2s
d ,

ddMks
(2)5~ek8

d!212Un2s
d ek8

d1U2n2s
d 1V2,

ddMks
(3)5~ek8

d!313Un2s
d ~ek8

d!21U2@2n2s1~n2s
d !2#

1U2n2s
d ~12n2s

d !~Bk2s
22band1T08!1U3n2s

d

1V2~2ek8
d1ek8

p12Un2s
d !. ~18!

The self-energy coefficients read

Cs
(0)5Un2s

d ,

Cs
(1)5U2n2s

d ~12n2s
d !,

Cks
(2)5U2n2s

d ~12n2s
d !@Bk2s

2-band1T081U~12n2s
d !#.

Bks
2-band5Bs

2b1Fks
2b is a higher correlation function with th

local partBs
2b and ak-dependent partFks

2b . For the single-
band model, the influence of both terms is discussed in de
in Ref. 26. It turns out that the most important term is t
14441
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local Bs , which leads to a spin-dependent band shift in t
ferromagnetic phase. With regard to ferromagnetism the n
local partFks seems to be of minor importance. Therefo
we will neglect it in the following. From Eq.~14! we find for
the local partBs

2b

Bs
2b5

1

ns
d~12ns

d !
S 1

N (
i j

iÞ j

Ti j
d ^dis

† dj s~2ni 2s
d 21!&

1
2V

UN (
i j

~Ti j
p 2Ti j

d !^dis
† pj s&2V^dis

† pis&

1
2V2

U
~ns

d2ns
p !D .

AlthoughBs
2b contains expectation values of the uncorrela

band and higher correlation functions, it can be expresse
a functional of the correlated single-electron Green funct
only:

Bs
2b5ImF2

1

ns~12ns!pE2`

`

dE f2~E!S 2Ss~E!

U
21D

3$@E2Ss~E!2T0#Gii s
dd ~E2m!21%G . ~19!

The correlation functionBs
2b and the self-energy coefficient

Cs
(0;1;2) turn out to be the same functionals of the correla

Green functionGii s
dd as in the single-band model. While de

termining the self-energy coefficients, the wholeV depen-
dence in the momentsddMks

(0)
•••

ddMks
(3) ~18! is canceled by

the explicit V dependence of the correlated Green funct
~11!. Thus, as in the Hu-I approximation, the SDA se
energy is formally identical to the single-band case:

SDASs5Un2s
d

E2T01m2B2s
2b

E2T01m2B2s
2b 2U~12n2s

d !
. ~20!

The V dependence comes again into play by the expecta
valuesn2s

d and B2s
2b being evaluated via Eqs.~11!, ~12!,

and ~19!.

C. MAA

Besides the restriction to strong interaction strength
drawback of SDA and Hu-I is the exclusion of scatteri
processes that lead to quasiparticle damping. The correl
d system is described by two quasiparticles with infinite lif
time corresponding to singly or doubly occupied sites. O
possibility to include quasiparticle damping is the descript
of the system by a fictitious alloy~alloy analogy!, which is a
standard method in many-body physics.27 With this approach
one can account for electron scattering at the potent
formed by the distribution of electrons of opposite spin
rection. The main excitation energies of the many-body s
tem are modeled by atomic energy levels of a fictitious all
Correlation effects are then described by the properties
this alloy, and its self-energy is identified with the se
energy of the many-body problem. Since the self-energy~10!
5-4
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exclusively characterizes correlated electrons, we will o
describe the correlated subsystem by a fictitious alloy. In
strong-coupling limit we have two main excitation energ
within the correlated subsystem. Consequently we will
scribe it by a two-component alloy. The resulting effecti
alloy problem can be solved by the coherent potential
proximation~CPA!, which yields the CPA self-energy

05 (
ps

p51,2

xps

Eps2T0
d2Ss~E!

12Gii s
dd ~E!@Eps2Ss~E!2T0

d#
. ~21!

