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Thermodynamics of the magnetocaloric effect
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The relationship between the behavior of the temperature-dependent heat capacity at constant pressure
measured in different magnetic fields and the magnetocaloric effect in magnetic systems with and without
discontinuous change of entropy is discussed. It is shown that the two are directly related to each other, and if
the behavior of either property~i.e., the heat capacity or the magnetocaloric effect! is known, the general
behavior of the second one can be predicted. The derived relationships are illustrated using several sets of
experimental data and model examples.

DOI: 10.1103/PhysRevB.64.144406 PACS number~s!: 75.30.Sg, 65.40.Gr
in

n
u

pe
an
-

e
it
e
r

om
et
e
r

se
r

al
he
an

r
ca
tio

su
ti
he
is
s

et

op

on
e
nt.
at

ture
ly.
in
en-

ce,
ies

n

tic
oth

ly.
dots
etic
I. INTRODUCTION

The magnetocaloric effect~MCE! is generally recognized
as the heating or the cooling of magnetic solids in a vary
dc magnetic field. It was discovered by Warburg1 and, over
the years, the nature and the behavior of the MCE as a fu
tion of temperature and magnetic-field change were the s
jects of many experimental and theoretical studies.2–8 The
fundamentals of the magnetocaloric effect are develo
quite well, e.g., see recent reviews by Pecharsky
Gschneidner,9 and Tishin.10 Nevertheless, even today ad
vanced research on this magnetothermal phenomenon
mains important from both basic and practical perspectiv
The fundamental significance of the MCE arises from
intimate relationship with both the magnetism and the th
modynamics of solids. This warrants further basic expe
mental and theoretical studies to bring about a more c
plete understanding of the thermal behavior of magn
solids as functions of both temperature and magnetic-fi
change. The applied importance of the MCE is easily app
ciated from the fact that for many years it has been u
successfully to reach ultra-low temperatures in a resea
environment.11,12 Furthermore, recent technologic
advancements13,14strongly suggest that in the near future t
MCE may become the keystone for an energy efficient
environmentally safe near-room-temperature solid-state
frigeration and cooling technologies, provided all theoreti
and practical aspects of continuous magnetic refrigera
are adequately matured.

In essence, the magnetocaloric effect in solids is the re
of the entropy variation due to the coupling of a magne
spin system with the magnetic field. It is well known that t
total entropyS of a magnetic solid, where the magnetism
due to localized magnetic moments, e.g., lanthanide-ba
materials, is the sum of the electronic, lattice, and magn
entropies~SE , SL , andSM , respectively!. We note that in a
magnetic solid with itinerant magnetism and/or 3d magne-
tism, the separation of the three contributions to the entr
is, in general, not straightforward. At constant pressureP, all
three are functions of temperatureT,

S~T!P5@SE~T!1SL~T!1SM~T!#P . ~1!
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Among the three, the magnetic entropy strongly depends
the magnetic fieldH, while usually the electronic and th
lattice entropies are practically magnetic-field independe
However, for materials with high-electronic specific-he
constants, e.g., Sc,15 CeCu2Si2,

16 CeB6,
16 UBe13,

17 and oth-
ers, below;10 K the electronic heat capacity~and entropy!
exhibit strong nonlinear dependences on both tempera
and magnetic field, which are difficult to treat theoretical
The electronic contribution to the magnetocaloric effect
this case, nonetheless, can be calculated from the experim
tal electronic heat capacity data if they are available. Hen
if the magnetic field around a typical magnetic solid var
from H1 to H2 ~i.e., it is changed byDH5H22H1!, then the
magnetic entropy of the solid at a constantT is reduced~or
increased! by DSM , and bothSE and SL remain constant.
The value ofDSM(T)DH,P depends on bothDH and absolute
temperature~see Fig. 1! and the magnetocaloric effect at a

FIG. 1. The total entropy functions of ErAgGa in magne
fields 0 and 53.2 kOe. The magnetocaloric effect in terms of b
the isothermal magnetic entropy change,DSM(T)DH,P , and the
adiabatic temperature change,DTad(T)DH,P , for the given tempera-
ture T, is shown as thick vertical and horizontal bars, respective
The corresponding values of the total entropy are indicated by
and arrows, and are listed in terms of the heat capacity in magn
fields H1 andH2 .
©2001 The American Physical Society06-1
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arbitrary and constantT is given in terms of theisothermal
magnetic entropy changeas

DSM~T!T,DH,P5@SM~T!H2
2SM~T!H1

#T,P

5@S~T!H2
2S~T!H1

#T,P . ~2!

The magnitude, the sign, and the behavior of
DSM(T)DH,P is therefore dependent on the relationship b
tween S(T)H1

and S(T)H2
at constant pressure. When th

magnetic field is changed adiabatically byDH ~i.e., whenS
is constant!, the combined lattice and electronic entropi
must change byD(SL1SE)52DSM to fulfill the condition
thatDS5DSE1DSL1DSM50. The configurational entropy
in a solid generally remains constant during a magnetic-fi
change and therefore only the thermal lattice and electro
entropies vary resulting in the measurableadiabatic tem-
perature change, DTad, of the magnetic material. Conside
ing temperature as a function of the total entropy, the m
netocaloric effect in terms ofDTad(T)DH,P is also a function
of temperature~see Fig. 1! and, for a fixedDH and an arbi-
trary T, it is defined as

DTad~T!T,DH,P5@T~S!H2
2T~S!H1

#S,P . ~3!

Hence, according to Eqs.~2! and ~3!, when the behavior of
the total entropy of a magnetic solid is known as a funct
of both temperature and magnetic field, its MCE is fu
characterized.

The magnetic entropy change is also related to the cha
of the bulk magnetizationM as a function of temperature an
magnetic field, and can be calculated from magnetiza
data ~see Refs. 9, 10, 18! using the well-known Maxwell
relationship

DSM~T!DH,P5E
H1

H2S ]M ~T,H !

]T D
H,P

dH. ~4!

The adiabatic temperature change is also given9,10,18as

DTad~T!DH,P52E
H1

H2S T

C~T,H !
3

]M ~H,T!

]T D
H,P

dH.

~5!

