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Dynamics of spinodal decomposition in finite-lifetime systems
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We present a statistical theory of the phase-separation dynamics in many-particle systemswith a finite
lifetime. Temporal evolution of the spinodal decomposition is traced with the single-point distribution function
and the dynamical structure factor under the situation where the mean particle number is constant by balancing
between decay and creation of the particles. The finite lifetime prevents phase separation and order formation;
hence the lower critical wave numberkc

(1)(t) appears; domains of larger size than@kc
(1)(t)#21 cannot grow.

Differences between the infinite- and finite-lifetime cases are clarified in terms of this critical wave number. A
universal relation between the lifetime and the asymptotic (t→`) critical wave number is confirmed numeri-
cally. Comparison with the nucleation process is also made.
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I. INTRODUCTION

Spinodal decomposition is a nonequilibrium phenomen
that an unstable uniform-density state separates spatially
several stable states when a system is cooled rapidly f
high temperature. This phenomenon has been studied
ously since the periodic compositional variation of meta
alloys was discovered in the 1940s~see, e.g., Refs. 1–6 fo
reviews!. In the 1960s and 1970s, it was investigated w
the experiments such as x-ray scattering.7,8 Simple linear
theories were proposed by Cahn and Hilliard9,10 and Cook,11

which describe correctly only an early stage of the pha
separation dynamics. In the 1970s, nonlinear theories of
phase separation were developed by Langer, Bar-on, Mill12

~LBM ! and Binder.13 They took into account not only th
distribution function of the particle-number density but al
the spatial correlation of the density. Binder employed K
wasaki’s spin-exchange kinetic Ising model.14 Besides these
works, there are many theoretical studies on the ph
separation,15–23 the computer simulations,24–27 and the
experiments.28–30 The phase separations are studied also
various kinds of fields such as high-polymer physics31

cosmology,32 and so on.
Thus far almost all the theoretical models for the pha

separation are applicable only to many-particle systems w
neither creation nor annihilation of the particles. In such s
tems, an infinite lifetime of the particle is implicitly assume
However, there are many examples where external fie
~e.g., irradiation! createunstableparticles~or quasiparticles
in crystals! which have afinite lifetime and can build new
phases. Several examples of such systems are listed he~i!
highly excited gas in which the excited molecules attract o
another more strongly than in the ground state, leading to
0163-1829/2001/64~14!/144301~10!/$20.00 64 1443
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creation of new phases.33 In this case, an excited molecule
an unstable particle.~ii ! The exciton-condensed liquid phas
in a crystal created by light absorption,34 in which excitons
have a finite radiative lifetime. Since excitons are bosonl
quasiparticles, they are expected to occur in Bose-Eins
condensation when the excitation is stronger.35 ~iii ! The
electron-hole liquid in semiconductors excited more stron
than for exciton systems.36,37 Electron-hole pairs can disap
pear due to recombination within a finite lifetime. It is we
known that the electron-hole liquid forms a droplet.38,39 We
consider it as a phase separation of particles with finite l
time. The phase transition between the exciton phase and
electron-hole liquid phase is also expected to occur when
density of quasiparticles is varied. This phase transition
called the exciton Mott transition.40 ~iv! New phase develop
ment in crystals under nuclear and other irradiation.41,42

Radiation-induced microstructural space modulations w
observed in many materials under various types
irradiation.43 The phase formation occurs due to the prese
of radiation defects with different types~vacancies, intersti-
tial atoms, antisite defects, and others!. Theoretical studies of
the order formation such as void nucleation of vacanc
which is accompanied by the creation process and the rec
bination process with interstitials, were proposed.44 In their
works, however, effects of the ‘‘finite lifetime’’ are not no
ticed. The process where many vacancies aggregate to fo
void is one of the phase-separation processes dependin
the lifetime of the vacancies. On the other hand, the proc
of forming a void lattice45 by many voids is free from the
lifetime of the voids; our theory does not aim at the vo
lattice problem. In the above examples, the particles~or qua-
siparticles! have a finite value of lifetime due to light irra
diation, recombination, or other processes. The finite lifeti
©2001 The American Physical Society01-1
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influences significantly the new phase development.
To the best of our knowledge, there is no theoreti

framework for the phase-separation dynamics in fin
lifetime systems, where universal effects of the finite lifetim
are discussed particularly. Recently, one of the authors
tended the LBM theory to take into account the processe
particle creation and annihilation46 and studied only the sta
tionary state. In this paper, the phase-separation dynamic
a function of time is investigated to clarify effects of th
finite lifetime on the phase separation.

Besides the phase separation, there are the studie
which the automatic pattern or order formation is discuss
for example, the dissipative structure,47 synergetics,48 and so
forth.49,50These seem to be concerned not only with phys
but also with chemistry, biology, and sociology. With respe
to the appearance of stable modes in fluctuation and the
ation and/or annihilation processes of components, the p
lem in this paper may seem to be similar to one of the d
sipative structures in some chemically reacting systems.47,51

In chemically reacting systems, however, the structures a
due to the nonlinear dependence of the creation and/or a
hilation of components, whereas in our systems the st
tures appear due to the dynamic~attractive! interaction be-
tween particles.

This paper is organized as follows. In Sec. II, we intr
duce the theoretical formulation taking into account the c
ation and annihilation of particles with the use of the LB
approximation starting from the Ginzburg-Landau-Wils
free-energy formalism. The Lyapunov stability analysis
carried out in Sec. III to understand qualitatively the finit
lifetime effects on the phase separation. There we introd
the critical wave numbers to characterize the dynamics.
merical results are shown in Sec. IV. We compare them w
results under the simple decoupling approximation in Sec
The nucleation process is also studied with the same m
for comparison.

