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Dynamics of spinodal decomposition in finite-lifetime systems
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We present a statistical theory of the phase-separation dynamics in many-particle syiterasfinite
lifetime. Temporal evolution of the spinodal decomposition is traced with the single-point distribution function
and the dynamical structure factor under the situation where the mean particle number is constant by balancing
between decay and creation of the particles. The finite lifetime prevents phase separation and order formation;
hence the lower critical wave numbkf")(t) appears; domains of larger size tHad(t)]~* cannot grow.
Differences between the infinite- and finite-lifetime cases are clarified in terms of this critical wave number. A
universal relation between the lifetime and the asymptdtie ¢) critical wave number is confirmed numeri-
cally. Comparison with the nucleation process is also made.
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[. INTRODUCTION creation of new phasés.In this case, an excited molecule is
an unstable particldii) The exciton-condensed liquid phase
Spinodal decomposition is a nonequilibrium phenomenorin a crystal created by light absorptidhin which excitons
that an unstable uniform-density state separates spatially intzave a finite radiative lifetime. Since excitons are bosonlike
several stable states when a system is cooled rapidly fromuasiparticles, they are expected to occur in Bose-Einstein
high temperature. This phenomenon has been studied vagondensation when the excitation is strorjetiii) The
ously since the periodic compositional variation of metallic electron-hole liquid in semiconductors excited more strongly
alloys was discovered in the 1940see, e.g., Refs. 1-6 for than for exciton system®:*" Electron-hole pairs can disap-
reviews. In the 1960s and 1970s, it was investigated withpear due to recombination within a finite lifetime. It is well
the experiments such as x-ray scattefifigSimple linear  known that the electron-hole liquid forms a droplet® we
theories were proposed by Cahn and Hillfatland Cook!!  consider it as a phase separation of particles with finite life-
which describe correctly only an early stage of the phasetime. The phase transition between the exciton phase and the
separation dynamics. In the 1970s, nonlinear theories of thelectron-hole liquid phase is also expected to occur when the
phase separation were developed by Langer, Bar-on, Miller density of quasiparticles is varied. This phase transition is
(LBM) and Bindert® They took into account not only the called the exciton Mott transitiof?. (iv) New phase develop-
distribution function of the particle-number density but alsoment in crystals under nuclear and other irradiafibff.
the spatial correlation of the density. Binder employed Ka-Radiation-induced microstructural space modulations were
wasaki’s spin-exchange kinetic Ising modéBesides these observed in many materials under various types of
works, there are many theoretical studies on the phasieradiation?® The phase formation occurs due to the presence
separatiot?™?® the computer simulatior$ 2" and the of radiation defects with different typdsacancies, intersti-
experiment£®-3° The phase separations are studied also irtial atoms, antisite defects, and othefEheoretical studies of
various kinds of fields such as high-polymer physits, the order formation such as void nucleation of vacancies,
cosmology*? and so on. which is accompanied by the creation process and the recom-
Thus far almost all the theoretical models for the phasebination process with interstitials, were propoé&dh their
separation are applicable only to many-particle systems witlwvorks, however, effects of the “finite lifetime” are not no-
neither creation nor annihilation of the particles. In such systiced. The process where many vacancies aggregate to form a
tems, an infinite lifetime of the particle is implicitly assumed. void is one of the phase-separation processes depending on
However, there are many examples where external fieldthe lifetime of the vacancies. On the other hand, the process
(e.g., irradiation createunstableparticles(or quasiparticles of forming a void lattic® by many voids is free from the
in crystalg which have dfinite lifetime and can build new lifetime of the voids; our theory does not aim at the void
phases. Several examples of such systems are listed(here: lattice problem. In the above examples, the partiegjua-
highly excited gas in which the excited molecules attract onesiparticles have a finite value of lifetime due to light irra-
another more strongly than in the ground state, leading to thdiation, recombination, or other processes. The finite lifetime
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influences significantly the new phase development. The first term is the “conservation term” resulting from the
To the best of our knowledge, there is no theoreticalparticle transfer, in which the number of particles is con-

framework for the phase-separation dynamics in finite-served, and the second is the “nonconservation term” com-

lifetime systems, where universal effects of the finite lifetimeing from effects of the particle creation and annihilation.

are discussed particularly. Recently, one of the authors ex-

tended the LBM theory to take into account the processes of 1. Conservation term: Effects of the particle transfer

particle creation and annihilati$hand studied only the sta- We shall derive the first term resulting from the particle

tionary state. In this paper, the phase-separation dynamics §$nsfer. The free energy of the system is assumed to be the

a function of time is investigated to clarify effects of the ¢oarse-grained Ginzburg-Landau-Wilson free-energy func-
finite lifetime on the phase separation. tional