Equations~4! and ~5! are easily derived from general the
modynamics, but both fail to describe the MCE during
truly discontinuous first-order phase transition wh
@]M (H,T)/]T#H,P does not exist. Analytical integration o
both Eqs.~4! and~5! is impossible since both magnetizatio
and heat capacity are material-dependent and generally
known functions of temperature and magnetic field. Equat
~4! is usually integrated numerically, while numerical int
gration of Eq.~5! is hardly ever performed because norma
the magnetic field and temperature-dependent heat cap
is not known with the required details. Finally, the adiaba
temperature change can be measured directly~see Refs. 9,
10, 18–20!.

Although Eqs.~2! and ~3! completely define the MCE in
solids, the numerical integration involved in evaluating t
total entropy functions may result in the accumulation
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errors that can reach 20–30% of the calculated MCE val
near the room temperature, and the heat-capacity meas
ments must be carried out starting as close to the abso
zero as possible.18,21It is of considerable interest therefore
analyze the relationships between the behavior of the h
capacity as a function of temperature in different magne
fields and the magnetocaloric effect~also as a function of
temperature!, particularly with respect to the magnitude, th
sign, and the positions of the MCE peaks. The relationsh
between the behavior of the heat capacity and the adiab
temperature change in the vicinity of the magnetic-ph
transition have been recently examined by Tish
Gschneider, and Pecharsky8 by considering a closed revers
ible thermodynamic cycle onT-S diagram. The results ob
tained in Ref. 8 are applicable when the magnetocaloric
fect is quite large. Here we explore the general relationsh
between the two characteristics of the MCE,DSM(T)DH,P ,
andDTad(T)DH,P , both as the functions of temperature, a
the most basic thermodynamic property of solids, i.e., th
heat capacity at constant pressure as the function of temp
ture in constant magnetic fieldsH1 andH2 . First we analyze
the magnetocaloric effect associated with second-order p
transitions, which is the most commonly experimenta
studied phenomenon and is usually classified as the con
tional MCE. Later we consider the magnetocaloric effect
the vicinity of first-order phase transformations, which h
recently received much attention in particular with respec
reports of the giant magnetocaloric effect in such mater
as FeRh and Gd5(Si12xGex)4 , see references in Sec. III. A
far as we are aware, these relationships were not discu
before.

II. THE CONVENTIONAL MAGNETOCALORIC EFFECT

In this section we consider a fully reversible magneto
loric effect in conventional paramagnetic and/or ferroma
netic systems. The total entropy of systems considered be
is always a continuous function of temperature regardles
magnetic field. It is also assumed that hystereses, coer
fields, anisotropy, and remanence, are all negligible a
therefore have no effect on the magnetocaloric effect. F
thermore, all changes in the magnetic systems are assu
to be equilibrium or quasistatic processes. For convenie
we also assume that the magnetic field is always changin
DH5H22H1 and thatH2.H1 . It is easy to see@Eqs. ~2!
through ~5!# that all conclusions remain valid even whe
H2,H1 resulting in the reversal of the MCE sign.

A. Isothermal magnetic entropy change,DSM„T…DH ,P

From the second law of thermodynamics,

dS~T!H,P5
C~T!H,P

T
dT, ~6!

whereC(T)H,P is the heat capacity at constant pressureP
and magnetic fieldH; S(T)H,P is the total entropy at constan
pressure and magnetic field; andT is the absolute tempera
ture. Assume that the heat capacity of a magnetic materi
measured at constant pressure as the function of temper
6-2
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THERMODYNAMICS OF THE MAGNETOCALORIC EFFECT PHYSICAL REVIEW B64 144406
betweenT1 andT2 ~whereT2.T1 andT1 approaches zero!
in two constant magnetic fieldsH1 andH2 ~whereH2.H1
andH1 is usually zero!. When the entropy of such system
a continuous function of temperature, the total entropies
an arbitraryT, where T1,T<T2 , and constant magneti
fields H1 andH2 can be easily calculated from Eq.~6! as

S~T!H1 ,P5E
T1→0

T C~T!H1 ,P

T
dT ~7a!

and

S~T!H2 ,P5E
T1→0

T C~T!H2 ,P

T
dT. ~7b!

According to the third law of thermodynamics, the zer
temperature entropy in Eqs.~7a! and ~7b! is assumed to be
zero and magnetic-field independent. The magnetocaloric
fect as a function of temperature for a givenDH5H22H1
in terms of the magnetic entropy change,DSM(T)DH,P , is
defined by Eq.~2!. Hence, substituting Eqs.~7a! and ~7b!
into Eq.~2! and integrating betweenT50 K and an arbitrary
T that, as shown in Fig. 1, is the same for both entro
functions atH1 andH2 , we get

DSM~T!DH,P5DS~T!DH,P5E
0

T @C~T!H2
2C~T!H1

#P

T
dT.

~8!

It is immediately evident therefore that greater difference
the heat capacities in magnetic fieldsH1 andH2 between 0
K and T results in the greateruDSM(T)DH,Pu values at the
sameT. In other words, a large MCE is expected in t
systems where the magnetic field strongly affects the h
capacity. Furthermore, provided that the difference betw
C(T)H2

and C(T)H1
remains the same, the magnetocalo

effect in terms ofuDSM(T)DH,Pu is expected to be graduall
lowered as absolute temperature increases.

If DSM(T)DH,P has a maximum or a minimum, then th
peak temperature is found by differentiating Eq.~8! with
respect to temperature,

]@DSM~T!DH,P#

]T
5

@C~T!H2
2C~T!H1

#P

T
50. ~9!

It is straightforward from Eq.~9! thatDSM(T)DH,P reaches a
maximum or a minimum when

C~T!H1 ,P5C~T!H2 ,P . ~10!

Whether theDSM(T)DH,P has a maximum or a minimum ca
be found by calculating its second derivative with respec
temperature

]2@DSM~T!H,P#

]T2 5
]

]T
FC~T!H2 ,P2C~T!H1 ,P

T
G . ~11!

Expanding the right-hand side of Eq.~11! we obtain for
DSM(T)DH,P being a maximum for
14440
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F ]C~T!H2 ,P

]T
2

]C~T!H1 ,P

]T
G2

1

T2 @C~T!H2 ,P2C~T!H1 ,P#

,0 ~12!

and, correspondingly, we have forDSM(T)DH,P being a
minimum for

1

T
F ]C~T!H2 ,P

]T
2

]C~T!H1 ,P

]T
G2

1

T2 @C~T!H2 ,P2C~T!H1 ,P#

.0. ~13!