II. THEORETICAL FORMULATION

A. Fokker-Planck equation for the multipoint distribution
function

In the spinodal decomposition, systems exhibit spatiote
poral separation of an initial uniform-density state into tw
different-density states. So we define the order paramete
the system as the deviationu(r,t) of the particle-number
density c(r,t) from its spatial averagec0(t)[^c&(t), i.e.,
u(r,t)[c(r,t)2c0(t). The state of the system is describ
by the multipoint distribution functionP„$u(r)%,t…. Using
P„$u(r)%,t…, the spatial average of any physical quant
O„$u(r)%… is calculated as

^O„$u~r!%…&~ t ![E Du~r!O„$u~r!%…P„$u~r!%,t…, ~1!

where*Du(r) is the functional integral. Temporal evolutio
of P„$u(r)%,t… results from two origins:

]

]t
P„$u~r!%,t…5

]P„$u~r!%,t…

]t
uc1

]P„$u~r!%,t…

]t
unc. ~2!
14430
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The first term is the ‘‘conservation term’’ resulting from th
particle transfer, in which the number of particles is co
served, and the second is the ‘‘nonconservation term’’ co
ing from effects of the particle creation and annihilation.

1. Conservation term: Effects of the particle transfer

We shall derive the first term resulting from the partic
transfer. The free energy of the system is assumed to be
coarse-grained Ginzburg-Landau-Wilson free-energy fu
tional

F@$u~r!%#5E drFK

2
~¹u!21 f ~u!G , ~3!

wheref (u) is the Ginzburg-Landau-Wilson free-energy de
sity:

f ~u!5
a

2
~u1c02cc!

21
b

4
~u1c02cc!

4, ~4!

anda[ã(T2Tc) depends on temperatureT with the critical
temperatureTc and a real positive parameterã. Herecc is the
critical density, andK andb are real positive phenomenolog
cal parameters. Temporal evolution of the order param
u(r,t) caused by the particle transfer is described by
Langevin equation

]

]t
u~r,t !52divF2M¹

dF

du~r!G1h~r,t !, ~5!

whereM is the mobility of the particle induced by the the
mal fluctuation,d/du(r) stands for the functional derivative
and h(r,t) is the Gaussian-Markovian noise describing
random thermal force, which satisfies

^h~r1 ,t1!h~r2 ,t2!&522kBTM¹2d~r12r2!d~ t12t2!.
~6!

We rewrite the Langevin equation~5! into the Fokker-Planck
equation for the multipoint distribution function as

]P„$u~r!%,t…

]t
uc52E dr

d

du~r! S M¹2F dF

du~r!
P„$u~r!%,t…

1kBT
d

du~r!
P„$u~r!%,t…G D . ~7!

This is the conservation term of Eq.~2!.

2. Nonconservation term: Effects of the particle creation
and annihilation

The creation rate of particles is defined asy(t), which is a
given function oft. Here the particle creation is assumed
be homogeneous in space; hencey(t) is independent of the
position r. The particle lifetime is denoted ast, which de-
pends on neithert nor r. This assumption for the lifetime is
the simplest as the first step for future studies of the pha
separation dynamics in finite-lifetime systems. Extension
yond this assumption is straightforward.52 In order to intro-
duce the particle creation and annihilation processes,
shall divide the space intoNl(@1) pieces of small regions
1-2
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$D l u l 51, . . . ,Nl%. The number of particles in thel th small
regionD l is denoted asnl . Temporal evolution of the distri-
bution functionP($nl%,t) for the particle numbers$nl% in all
small regions$D l% obeys the Master equation46

]

]t
P~$nl%,t !unc5(

l
Fy~ t !D l P~$n1 , . . . ,nl21, . . . ,nNl

%,t !

2y~ t !D l P~$nl%,t !

1
nl11

t
P~$n1 , . . . ,nl11, . . . ,nNl

%,t !

2
nl

t
P~$nl%,t !G , ~8!

whereP($n1 , . . . ,nl61, . . . ,nNl
%,t) is the probability dis-

tribution function when the particle configuration
$n1 , . . . ,nl61, . . . ,nNl

%. The summation( l runs over all

Nl pieces of small regions$D l%.
To derive the Fokker-Planck equation forP„$u(r)%,t…, a

coarse-graining procedure in a small region is required. F
we assume thatnl@1 and thatnl is continuous quantity.
ThenP($n1 , . . . ,nl61, . . . ,nNl

%,t) can be expanded as

P~$n1 , . . . ,nl61, . . . ,nNl
%,t !

5P~$nl%,t !6
]

]nl
P~$nl%,t !1

1

2

]2

]nl
2

P~$nl%,t !. ~9!

Second, we rewritenl into ul asul[nl /D l2c0(t), whereul
is the order parameter in thel th small regionD l . Finally, we
take the limit ofD l→0, in which the spatial coordinate be
comes continuous. Then the summation( l over all small
regions is rewritten as the space integral*dr.

Performing these transformations, we get the Fokk
Planck equation forP„$u(r)%,t… including effects of the par-
ticle creation and annihilation:

]P„$u~r!%,t…

]t
unc52E dr

d

du~r! S Fy~ t !2
u~r!1c0~ t !

t G
3P„$u~r!%,t…

1
1

2

d

du~r! F H y~ t !1
u~r!1c0~ t !

t J
3P„$u~r!%,t…G D . ~10!

This is the nonconservation term of Eq.~2!. Here the mean
particle densityc0(t) depends on time due to creation a
annihilation of particles. Using Eqs.~2!, ~7!, and ~10!, we
derived the full form of the Fokker-Planck equation for t
multipoint distribution functionP„$u(r)%,t… in a system with
the particle creation and annihilation effects.
14430
t,

r-

B. Closed-form equations of motion: The LBM approximation

The Fokker-Planck equations,~2!, ~7!, and ~10! for the
multipoint distribution function contains all the statistica
spatiotemporal information of the phase-separation dyn
ics. Unfortunately, however, it is hard to solve. Then we sh
divide again continuous space into discreteN0(@1) cells
~with an indexa) to discard the higher-order statistical in
formation in the multipoint distribution function. In a cel
the particle density is assumed to be constant,
u(r)ur5raPath cell[ua . In our formulation, the state of the
system is described with two quantities. One is the sing
point distribution function

P(1)~ua ,t ![E )
mÞa

dumP~$um%,t !. ~11!