Besides the phase separation, there are the studies in
which the automatic pattern or order formation is discussed, K
for example, the dissipative structdfesynergeticé® and so F[{u(r)}]=f dr[E(Vu)an f(u)
forth*>*0These seem to be concerned not only with physics
but also with chemistry, biology, and sociology. With respectwheref(u) is the Ginzburg-Landau-Wilson free-energy den-
to the appearance of stable modes in fluctuation and the créity:
ation and/or annihilation processes of components, the prob-
lem in this paper may seem to be similar to one of the dis-
sipative structures in some chemically reacting syst&ms.
In chemically reacting systems, however, the structures arise ~ . -
due to the n)énlinear%egendence of the creation and/or anrff‘-nd a=a(T—T,) depends on temperatuTel/vlth the critical
hilation of components, whereas in our systems the strudemperaturd;and a real positive parameterHerec, is the
tures appear due to the dynantattractive interaction be- critical density, an&K andb are real positive phenomenologi-
tween particles. cal parameters. Temporal evolution of the order parameter
This paper is organized as follows. In Sec. II, we intro-u(r.,t) caused by the particle transfer is described by the
duce the theoretical formulation taking into account the crelangevin equation
ation and annihilation of particles with the use of the LBM
approximation starting from the Ginzburg-Landau-Wilson iu(r t)=—div
free-energy formalism. The Lyapunov stability analysis is o

carried out in Sec. Ill to understand qualitatively the finite-\\naraM is the mobility of the particle induced by the ther-

lifetime effects on the phase separation. There we introducg, 5| fjyctuation,&/ su(r) stands for the functional derivative,
the critical wave numbers to characterize the dynamics. Nuz 4 7(r,t) is the Gaussian-Markovian noise describing a
merical results are shown in Sec. IV. We compare them Wm}andom’thermal force. which satisfies

results under the simple decoupling approximation in Sec. V.
The nucleation process is also studied with the same model (n(ry,t) 9(ry,t))= —2kgTMV258(r;—1,) 8(t;—t,).

, ()

a b
f(u)= 5 (utCo—Co)*+ Z(u+co—co), (4

—MV + 75(r,t), (5)

S
ou(r)

for comparison. (6)
We rewrite the Langevin equatidb) into the Fokker-Planck
Il. THEORETICAL FORMULATION equation for the multipoint distribution function as
A. Fokker-Planck equation for the multipoint distribution aPAu(N},b S SE
function L D S 2
- f I sum ( MV Bugn AU

In the spinodal decomposition, systems exhibit spatiotem-
poral separation of an initial uniform-density state into two 1)
different-density states. So we define the order parameter of + kBTm P({u(r)},t)} ) @)
the system as the deviatiam(r,t) of the particle-number o ]
density c(r,t) from its spatial averagey(t)=(c)(t), i.e.,  1his is the conservation term of E(P).
u(r,t)=c(r,t) —cq(t). The state of the system is described
by the multipoint distribution functioP({u(r)},t). Using
P({u(r)},t), the spatial average of any physical quantity
O({u(r)}) is calculated as The creation rate of particles is definedyds), which is a
given function oft. Here the particle creation is assumed to
be homogeneous in space; hewygé) is independent of the
<O({u(r)}))(t)zf Du(nOunhHPu(n}), (1) positionr. The particle lifetime is denoted as which de-

) ) _ ~pends on neithet nor r. This assumption for the lifetime is
where[Du(r) is the functional integral. Temporal evolution the simplest as the first step for future studies of the phase-
of P({u(r)},t) results from two origins: separation dynamics in finite-lifetime systems. Extension be-

yond this assumption is straightforwatdin order to intro-
iP({u(r)} t):aP({u(r)},t)| N JP{u(n}t) (27 duce the particle creation and annihilation processes, we
at ' at ¢ at tne- shall divide the space inthl,(>1) pieces of small regions

2. Nonconservation term: Effects of the particle creation
and annihilation
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{A]I=1, ... N;}. The number of particles in theh small
regionA, is denoted as, . Temporal evolution of the distri-
bution functionP({n,},t) for the particle number&n,} in all
small regions{A;} obeys the Master equati

J
EP({nl}!tHnC:EI [y(t)AIP({nlv e 1n|_11 e ,an},t)

—y(t)AP{Nn},t)
n|+1

T

+

P({nl’ - ,n|+1, - ,an}lt)