Eps andxps are the atomic energy levels and the concen
tions of the alloy components. The CPA, being a single-
theory, gives a local self-energySs . After rearranging the
terms and setting

g15x1s~E1s2T0
d!1x2s~E2s2T0

d!,

g25
~E1s2T0

d!~E2s2T0
d!

g1
,

g35x1s~E2s2T0
d!1x2s~E1s2T0

d!,

Eq. ~21! becomes

Ss~E!5g1

11Gii s
dd ~E!@Ss~E!2g2#

11Gii s
dd ~E!@Ss~E!2g3#

. ~22!

Here x1s1x2s51 is already used. To complete the theo
we now have to adjust the parametersg1 , g2, andg3. Simi-
lar to the SDA these parameters can be fitted to the on
spectral momentsMii s

(m) and on-site self-energy coefficien
Cii s

(m) . The latter two are defined analogously toMks andCks

in Eq. ~14!. To this purpose one has to expand the lo
Green functionGii s

dd and the local self-energySs in powers
of 1/E analogously to Eq.~16!. Then one inserts these ex
pansions into Eq.~22! and compares the coefficients of th
1/En terms up ton52 which is best to be done in the form
Ss2g11Gii s@Ss(Ss2g3)2g1(Ss2g2)#50. Using the
abbreviationMAASs→Ss , we finally find for the MAA self-
energy

Ss5Un2s
d

~Gii s
dd !211Ss2B2s

2b

~Gii s
dd !211Ss2B2s

2b 2U~12n2s
d !

. ~23!

This is again, as in Hu-I and SDA, formally identical to th
single-band expression, i.e., the self-energy is the same f
tional of the correlated Green function as in the single-ba
case. The self-energy isV dependent viaGii s

dd and the expec-
tation valuesns

d andBs
2b .

The MAA self-energy is still consistent with the high
energy limit and additionally allows for quasiparticle dam
ing, thus being a systematic improvement of the SDA.

IV. RESULTS AND DISCUSSION

Keeping in mind the scope of the theories used in
approach, we will now investigate the influence of the ad
tional p-band. In Ref. 23 these theories are thoroughly eva
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ated. To gain the best possible comparison with these ca
lations, we choose the same lattice structure~fcc-tight-
binding, d→`, after particle-hole transformation! for our
investigations of the two-band model. The density of sta
reads

r (0)~E!5
e2(11A2E/t* )/2

t*Ap~11A2E/t* !
. ~24!

In the following all energies will be given in units oft* .The
density of states exhibits a divergence at the lower b
edge. This feature is known to stabilize ferromagnetism. T
main trends regarding the influence of the hybridization
also present in other lattice structures~e.g. sc or bcc tight
binding!. Ferromagnetism, however, is most certain with
the fcc lattice.25 Figures 1 and 2 show the quasiparticle de
sities of states calculated with SDA and MAA for differe
values ofV in the paramagnetic case. In both theories
QDOS consists of two Hubbard bands and the uncorrela
band. These bands move apart with risingV while the corre-
lated subbands are broadened. One can see that the

FIG. 1. Quasiparticle density of states~QDOS! as a function of
the energyE at differentV. The system is forced to be parama
netic. Parameters:U55.0, n50.25, a54.0, DT053.0, T50 K,
fcc(`) lattice; see Eq.~24!. The arrows show the position of th
Fermi energy. With risingV the distance between the subban
increases quadratically.

FIG. 2. Same as in Fig. 1, but calculated with the MAA. Th
peaks are broader than those in Fig. 1 due to quasiparticle dam
This is most pronounced in the upper Hubbard band.
5-5
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shifts are proportional toV2, which agrees perfectly with the
results for free bands@Eqs.~5!–~7!# and the two-site cluste
@Eq. ~8!#.