This is the probability distribution for the case that the ord
parameter in theath cell takes the valueua at time t. Since
a is arbitrary (a51,2, . . . ,N0), P(1)(ua ,t) means the dis-
tribution function of the number of cells in which the partic
density isca5ua1c0. In the cell picture, an averaged phys
cal quantityO($ua%) is given as

^O~$ua%!&~ t ![E )
a

duaO~$ua%!P~$ua%,t !, ~12!

where the functional integral*Du(r) is transformed to
*)adua . If the quantityO(ua) depends only onua ~not on
ub), the averaging is carried out with onlyP(1)(ua ,t),

^O~ua!&~ t !5E duaO~ua!P(1)~ua ,t !. ~13!

Another quantity for describing the state is the dynami
structure factor

S~k,t !5(
a

exp@2 ik•~ra2rb!#^uaub&~ t !, ~14!

wherek is the wave vector. Herêuaub&(t) is the two-point
spatial correlation function at timet, which is a function of
ra2rb . This structure factor corresponds approximately
the distribution of the domain sizeuku21 ~i.e., a spatial cor-
relation length!, which can be measured by actual expe
ments such as x-ray or light scattering.

In order to derive a closed form of coupled equations
the single-point distribution functionP(1)(u,t) and the dy-
namical structure factorS(k,t) from Eqs.~2!, ~7!, and~10!,
we need to truncate the hierarchy of the time-evolution eq
tions for the probability distribution functions. To this en
we employ an approximation12 in which the two-point distri-
bution function is decoupled as

P(2)~ua ,ub ,t !5P(1)~ua ,t !P(1)~ub ,t !

3F11
^uaub&~ t !

@^u2&~ t !#2
uaubG , ~15!
1-3
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where ^u2&(t) is the variance ofu at time t, and a and b
stand for two different cells. In this paper, we call this a
proximation the ‘‘LBM approximation.’’ With the use of the
LBM approximation, the closed-form coupled equations
P(1)(u,t) and S(k,t) are derived. But several phenomen
logical parameters still remain in such equations. To elim
nate them, physical quantities are renormalized by the
lowing units: u0[(2a/b)1/2 for density, (2K/a)1/2 for
length, (2K3a/b2)1/2 for energy, andK/(Ma2) for time. The
unit densityu0 is concerned with the equilibrium values o
the order parameter,cc2c06u0, in the case of neither cre
ation nor annihilation of particles, i.e.,y(t)[0 andt→`. To
discuss the spinodal decomposition, the temperatureT is
chosen to be lower than the critical temperatureTc ; that is,
we confine ourselves to the case ofa,0. The Landau free-
energy density~4! can be written in a dimensionless form
f (u)52 1

2 (u1c02cc)
21 1

4 (u1c02cc)
4, where c0 and cc

are normalized by the unitu0. Accordingly, the renormalized
order parameter becomes independent of the indexa in our
model. For the equilibrium stable state, the normalized or
parameter iscc2c061.

Applying the LBM approximation and the above
mentioned normalization, the closed-form coupled equati
for P(1)(u,t) andS(k,t) are obtained as

]

]t
P(1)~u,t !5

]

]u H FD f S ] f

]u
2 K ] f

]uL ~ t !2A~ t !uD1
W~ t !

^u2&~ t !
u

2S y~ t !2
u1c0~ t !

t D GP(1)~u,t !

1D fT
]

]u
P(1)~u,t !1

1

2v0u0

]

]u

3S Fy~ t !1
u1c0~ t !

t GP(1)~u,t ! D J , ~16!

]

]t
S~k,t !522Fk2$k21A~ t !%1

1

t GS~k,t !12Tk2

1
1

v0u0
Fy~ t !1

c0~ t !

t G , ~17!

wherev0 is the volume of a cell and

A~ t ![S ]2f

]u2D
u50

1
1

2 F S ]3f

]u3D
u50

G ^u3&~ t !

^u2&~ t !

1
1

6 F S ]4f

]u4D
u50

G ^u4&~ t !

^u2&~ t !
, ~18!

W~ t ![
1

~2p!3E dkk2$k21A~ t !%S~k,t !. ~19!

Here thek integration is carried out in the range of 0<uku
<v0

21/3 and 2D f is the diagonal element of the renorma
ized Laplacian matrix defined as
14430
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2D f52
1

~2p!3E dkk2. ~20!

The mean value is obtained by Eq.~13!. The mean particle-
number densityc0(t) depends on time as

dc0~ t !

dt
5y~ t !2

c0~ t !

t
. ~21!

In this paper, we shall investigate only the case where
particles are created at a constant rate~‘‘cw creation’’! to
balance with the depletion of particles due to the finite li
time; that is, bothy and the mean particle-number dens
c05yt are constant in time. Such a situation is realized, e
in an exciton system. We keep the temperature atT.Tc un-
der cw irradiation and then decrease abruptly the tempera
to T,Tc at a time. The reasons why we consider such
restrictive situation as cw creation are that the case of
finite lifetime can be directly compared with the infinite
lifetime case~i.e., the usual spinodal decomposition! and that
effects only of the ‘‘finite lifetime’’ can be picked out easily
When more realistic problems are discussed, we can stra
forwardly calculate various situations with the same form
lation in this paper.

C. Comments on another approximation scheme

We here make comments on another approximation
truncation of the hierarchy of the equations of motion. In t
LBM approximation, information of the two-point spatia
correlation function̂ uaub&(t) is fully taken into account in
the decoupling procedure fromP(2)(ua ,ub ,t) to P(1)(ua ,t)
andP(1)(ub ,t), as shown in Eq.~15!. For example, a higher
order nonlinear term̂ua

3ub&(t) is transformed with the use
of the LBM approximation as

^ua
3ub&~ t !→^u4&~ t !