- ”—T'P({n.},w}, ®

whereP({ny, ... m=*1,... ny}t) is the probability dis-
tribution function when the particle configuration

{ng,....nm=1,... ,an}. The summation®, runs over all

N, pieces of small region&A\}.
To derive the Fokker-Planck equation fB({u(r)},t), a

is

coarse-graining procedure in a small region is required. Firs

we assume thah;>1 and thatn, is continuous quantity.
ThenP({ny, ... m=1,... ny}t) can be expanded as

PNy, ....m=1,... ,nNI},t)

J 1 42
:P({nl},t)ia—mp({m},tﬁERP({W}J)- 9
i

Second, we rewrit@, into u, asu;=n,/A,—cy(t), whereu,

is the order parameter in theh small regiond, . Finally, we
take the limit of A;—0, in which the spatial coordinate be-
comes continuous. Then the summati®p over all small
regions is rewritten as the space integfdlt.

Performing these transformations, we get the Fokker-

Planck equation foP({u(r)},t) including effects of the par-
ticle creation and annihilation:

5
|“°:_f I Sun

XP{u(n},t)
[y(t +U(r)+Tco(t)]

JP{u(n},b
at

([y(t)_ u(r) + co(t)

T2 5

X P({U(r)},t)D- (10

This is the nonconservation term of Eg). Here the mean

particle densitycy(t) depends on time due to creation and

annihilation of particles. Using Eq$2), (7), and (10), we

derived the full form of the Fokker-Planck equation for the

multipoint distribution functiorP({u(r)},t) in a system with
the particle creation and annihilation effects.

PHYSICAL REVIEW B4 144301

B. Closed-form equations of motion: The LBM approximation

The Fokker-Planck equation§?), (7), and (10) for the
multipoint distribution function contains all the statistical,
spatiotemporal information of the phase-separation dynam-
ics. Unfortunately, however, it is hard to solve. Then we shall
divide again continuous space into discrétg(>1) cells
(with an index«) to discard the higher-order statistical in-
formation in the multipoint distribution function. In a cell,
the particle density is assumed to be constant, i.e.,
u(r)|r:,awﬂ1 cel=U, . In our formulation, the state of the

system is described with two quantities. One is the single-
point distribution function

POu,,t)=| TI dunP(unht). (11)
m# «

This is the probability distribution for the case that the order
parameter in thexth cell takes the value, at timet. Since

a is arbitrary @=1,2, ... Ng), P®)(u,,t) means the dis-
tribution function of the number of cells in which the particle
density isc,=u,+ Coq. In the cell picture, an averaged physi-

tcaI quantityO({u,}) is given as

(0= [ TT du,0(uhPdubn, (2

where the functional integral Du(r) is transformed to
J1I,du,. If the quantityO(u,) depends only omi, (not on
ug), the averaging is carried out with onB*)(u, ,t),

(O(u) ()= f du0U)PD(u, 1. (19

Another quantity for describing the state is the dynamical
structure factor

S(k,t)zZ‘ exd —ik- (r,—reuuug)(t), (14

wherek is the wave vector. Hergu,u)(t) is the two-point
spatial correlation function at time which is a function of
r,—rg. This structure factor corresponds approximately to
the distribution of the domain siZ&| * (i.e., a spatial cor-
relation length, which can be measured by actual experi-
ments such as x-ray or light scattering.

In order to derive a closed form of coupled equations for
the single-point distribution functio®*)(u,t) and the dy-
namical structure facta®(k,t) from Egs.(2), (7), and(10),
we need to truncate the hierarchy of the time-evolution equa-
tions for the probability distribution functions. To this end,
we employ an approximatidfin which the two-point distri-
bution function is decoupled as

P(Z)(ua !uﬁ 1t) = P(l)(ua 1t) P(l)(uﬁ vt)

<uauﬂ>(t)
X{Huuzxt)]zu“”ﬁ]' "
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where (u?)(t) is the variance ofi at timet, and @ and 8
stand for two different cells. In this paper, we call this ap-
proximation the “LBM approximation.” With the use of the

LBM approximation, the closed-form coupled equations for

P®(u,t) and S(k,t) are derived. But several phenomeno-

logical parameters still remain in such equations. To elimi-

nate them, physical quantities are renormalized by the fol
lowing units: uy=(—a/b)¥? for density, K/a)'? for
length, (— K3a/b?)Y2 for energy, an&k/(Ma?) for time. The
unit densityug is concerned with the equilibrium values of
the order parametec.—cy=* Ug, in the case of neither cre-
ation nor annihilation of particles, i.e/(t)=0 andr—«. To
discuss the spinodal decomposition, the temperaiuris
chosen to be lower than the critical temperattige that is,
we confine ourselves to the caseasft 0. The Landau free-
energy density4) can be written in a dimensionless form as
f(u)=—32(u+cyo—cy?+3(utcyo—cy* wherec, and c,
are normalized by the unity. Accordingly, the renormalized
order parameter becomes independent of the ird@&x our

model. For the equilibrium stable state, the normalized ordef

parameter i€.—Cco* 1.

