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Stabilization of d-band ferromagnetism by hybridization with uncorrelated bands
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We investigate the influence std or p-d hybridization tod-band ferromagnetism to estimate the impor-
tance of hybridization for the magnetic properties of transition metals. To focus our attention on the interplay
between hybridization and correlation we investigate a simple model system consisting of two nondegenerate
hybridized bands, one strongly correlated and the other one quasifree. To solve this extended Hubbard model,
we apply simple approximations, namely the spectral density approach and the modified alloy analogy, that,
concerning ferromagnetism in the single-band model, are known to give qualitatively satisfactory results. This
approach allows us to discuss the underlying mechanism by whimdnd ferromagnetism is influenced by
hybridization on the basis of analytical expressions. The latter clearly display the order and the functional
dependencies of the important effects. It is found that spin-dependent interband particle fluctuations cause a
spin-dependent band shift and a spin-dependent band broadening of the Hubbard bands. The shift stabilizes and
the broadening tends to destabilize ferromagnetism. Stabilization requires relatively high band distances and
small hybridization matrix elements. Superexchange and Ruderman-Kittel-Kasuya-Yosida coupling are of
minor importance.
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. INTRODUCTION an uncorrelated band can cause ferromagnétisrh as
shown rigorously for the one-dimensional case at quarter
The issue of magnetism in band ferromagnets such as Félling.'® This indicates that uncorrelated bands may influ-
Co, and Ni is far from being settled. Magnetism in theseence the magnetic phase diagram of the Hubbard model, too,
materials is due to correlations within itinerant electronand this most likely occurs if the band distance is smaller
bands. The simplest model that comprises this aspect is thhan the on-site Coulomb energgharge-transfer regim®.
single-band Hubbard model. Although it was introducedRecent experiments indeed seem to indicate that ferromag-
to gain a first qualitative understanding of band ferromagnetism can be stabilized if additiongl orbitals are doped
netism 13 it took almost 30 years to answer the questioninto aRCo, system R=Ho,Er)?° The aim of this paper is to
whether it is a generic model for ferromagnetism at all.decide, whether the neglect ®andp bands is justified when
About 10 years ago a dynamical mean field thdofy modeling band ferromagnets such as Fe, Co, or Ni. The in-
(DMFT) was developed, which allows a consistémtean fluence of the hybridization af electrons with these orbitals
field) description of the whole parameter range of the singleshall be investigated systematically.
band Hubbard model. DMFT-based calculations confirmed The paper is organized as follows. In the next section a
the existence of ferromagnetism for a wide parametesuitable Hamiltonian is formulated and we try to give a
range®~1°Today there is a general consensus that the singlegualitative overview of the interplay between the two differ-
band Hubbard model exhibits ferromagnetism. ent kinds of electrons. In Sec. Il we will apply certain ap-
There is also consensus, however, that this model oveproximations to the Hamiltonian. Thereby we will try to get
simplifies the situation in band ferromagnets, for instance, bys much insight as possible into the mechanisms, by which
restricting the correlations to the on-site elements. But anhe d-band magnetism is altered. While the above-mentioned
even more drastic simplification is the restriction to a singleDMFT-based treatments give certainly reliable values for
nondegenerate electron band. The fivefold degeneracy of thmagnetic properties, it is challenging to give a direct physi-
d electrons certainly influences the magnetic properties otal meaning to auxiliary quantities used in this thegyg.,
the system. Consequently, a lot of effort is being done bythe energy- and spin-dependent hybridization fungti&or
transferring certain treatments, once developed for the¢his reason we will formulate the much simpler Hubbard-I
single-band model, to multiband models. Let us mention thelecoupling (Hu-1), the spectral density appro@¢hSDA),
Gutzwiller approximatioft or various treatments within the and the modified alloy analo&y(MAA) for the described
DMFT frame!?13 multiband model. These theories are conceptually restricted
Besides the degeneracy of thelectrons, the single-band to high-energy excitations in the strong-coupling regime.
model also neglects weakly correlatedand p bands, al- This is, however, the interesting regime, where band ferro-
though they are located around the Fermi energydrtran-  magnetism occurs. For the single-band model in the limit of
sition metals. The interplay between correlated and uncorranfinite spatial dimensions the theories are thoroughly tested
lated electrons is known to give rise to a variety ofagainst numerical exact results available in this Ik is
phenomena such as the Kondo effect or heavy fermifons found that the SDA as well as the MAA systematically over-
and is the central point of widely used models such as thestimates magnetic quantities such as the Curie temperature
Anderson model. In the case of the periodic Anderson moddbut turns out to give a qualitative satisfying description of
(PAM), correlations in combination with the hybridization to band ferromagnetisi##:’ For our purpose the main advan-