^u2&~ t !
^uaub&~ t !. ~22!

Equations~16! and~17! contain such nonlinear terms asA(t)
of Eq. ~18!.

There are other methods for approximating the nonlin
terms such aŝua

3ub&(t). One method is the so-called ‘‘de
coupling approximation’’

^ua
3ub&~ t !→^u2&~ t !^uaub&~ t !. ~23!

If we employ this decoupling approximation, the nonline
term A(t) might be

Adecouple~ t !5S ]2f

]u2D
u50

1
1

6 F S ]4f

]u4D
u50

G ^u2&~ t !. ~24!

Since the time-dependent variance^u2&(t) in Eq. ~24! can be
calculated only from the dynamical structure factorS(k,t) as

^u2&~ t !5
1

~2p!3E dkS~k,t !, ~25!
1-4
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the equation of motion consist only of Eq.~17! for the dy-
namical structure factor. Thus far, this decoupling appro
mation has often been employed and the temporal evolu
only of the dynamical structure factor has been calculated
is clear that this approximation is worse than the LBM o
because it does not contain higher-order statistical infor
tion such aŝ u3&(t) or ^u4&(t), which are taken in the LBM
formalism. In addition, the LBM approximation is more fa
vorable for our study since we can obtain also temporal
formation of the single-point distribution function. We wi
discuss later the numerical results in more detail.

III. LYAPUNOV STABILITY ANALYSIS

Before we discuss in detail the numerical results,
Lyapunov stability analysis is carried out to understa
qualitatively the dynamics. The temporal behavior of the d
namical structure factor is roughly understood by a few ch
acteristic wave numbers. To obtain them, we assume
density-fluctuation modeuk(t) with wave number k
of the form

uk~ t !}exp@ tGk~ t !#. ~26!

HereGk(t) is called the ‘‘Lyapunov spectrum,’’ which mean
the growing speed of a fluctuation mode of wave numbek.
The fluctuation mode grows ifGk(t).0 and decays if
Gk(t),0. The Lyapunov spectrum describes also the
crease or decrease of the dynamical structure factor thro
the relation S(k,t)5uuk(t)u2}exp@2tGk(t)#. Thus the
Lyapunov spectrum is a good measure for the growing sp
of domains with sizeuku21. In our formulation, systems ar
assumed to be isotropic. Therefore the wave vectork can be
replaced simply by its amplitudek[uku.

In the case ofy(t)5c0 /t5const, the Lyapunov spectrum
is

Gk~ t !52k2@k21A~ t !#2
1

t
. ~27!

The calculated Lyapunov spectra at timet are shown in Figs.
1 and 2 as a function of the wave numberk. In the figures,
we shall define the critical wave numberkc(t) as a zero point
of Gk(t) at a fixed timet, which is the wave number at
boundary between unstable@G(k,t).0# and stable@G(k,t)
,0# density-fluctuation modes.

FIG. 1. The Lyapunov spectrumGk(t) with neither creation
@y(t)[0# nor annihilation (t→`) of particles as a function o
wave numberk when ~a! A(t),0 and~b! A(t).0.
14430
i-
n
It

a-

-

e
d
-
r-
e

-
gh

ed

In systems with neither creation nor annihilation of pa
ticles@y(t)[0 andt→`], it is clear from Fig. 1 that there is
only one critical wave numberkc(t), which is kc(t)
5A2A(t). This is consistent with the well-known proces
of spinodal decomposition. Domains with larger si
„.@kc(t)#21

… grow but domains with smaller siz
„,@kc(t)#21

… decay. In the case ofy(t)5c0 /t5const , on
the other hand, we find from Fig. 2 that there aretwo critical
wave numbers, the lower critical wave numberkc

(1)(t)
and the upper critical wave numberkc

(2)(t), which are
evaluated as

kc
(1)~ t !5S 2A~ t !2A@A~ t !#224/t

2 D 1/2

, ~28!

kc
(2)~ t !5S 2A~ t !1A@A~ t !#224/t

2 D 1/2

. ~29!

This means that the density-fluctuation mode only of wa
number kc

(1)(t),k,kc
(2)(t) can grow and the mode o

smaller wave numberk,kc
(1)(t) decays in time. In other

words, domains with very large size„.@kc
(1)(t)#21

… cannot
grow in the case ofy(t)5c0 /t5const , which results from
the finite-lifetime effect. This is in striking contrast to th
case ofy(t)[0 andt→`, wherekc

(1) vanishes. In Sec. IV,
the temporal behavior of the critical wave numbers will
discussed numerically.

IV. NUMERICAL RESULTS AND DISCUSSION

The coupled equations~16! and ~17! are solved numeri-
cally without assuming the double-Gaussian ansatz used
LBM.12 In calculations, we set the mean particle-numb
density to bec05cc51.55const in the spinodal region. Th
lifetime is chosen to bet5`, 100, and 8. The cw creation
ratey satisfies the relationy5c0 /t51.5/t. The temperature
is always lower than the critical temperatureTc , i.e., T
50.1. The parameterv0u0, which is almost equal to the
number of particles in one cell, is taken to bev0u051000,
which should not be so small. Final numerical results
insensitive to this valuev0u0 if it is large enough. The initial
state att50 is chosen to be a uniform-density state. Then
initial single-point distribution function has ad-function-like
form with a small width due to the thermal fluctuation.