Applying the LBM approximation and the above-
mentioned normalization, the closed-form coupled equation
for PM(u,t) andS(k,t) are obtained as

J 9 (af of ) W(t)
EP (U,t)—& D; 20 \7u (H)—A()u +<u2>(t)u
_<y(t)_u+LTO(t)> P(l)(u,t)

d d
+DfTEP(1)(u,t)+ 2oots U
x| | y(t)+ LhLLT"(U}P(”(U,U)], (16)
d 1
ES(k,t)= —Z[kz{k2+A(t)}+ p S(k,t)+2Tk?
Co(t)
+m y(t)+ - } (17)
wherev is the volume of a cell and
9°f 1| [ o3 (u3)(1)
A= — =l —
v (auz)u_0+2{(au3)u_(j<u2><t>
1| [ o* (uh (1)
—||— , 18
+6H(9u4)uol<uz><t) (9
W(t)= ! fdkkz{k2+A(t)}S(k,t). (19
(2m)?

Here thek integration is carried out in the range of&(k|
51/3 and — Dy is the diagonal element of the renormal-

ized Laplacian matrix defined as

=v
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j dkk?.

The mean value is obtained by Eg3). The mean particle-
number densitycy(t) depends on time as

1
(2m)°

D= (20)

deo(t)
dt

Co(t)

(21)

y(t)—

T

In this paper, we shall investigate only the case where the
particles are created at a constant ré®v creation”) to
balance with the depletion of particles due to the finite life-
time; that is, bothy and the mean particle-number density
Co=YyT are constant in time. Such a situation is realized, e.qg.,
in an exciton system. We keep the temperaturé=afl . un-
der cw irradiation and then decrease abruptly the temperature
to T<T, at a time. The reasons why we consider such a
restrictive situation as cw creation are that the case of the
finite lifetime can be directly compared with the infinite-
ifetime casq(i.e., the usual spinodal decompositi@nd that
effects only of the “finite lifetime” can be picked out easily.
When more realistic problems are discussed, we can straight-
Forwardly calculate various situations with the same formu-
lation in this paper.

C. Comments on another approximation scheme

We here make comments on another approximation for
truncation of the hierarchy of the equations of motion. In the
LBM approximation, information of the two-point spatial
correlation function(u,u)(t) is fully taken into account in
the decoupling procedure froR(?)(u,,,ug,t) to PM(u,,,t)
andP™M)(ug,t), as shown in Eq(15). For example, a higher-
order nonlinear ternﬁuiuﬁ,}(t) is transformed with the use
of the LBM approximation as

(uH(t)

(u)(t)

Equationg16) and(17) contain such nonlinear terms Ast)
of Eq. (18).

There are other methods for approximating the nonlinear
terms such a$uf;uﬁ)(t). One method is the so-called “de-
coupling approximation”

(Udugh(t)— (Ugugh(t). (22

(Uug) ()= (U (1) (U ug)(t). (23)

If we employ this decoupling approximation, the nonlinear
term A(t) might be
)u—o

Since the time-dependent variar(@&)(t) in Eq. (24) can be
calculated only from the dynamical structure facsfk,t) as

2

af)
+
u u=0

au?

4

(af
au

1

5 (U)(D). (24

Adecouplét) = ( T

1
(2m)®

(ud ()= f dkS(k,t), (25)
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FIG. 1. The Lyapunov spectrurh (t) with neither creation FIG. 2. The Lyapunov spectruh(t) with cw creation and
[y(t)=0] nor annihilation ¢—«) of particles as a function of annihilation {7=const«) of particles as a function of wave
wave numbek when(a) A(t)<0 and(b) A(t)>0. numberk when (a) A(t)<—2/\/7, (b) A(t) = —2/\/z, and(c) A(t)
>—2/r.