Taking into account Eq.~10!, one can see that

1

T2 @C~T!H2 ,P2C~T!H1 ,P#50 ~14!

at both the maximum and the minimum and therefore co
bining Eqs.~10! and~12! through~14!, and noting that 1/T is
always positive and defined except forT50 K, the maxi-
mum in DSM(T)DH,P is observed when

C~T!H1 ,P5C~T!H2 ,P and
]C~T!H2 ,P

]T
,

]C~T!H1 ,P

]T
,

~15!

while DSM(T)DH,P is a minimum when

C~T!H1 ,P5C~T!H2 ,P and
]C~T!H2 ,P

]T
.

]C~T!H1 ,P

]T
.

~16!

Equation~15! indicates that the magnetic entropy change h
the maximum near the temperature at which the heat cap
ties in different magnetic fields are equal and the slope
C(T)H2 ,P as a function of temperature is lower than that

C(T)H1 ,P . Similarly, Eq. ~16! shows thatDSM(T)DH,P has
the minimum when the heat capacity in the higher magn
field rises faster with temperature than the heat capacit
the lower magnetic field when the two are the same~i.e.,
when the two heat capacity functions cross over!.

The relationships between the heat capacity and the m
netic entropy change discussed above are illustrated in F
2, 3, and 4. Figure 2 shows the heat capacity of ErAg
~Ref. 22! as a function of temperature in three different co
stant magnetic fields:H150, and H28553.2 or H29
598.5 kOe. For both nonzero magnetic fields the slope
the high-magnetic-field heat capacity exceeds that of
zero-magnetic-field heat capacity at the temperature w
C(T)H1 ,P5C(T)H2 ,P @Fig. 2~a!#, i.e., the DSM(T)DH,P in
these cases should have a minimum in accord with Eq.~16!,
which is seen in Fig. 2~b!. Furthermore, since the temper
ture where Eq.~16! holds is rising as the upper magnet
field increases, theDSM(T)DH,P minima for variousDH are
observed at different temperatures. The heat capacity
Dy Al2 in 0, 20, and 50 kOe magnetic fields23 is shown in
Fig. 3~a!. The temperature where the heat capacity in both
and 50 kOe magnetic fields is equal to that in the zero m
netic field remains practically constant due to a well-defin
6-3
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FIG. 2. The heat capacity o
ErAgGa in 0, 53.2, and 98.5 kOe
magnetic fields as a function o
temperature ~a! and the corre-
sponding magnetic entropy
changes forDH from 0 to 53.2
and from 0 to 98.5 kOe~b!. The
dots in ~a! indicate the tempera-
tures where Eq.~16! holds, i.e.,
the temperatures where
DSM(T)DH,P , is at the minimum
@also indicated in~b! by vertical
arrows!.
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l-type zero-magnetic-field heat-capacity anomaly. Theref
theDSM(T)DH,P minima also remain practically temperatu
independent@Fig. 3~b!#. Also included in Fig. 3~b! is the
DSM(T)DH,P calculated from the magnetization data f
Dy Al2 @Eq. ~4!#, which is in an excellent agreement with th
magnetic entropy change determined from the heat capa
using Eq. ~8!. A different heat capacity andDSM(T)DH,P
behaviors are observed in PrNi5,

24 when the high magnetic
field enhances the low-temperature heat capacity and
lowers it to below the zero-magnetic-field heat capacity
certain temperature range as shown in Figs. 4~a! and 4~b!,
respectively, for 0 and 70 kOe. As a result, there are t
temperatures, one where Eq.~15!, and another where Eq
~16! hold, i.e., DSM(T)DH,P has a low-temperature max
mum and a high-temperature minimum@see Fig. 4~b!#. The
anomalous behavior of the heat capacity in a paramagn
PrNi5 has been associated with crossing of the two lowe
14440
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magnetic-energy levels~G4 andG1! in the presence of crys
talline electric fields~for more details see Ref. 24!.

B. Adiabatic temperature change,DTad„T…DH ,P

For simplicity assume that magnetic field suppresses
total entropy and thereforeDSM(T)DH,P is negative resulting
in a positive adiabatic temperature change whenH2.H1 as
shown in Fig. 1. The relationship between the adiabatic te
perature change,DTad(T)DH,P , and the heat capacity at con
stant pressure can be analyzed by means of the follow
considerations. By definition@see Eq.~3! and Fig. 1#,

S~T!H1 ,P5S„T1DTad~T!DH…H2 ,P ~17!

for anyT. Hence, by substituting Eqs.~7a! and~7b! into Eq.
~17! and integrating betweenT50 K and an arbitraryT we
get
f
-
-

-

FIG. 3. The heat capacity o
DyAl2 in 0, 20, and 50 kOe mag
netic fields as a function of tem
perature~a! and the corresponding
magnetic entropy changes forDH
from 0 to 20 and from 0 to 50 kOe
~b!. The lines in~b! represent the
DSM(T)DH,P calculated from the
heat capacity using Eq.~8!, and
the open symbols in~b! represent
the same calculated from the mag
netization data using Eq.~4!.
6-4
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FIG. 4. The heat capacity o
PrNi5 in 0, and 70 kOe magnetic
fields as a function of temperatur
~a! and the corresponding mag
netic entropy change forDH from
0 to 70 kOe~b!. The dots in~a!
indicate the temperatures wher
Eq. ~15! or ~16! holds.
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0

H1 ,P

T
dT5E

0

ad DH,P H2 ,P

T
dT, ~18!

which can be rearranged as

E
0

T @C~T!H1
2C~T!H2

#P

T
dT5E

T

T1DTad~T!DH,P C~T!H2 ,P

T
dT.

~19!

By comparing with Eq.~8! it becomes

2DSM~T!DH,P5E
T

T1DTad~T!DH,P C~T!H2 ,P

T
dT. ~20!

Noting that 1/T is always positive and continuous exce
for T50 K andC(T)H2 ,P is positive and defined throughou
the limits of integration in Eq.~20!, and applying the first
mean-value theorem, a specific temperatureT0 exists for any
T.0 K where

T<T0<T1DTad~T!DH,P ~21!

and Eq.~20! becomes

2DSM~T!DH,P5C~T0!H2 ,P3E
T

T1DTad~T!DH,P 1

T
dT.

~22!