FIG. 2. The Lyapunov spectrumGk(t) with cw creation and
annihilation (yt5const,`) of particles as a function of wave
numberk when ~a! A(t),22/At, ~b! A(t)522/At, and~c! A(t)
.22/At.
1-5
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FIG. 3. Temporal development of the single
point distribution functionP(1)(u,t) and the dy-
namical structure factorS(k,t) as a function ofu
andk, respectively, forT50.1, v0u051000, and
c05cc51.5. The creation rate isy5c0 /t
51.5/t. The three figures in the left row,~a!, ~b!,
and ~c!, are P(1)(u,t) and the ones in the righ
row, ~d!, ~e!, and ~f!, areS(k,t). The lifetime of
particles ist5` for ~a! and ~d!, 100 for ~b! and
~e!, and 8 for~c! and ~f!. The inset of~d! shows
the behavior during 0<t&400. The dashed
curves stand for the stationary solutions att→`.
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numerical calculations, we assume it as a Gaussian, w
standard deviation is 0.1. The boundary condition for
single-point distribution function isP(1)(u,t)uu,2c0

50,
which results from the fact that the particle-number dens
should be positive. The initial dynamical structure factor
assumed to beS(k,t50)50, which reflects that no domai
structure exists att50. According to the coarse-grainin
procedure for the cell representation in Sec. II B, the larg
normalized wave number should be (6p2)1/3, which is de-
rived from the fact that the number of states is equal to
number of cells.

A. Single-point distribution function and dynamical
structure factor

The numerical results are shown in Fig. 3. Figures 3~a!
and 3~d! correspond to the case of neither creation nor an
hilation of particles and Figs. 3~b!, 3~c!, 3~e!, and 3~f! to the
case where particle creation and annihilation are taken
account. The dashed lines mean the stationary solutionst
→`.

First, we discuss the behavior of the single-point distrib
tion function. In the case oft5` @correspondinglyy(t)
[0#, as shown in Fig. 3~a!, the initial state with one uniform
density separates into two states with different densities. T
14430
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is nothing but the usual spinodal decomposition. Here
shall define the ‘‘onset time’’tonsetas the time when one pea
of P(1)(u,t) is about to separate into two peaks. In the ca
of Fig. 3~a!, the onset time istonset.20. In the case of a finite
lifetime t5100, which is longer than the onset time, on t
other hand, the phase separation of the order paramete
comes ambiguous as shown in Fig. 3~b!. When the lifetime
t58 is much shorter than the onset time in Fig. 3~c!, phase
separation cannot occur. Consequently, order formation
phase separation stops halfway due to finite-lifetime effe
if the lifetime is shorter than the onset time, which agre
with intuition.

Next, we discuss the behavior of the dynamical struct
factor. Here we denotekm(t) as the wave number at whic
the dynamical structure factor takes the maximum value
the case oft5` @correspondinglyy(t)[0#, as shown in
Fig. 3~d!, the dynamical structure factor grows untilt&100
but declines later, as shown in the inset of Fig. 3~d!. When
t→`, the dynamical structure factor becomes a form plot
as a dashed line in Fig. 3~d!, which is a Lorentzian with a
peak atk50. We interpret this growing and declining of th
dynamical structure factor as follows. A schematic behav
of the order parameter on the Landau free-energy densi
shown in Fig. 4. The initial state is plotted as an open circ
1-6
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At this time, the system is unstable, so the unstable m
grows. Due to the increase of the instability, the dynami
structure factor grows as a whole. The order parameter s
rates into two directions as time passes. Two cross sym
indicate the boundary points between the unstable and s
regimes, at whichd2f (u)/du250 holds. After the order pa
rameters pass through these points, the system tends
stable. So the smaller unstable domains vanish and the la
stable domains survive and increase. Accordingly, the
namical structure factor declines as a whole. It is expec
that the time when the order parameters pass through
cross points is aroundt.100. The wave numberkm(t) shifts
to the longer-wavelength side as shown in Fig. 3~d!. Finally,
whent→`, it is found thatkm(t→`)50, where the system
separates completely into two phases.

The cases of the finite lifetimet5100 and 8 are shown in
Figs. 3~e! and 3~f!, respectively, where the temporal deve
opment ofS(k,t) is quite different from the infinite-lifetime
case in Fig. 3~d!. The form becomes sharp andkm(t) settles
into a finite wave number ast→`. This fact is interpreted as
that the system cannot separate completely and that
finite-size domains remain finally. Comparing Figs. 3~e! with
3~f!, the shorter the lifetime of the particles is, the larg
km(t→`) becomes. We find from the numerical results th
there is a universal relationship betweenkm(t→`) and the
lifetime t:

km~ t→`!}t21/4. ~30!

The final domain size„}@km(t→`)#21
… is determined by

the competition between the lifetime and the time necess
for gathering the particles. If the lifetime is short enough,
particles decay before they come together. So the final
main size becomes smaller. The above relation shows
fact.

FIG. 4. Temporal development of the order parameteru is sche-
matically drawn along the Landau free-energy density curve w
neither creation nor annihilation of particles exists. The open ci
stands for the initial state. The order parameter separates into
directions as time passes. After the cross points, wh
d2f (u)/du250 holds, the system goes to the stable regime. Fin
(t→`), the system reaches an equilibrium stable state and the o
parameter gets to the solid-circle points.
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B. Critical wave numbers

Figure 5 shows the behavior of the critical wave numb
for ~a! t5` and~b! t58. In the case oft5`, there is only
one critical wave numberkc(t), as explained in Sec. III. The
density-fluctuation modes in a shadowed regionk,kc(t) are
unstable and grow in time. We find that the abrupt change
the critical wave numberkc(t) takes place att.200. This
step may result from a crossover between two different ty
of domain growth: from droplet formation to coalescence

In the case oft58, on the other hand, there are two kin
of critical wave numbers: the lower critical wave numb
kc

(1)(t) and the upper critical wave numberkc
(2)(t), as ex-

plained in Sec. III. The main difference from thet5` case
is that the lower critical wave numberkc

(1)(t) appears and
that growth of the modes in the region ofk,kc

(1)(t) is re-
strained, as shown in Fig. 5~b! for t58. The modes only in
the shadowed regionkc

(1)(t),k,kc
(2)(t) can grow. It is

found that the shadowed regionkc
(1)(t),k,kc

(2)(t) becomes
narrow and finally remains only at a particular finite wa
number, i.e., kc

(1)(t→`)5kc
(2)(t→`)5km(t→`). This

means that size of all the domains is finite and determined
the competition between the lifetime and the time necess
for the particles’ gathering. This is in striking contrast to t
case oft5`.