0163-1829/2001/644)/14441%8)/$20.00 64 144415-1 ©2001 The American Physical Society



S. SCHWIEGER AND W. NOLTING PHYSICAL REVIEW B34 144415

tage of these theories is the possibility for analytical estimathese effects here. Note that our intention is not to describe
tions. effects resulting from an experimental tuning of the hybrid-
In Sec. IV the main results concerning théband influ- ization strength, e.g., by applying pressure. Rather we want
ence on ferromagnetism are shown. Within the SDA we willto decide if the neglect of the p-d hybridization is a good
derive analytical expressions for the quasiparticle band stru@pproximation for many-body model calculations. In this
ture in the strong coupling limit. This allows a vivid physical context it is assumed that even when gtendp electrons are
interpretation of the mechanism by which the properties oheglected the correckparticle number per site is used. This
the correlated subsystem are influenced by uncorrelategenerally noninteger number is already the result of the hy-
bands. We will see that the main impact is due to spin-bridization to other bands. Thus we will regard this case
dependent interband fluctuations, which may enhance or réwhere the change of thé-particle number due to the hy-
duce the spin asymmetry of the interacting density of statedridization is already considergdnd the case of an explic-
Finally we discuss alternative mechanisms that involve thatly treated hybridizatioiwhere additionally all other effects
new states, such as superexchange and Rudermann-Kitte&sulting from the two-band situation are taken into accpunt

Kasuya-Yosidg RKKY') coupling. To compare these cases properly we have to fixdtparticle
density in our calculations.
Il. GENERAL CONSIDERATIONS What further effects can be expected? Naively, one would

] believe that an uncorrelated and therefaneriori “nonmag-
We want to study the influence of weakly correlated bandsyetic” p band would destabilize ferromagnetism by “reduc-

on d-band ferromagnetism within the following extension of ing the average correlation.” This reasoning, however, is too

the single-band Hubbard model: simple. Particle fluctuations between the bands will influence
U the propagation of electrons within tldeband and thus the

H=>, (T?- _M)di‘r dis+ > > nidgnid_g projected density of states. It is known that ferromagnetism

T 7 295 depends sensitively on the shape of the density of sfates.

This effect will be most important if the fluctuation rate is
+ 2 (Tﬁ —M)P;rgpja+ V.E (diTgpia+ piTadio)- (1) sp?n dependent_. This would cause different alter_ations _of the
ijo io spin-up and spin-down density of states and directly influ-

This Hamiltonian is similar to those used, e.g., in Ref. 19 and*"ce its spin asymr_netry. L o
reduces to the periodic Anderson modBAM) in the limit Let us look at this mechanism in the tr|V|{;1I_I|m!t|ng case
T?j—>0 for i#j. The weakly correlated electrons are de- Of uncorrelated band§/—0. For small hybridizations the

scribed by a quasifreep’ band,” with the hopping integrals exciiation energies are