From Eq.~21! it is clear thatT0 is a function of bothT and
DTad(T)DH,P . We note that whenDTad(T)DH,P is small,
which is usually observed at temperatures much higher t
absolute zero and far from the magnetic phase transitionsT0
in Eq. ~22! can be approximated byT sinceT>T1DTad. In
the vicinity of phase transition temperature the situation
comes much more complex and the location ofT0 within the
temperature interval delineated byT andT1DTad(T)DH,P is
impossible to predict. By integrating the right-hand side
Eq. ~22! and solving it with respect toDTad(T)DH,P we get
14440
n

-

f

DTad~T!DH,P5T3H expF2
M DH,P

C~T0!H2 ,P
G21J . ~23!

Equation~23! relates the magnetocaloric effect as the fun
tion of temperature for a givenDH and an arbitraryT with
the magnetic entropy change for the sameDH andT, and the
heat capacity in the magnetic fieldH2 at the specific tem-
peratureT0 @see Eq.~21!#. We also note that in Eq.~8!
DSM(T)DH,P is the function of the heat capacities andT, and
therefore DTad(T)DH,P is ultimately the function of
C(T)H1 ,P , C(T)H2 ,P , and T. Similar to the conclusion

based on Eq.~8! for the magnitude of theDSM(T)DH,P , a
large value ofuDTad(T)DH,Pu is expected to be observed i
materials where the magnetic field strongly influences
heat capacity, i.e., whenuC(T)H2 ,P2C(T)H1 ,Pu is large be-

tweenT50 K and a givenT. By repeating the above proce
dure@Eqs.~20–23!# and noting thatT is always positive and
continuous andC(T)H2 ,P /T is positive and defined through
out the limits of integration in Eq.~20!, a different tempera-
ture,T1ÞT0 exists, where

T<T1<T1DTad~T!DH,P , ~24!

when Eq.~20! becomes

2DSM~T!DH,P5
C~T1!H2 ,P

T1
3E

T

T1DTad~T!DH,P
dT. ~25!

Similar to T0 @Eqs. ~21!–~23!#, T1 @Eqs. ~24! and ~25!# is
also a function of bothT and DTad(T)DH,P , and when
DTad(T)DH,P is negligibly small,T1 in Eq. ~25! can be ap-
proximated byT but near a phase-transition temperature
value of T1 remains unique and unknown. Thus, Eq.~25!
yields a second obvious solution of Eq.~20! for the adiabatic
temperature change

DTad~T!DH,P52
T1

C~T1!H2 ,P
DSM~T!DH,P . ~26!
6-5
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FIG. 5. The behavior of the
T/C(T)H2 ,P of ErAgGa between
;1.5 and 30 K in magnetic fields
53.2 and 98.5 kOe~a! and the
adiabatic temperature change
ErAgGa for magnetic field change
from 0 to 53.2 and from 0 to 98.5
kOe ~b!.
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Equation~26! relates the magnetocaloric effect as the fun
tion of temperature for a givenDH and an arbitraryT with
the magnetic entropy change for the sameDH andT, a spe-
cific value of the absolute temperature,T1 @see Eq.~24!# and
the heat capacity in the magnetic fieldH2 at T1 . Also Eq.
~23! can be simplified by recalling thatex21>x whenx is
small. Hence, whenuDSMu!Cp , which is a valid assump
tion at high temperatures~e.g., near the Debye temperatu
and above!, Eq. ~23! can be approximated by

DTad~T!DH,P>2
T

C~T0!H2 ,P
DSM~T!DH,P . ~27!

Noting Eq.~8!, DTad(T)DH,P as given by Eqs.~26! and~27!
is, at the end, a function of the heat capacities in two m
netic fields and the absolute temperature. Equations~23! and
~26! are general, but unfortunately, the exact values ofT0 or
T1 and thereforeC(T0)H2 ,P or C(T1)H2 ,P remain unknown.

Furthermore, bothT0 andT1 are also functions of tempera
ture at fixed magnetic fieldH2 .

Several important conclusions can be drawn from
analysis of Eqs.~23!, ~26!, and~27!. First, the adiabatic tem
perature change should increase for the sameDSM(T)DH,P
and C(T)H2 ,P as temperature increases. Above Debye te
perature the lattice heat capacity of solids approaches
DuLong-Petit limit of 3R J/mol~atom! K and therefore
DTad(T)DH,P may be considerable at room temperature a
above, provided Debye temperature is near or below ro
temperature. Second, the adiabatic temperature change
pected to be much larger in solids with lower total heat
pacity provided magnetic entropy change and tempera
remain the same. In principle, similar conclusions can
derived from an analysis of Eq.~5!.

Noting Eq.~9!, differentiating the simplest of the two gen
eral equations@Eq. ~26!# with respect to temperature, an
equating]„DTad(T)DH,P…/]T to zero, a peak value of th
DTad(T)DH,P is observed when
14440
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@C~T!H2
2C~T!H1

#P52T3DSM~T!DH,P3
C~T1!H2 ,P

T1

3
]

]T S T1

C~T1!H2 ,P
D . ~28!

From Eq.~28! it is clear that the maximum~or the minimum!
DTad(T)DH,P generally should not coincide with the tem
perature of the corresponding minimum~or maximum! in
DSM(T)DH,P . For anyT.0 the right-hand side of Eq.~28!
becomes zero only whenDSM(T)DH,P50 or when
]/]T@T1 /C(T1)H2 ,P#50. It is also obvious that the pea

temperatures of bothDTad(T)DH,P and DSM(T)DH,P ap-
proach each other as the magnetocaloric effect an
]/]T@T1 /C(T1)H2 ,P# approach zero. The analysis of th
equations derived above@Eqs.~23!, ~26!, and~27!# indicates
that the sign of theDTad(T)DH,P peak is always opposite to
that of the DSM(T)DH,P . Furthermore, since all variable
except the differential ofT1 /C(T1)H2 ,P with respect to tem-

perature andDSM(T)DH,P in Eq. ~28! are always positive,
then theDTad(T)DH,P maximum will be observed when

C~T!H2 ,P>C~T!H1 ,P and
]

]T S T1

C~T1!H2 ,P
D>0,

~29!

or when

C~T!H2 ,P<C~T!H1 ,P and
]

]T S T1

C~T1!H2 ,P
D<0.

~30!