V. DISCUSSION AND CONCLUSIONS

A. Comparison with the decoupling approximation

We examine the numerical results under the decoup
approximation. To discuss differences coming only from t
approximation methods, we confine ourselves to the cas
t5` @accordinglyy(t)[0#. Figure 6~a! is the temporal evo-
lution of the dynamical structure factor and Fig. 6~b! is the
critical wave numberkc(t) under the decoupling approxima
tion. Under the decoupling approximation, as we mention
we cannot calculate the single-point distribution functio
The parameters in Fig. 6 are the same as in Figs. 3~a! and
3~d!. We shall compare Fig. 6~a! with Fig. 3~d!. In the case
of the LBM approximation, the dynamical structure fact
grows first and declines later. In the case of the decoup
approximation, on the other hand, it goes on growing a
does not decline later. Next, let us compare Fig. 6~b! with
Fig. 5~a!. In the case of the decoupling approximation, t

n
e
o

re
y
er

FIG. 5. Temporal development of the critical wave numbers
~a! t5` and~b! t58. In ~a! there is only one critical wave numbe
kc(t), while there are two critical wave numberskc

(1)(t) andkc
(2)(t)

in ~b!. The shadowed regions indicate theunstable density-
fluctuation modes. Att→`, kc(`)50 in ~a!, while kc

(1)(`)
5kc

(2)(`)5km(`).0 in ~b!.
1-7
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sudden change of the critical wave number disappears, w
contrasts to the case of the LBM approximation, where
abrupt change takes place.

As was mentioned, the alteration from growing to decl
ing of the dynamical structure factor and the abrupt cha
of the critical wave number are caused by crossover from
unstable regime to the stable one of the system. However
decoupling approximation is valid only when the distributi
function has a Gaussian form, which cannot describ
phase-separated state with the two-peak distribution fu
tion. Therefore the decoupling approximation is invalid f
this crossover phenomenon. This is a reason why the c
acteristic behavior ofS(k,t) and kc(t) under the LBM ap-
proximation cannot be reproduced with the decoupling
proximation. Thus we can conclude that the LB
approximation is more appropriate than the decoupling
proximation in the study of the phase-separation dynami

B. Comparison with the nucleation process

We shall consider also the nucleation dynamics to co
pare with the spinodal decomposition in the case of infin
lifetime t5` in terms ofP(1)(u,t) andS(k,t). Before dis-
cussing numerical details, we here explain a qualitative
ference between the two processes. To this end,
Lyapunov spectrum under the crude linear approximatio
employed:

Gk52k2F k21S ]2f

]u2D
u50

G . ~31!

The linear approximation, which excludes all nonline
terms depending on time, is valid only at the early stage
the phase-separation dynamics. The boundary between
spinodal decomposition and the nucleation process is defi
through the relation

S ]2f

]u2D
u50

53~c02cc!
22150. ~32!

If the initial mean densityc0(t50) is in the region of

FIG. 6. Numerical results of~a! the dynamical structure facto
and ~b! the critical wave number with the use of the decoupli
approximation in the case oft→` andy(t)[0. Parameters areT
50.1, v0u051000, andc05cc51.5. The dynamical structure fac
tor moves to the longer-wavelength side and always grows.
critical wave numberkc(t) decreases monotonously.
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1

A3
,c0~ t50!,cc1

1

A3
, ~33!

the wave numbers satisfyingGk.0 can exist for k,
2(u]2f /]u2uu50)1/2, in which the density-fluctuation mode
are unstable and grow in time. This corresponds to the s
odal decomposition at an early stage. On the other han
the initial mean densityc0(t50) is in the region of

c0~ t50!,cc2
1

A3
or cc1

1

A3
,c0~ t50!, ~34!

no wave number satisfyingGk.0 exists. In this case, al
density-fluctuation modes are stable. This corresponds to
nucleation dynamics, although, of course, small droplets
always created due to the thermal fluctuations. We calcu
P(1)(u,t) andS(k,t) for the nucleation regime in the case
infinite lifetime t5`.

Figure 7 shows the temporal evolution ofP(1)(u,t) and
S(k,t) for the mean densityc052.2 and the critical density
cc51.5. The other parameters are the same as in Figs.~a!
and 3~d! for the spinodal decomposition. Because the me
densityc0 is larger than the critical densitycc , the single-
point distribution function is asymmetrical, as shown in F
7~a!. The width ofP(1)(u,t) is broad and the peak shifts t
the larger-density side. As the time goes by,P(1)(u,t) oozes
to the smaller-density side and another small peak appea
clearer difference between the spinodal decomposition@Fig.
3~d!# and the nucleation process@Fig. 7~b!# is found in terms
of the dynamical structure factorS(k,t). Recall thatS(k,t)
grows first and then declines later in the case of the spino
decomposition, as shown in Fig. 3~d!. In the case of the
nucleation process, on the other hand,S(k,t) always grows,
as shown in Fig. 7~b!.

C. Conclusions

We have formulated a theoretical model to discuss
dynamical characteristics of the phase separation in fin
lifetime systems with the LBM approximation. The tempor
behavior of the single-point distribution functionP(1)(u,t)
and the dynamical structure factorS(k,t) has been calculated
numerically in the case of cw creation of particles. We c

e

FIG. 7. Temporal development of the single-point distributi
function P(1)(u,t) and the dynamical structure factorS(k,t) as a
function of u andk, respectively, for the nucleation process in t
case oft→` and y(t)[0. Parameters areT50.1, v0u051000,
cc51.5, andc052.2.
1-8
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calculate straightforwardly the other cases, where the
ation rate depends on time. When the lifetime is enou
short P(1)(u,t) cannot separate into two peaks andS(k,t)
becomes a sharp-peak form at a finite wave number. Th
peculiar characteristics in the finite-lifetime case are well u
derstood in terms of the lower and upper critical wave nu
berskc

(1)(t) and kc
(2)(t), respectively. Domains with a finite

size of @kc
(1)(t→`)#21 remain finally, the size of which is

proportional tot1/4. The differences between the LBM ap
proximation and the decoupling approximation were clarifi
in the case of infinite lifetimet5`. The former is better for
the study of the phase-separation dynamics. We have c
pared also the spinodal decomposition with the nuclea
process in the case of infinite lifetime.