T,F] while the single-band Hubbard model describes dhe 2

system.‘l’ﬂ are the hopping integrals within tlteband andJ En(V)= eﬂ— —

is the local Coulomb interaction. The bands are coupled by a |ek— el

hybridization V. The hopping integrals are the Fourier-

transformed Bloch energies apddenotes the chemical po- 0 V2

tential. the free band structurg® shall be the result of a Ea(V) =€+ eP— €| : (4)

tight-binding approximation. The relative position of the

bands is characterized by two parameters: the difference ¢for the lower bandE,;(V) this causes a band asymmetry, a

the free centers of gravitAT, and the ratio of the free band shift to lower energies, and a band broadening in the

bandwidthsa: quasiparticle density of states. For nonoverlapping bands,
i.e., ATy>max(ef—T§), we insert Eq(3) into Eq. (4) and

W E i f—1)(el—TYH/AT,. Equat
_—p_ Td _"Vo expandE,(V) in powers of @—1)(e,— Tp) o- Equation
ATo=To=To, « wd’ 2) (4) becomes
0
TBd=TP9 are the centers of gravity of the free bands. To Eq(V)=TJ+ATI+ (ed—TIxd (5)

achieve a realistic description of transition metals we choose , .
a>1 andAT,>0. As a consequence of the tight-binding With the band shift
approximation the dispersions are connected via V2
d_
eL=TB+a(el—TY). 3 ATV AT, ©
Let us now discuss the possible influences ofgheand on  and the band broadening factor
the d system within this model.

First of all, there is a rather trivial particle number
effect?* Magnetism depends sensitively on tleparticle
density. If now the new band is added while the total particle
number in the system stays fixed, the electron density withiThe broadening as well as the shift are also present ifithe
the correlated subsystem is changed. The same holds if theectrons are correlated as can be seen by studying a two-site
parameterd/ or AT, are tuned. We do not want to address cluster out of Eq(1) with the intersite hoppings® and tP

V2
Xy=1+ —(a—1). 7)
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=at¥. For smallV one can perform a canonical transforma

tion that decouples thp andd band to first order inV. The
calculation is lengthy but straightforward. For—, AT,
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In the ferro- and paramagnetic phase we can calculate the
spin-dependent average occupation numindrs (n ) and
nP=(nP ) using the Green functiond 1):

>t(Pd  and T{< u<TH the d electrons are well approxi-
mated by a two-site Hubbard Hamiltonian with a renormal-

ized center of gravit)ﬁ'g(V), renormalized hopping integrals

td(v), and a renormalized interactiod (V). We find the
parameters

. 1(= -
n9®=—4m(;f dEF(B)GIPV(E-p)|. (12

f_(E) is the Fermi function an@{PP? are the local Green
functions. Obviously we can calculate the phase boundary
2 between para- and ferromagnetism as soon as we have found

N Vv
Tg(V) =T8— — an (approximatg expression for the self-energy.

ATo To this aim we will formulate the Hu-I, SDA, and MAA
5 for the two-band problenil). By comparing the influence of
td(v)=td 1+V_(a_1) ®) the hybridization within different approximations we can
ATZ ' minimize the risk of an artificiap-band influence. The two
“simple” approximations Hu-l and SDA can give excellent
A V2 insight into the working mechanisms. Due to their explicit
uv)y=U-+ A_To' structure of the self-energy, one can perform some demon-

strative analytical estimations. The SDA gives qualitatively
The broadening as well as the shift is clearly recognized irfonvincing results concerning ferromagnetism. This is due to
Eq. (8) Our preceding qua"ta’[ive considerations indicatethe fact that it reproduces the correct values for the centers of
that interband particle fluctuations indeed modify thpro- ~ gravity and weights of the Hubbard bands in the strong cou-
jected density of states. These modifications are expected @ing limit U—c. Compared to Hu-I, an additional correla-
influence also the magnetic properties. Up to now we onlytion function is considered that describes the itineracy of
investigated spin symmetric limiting cases allowing only a€lectrons of opposite spin direction and allows for a spin-
spin-symmetric fluctuation rate. Regarding ferromagnetism iflependent band shift. The MAA is a first systematic im-
will be most important whether one of the effects becomegrovement of the SDA, since it allows quasiparticle damp-

spin dependent in the full system.