the equation of motion consist only of E@L7) for the dy-

namical structure factor. Thus far, this decoupling approxi- In systems with neither creation nor annihilation of par-
mation has often been employed and the temporal evolutioticles[y(t)=0 andr— o], it is clear from Fig. 1 that there is
only of the dynamical structure factor has been calculated. lbnly one critical wave numberk(t), which is kg(t)

is clear that this approximation is worse than the LBM one=./—A(t). This is consistent with the well-known process
because it does not contain higher-order statistical informaef spinodal decomposition. Domains with larger size
tion such agu®)(t) or (u®)(t), which are taken in the LBM  (>[k(t)]"}) grow but domains with smaller size
formalism. In addition, the LBM approximation is more fa- (<[k4(t)] 1) decay. In the case of(t)=c,/7=const, on
vorable for our study since we can obtain also temporal inthe other hand, we find from Fig. 2 that there twe critical
formation of the single-point distribution function. We will wave numbers, the lower critical wave numbb&l)(t)
discuss later the numerical results in more detail. and the upper critical wave numbek(cz)(t), which are

evaluated as
I1l. LYAPUNOV STABILITY ANALYSIS

( —A(t)— \/[A(t)]7—4/r> 12

B i i : : k(1) = (28)
efore we discuss in detail the numerical results, the ¢ 2

Lyapunov stability analysis is carried out to understand

qualitatively the dynamics. The temporal behavior of the dy- 5 —At)+\[A)]P— 4T 172

namical structure factor is roughly understood by a few char- k¢ )(t)=( 5 ) : (29

acteristic wave numbers. To obtain them, we assume the

density-fluctuation modeu,(t) with wave number k  This means that the density-fluctuation mode only of wave

of the form number k{(t)<k<k{®(t) can grow and the mode of

smaller wave numbek<k(cl)(t) decays in time. In other

U(D) = exp th(1)]. (26)  \ords, domains with very large side-[k(t)]~ %) cannot

HereT'(t) is called the “Lyapunov spectrum,” which means 9row in the case of(t)=co/7=const, which results from

the growing speed of a fluctuation mode of wave number the finite-lifetime effect. This is in striking contrast to the

The fluctuation mode grows i’ (t)>0 and decays if case ofy(t)=0 andr—o, wherek") vanishes. In Sec. IV,

I'(t)<0. The Lyapunov spectrum describes also the inthe temporal behavior of the critical wave numbers will be

crease or decrease of the dynamical structure factor throughiscussed numerically.

the relation S(k,t)=|uy(t)|?xexd 2t (t)]. Thus the

Lyapunov spectrum is a good measure for the growing speed IV. NUMERICAL RESULTS AND DISCUSSION

of domains with sizeék| ~*. In our formulation, systems are

assumed to be isotropic. Therefore the wave vektoan be I'Il'he _cr?upled equgtionr(]iG)d angl(lé) are _solved numeri-d b
replaced simply by its amplitude=|k|. E‘EI\% ‘ﬁ'tl out z;\sslu?jmg the out teh- aussian ar:_s?tz useb y
In the case of/(t)=cy/7=const, the Lyapunov spectrum -~ In cajculations, we set thé mean particie-number

is density to becy=c.=1.5=const in the spinodal region. The

lifetime is chosen to be=o, 100, and 8. The cw creation
1 ratey satisfies the relatiog=c,/7=1.5/r. The temperature
Fk(t):—kz[k2+A(t)]—;- (27)  is always lower than the critical temperatute, i.e., T
=0.1. The parametevyuy, which is almost equal to the
The calculated Lyapunov spectra at titrere shown in Figs. number of particles in one cell, is taken to bguy= 1000,
1 and 2 as a function of the wave numbern the figures, which should not be so small. Final numerical results are
we shall define the critical wave numbe(t) as a zero point insensitive to this valueyu, if it is large enough. The initial
of I'(t) at a fixed timet, which is the wave number at a state at=0 is chosen to be a uniform-density state. Then the
boundary between unstal& (k,t)>0] and stablg I'(k,t) initial single-point distribution function has &function-like
< 0] density-fluctuation modes. form with a small width due to the thermal fluctuation. In
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Density Wavenumber FIG. 3. Temporal development of the single-
4 T T T 4 T T point distribution functionP®)(u,t) and the dy-
§ (b) =100 f}r=0 © it_ namical structure factoB(k,t) as a function ot
e 3 F - g 3F 800 - andk, respectively, folT=0.1, vouy=1000, and
E & cp=C.=1.5. The creation rate isy=cy/7
§ 2} - % 2} 400 - =1.5/r. The three figures in the left rowa), (b),
_g \ § and (c), are PY(u,t) and the ones in the right
L - = - row, (d), (e), and(f), areS(k,t). The lifetime of
E ! 7 51000 =00 a 1 \° w100 particles ist= for (a) and(d), 100 for(b) and
//\ ,\\\ 0 (e), and 8 for(c) and(f). The inset of(d) shows

0 0.5 1 15 the behavior during &t=<400. The dashed

Wavenumber curves stand for the stationary solutiond -atee.