Figure 3 displays the lower Hubbard band~SDA! of thed
density of states in the ferromagnetic case. It turns out
the hybridization-caused band shift is in fact spin depend
in the ferromagnetic phase. The shift is larger for majori
spin electrons. The magnetic properties can thus be cha
drastically due to the presence of the uncorrelated ba
Within the framework of the SDA we can derive analytic
expressions for the shift and the broadening by calcula
the poles of Eq. ~11! with Sks5Ss

SDA. For U→`
we find

E1ks
SDA5T0

d1U1~ek
d2T0

d!n2s
d 1B2s

2b ~12n2s
d !,

E2ks
SDA5ek

p1V2Xks ,

E3ks
SDA5T0

d1~ek2T0
d!~12n2s

d !1B2s
2b n2s

d 2V2Xks ,

where

V2Xks5V2
12n2s

d

ek
p2T0

d2~ek
d2T0

d!~12n2s
d !2B2s

2b n2s
d

~25!

describes the whole influence of the hybridization. The ot
terms are the well-known SDA result for the single-ba
Hubbard model. For band fillings smaller than unity, t
most important energies areE3ks forming the lower Hubbard
band. For nonoverlapping bands@i.e., DT0.max(ek

p2T0
p)],

we can rewriteE3ks
SDA in terms of a band shiftDTVs and a

band broadening factorxVs

E3ks
SDA5T0

d1DTVs1n2s
d B2s

2b 1~ek
d2T0

d!~12n2s
d !xVs .

Both are spin dependent:

FIG. 3. Lower Hubbard band of the↑- and ↓d QDOS in the
ferromagnetic phase. Parameters as in Figs. 1 and 2. The dis
between the↑ and↓ bands increases withV.
14441
at
nt
-
ed
d.

g

r

DTVs52
V2

DT02n2s
d B2s

2b
~12n2s

d !,

xVs511
V2

~DT02n2s
d B2s

2b !2
~a211n2s

d !.

~26!

a is the ratio of the free bandwidths as defined in Eq.~2!.
Thus a hybridization with an uncorrelated band causes a
ations in the band structure similar to the noninteracting c
@Eqs.~6! and~7!#, i.e., a band shift and a band broadening
the correlatedd subband. The important difference is thespin
dependenceof both quantities in the full system. Equatio
~26! describes two competing effects. The shift to lower e
ergies DTVs

d supports magnetism since it is larger f
majority-spin electrons. The band broadeningxVs , in con-
trast, destabilizes magnetism, since broader bands are kn
to be inconvenient for band ferromagnetism. In addition,
spin dependence ofxVs works against ferromagnetism
DTVs andxVs constitute the main mechanisms by which t
p-band influences thed-band magnetism.

In Fig. 4 Curie temperatures are shown in the depende
of the band fillingnd for different parameters V. We find
both, stabilization for lower particle densities as well as d
stabilization for higher ones in all theories. Surprisingly, t
stabilization is clearly more pronounced if the band distan
increases~r.h.s. of Fig. 4!. Figure 5 gives a systematic ove
view of theV dependence of the Curie temperature for d
ferent band distancesDT0.

There exists a critical band distanceDT0
c that separates

regimes with qualitatively different behavior of the Cur
temperature~lines with circles!. This distance is about 2.8 eV
for Hu-I, for MAA approximately 2.6 eV, while within the
SDA the critical band distance is somewhat smaller than
eV. DT0

c is characterized by the following:
~i! Above the critical band distance~up triangles! we are

in the stabilizing regime. Here ferromagnetism can be sta
lized by the uncorrelated bands for small hybridizationsV.
The Curie temperatureTc shows a maximum as a function o
the hybridizationV.

~ii ! The situation is different for small band distanc
DT0,DT0

c ~down triangles!. We are now in the destabilizing

nce

FIG. 4. n-T phase diagram for different values ofV and differ-
ent band distancesDT0. Other parameters as in the previous figur
5-6
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regime. No enhancement of the Curie temperature is fou
only destabilization of magnetism.

The different behavior can be understood by inspect
again the two competing band structure effects~26! of the
hybridization: At small band distancesDT0 the destabilizing
band broadeningxVs;11V2/DT0

2 is more important than
the stabilizing shiftDTVs;2V2/DT0. We are in the desta
bilizing regime. AsDT0 increases, the shift more and mo
overcompensates the broadening, though both effects
come smaller. Thus ferromagnetism can be stabilized
DT0.DT0

c . Large interband fluctuations at high values ofV,
however, suppress ferromagnetism also in this regime.