Ill. THEORY

The magnetic properties of E¢l) can be studied using

retarded single-electron Green functions
Gig={(dko 10k GRE=((Pko:Pho)),

Ggg: GIF()g: <<dk(r ; pla'>>:<<pk(r ;dlo>>'

which fulfill the following equations of motionatural units
are used throughout this paper; herice 1):

EGRg=1+ (g~ u)Gio+ 3y, GRa+ VGRY,
EGPY=(ef— n)GRI+VGLY, )

EGPP=1+(ef— u)GPP+VGEP,

The self-energy.,, is introduced as usual via
dd U d d gt
Eka'Gka': dkai? % nionifo' ’dka' ’ (10)

where[ ..., ...]_ denotes the commutator. Solving E§)
gives all Green functions:

(ess GEE) E

pd pp
Gko’ Gka’

E—¢l -V

) . (1D
E- Elr(d_zk(r

wheree, is used as an abbreviation feg— .

-V

ing, which is completely neglected within the SDA. By
comparing MAA and SDA results one can see if the mecha-
nisms derived within the SDA are also present in a more
complex theory.

A. Hubbard-I decoupling

Let us start with the Hubbard-1 approximation. Straight-
forward decoupling of the real space equations of motion for
the Green’s functiongll) yields the Hu-I self-energy

d
Hu-lse  _fd E-Totpu
>,=un?, 5 5
E-Td+u-U(1-n%,)

: (13

which is formally identical to the single-band case. The self-
energy isV dependent vian‘il,, which is calculated using
Egs.(11) and(12). Equation(13) gives three excitation en-
ergies in every point of the Brillouin zone, corresponding to
the three-peak structure of the spectral density in the atomic
limit V—0, T:fﬁj*)o. Finite values of the hopping and hy-
bridization change the positions and weights of thpeaks
and lead to a mixing op andd spectral density.

B. SDA

For the single-band model, the SDA is the simplest theory
that yields the correct strong-coupling and high-energy be-
havior, which seems to be decisive for the existence of fer-
romagnetism. The general structure of the spectral density
and the self-energy is the same as in Hu-l. The energy posi-
tions and weights of thé peaks in the spectral density are
obtained by fitting it to the first four spectral moments:
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= [ ap e

=([[[[dyo,H] HI_...H]_,d;1.). (14

m— fold

[. .1+ is the anticommutator. For the two-band model
we WI|| apply this concept directly to the self-energy rather

than to the spectral density. Therefore we choose the same

structure as in Eq(13) for a SDA self-energy ansatz:

(19

The parameters; shall now be fitted to the spectral mo-
ments. To this end we expand the Green function and th
self-energy with respect to powers ofl/

[

Gk(r 2
n=0

©

Ek()': 2
n=0

m

En+1 !

Clo

EN

(16)

The high-energy coefficients of the Green function are the B2°=Im

spectral moment€l4). This can easily be seen by expanding
the spectral representation of the Green function

(E)_f dE (E)

E E—E'+i0"
with respect to # and comparing the resulting expressions ~“
with the definition of the moment&4). The self-energy co-
efficients C{") are obtained as functions of the moments
ddpj (0. ddpg(n+1) hyy inserting the expansiond6) into
Eqg. (12) (or equivalently into the Dyson equatipand by
comparing the coefficients of theEY terms. With the right-
hand sid€gr.h.s) of Eq. (14), we find the first four correlated
spectral moments:

17

MG =1,
dopm D= 104 Und |
dIM D= (e %2+2Un? e d+U%n? +V?,
MG =(&h%+3Und () +U72n_,
2nd _(1-n

+V2(2€%+ eP+2un?