0.4 T T
(H =00

i
]
1)

Structure factor
e @
o W

T T

Distribution function
o
i
1

0 0.5 1 1.5

Wavenumber

numerical calculations, we assume it as a Gaussian, whosg nothing but the usual spinodal decomposition. Here we
standard deviation is 0.1. The boundary condition for theshall define the “onset timet,,s;as the time when one peak
single-point distribution function isP™(u,t)|y= ¢, =0,  of P()(u,t) is about to separate into two peaks. In the case
which results from the fact that the particle-number densityof Fig. 3(@), the onset time i$,,s.e=20. In the case of a finite
should be positive. The initial dynamical structure factor islifetime 7= 100, which is longer than the onset time, on the
assumed to b&(k,t=0)=0, which reflects that no domain other hand, the phase separation of the order parameter be-
structure exists at=0. According to the coarse-graining comes ambiguous as shown in Figb8 When the lifetime
procedure for the cell representation in Sec. Il B, the largest=8 is much shorter than the onset time in Fi¢gc)3phase
normalized wave number should be#®§* which is de-  separation cannot occur. Consequently, order formation or
rived from the fact that the number of states is equal to thyhase separation stops halfway due to finite-lifetime effects

number of cells. if the lifetime is shorter than the onset time, which agrees
with intuition.
A. Single-point distribution function and dynamical Next, we discuss the behavior of the dynamical structure
structure factor factor. Here we denotk,(t) as the wave number at which

The numerical results are shown in Fig. 3. Figur¢s) 3 the dynamical structure factor takes the maximum value. In

and 3d) correspond to the case of neither creation nor annithe case ofr=c [correspondinglyy(t)=0], as shown in
hilation of particles and Figs.(B), 3(c), 3(e), and 3f) to the ~ Fig. 3(d), the dynamical structure factor grows urtti 100
case where particle creation and annihilation are taken intbut declines later, as shown in the inset of Fi¢gd)3When
account. The dashed lines mean the stationary solutions at— o, the dynamical structure factor becomes a form plotted
—00, as a dashed line in Fig.(®, which is a Lorentzian with a
First, we discuss the behavior of the single-point distribu-peak atk=0. We interpret this growing and declining of the
tion function. In the case ofr=c [correspondinglyy(t) dynamical structure factor as follows. A schematic behavior
=0], as shown in Fig. @), the initial state with one uniform of the order parameter on the Landau free-energy density is
density separates into two states with different densities. Thishown in Fig. 4. The initial state is plotted as an open circle.
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B FIG. 5. Temporal development of the critical wave numbers for
_g (a) 7= and(b) 7=8. In (a) there is only one critical wave number
g ‘/ \ ke(t), while there are two critical wave numbekS(t) andk{)(t)
— in (b). The shadowed regions indicate thenstable density-
fluctuation modes. Att—=, ky(*)=0 in (a), while k{*(c)

(= =

=kP() =kn(*)>0 in (b).
FIG. 4. Temporal development of the order paramatisrsche- -
matically drawn along the Landau free-energy density curve when B. Critical wave numbers

neither creation nor annihilation of particles exists. The open circle Figure 5 shows the behavior of the critical wave numbers
stands for the initial state. The order parameter separates into twq, (8 == and(b) 7=8. In the case of=oo, there is only

directions as tme passes. After the cross points, where, o jtical wave numbek (t), as explained in Sec. IIl. The
d<f(u)/du =0 holds, the system goes to the stable regime. Finally - . . .
o density-fluctuation modes in a shadowed redierk (t) are
(t—), the system reaches an equilibrium stable state and the order - )
. : unstable and grow in time. We find that the abrupt change of
parameter gets to the solid-circle points. " .
the critical wave numbek,(t) takes place at=200. This

step may result from a crossover between two different types

At this time, the system is unstable, so the unstable modgs qomain growth: from droplet formation to coalescence.
grows. Due to the increase of the instability, the dynamical | the case o-=8. on the other hand. there are two kinds

structure factor grows as a whole. The order parameter Sepg; cyitical wave numbers: the lower critical wave number

rates into two directions as time passes. Two cross symbolgl)(t) and the upper critical wave numbkﬁz)(t) as ex-

indicate the boundary points between the unstable and stable . : o
regimes, at whichi?f (u)/du?=0 holds. After the order pa- [!)‘%amed in Sec. Ill. The main difference from the= > case