The relationships between the position of the magneto
loric effect maximum and the behavior of the heat capac
in constant magnetic fields@Eqs. ~28!–~30!# is illustrated in
Figs. 5 and 6. At low temperatures@Fig. 5~a!, ErAgGa#, the
derivative of T/C(T)H2 ,P with respect to temperature i
6-6
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FIG. 6. The behavior of the
T/C(T)H2 ,P of DyAl2 between
;15 and 100 K in magnetic fields
20 and 50 kOe~a! and the adia-
batic temperature change o
DyAl2 for magnetic field change
from 0 to 20 and from 0 to 50 kOe
~b!.
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negative@i.e., Eq.~30! holds# and the peak ofDTad(T)DH,P
should be observed whenC(T)H2 ,P,C(T)H1 ,P . As seen in

Fig. 5~b! the DTad(T)DH,P maxima in ErAgGa indeed occu
at approximately 7 K, which is lower than the temperatu
of the correspondingDSM(T)DH,P minima @Fig. 2~b!# re-
gardless of the magnetic field. A second example~Fig. 6!
shows the behavior ofT/C(T)H2 ,P and DTad(T)DH,P of

DyAl2. As temperature exceeds 23–26 K, the sign of
differential @Eqs. ~28!–~30!# for DyAl2 is changed from
negative to positive and the locations of theDTad(T)DH,P
peaks are determined from Eq.~29!. Furthermore, since the
value of the differential is quite small ~i.e.,
]/]T@T1 /C(T1)H2 ,P#>0 near 60 K, see Fig. 6~a!, the posi-

tions of the magnetocaloric effect (DTad) peaks practically
coincide with those ofDSM(T)DH,P @compare Figs. 3~b! and
6~b!#, i.e., both adiabatic temperature change and magn
entropy change peaks are observed whenC(T)H1 ,P

>C(T)H2,P @see Fig. 3~a!#. The latter conclusion fully agree
with the analysis presented in Ref. 8.

III. GIANT MAGNETOCALORIC EFFECT

The relationships between the magnetocaloric effect
the constant magnetic field heat capacity discussed in
previous section were derived assuming that the total entr
of the magnetic material is a continuous function of tempe
ture. This is the case when phase transition~s!, which occur
in the system, are second order~typically found in magnetic
order � disorder transformations, see the examples
ErAgGa and DyAl2 above!, or when there is no phase tran
sition at all~see the PrNi3 example above!. When the system
undergoes a first-order phase transition, then the behavio
the total entropy as a function of temperature must acco
for this discontinuity. Figure 7 shows aT-Sdiagram model-
ing the system where a magnetic field has small effect on
heat capacity both below and above the first-order ph
transition, while the phase-transition temperature increa
14440
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with increasing magnetic field. The phase transition in m
netic fieldH1 occurs at temperatureTpt,H1

, and the enthalpy

of this transformation isDEH1
. This results in the discon

tinuous equilibrium change of the entropy atTpt,H1
totaling

DSH1
5DEH1

/Tpt,H1
. Likewise, the phase transition in th

magnetic fieldH2 occurs atTpt,H2
, the enthalpy of this trans

formation is DEH2
, and the equilibrium entropy change

DSH2
5DEH2

/Tpt,H2
. A theoretical analysis of the behavio

of the MCE in first-order phase-transition materials is of sp
cial interest, because, as far as we are aware, no sim
analysis has been performed. Furthermore, magnetic fi
order phase transitions have been known in some case
bring about large, i.e., giant, magnetocaloric effects@e.g., see

FIG. 7. A schematicT-S diagram of a magnetic system in th
vicinity of the first-order phase transition in two magnetic fields,H1

andH2 . The corresponding values of the total entropies at criti
points~dots! are marked on the plot. It is assumed that the magn
field has small~but not negligible! effect on the heat capacities bot
below Tpt,H1

and aboveTpt,H2
and that the heat capacity belo

Tpt,H1
is suppressed by the higher magnetic field.
6-7
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the experimental data on Gd5(SixGe12x)4 ~Refs. 25, 26! and
FeRh~Refs. 27, 28!.

The presence of temperature and magnetic field hys
eses during first-order phase transitions generally requ
the analysis to be performed for a specific direction of
magnetic field change. Just like in the previous section, h
we assume that the magnetic field always increases~i.e.,
H2.H1!. However, it can be shown that all conclusions
main valid also whenH2,H1 resulting in the inverted sign
of both DSM(T)DH,P and DTad(T)DH,P . The presence o
hysteresis can be accounted for by introducing differ
phase-transition temperatures, which are observed during
magnetic field reduction. Similarly, as it was done in t
previous section, both magnetizing and demagnetizing
therefore phase changes are assumed to be equilibrium
cesses with negligible coercive field, anisotropy, and rem
nence.

A. Magnetic entropy change

When the first-order phase transition occurs at cons
temperature and pressure, and proceeds as predicted by
modynamic theory~i.e., the heat capacity is infinite, and th
entropy change is discontinuous at constant temperature!, the
corresponding analogs of Eqs.~7a! and ~7b! are

S~T!H1 ,P5E
T1→0

Tpt,H1
Cl~T!H1 ,P

T
dT1

DEH1

Tpt,H1

1E
Tpt,H1

T Ch~T!H1 ,P

T
dT ~31a!

and

S~T!H2 ,P5E
T1→0

Tpt,H2
Cl~T!H2 ,P

T
dT1

DEH2

Tpt,H2

1E
Tpt,H2

T Ch~T!H2 ,P

T
dT, ~31b!

respectively. HereTpt,H1
, Tpt,H2

and DEH1
, DEH2

are the
phase-transition temperatures and the enthalpies of tran
mation in magnetic fieldsH1 andH2 , respectively, see Fig
7. Also, Cl(T) andCh(T) indicate the heat capacities of th
low-temperature ~i.e., stable belowTpt! and the high-
temperature~i.e., stable aboveTpt! phases in their respectiv
magnetic fields since, in general, the heat capacities of
two phases are different. Equations~31a! and~31b! are given
for the case when an arbitraryT exceeds bothTpt,H1

and

Tpt,H2
. Following the same approach as in Sec. II and ass

ing that Tpt,H2
.Tpt,H1

, it is easy to see that for anyT

,Tpt,H1
the magnetic entropy change is

DSM~T!DH,P5DS~T!DH,P5E
0

T @Cl~T!H2
2Cl~T!H1

#P

T
dT,

~32a!
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i.e., it is exactly the same as for any other magnetic sys
without the first-order phase transformation@see Eq.~8! for
comparison#. WhenTpt,H1