+(nfig)2]

+U 4 )(BETRAMTh)+Usn

(18)
The self-energy coefficients read

c®@=un?_,

(o8

cM=u2n? (1-n?

o)

c@=uzn? (1-n? H[BIP2%Ty+U(1—n? ).
BZPaB2"+ F2 s a higher correlation function with the

local partB? and ak-dependent parfZ>. For the single-
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local B,,, which leads to a spin-dependent band shift in the
ferromagnetic phase. With regard to ferromagnetism the non-
local partF,, seems to be of minor importance. Therefore

we will neglect it in the following. From Eq.14) we find for

the local part32°

I:ﬁJ

ET

2b__

—_— 2 -1
o n (1 n) Ja'( r-]I [oa )>

2V
+U_NZ Tp—Td)<d Pior—V(d pi)
]

|

ﬁlthough Bib contains expectation values of the uncorrelated
band and higher correlation functions, it can be expressed as
a functional of the correlated single-electron Green function

only:
_1>

(19

2V?
d_np

_|__
U (ngz—ny)

23,(E)

[ (r(l n(r)ﬂ- *Ocd ( )(

X{[E_EU( ) To]G”U(E—,LL)—l}.

The correlation functiorBf,b and the self-energy coefficients
C(%12) tyrn out to be the same functionals of the correlated
Green functionG¢ as in the single-band model. While de-
termining the self-energy coefficients, the whaledepen-
dence in the moment¥M (). .. 49M{®) (18) is canceled by
the explicitV dependence of the correlated Green function
(11). Thus, as in the Hu-l approximation, the SDA self-
energy is formally identical to the single-band case:

BZb
u@a-nd)’

TE-To+pu—B? -

SbAy, =un? (20)
TheV dependence comes again into play by the expectation
valuesn? . and 82 being evaluated via Eq411), (12),

and (19)

C. MAA

Besides the restriction to strong interaction strengths a
drawback of SDA and Hu-l is the exclusion of scattering
processes that lead to quasiparticle damping. The correlated
d system is described by two quasiparticles with infinite life-
time corresponding to singly or doubly occupied sites. One
possibility to include quasiparticle damping is the description
of the system by a fictitious allogalloy analogy, which is a
standard method in many-body phystésvith this approach
one can account for electron scattering at the potentials
formed by the distribution of electrons of opposite spin di-
rection. The main excitation energies of the many-body sys-
tem are modeled by atomic energy levels of a fictitious alloy.
Correlation effects are then described by the properties of

band model, the influence of both terms is discussed in detaihis alloy, and its self-energy is identified with the self-
in Ref. 26. It turns out that the most important term is theenergy of the many-body problem. Since the self-en€t@y
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exclusively characterizes correlated electrons, we will only
describe the correlated subsystem by a fictitious alloy. In the SD A _ 4-QDOS
strong-coupling limit we have two main excitation energies — p-QDOS
within the correlated subsystem. Consequently we will de-
scribe it by a two-component alloy. The resulting effective
alloy problem can be solved by the coherent potential ap-
proximation(CPA), which yields the CPA self-energy

arbitrary units
fa
<
L]
(=4
wm

p=12 d }
Eve— To—2,(E) . V=09
0= > Xpo———gq " —. () Li“ 8
po 1_Gii(r(E)[Ep(r_E(r(E)_TO:l - | k\ V=|1.3 . k
E,, andxp, are the atomic energy levels and the concentra- ' 2 B[ V;’ 2
tions of the alloy components. The CPA, being a single-site ¢
theory, gives a local self-energy,,. After rearranging the FIG. 1. Quasiparticle density of stat6®DOS as a function of
terms and setting the energyE at differentV. The system is forced to be paramag-
q q netic. Parameterd) =5.0, n=0.25, «=4.0, AT;=3.0, T=0 K,
Y17 X16(E15— To) +X24(E25—Tp), fce() lattice; see Eq(24). The arrows show the position of the
g g Fermi energy. With risingVv the distance between the subbands
(E1o=To)(E2s—To) increases quadratically.
72 Y1 '
ated. To gain the best possible comparison with these calcu-
¥3=X10(E2s— T§) + Xo0(E1,— T9), lations, we choose the same lattice structifec-tight-
binding, d—oe, after particle-hole transformatiprfor our
Eq. (21) becomes investigations of the two-band model. The density of states
1+ GI(E)[ S (E) — 7] reads
iio o — 72
2 o(E)=y1m—4q : (22 ;
1+ G (E)[2 (E)— v3] o (L+ZE/t*)2
O)E)= (24
: p(E)= —- )
Herex,,+X,,=1 is already used. To complete the theory, t* \Jar(1+ V2E/t*)