. is_that the lower critical wave numbé)(t) appears and
rameters pass through these points, the system tends to Qe . . C .
P g P y t growth of the modes in the region k& k(M (t) is re-

stable. So the smaller unstable domains vanish and the larger~". o ,
stable domains survive and increase. Accordingly, the dy_stramed, as shown n '29“3 for TZ?' The modes only_m
namical structure factor declines as a whole. It is expectel1® Shadowed regiorkg™'(t) <k<kg™(t) can grow. It is
that the time when the order parameters pass through tHeund that the shadowed regief(t) <k<k{?(t) becomes
cross points is arount=100. The wave numbek;,(t) shifts ~ Narrow and finally remains only at a particular finite wave
to the longer-wavelength side as shown in Fig)3Finally, — number, i.e., k{)(t—o)=k@(t—wx)=ky(t—). This
whent—, it is found thatk(t— o) =0, where the system means that size of all the domains is finite and determined by
separates completely into two phases. the competition between the lifetime and the time necessary
The cases of the finite lifetime= 100 and 8 are shown in for the particles’ gathering. This is in striking contrast to the
Figs. 3e) and 3f), respectively, where the temporal devel- case ofr=cc.
opment ofS(k,t) is quite different from the infinite-lifetime
case in Fig. &). The form becomes sharp akg(t) settles V. DISCUSSION AND CONCLUSIONS
into a finite wave number as- . This fact is interpreted as
that the system cannot separate completely and that the
finite-size domains remain finally. Comparing Figés)3with We examine the numerical results under the decoupling
3(f), the shorter the lifetime of the particles is, the largerapproximation. To discuss differences coming only from the
kn(t—) becomes. We find from the numerical results thatapproximation methods, we confine ourselves to the case of
there is a universal relationship betweep(t— ) and the 7= [accordinglyy(t)=0]. Figure &a) is the temporal evo-
lifetime 7: lution of the dynamical structure factor and Figbpis the
critical wave numbek(t) under the decoupling approxima-
tion. Under the decoupling approximation, as we mentioned,
we cannot calculate the single-point distribution function.
The parameters in Fig. 6 are the same as in Fi¢®. ahd
The final domain sizg=[ky(t—%)] 1) is determined by 3(d). We shall compare Fig.(6) with Fig. 3d). In the case
the competition between the lifetime and the time necessargf the LBM approximation, the dynamical structure factor
for gathering the particles. If the lifetime is short enough, thegrows first and declines later. In the case of the decoupling
particles decay before they come together. So the final daapproximation, on the other hand, it goes on growing and
main size becomes smaller. The above relation shows thidoes not decline later. Next, let us compare Figp) Gvith
fact. Fig. 5. In the case of the decoupling approximation, the

A. Comparison with the decoupling approximation

K (t—o0)oc 7~ Y4, (30)
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FIG. 6. Numerical results ofg) the dynamical structure factor FIG. 7. Temporal development of the single-point distribution
and (b).the.crlt!cal wave number with the use of the decoupling ¢,nction PM(u,t) and the dynamical structure factstk,t) as a
approximation in the case of—~ andy(t)=0. Parameters af®  fnction of u andk, respectively, for the nucleation process in the
=0.1, vgup= 1000, andcy=c.=1.5. The dynamical structure fac- case ofr—o andy(t)=0. Parameters ar&=0.1, vquo= 1000,
tor moves to the longer-wavelength side and always grows. The _4 g andc,=2.2

=15, 2.

critical wave numbek (t) decreases monotonously.

sudden change of the critical wave number disappears, which Com i< Co(t=0)<c+ i (33
contrasts to the case of the LBM approximation, where an J3 J3

abrupt change takes place. o _
As was mentioned, the alteration from growing to declin-the wave numg)/grs satisfying’,>0 can exist fork<
(|of1au?| ,=o) ¥4 in which the density-fluctuation modes