<T,Tpt,H2
,DSM(T)DH,P becomes

DSM~T!DH,P5DS~T!DH,P

5E
0

Tpt ,H1 @Cl~T!H2
2Cl~T!H1

#P

T
dT

1E
Tpt

T @Cl~T!H2
2Ch~T!H1

#P

T
dT2

DEH1

Tpt ,H1

~32b!

and whenT>Tpt,H2
, the magnetocaloric effect in terms o

DSM(T)DH,P is

DSM~T!DH,P5DS~T!DH,P

5E
0

Tpt ,H1 @Cl~T!H2
2Cl~T!H1

#P

T
dT

1E
Tpt ,H1

Tpt,H2 @Cl~T!H2
2Ch~T!H1

#P

T
dT

1E
Tpt,H1

T @Ch~T!H2
2Ch~T!H1

#P

T
dT

2S DEH1

Tpt,H1

2
DEH2

Tpt,H2

D . ~32c!

When the constant magnetic field heat capacity of both
low- and high-temperature phases is essentially the s
@i.e., Cl(T)>Ch(T)5C(T) as, for example, found experi
mentally in Dy ~Refs. 8, 29!#, Eqs.~32a!–~32c! can be sim-
plified as follows@the temperature ranges remain the same
in Eqs.~32a!–~32c!#:

DSM~T!DH,P>E
0

T @C~T!H2
2C~T!H1

#P

T
dT ~33a!

DSM~T!DH,P>E
0

T @C~T!H2
2C~T!H1

#P

T
dT2

DEH1

Tpt,H1

~33b!

DSM~T!DH,P>E
0

T @C~T!H2
2C~T!H1

#P

T
dT

2S DEH1

Tpt,H1

2
DEH2

Tpt,H2

D . ~33c!

Equations~10!, ~15!, and ~16! therefore provide a good ap
proximation even for a first-order phase transition since b
DEH1

/Tpt,H1
andDEH2

/Tpt,H2
are theoretically temperature

independent constants, and in practice are essentially
perature independent. Furthermore, in materials with fi
order magnetic phase transitions, the magnetic field usu
6-8
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FIG. 8. The schematic behav
ior of the heat capacity of the
magnetic system in the vicinity o
the first-order phase transitio
when the magnetic field increase
the phase-transition temperatu
~a! and the corresponding mode
behavior of theDSM ~b!. Both ~a!
and ~b! show the two different
magnetic fieldsH28 and H29 , such
that H29.H28 and therefore,Tpt,H

29

.Tpt,H
28
.
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strongly affects the transition temperature but has m
smaller effect on the heat capacity both belowTpt,H1

and

above Tpt,H2
@e.g., see experimental data on Dy,8,29 and

Gd5~SixGe12x)4 ~Refs. 25, 26!#. Thus, it is valid to introduce
a further simplification and assume thatC(T)H1

.C(T)H2
at

any temperature except atTpt,H1
andTpt,H2

. Hence, the mag-
netic entropy change is expected to be much smaller b
below Tpt,H1

@Eq. ~33a!# and aboveTpt,H2
@Eq. ~33c!#, but it

becomes approximately constant and quite large w
Tpt,H1

<T,Tpt,H2
@Eq. ~33b!#,

DSM~T!DH,P>2
DEH1

Tpt,H1

>2
DEH2

Tpt,H2

. ~34!

We note that as follows from Eq.~33c!, in this case
DEH1

/Tpt,H1
.DEH2

/Tpt,H2
. Equations ~32!–~34! indicate

that during first-order magnetic phase transitions the m
contribution to the magnetic entropy change is due to
entropy of the phase transformation. It is easy to see fr
Eqs. ~32b!, ~33b!, and ~34! that ultimately, the value of the
enthalpy of the first-order phase transition determines
magnitude of the giant magnetocaloric effect in terms
DSM(T)DH,P in the temperature rangeTpt,H1

<T,Tpt,H2
.

An example modeling the relationship between the c
stant magnetic field heat capacity andDSM(T)DH,P accord-
ing to Eqs.~32a!–~32c! is shown in Fig. 8. The heat capac
ties belowTpt,H1

and aboveTpt,H2
are assumed to be onl

minimally affected by the magnetic field andCh(T) is as-
sumed to be slightly lower thanCl(T) @Fig. 8~a!#. At both
T5Tpt,H1

and T5Tpt,H2
the values of the heat capacity a

infinite @shown as vertical lines in Fig. 8~a!#, i.e., the transi-
tion is an ideal first-order phase transformation. Sin
C(T)H2,P

.C(T)H1,P
between Tpt,H1

and Tpt,H2
@see Fig.

8~a!#, the minimumDSM(T)DH,P ~i.e., the peak value! is
observed atTpt,H1

and it is gradually reduced towardsTpt,H2

@see Fig. 8~b! and Eqs.~32a!–~32c!#. The model shown in
14440
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Fig. 8 describes well the behavior of both the heat capa
and theDSM(T)DH,P in Gd5~SixGe12x)4 materials wherex
<0.5.25,26 In FeRh,27,28 the magnetic field reduces the phas
transition temperature~i.e., Tpt,H2

,Tpt,H1
! and therefore the

DSM(T)DH,P here has the sign opposite to that shown in F
8 and is positive.

B. Adiabatic temperature change

Since the largest magnetic entropy changes occur w
Tpt,H1

<T,Tpt,H2
, the same temperature range represents

most interest with respect to the behavior of t
DTad(T)DH,P . Below we show that unlikeDSM(T)DH,P , the
behavior of the adiabatic temperature change betweenTpt,H1

and Tpt,H2
is critically dependent onT. According to the

schematicT-S diagram~Fig. 9! there are two different tem
perature regions betweenTpt,H1

and Tpt,H2
where the adia-

batic temperature change should have fundamentally dif
ent behaviors. The two regions are separated by a spe
temperatureTm , whereTpt,H1

<Tm<Tpt,H2
and Tm can be

found from the following integral equation:

E
Tpt,H1

Tm Ch~T!P,H1

T
dT5E

0

Tpt,H2
Cl~T!P,H2

T
dT

2E
0

Tpt,H1
Cl~T!P,H1

T
dT2

DEH1

Tpt,H1

.