For further investigations we only show SDA results sin
the dependence of the hybridization strengthV is qualita-
tively the same in all theories. First we want to look at t
critical band distance that separates the stabilizing from
destabilizing regime. It depends sensitively on the band
ing nd ~Fig. 6!.

For densitiesnd closer to half-filling the critical band dis
tance is enhanced. This could reflect the fact that the Fe
energy rises with increasing band filling and therefore
gap between the Fermi energy and the uncorrelated s
becomes smaller. This enhances the interband fluctua
rate, and the stabilization of ferromagnetism is more
likely. As in the single-band model, no ferromagnetism w
found atnd>1 for the free density of states~24!.

Finally we want to study ground state properties: Thep
band can induce a ferromagnetic ground state if the sin
band system is paramagnetic but close to a ferromagn
transition~Fig. 7, bcc tight-binding lattice!. A ferromagnetic
ground state is induced by thep-d hybridization for band
distances larger thanDT0

c50.3 eV and for moderate value

FIG. 5. Curie temperatures in dependence ofV calculated within
different theories. Up triangles: stabilization of ferromagnetism
small V; down triangles: destabilization of ferromagnetism. Oth
parameters as in the previous figures.
14441
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of V. The magnetization shows a distinct maximum as
function of the hybridization strength as shown in the in
of Fig. 7.

V. CONCLUSIONS

Let us summarize our findings. The questions if and h
an uncorrelated band can stabilize band ferromagnetism
now be answered. Stabilization of ferromagnetism is o
found for small hybridization strengths. Strong fluctuatio
between the bands generally suppress ferromagnetic o
Small fluctuations can stabilize ferromagnetism if the ba

r
r

FIG. 6. Critical band distance that separates the stabilizing
the destabilizing regime. Above the line ferromagnetism is sta
lized by the uncorrelated band for smallV. Below the line ferro-
magnetism is destabilized. Inset: as in Fig. 5 forn50.9, SDA.
Further parameters as in the previous figures.

FIG. 7. p-band-induced ferromagnetism for a bcc tight-bindi
lattice. Inset: Magnetization in dependence ofV. Parameters:T
50 K, U54, W051, a54, n50.55 ~SDA!.
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distance is larger than a critical energyDT0
c , which depends

sensitively on the band fillingn and on the shape of the fre
density of states.

The stabilization and destabilization result from sp
dependent interband particle fluctuations. They induce
spin-dependent renormalization of the correlated quasip
cle density of states. This renormalization can be analyze
terms of a band broadening dominating at small ba
distances and a band shift dominating at larger ones.
former turns out to suppress and the latter to stabi
ferromagnetism.

In other words, as usual the system lowers its energy
interband particle fluctuations. Because the latter can be
dependent, the energy gain is different for the spin-up
the spin-down electrons. This in turn influences the stabi
of the ferromagnetic phase and, e.g., the Curie temperatu
The described mechanism can also give a ‘‘final kick’’ to
system that is close to a ferromagnetic transition.

There are various arguments that show that compare
this mechanism indirect exchange interactions such as
RKKY-like coupling of localizedd moments are of minor
importance:

~i! In most of the calculations shown here, the lower ba
edge of thep band is located above the Fermi energy~Figs.
1–6!. Except for the mixing ofd and p states, this band is
ev

B

ev

14441
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therefore empty and no polarization of thep band can be
expected. This excludes RKKY coupling.

~ii ! RKKY coupling results from simultaneous fluctua
tions at different sites and is thus of orderV4 ~see, e.g., Ref.
16!. The same holds for other indirect exchange mechani
such as superexchange. On the other hand, the band-stru
effects we discussed above are based on uncoupled flu
tions and are thus of orderV2. Therefore they will dominate
the system.

In conclusion, we have found considerable influence
the p band ond-band ferromagnetism in our model. Th
involved processes are due to the interplay of correlation
hybridization. Hence our investigations showed that thep-d
hybridization should be taken into account in model calcu
tions to achieve a realistic description of real substanc
Otherwise magnetic properties may be over- or undere
mated. If and how thep bands influence the antiferromag
netic phase was left open in our analysis and remains
interesting question to be answered in further investigatio
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