ing of the dynamical structure factor and the abrupt changée” L] . i
of the critical wave number are caused by crossover from th@e unstable and grow in time. This corresponds to the spin-
unstable regime to the stable one of the system. However, trfdal decomposition at an early stage. On the other hand, if
decoupling approximation is valid only when the distribution the initial mean densitgo(t=0) is in the region of
function has a Gaussian form, which cannot describe a
phase-separated state with the two-peak distribution func- 1 1 _
tion. Therefore the decoupling approximation is invalid for ﬁ or Cet ﬁ<00(t_0)’ (34
this crossover phenomenon. This is a reason why the char-
acteristic behavior oB5(k,t) andk(t) under the LBM ap- no wave number satisfyin§’,>0 exists. In this case, all
proximation cannot be reproduced with the decoupling apdensity-fluctuation modes are stable. This corresponds to the
proximation. Thus we can conclude that the LBM nucleation dynamics, although, of course, small droplets are
approximation is more appropriate than the decoupling apalways created due to the thermal fluctuations. We calculate
proximation in the study of the phase-separation dynamics.P(!)(u,t) andS(k,t) for the nucleation regime in the case of
infinite lifetime =00,

Figure 7 shows the temporal evolution BfY(u,t) and
, i i S(k,t) for the mean densitg,=2.2 and the critical density

We shall consider also the nucleation dynamics to COMg —1.5. The other parameters are the same as in Figs. 3
pare with the spinodal deci)mposition in the case of infinite;ny 3q) for the spinodal decomposition. Because the mean
lifetime 7= in terms pr( Y(u,t) and S(k,t). Before dis-  gensityc, is larger than the critical density,, the single-
cussing numerical details, we here explain a qualitative difyygint distribution function is asymmetrical, as shown in Fig.
ference between the two processes. To this end, thgq) The width of P((u,t) is broad and the peak shifts to
Lyapunov spectrum under the crude linear approximation igy,q larger-density side. As the time goes B{*)(u,t) oozes

Co(t=0)<c.—

B. Comparison with the nucleation process

employed: to the smaller-density side and another small peak appears. A
clearer difference between the spinodal decomposifag.
ol o Pai 3(d)] and the nucleation procefsig. 7(b)] is found in terms
[y=—k* k*+ ﬁ 31 of the dynamical structure fact@(k,t). Recall thatS(k,t)
U =0 grows first and then declines later in the case of the spinodal

decomposition, as shown in Fig(d3. In the case of the

The linear approximation, WhI_Ch excludes all nonlinear ucleation process, on the other hastk,t) always grows,
terms depending on time, is valid only at the early stage 0L shown in Fig. ()

the phase-separation dynamics. The boundary between the
spinodal decomposition and the nucleation process is defined .
through the relation C. Conclusions

We have formulated a theoretical model to discuss the
52f dynamical characteristics of the phase separation in finite-
—2> =3(Ccy—Cg)?—1=0. (320 lifetime systems with the LBM approximation. The temporal
) o behavior of the single-point distribution functid®*)(u,t)

and the dynamical structure fact®fk,t) has been calculated

If the initial mean densitycy(t=0) is in the region of numerically in the case of cw creation of particles. We can
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calculate straightforwardly the other cases, where the cresnly the simplest case as the first step in investigations for
ation rate depends on time. When the lifetime is enougHinite-lifetime effects. An actual situation corresponding to
short P()(u,t) cannot separate into two peaks aBk,t) this paper may be realized, for example, when the density of
becomes a sharp-peak form at a finite wave number. Thessterstitials recombining with vacancies is so large that it can
peculiar characteristics in the finite-lifetime case are well unbe regarded as a constant for local position and time or when
derstood in terms of the lower and upper critical wave num-excitons disappear due to the spontaneous radiative decay.
berskM(t) andk®(t), respectively. Domains with a finite Besides these, we hope for a future realization of experi-
size Of[k((:l)(t_>m)]_1 remain finally, the size of which is ments where the instability of excited states can be con-
proportional tor"% The differences between the LBM ap- trolled spatially and temporally. The quantum nature of par-
proximation and the decoupling approximation were clarifiedticles is also an attractive topic. Various extensions of our
in the case of infinite lifetime-=c0. The former is better for framework are expected for more realistic problems. Al-
the Study of the phase_separation dynamics_ We have Conﬂjough.the pl’esent theOI’y dloeS not inclu(-je all aCtl:]aI details,
pared also the spinodal decomposition with the nucleatiove believe that these findings hold universally in phase-
process in the case of infinite lifetime. Sepal’ation dynamiCS in finite-lifetime SyStemS and will be of
As a final discussion in this paper, we describe a fev\great Significance in the interpreta’[ion of experimental
things about the extension of this theory. It is clarified that'esults.
the phase separation is incomplete when the lifetime is
shorter than the onset time. In order to obtain the onset time
we need to discuss more microscopic characteristics of the
system such as the interaction between particles, which is The authors are grateful to Professor C. Itoh and Professor
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