~35!

In other words,Tm is defined as the temperature where t
total entropy in the magnetic fieldH1 equals to the total
entropy of the system in the magnetic fieldH2 at the start of
the first-order phase transition in this field at temperat
Tpt,H2

, as shown by the dotted horizontal line in Fig. 9. In t

first region, whenTpt,H1
<T1,Tm andT1 is the temperature

at H1 , the material does not reachTpt,H2
when magnetic field
6-9
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is changed fromH1 to H2 regardless of the value o
DTad(T)DH,P . On the contrary, whenTm,T2<Tpt,H2

, the

material’s temperature rises toTpt,H2
before the magnetic

field reachesH2 due to magnetocaloric effect starting fro
anyT2 , see Fig. 9. As we show below, in the case of an id
first-order phase transformation, the final temperature of
sample in this second region (Tm,T2<Tpt,H2

) cannot ex-

ceedTpt,H2
.

Consider the simplest case when the magnetic field aff
the phase transition temperature but has practically no e
on the heat capacity both belowTpt,H1

and aboveTpt,H2
.

Furthermore, for simplicity we assume that the heat cap
ties of both low-and high-temperature phases are the s
@see Eq.~34! indicating that in this caseDSM(T)DH,P re-
mains practically constant for anyTpt,H1

<T,Tpt,H2
#. This is

shown in Fig. 10~a!. Taking into account that

Cl~T!H1
>Ch~T!H1

>Cl~T!H2
>Ch~T!H2

5C~T!, ~36!

the relationship betweenDTad(T)DH,P and heat capacity
when Tpt,H1

<T<Tm can be analyzed similarly as don
above, and Eqs.~17!–~27! remain valid even for the first
order phase transformation. Noting Eqs.~34!–~36!, Equation
~20! becomes

2DSM~T!DH,P5E
T

T1DTad~T!DH,P C~T!P

T
dT>

DEH1

Tpt,H1

,

~37!

and therefore the corresponding analog of Eq.~26! is

FIG. 9. A schematicT-S diagram in the vicinity of the first-
order phase transition in two different magnetic fields,H1 andH2 .
The specific temperature,Tm , is defined by Eq.~35! as the tem-
perature where the total entropy of the material in magnetic fieldH1

equals to the total entropy of the material in the magnetic fieldH2

at the start of the first-order phase transition atTpt,H2
. The two

horizontal arrows show theDTad in two different regions:Tpt,H1

<T1<Tm andTm,T2<Tpt,H2
.

14440
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ct
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e

DTad~T!DH,P52
T1

C~T1!P
3DSM~T!DH,P>

T1

C~T1!P

3
DEH1

Tpt,H1

. ~38!

It is straightforward from Eq. 38 that since the entropy of t
first-order phase transformation in zero magnetic field~i.e.,
DEH1

/Tpt,H1
! remains essentially constant, the behavior

DTad(T)DH,P is determined by the behavior ofT/C(T)H,P .
At low temperaturesT/C(T)H,P decreases with increasin
temperature@e.g., see Figs. 5~a! and 6~a!# andDTad(T)DH,P
should also decrease proportionally. When the tempera
exceeds 20–100 K~depending on the Debye temperature!,
T/C(T)H,P begins to increase slowly@e.g., see Fig. 6~a!#, and
thereforeDTad(T)DH,P is also expected to rise proportional
betweenTpt,H1

andTm . When temperature exceedsTm , i.e.,

whenTm,T<Tpt,H2
, the value ofDTad(T)DH,P becomes de-

pendent only on the difference betweenT and Tpt,H2
@see

above and the arrow markingDTad(T2) in Fig. 9#, i.e., above
Tm the magnetocaloric effect is nothing else than the diff
ence between the temperature of the material in the magn
field H1 and the phase-transition temperature in the magn
field H2 :

DTad~T!DH,P5~Tpt,H2
2T!S,P . ~39!

Hence, regardless of the fact thatDSM(T)DH,P remains
large ~giant! and approximately constant betweenTpt,H1

and

Tpt,H2
, the magnetocaloric effect in terms ofDTad(T)DH,P

should be rapidly reduced aboveTm . This drastic reduction
of theDTad(T)DH,P is easily understood because as the m
netic system approaches the phase-transition tempera
Tpt,H2

, its heat capacity becomes infinite~or in reality, ex-
tremely large! and practically no further temperature chan
occurs in response to the changing magnetic field as lon
the two different phases coexist. Unlike in the case of
conventional magnetocaloric effect for a second-order ph
transition, the total entropy remains constant when materi
temperature reachesTpt,H2

during the magnetic field increas
by equilibrating the corresponding fractional change
DSM(T)DH,P by 2DEH2

/Tpt,H2
, rather than by the increase

thermal lattice and electronic entropies.
The example modeling the behavior of bothDSM(T)DH,P

and DTad(T)DH,P according to Eqs.~37!–~39! is shown in
Fig. 10. Hence, as the magnetic field change (DH) increases,
the peak values of the magnetocaloric effect in terms of b
magnetic entropy change and adiabatic temperature ch
remain essentially constant, while the peak width@for both
the giantDSM(T)DH,P and the giantDTad(T)DH,P# increase
due to the rising difference betweenTpt,H1

and Tpt,H2
, and

Tpt,H1
andTm , respectively.

Equations~35! and ~39! result in another important con
sequence characterizing the giant MCE behavior in so
6-10
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FIG. 10. A schematic behavio
of theDSM ~a! andDTad ~b! in the
vicinity of the first-order phase
transition. It is assumed that th
magnetic field affects only the
phase-transition temperature an
that the heat capacities of bot
low- and high-temperature phase
are the same and are complete
magnetic-field independent.
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magnetic systems undergoing a first-order magnetic ph
transition. Assume that either the magnetic field chang
small, or its effect on the phase-transition temperature
small. Then, the difference betweenTpt,H1

and Tpt,H2
is not

large enough for equation~35! to be valid. In this case

Tm5Tpt,H1
. ~40!