As a final discussion in this paper, we describe a f
things about the extension of this theory. It is clarified th
the phase separation is incomplete when the lifetime
shorter than the onset time. In order to obtain the onset t
we need to discuss more microscopic characteristics of
system such as the interaction between particles, whic
implicitly built in the phenomenological Ginzburg-Landau
Wilson free-energy functional in this paper. Theoretical stu
of this viewpoint is in progress.53 As another extension, we
are interested also in the case where the lifetime depend
the local density of particles, in other words, where the
nihilation term is nonlinearly dependent on the particle de
sity. For example, a system with the two-particle collisi
process is investigated.52 In this paper, we have considere
14430
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only the simplest case as the first step in investigations
finite-lifetime effects. An actual situation corresponding
this paper may be realized, for example, when the densit
interstitials recombining with vacancies is so large that it c
be regarded as a constant for local position and time or w
excitons disappear due to the spontaneous radiative de
Besides these, we hope for a future realization of exp
ments where the instability of excited states can be c
trolled spatially and temporally. The quantum nature of p
ticles is also an attractive topic. Various extensions of
framework are expected for more realistic problems.
though the present theory does not include all actual det
we believe that these findings hold universally in pha
separation dynamics in finite-lifetime systems and will be
great significance in the interpretation of experimen
results.

ACKNOWLEDGMENTS

The authors are grateful to Professor C. Itoh and Profe
K. Kitahara for fruitful discussions. This work was support
by CREST, JST, and a Grant-in-Aid for Scientific Resea
on Priority Area, ‘‘Photoinduced Phase Transitions and Th
Dynamics,’’ and for COE Research on ‘‘Strongly Correlat
Electron Phase under Multiple Environment’’ from the Mi
istry of Education, Science, Sports and Culture of Japan.
of the authors~V.I.S.! acknowledges the Japan Society f
the Promotion of Science for support.
s.

ys.

ett.

hys.

v. E

.

ev.
*Electronic address: akira@acty.phys.sci.osaka-u.ac.jp
†Electronic address: ogawa@mailaps.org
1J. D. Gunton, M. San Miguel, and P. S. Sahni, inPhase Transi-

tions and Critical Phenomena, edited by C. Domb and J. L.
Lebowitz ~Academic Press, London, 1983!, Vol. 8.

2K. Binder, in Phase Transformations in Materials, edited by P.
Haasen~VCH, Weinheim, 1991!; Rep. Prog. Phys.50, 783
~1987!.

3K. Binder and D. Stauffer, Adv. Phys.25, 343 ~1976!.
4J. S. Langer, Rev. Mod. Phys.52, 1 ~1980!.
5H. Furukawa, Adv. Phys.34, 703 ~1985!.
6A. J. Bray, Adv. Phys.43, 357 ~1994!.
7K. B. Rundman and J. E. Hilliard, Acta Metall.15, 1025~1967!.
8D. de Fontaine, inTreatise on Solid State Chemistry, edited by N.

B. Hanney~Plenum, New York, 1975!, Vol. 5, p. 129.
9J. W. Cahn and J. E. Hilliard, J. Chem. Phys.28, 258 ~1958!; 31,

688 ~1959!.
10J. W. Cahn, Acta Metall.9, 795 ~1961!; 10, 179 ~1962!.
11H. E. Cook, Acta Metall.18, 297 ~1970!.
12J. S. Langer, M. Bar-on, and H. D. Miller, Phys. Rev. A11, 1417

~1975!.
13K. Binder, Z. Phys.267, 313 ~1974!; Phys. Rev. B15, 4425

~1977!.
14K. Kawasaki, Phys. Rev.145, 224 ~1966!; 148, 375 ~1966!; 150,

285 ~1966!.
15I. M. Lifshitz and V. V. Slyozov, J. Phys. Chem. Solids19, 35

~1961!.
16H. Furukawa, Prog. Theor. Phys.59, 1072 ~1978!; Phys. Rev. A

28, 1717~1983!; 31, 1103~1985!.
17H. Tomita, Prog. Theor. Phys.59, 1116~1978!; 71, 1405~1984!.
18E. D. Siggia, Phys. Rev. A20, 595 ~1979!.
19J. L. Lebowitz, E. Orlandi, and E. Presutti, J. Stat. Phys.63, 933

~1991!.
20S. Puri and K. Binder, Phys. Rev. E49, 5359~1994!.
21S. Puri, Phys. Rev. E55, 1752~1997!.
22V. Kumaran, J. Chem. Phys.109, 7644~1998!.
23T. Ujihara and K. Osamura, Phys. Rev. B58, 11 371~1998!.
24J. Marro, A. B. Bortz, M. H. Kalos, and J. L. Lebowitz, Phy

Rev. B12, 2000~1975!.
25Y. Oono and S. Puri, Phys. Rev. A38, 434 ~1988!; 38, 1542

~1988!.
26S. Bastea and J. L. Lebowitz, Phys. Rev. Lett.78, 3499~1997!.
27V. M. Kendon, J.-C. Desplat, P. Bladon, and M. E. Cates, Ph

Rev. Lett.83, 576 ~1999!.
28J. S. Huang, W. I. Goldburg, and A. W. Bjerkaas, Phys. Rev. L

32, 921 ~1974!.
29A. J. Schwartz, J. S. Huang, and W. I. Goldburg, J. Chem. P

62, 1847~1975!.
30F. Mallamace, N. Micali, S. Trusso, and S. H. Chen, Phys. Re

51, 5818~1995!.
31T. Izumitani and T. Hashimoto, J. Chem. Phys.83, 3694~1985!;

N. Kuwahara, H. Sato, and K. Kubota, Phys. Rev. E47, 1132
~1993!; A. Aksimentiev, K. Moorthi, and R. Holyst, J. Chem
Phys.112, 6049~2000!.