we now have to adjust the parametets y,, andys. Simi-

lar to the SDA these parameters can be fitted to the on-siti the following all energies will be given in units ¢f .The
spectral moments1 (" and on-site self-energy coefficients density of states exhibits a divergence at the lower band
C{™ _ The latter two are defined analogouslyMg, andC,,  edge. This feature is known to stabilize ferromagnetism. The
in Eq. (14). To this purpose one has to expand the localmain trends regarding the influence of the hybridization are
Green functiorGidif‘, and the local self-energ},, in powers ~ also present in other lattice structur@sg. sc or bcc tight

of 1/E analogously to Eq(16). Then one inserts these ex- binding. Ferromagnetism, however, is most certain within
pansions into Eq(22) and compares the coefficients of the the fcc lattice”® Figures 1 and 2 show the quasiparticle den-
1/EM terms up ton=2 which is best to be done in the form sities of states calculated with SDA and MAA for different
S =914 Gy 3o (E0— 73)— 71(S.— 7,)]=0. Using the values ofV in the paramagnetic case. In both theories the
abbreviation" 3 3 we finally find for the MAA self- QDOS consists of two Hubbard bands and the uncorrelated
energy band. These bands move apart with risihgvhile the corre-

lated subbands are broadened. One can see that the band

)y U d (Gﬁ?)-)71+20'_ B%ba (23)
(J’= n—(r _ N
(Gf)'+2,-B¥,~U(1-n?,)
o ) ] ) ] — d-QDOS
This is again, as in Hu-l and SDA, formally identical to the - p-QDOS

single-band expression, i.e., the self-energy is the same func-
tional of the correlated Green function as in the single-band
case. The self-energy 6 dependent viasﬂ‘f, and the expec-
tation valuesn? andB?".

The MAA self-energy is still consistent with the high-
energy limit and additionally allows for quasiparticle damp-
ing, thus being a systematic improvement of the SDA.

arbitrary units

IV. RESULTS AND DISCUSSION

Keeping in mind the scope of the theories used in our FIG. 2. Same as in Fig. 1, but calculated with the MAA. The
approach, we will now investigate the influence of the addi-peaks are broader than those in Fig. 1 due to quasiparticle damping.
tional p-band. In Ref. 23 these theories are thoroughly evaluThis is most pronounced in the upper Hubbard band.
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— FIG. 4. n-T phase diagram for different values ‘éfand differ-
0-36 E\\ _ ent band distancesT,. Other parameters as in the previous figures.
A V=13
i .
-4 i) )
E[eV] ATy,=— ——-————(1—n%
Vo AT,—nd B2 v

-0 — 0O

FIG. 3. Lower Hubbard band of the- and |d QDOS in the
ferromagnetic phase. Parameters as in Figs. 1 and 2. The distance
between the and| bands increases witid. V2

Xyy=1+
v (ATy—n® B )2

shifts are proportional t&?, which agrees perfectly with the
results for free bandEgs. (5)—(7)] and the two-site cluster

[Eq. (8)] «a is the ratio of the free bandwidths as defined in E})
Figure 3 displays the lower Hubbard baf8DA) of thed 1,5 5 hybridization with an uncorrelated band causes alter-

density of states in the ferromagnetic case. It turns out thalyiqng in the band structure similar to the noninteracting case
the hybridization-caused band shift is in fact spin depender[tEqs'((s) and(7)], i.e., a band shift and a band broadening for
in the ferromagnetic phase. The shift is larger for majority—,[he correlatedl subband. The important difference is tgin

spin electrons. The magnetic properties can thus be chang pendencef both quantities in the full system. Equation