Therefore regardless of the value of theDSM(T)DH,P , the
maximum DTad(T)DH,P occurs at Tpt,H1

and its value
straightforwardly determined from Eq.~39! as

DTad~T5Tpt,H1
!DH,P>~Tpt,H2

2Tpt,H1
!S,P, ~41!

providing an easy estimate of the maximum adiabatic te
perature change without thermodynamic or magnetic m
surements as long as bothTpt,H1

andTpt,H2
are known. More-

over, a larger giant adiabatic temperature change in sm
14440
se
is
is

-
a-

all

magnetic fields is expected in materials in which the m
netic field strongly influences the magnetic ordering te
perature. This conclusion provides a guideline supporting
search for best magnetic refrigerant materials, i.e., those
may have the largest possibleDTad(T)DH,P in the smallest
magnetic fields.

An example of the experimental behavior of both the h
capacity and the total entropy in the system with first-ord
phase transformation, Gd5~Si2Ge2!, is shown in Fig. 11. The
sample was prepared by arc melting of pure compone
~Gd, 99.951 wt.%; Si and Ge, both 99.991 wt.% pure! and
then heat treated at 1300 °C for 1 h. The heat capacity
magnetic fields 0, 20, 50, and 75 kOe and the dir
DTad(T)DH,P measurements were carried out in an adiaba
heat-pulse calorimeter.30 In zero magnetic field, the phas
transition ~determined from the temperature of the heat
pacity peak! occurs on heating atTpt,H1

>269 K @Fig. 11~a!#.
-
i-

ut
y

FIG. 11. The heat capacity~a!
and total entropy ~b! of
Gd5~Si2Ge2! at constant pressure
in magnetic fields 0, 20, 50, and
75 kOe. Note that although the
heat capacity at the phase
transition temperature is theoret
cally infinite, during actual experi-
mental measurements large, b
finite values of the heat capacit
are usually recorded.
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FIG. 12. The magnetic entropy
change~a! and adiabatic tempera
ture change~b! of Gd5~Si2Ge2! for
magnetic field changes from 0 t
20, 50, and 75 kOe. The lines in
both ~a! and ~b! represent the val-
ues calculated from heat capaci
~Fig. 11!, the symbols in~b! rep-
resentDTad directly measured for
magnetic-field change from 0 to
50 kOe.
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The phase-transition temperature in 20 kOe magnetic fie
at Tpt,H2

>277 K. As also seen from Fig. 11~b!, for the small

est magnetic field change (DH520 kOe), the behavior o
DTad(T)DH,P is defined by Eqs.~39!–~41!, i.e., the tempera-
ture Tm coincides with Ppt,H1

. For larger magnetic field

changes~50 and 75 kOe! the specific temperatureTm , is
located above Tpt,H1

and therefore the behavior o

DTad(T)DH,P is defined by Eqs.~35!, ~37!–~41!. We note that
since Eq. ~36! is only approximately valid for the
Gd5~Si2Ge2! material @i.e., Cl(T) is not exactly equal to
Ch(T), see Fig. 11~a!#, Eqs.~35! and~37!–~41! only provide
an approximate description of the magnetocaloric-effect
havior. The major difference is that the MCE both belo
Tpt,H1

~;269 K at H50 kOe! and aboveTpt,H2
~;277,

;295, and;308 K atH520, 50, and 75 kOe, respectively!
in Gd5~Si2Ge2! is not reduced to zero compared to the ide
ized behavior, i.e., when the heat capacity follows Eq.~36!.

Experimental behavior ofDSM(T)DH,P @Fig. 12~a!#
closely resembles that predicted theoretically@Eqs.~32! and
~33!, and Fig. 8~a!#. Despite only approximate validity o
Eqs. ~35!–~41! for Gd5~Si2Ge2!, the behavior of
DTad(T)DH,P ~Fig. 12~b!! also follows the model describe
above. First, for the lowest magnetic-field change (DH
520 kOe) the observed maximumDTad(T)DH,P>7 K, while
that predicted from Eq.~41! should be;8 K. The small
difference can be attributed to a nonideal first-order pha
transition process~i.e., the phase transition does not occur
constant temperature, see Fig. 11!. WhenDH increases to 50
and 75 kOe the two different regions ofDTad(T)DH,P behav-
ior are clearly distinguished in Fig. 12~b!. Below ;279 K
~for 50 kOe! and;290 K ~for 75 kOe! DTad(T)DH,P varies
slowly @also see Fig. 10~b!# while above these temperature
the MCE decreases rapidly indicating that theTm values are
approximately 279 and 290 K for the respective magne
field changes. The slow reduction ofDTad(T)DH,P between
Tpt,H1

~;269 K! and Tm instead of the predicted increas
14440
is

-

-

e-
t

c

@see Fig. 10~b!# is associated with the fact thatDSM(T)DH,P
is not a constant~Fig. 10~a!! but slowly decreases with tem
perature@Fig. 12~a!#.

IV. CONCLUSIONS

The behavior of the magnetocaloric effect both in terms
the isothermal magnetic entropy change,DSM(T)DH,P , and
the adiabatic temperature change,DTad(T)DH,P is closely re-
lated to the behavior of the heat capacity at constant m
netic field and pressure. The thermodynamic analysis in
cates that when the heat capacity in two different magn
fields,C(T)H1 ,P andC(T)H2 ,P is known, the temperature o
the MCE peak~s! can be easily predicted from the relatio
ship between the two. Conventional magnetocaloric effe
which is observed in magnetic systems without disconti
ous entropy changes, depends on the degree to which
heat capacity is effected by the magnetic field. A large m
netocaloric effect is expected to occur in systems where
heat capacity is strongly influenced by the magnetic field
systems with discontinuous magnetic entropy changes,
magnitude of the magnetocaloric effect is largely defined
the difference in the entropies~or the enthalpies! of the low-
and high-magnetic-field phases. This explains the mac
scopic origin of the giant magnetocaloric effect observed
perimentally in some magnetic systems. Generally, the la
magnetocaloric effect is expected to occur in the syste
with large enthalpy discontinuities, and in the systems
which magnetic field strongly influences the temperature
the first-order phase transition rather than the heat capa
below and above the phase transformation. Although
thermodynamic analysis presented above does not exp
the microscopic origin of the anomalous behavior of t
magnetocaloric effect in first-order phase-transition mat
als, it may be combined with a more detailed mean-fi
calculations of the free energy~e.g., see Ref. 31! in the future
to gain better insights on both the nature of the first-or
phase transitions and the existence of the giant magnet
loric effect.
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