32D. Boyanovsky, Phys. Rev. E48, 767~1993!; D. Boyanovsky, D.
Cormier, H. J. de Vega, R. Holman, and S. P. Kumar, Phys. R
D 57, 2166~1998!.

33V. N. Mal’nev and S. I. Pekar, Zh. Eksp. Teor. Fiz.51, 1811
1-9



,

f
-

.

-

B

.

iri,

.

B
er.

uc-

se
Bi-

ion

AKIRA ISHIKAWA, TETSUO OGAWA, AND VLADIMIR I. SUGAKOV PHYSICAL REVIEW B 64 144301
~1966!; Y. A. Vdovin, ibid. 54, 445~1968!; I. R. Yuchnovskii, O.
V. Derzhko, and K. K. Levitskii, Physica A203, 381 ~1994!.

34I. S. Gorban, M. M. Biliy, I. M. Dmitruk, and O. A. Yeshchenko
Solid State Commun.98, 489 ~1996!.

35E. Hanamura and H. Huag, Phys. Rep.33, 209 ~1977!; S. A.
Moskalenko and D. W. Snoke,Bose-Einstein Condensation o
Excitons and Biexcitons~Cambridge University Press, Cam
bridge, England, 2000!.

36T. M. Rice, Solid State Phys.32, 1 ~1977!.
37L. V. Keldysh ~unpublished!; J. Shah, M. Combescot, and A. H

Dayen, Phys. Rev. Lett.38, 1497 ~1977!; M. Rösler and R.
Zimmermann, Phys. Status Solidi B83, 85 ~1977!; G. Beni and
T. M. Rice, Phys. Rev. B18, 768 ~1978!.

38C. D. Jeffries and L. V. Keldysh,Electron-Hole Droplets in Semi
conductors~North-Holland, Amsterdam, 1983!.

39R. N. Silver, Phys. Rev. B17, 3955 ~1978!; S. W. Koch and H.
Haug, Phys. Status Solidi B95, 155 ~1979!; M. Combescot,
Phys. Rev. B21, 771 ~1980!; M. Combescot and C. B. a la
Guillaume, Solid State Commun.46, 579 ~1983!; H. Kalt, K.
Reimann, W. W. Ru¨hle, M. Rinker, and E. Bauser, Phys. Rev.
42, 7058~1990!.

40I. M. Fishman, Zh. Eksp. Teor. Fiz.88, 532 ~1985!; D. Hulin, A.
Mysyrowicz, A. Migns, and A. Antonetti, J. Lumin.30, 290
~1985!; V. M. Asnin, A. A. Rogachev, N. I. Sablina, V. I
Stepanov, and A. B. Churilov, Fiz. Tverd. Tela~Leningrad! 29,
1675 ~1987!; R. Zimmermann, Phys. Status Solidi B146, 371
~1988!; N. B. B. Aouani, L. Mandhour, R. Bennaceur, S. Jaz
T. Amand, and X. Marie, Solid State Commun.108, 199~1998!.

41K. C. Russell, Prog. Mater. Sci.28, 229 ~1984!.
42F. V. Nolfi, Jr., Phase Transformations during Irradiation~Ap-

plied Science, London, 1983!.
14430
43F. A. Garneret al., Radiat. Eff. 101, 37 ~1986!; R. D. Carter
et al., J. Nucl. Mater.211, 70 ~1994!; M. Backhaus-Ricoult and
A. Peurot, Radiat. Eff.137, 305~1995!; V. S. Khmelevskaya, V.
G. Malynkin, and S. P. Solovyev, Phase Transit.60, 59 ~1997!;
V. V. Mykhaylowskyy, K. C. Russell, and V. I. Sugakov, Fiz
Tverd. Tela~St. Petersburg! 42, 471 ~2000!.

44D. Kumar and S. Ray, Phys. Rev. B34, 5048~1986!; D. Walgraef
and N. M. Ghoniem,ibid. 39, 8867~1989!; 52, 3951~1995!.

45K. Krishan, Radiat. Eff.66, 121 ~1982!; Philos. Mag. A45, 401
~1982!; B. A. Lumis and S. B. Gerber, J. Nucl. Mater.71, 377
~1978!; V. N. Pudko and V. I. Sugakov, Phys. Status Solidi
126, 703~1984!; F. E. Lawson and P. B. Johnson, J. Nucl. Mat
252, 34 ~1998!.

46V. I. Sugakov, Solid State Commun.106, 705 ~1998!.
47G. Nicolis and I. Prigogine,Self-Organization in Nonequilibrium

Systems—From Dissipative Structures to Order Through Fl
tuations~Wiley, New York, 1977!.

48H. Haken,Synergetics—An Introduction, Nonequilibrium Pha
Transitions and Self-Organization in Physics, Chemistry and
ology ~Springer-Verlag, Berlin, 1978!.

49M. Suzuki, Adv. Chem. Phys.46, 195 ~1981!.
50G. Nicolis, G. Dewel, and J. W. Turner,Order and Fluctuations in

Equilibrium and Nonequilibrium Statistical Mechanics~Wiley,
New York, 1981!.

51D. Gurel and O. Gurel,Oscillation in Chemical Reactions
~Springer-Verlag, Berlin, 1983!; R. Aris, The Mathematical
Theory of Diffusion and Reaction in Permeable Catalysts~Clar-
endon Press, Oxford, 1975!, Vol. II; P. Grindrod,Patterns and
Waves—The Theory and Applications of Reaction-Diffus
Equations~Clarendon Press, Oxford, 1991!.

52A. V. Nazarenko, T. Ogawa, and V. I. Sugakov~unpublished!.
53A. Ishikawa and T. Ogawa~unpublished!.
1-10