drf':ls’_[ically due to the presence of the uncqrrelated t_)an 26) describes two competing effects. The shift to lower en-
Within the framework of the SDA we can derive analytical ergies ATS supports magnetism since it is larger for

expressions for the shift and the broadening by CalCUIatin%ajority-spin electrons. The band broadeniag, , in con-

the _poles of Eq.(1) with Ek‘TZEEDA' For U—c trast, destabilizes magnetism, since broader bands are known
we find to be inconvenient for band ferromagnetism. In addition, the
spin dependence oky, works against ferromagnetism.
ATy, andxy, constitute the main mechanisms by which the
DA 5 p—band_ influenc.es thd-band magnetism. _
Eokr = €k TV Xk » In Fig. 4 Curie temperatures are shown in the dependence
of the band filingn® for different parameters V. We find
ESA=TI+ (e~ T9(1—n% ) +B® n? - VX, both, stabilization for lower particle densities as well as de-
stabilization for higher ones in all theories. Surprisingly, the
where stabilization is clearly more pronounced if the band distance
increasesr.h.s. of Fig. 4. Figure 5 gives a systematic over-
1-n9, view of theV dependence of the Curie temperature for dif-
p_1d_, d_—dq_d \_ p2bd ferent band distancesT,.
€ To~ (e To)(17N=,) B‘”n‘”(ZS) There exists a critical band distanael§ that separates
regimes with qualitatively different behavior of the Curie
describes the whole influence of the hybridization. The othetemperaturélines with circles. This distance is about 2.8 eV
terms are the well-known SDA result for the single-bandfor Hu-I, for MAA approximately 2.6 eV, while within the
Hubbard model. For band fillings smaller than unity, theSDA the critical band distance is somewhat smaller than 2.4
most important energies akg,, forming the lower Hubbard eV. ATg is characterized by the following:

(26)

Eser=To+U+(ef—Ton?,+BZ (1-n? ),

VX, =V?

band. For nonoverlapping banfise., ATo>max(ef — T5)], (i) Above the critical band distandeip triangle$ we are
we can rewriteEgl?(f in terms of a band shifAT,, and a in the stabilizing regime. Here ferromagnetism can be stabi-
band broadening factos,,, lized by the uncorrelated bands for small hybridizatidhs
The Curie temperaturé. shows a maximum as a function of
ESPA=Td+ ATy, +n? B? +(el—TH(1-n? )xy, . the hybridizationV.
(i) The situation is different for small band distances
Both are spin dependent: ATo<ATjg (down triangles We are now in the destabilizing
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13.5
AT, /
AT :
asa 28 n=09 0
A--A %i T(‘. as 37 *
o—e . — 35
v 2.2 14004 v 33
13
—s D, 2
a-a 2.3 B
— 2.6 <]
— 2.5
oy 3.0 _2.5
&4 20
o— 2.8
- 2.5
|
0.5 1

FIG. 6. Critical band distance that separates the stabilizing and

_FIG. 5. Curie temperatures in dependenc¥ elculated within - 0 jestabilizing regime. Above the line ferromagnetism is stabi-
different theories. Up triangles: stabilization of ferromagnetism forIized by the uncorrelated band for small Below the line ferro-
small V; down triangles: destabilization of ferromagnetism. Othermagnetism is destabilized. Inset: as in Fig. 5 for0.9, SDA

parameters as in the previous figures. Further parameters as in the previous figures.

regime. No enhancement of the Curie temperature is foungyf /. The magnetization shows a distinct maximum as a

only destabilization of magnetism. . ~ function of the hybridization strength as shown in the inset
The different behavior can be understood by inspectingy Fig. 7.

again the two competing band structure effe@6) of the
hybridization: At small band distanceésT, the destabilizing
band broadening(vg~1+V2/AT(2) is more important than V. CONCLUSIONS

the stabilizing shiftATy,~—V?/AT,. We are in the desta- et us summarize our findings. The questions if and how
bilizing regime. AsAT, increases, the shift more and more an uncorrelated band can stabilize band ferromagnetism can
overcompensates the broadening, though both effects bgow be answered. Stabilization of ferromagnetism is only
come smaller. Thus ferromagnetism can be stabilized fofound for small hybridization strengths. Strong fluctuations
ATo>ATjg. Large interband fluctuations at high valuesof  between the bands generally suppress ferromagnetic order.
however, suppress ferromagnetism also in this regime. Small fluctuations can stabilize ferromagnetism if the band
For further investigations we only show SDA results since
the dependence of the hybridization strenyths qualita-

tively the same in all theories. First we want to look at the Vv AT,

critical band distance that separates the stabilizing from the 1L.oF m/n w08

destabilizing regime. It depends sensitively on the band fill- 051 _ 8:2

ing n? (Fig. 6). — 03
For densities® closer to half-filling the critical band dis-

tance is enhanced. This could reflect the fact that the Fermi 0

energy rises with increasing band filling and therefore the 0 A%

gap between the Fermi energy and the uncorrelated states 0.5
becomes smaller. This enhances the interband fluctuation

rate, and the stabilization of ferromagnetism is more un-
likely. As in the single-band model, no ferromagnetism was :

found atn9=1 for the free density of statg@4). : PM
Finally we want to study ground state properties: The ' '1 é
band can induce a ferromagnetic ground state if the single- AT
band system is paramagnetic but close to a ferromagnetic 0
transition(Fig. 7, bec tight-binding lattice A ferromagnetic FIG. 7. p-band-induced ferromagnetism for a bcc tight-binding

ground state is induced by thed hybridization for band |attice. Inset: Magnetization in dependence \6f ParametersT
distances larger thaATg=0.3 eV and for moderate values =0 K, U=4, Wy=1, a=4, n=0.55(SDA).
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distance is larger than a critical enerdyyg, which depends therefore empty and no polarization of tpeband can be

sensitively on the band filling and on the shape of the free expected. This excludes RKKY coupling.

density of states. (i) RKKY coupling results from simultaneous fluctua-
The stabilization and destabilization result from spin-tions at different sites and is thus of ordét (see, e.g., Ref.

dependent interband particle fluctuations. They induce 46). The same holds for other indirect exchange mechanisms

spin-dependent renormalization of the correlated quasipartSUch as superexchange. On the other hand, the band-structure
-ﬁﬁects we discussed above are based on uncoupled fluctua-

terms of a band broadening dominating at small band!ons and are thus of ordaf?. Therefore they will dominate

distances and a band shift dominating at larger ones. Thttg‘e system. . .
In conclusion, we have found considerable influence of

former turns out to suppress and the latter to stabilize : X
ferromagnetism. the p band ond-band ferromagnetism in our model. The

In other words, as usual the system lowers its energy bi volved processes are due to the interplay of correlation and

interband particle fluctuations. Because the latter can be sp br!d!zat!on. Hence our Investigations ShO.WEd that i
dependent, the energy gain is different for the spin-up an ybridization should be taken into account in model calcula-

the spin-down electrons. This in turn influences the stability'oNS t0 achieve a realistic description of real substances.

of the ferromagnetic phase and, e.g., the Curie temperature@.therv"ise magnetic properties. may be over- or underesti-
The described mechanism can also give a “final kick” to gmated. If and how the bands influence the antiferromag-

system that is close to a ferromagnetic transition. netic phase was left open in our analysis and remains an

There are various arguments that show that compared {pteresting question to be answered in further investigations.

this mechanism indirect exchange interactions such as an
RKKY-like coupling of localizedd moments are of minor
importance: This work was supported by the Deutsche Forschungsge-

(i) In most of the calculations shown here, the lower bandneinschaft within the Sonderforschungsbereich 290et-
edge of thep band is located above the Fermi enet§ygs.  allische duFilme: Struktur, Magnetismus und elektronische
1-6). Except for the mixing ofd and p states, this band is Eigenschafteny.
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