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Bending martensite needles in NiAl 35 investigated by two-dimensional elasticity and
high-resolution transmission electron microscopy
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The bending and tapering of microtwin needles at the interface between two martensite laminagesl kg Ni
are addressed. A theory is presented, based on the assumption that the microstructure is essentially stress-free;
it predicts a linear relationship between the bending and tapering of the needles. The predictions of this theory
are compared to experimental data obtained by high-resolution transmission electron microscopy. The agree-
ment between theory and experiment is good, thus bridging the gap between continuum theory and discrete
atomic structure, particularly in the region where the bending and tapering are largest.
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[. INTRODUCTION also seen in other materials, including the shape-memory al-
loy CuAINi.”
The alloy NisAlss undergoes a first order cubic-to- In the present paper a theory is presented, based on the

tetragonal martensitic transformation upon cooling. The higressumption that the final microstructure is essentially stress-
temperatures-phase B2 austenitg has a CsCl-type unit free;_lt uses Ilnear elast|C|tyz dravymg in part on prior v_v8rk,
cell. The low-temperatur@ phase [ 1, martensite occurs and it predicts a linear relationship between the bending and
in three equally probable deformation variants due to thd@Pering of the needles. The predictions of this theory are
reduction of symmetry. As in many symmetry breaking compared with atomic-scale measurements, obtained by ana-
phase transformations, microstructures form upon cooling 4¢ZNd_experimental high-resolution transmission electron

parent-product interfaces, mixing two or more variants ofm|crpscopy(HRTEM) Images. The experiments and theory
martensite to minimize the stress. Once the cooling is comare N good agreement, particularly in the region yvhere the
' bending and tapering are largest. The present fit between

eoretical calculations performed in a continuum framewor
Yeoretical calculations performed t f k
cally lami I . “and experimental values directly obtained from images re-
structures are typically laminate¢plates mixing two eaiing the discrete nature of the atomic lattice could proof

variants of martensite, henceforth referred to as variants be an important step in bridging the gap between distinc-
and 2. Within each laminate these variants match coherentlye dimensional scales.

along so-called microtwin planes parallel to the close packed
planes of the product structuté Where two laminates with
different twin planes meet they form interesting, macroscopi-
cally coherent nanostructures: such interfaces may be called Figure 1a) shows a typical transmission electron micros-
“approximate interfaces” or “macrotwin boundaries,” refer- copy (TEM) image of the macrotwin boundary between two
ring to their width and average mirror nature, respectively. martensite laminates. Each laminate is composed of the same
This paper considers a specific, relatively common type otwo variants of martensite, visible in the image as bright and
macrotwin boundaries in Ni-Al martensite. It occurs whendark bands as a result of the bright field imaging condition
both laminates are made from the same two variants, whiceand a slight tilt of the sample away from a perfect zone
results in a macrotwin boundary macroscopically parallel toorientation with edge-on microtwin planes. The planar inter-
a former{10Q ; type plane. As we shall explain presently, faces between two adjacent variants are the close packed and
the microstructural character of the boundary can take tw@ssentially stress-free microtwin planes at which the two
different forms “crossings” or “steps,” depending on the variants meet coherently. For the present material, the
local environment. This paper addresses the details of themount of lattice distortion yields an average volume frac-
second case, namely, steps, whereas the crossings will tien close to 1/3:°-1 From corresponding diffraction pat-
treated in a forthcoming paper. Each step is essentially paterns and HRTEM images it is clear that the widest variants
allel to a microtwin plane and along the step the microtwinson both sides belong to the same type, which we will choose
are nearly unperturbed on one side, while they bend antb be variant 1.
taper into needles on the other. Further discussion of this The complexity of the microstructure near the macrotwin
macrotwin boundary and how it arises—including discussiorboundary arises from mismatching rotations. Indeed, the ori-
of the underlying phase transformation, and the details of thentation of the lattices of variant 1 is not identical in the two
experiments—can be found in Refs. 3—5. Such bending anminates; rather, they differ by a rotation of about 7°. The
tapering is observed in conventionally treated bulk material same applies of course to the variant 2 microtwins, but with
as well as in splat-cooled sampfeEquivalent structures are a different value of-14° due to the rigid body rotations of

tures of the product phase remain. In Ni-Al, these micro

Il. EXPERIMENTAL OBSERVATIONS
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FIG. 1. (a) Typical TEM image of a macrotwin boundary in §yAl ;5 martensite revealing crossing and step type microstruct(igs.
HRTEM enlargement of a step revealing the atomic lattice bending when looking along the arrow. The indicated lattice directions at the
bottom refer to the orientation of the originglaustenite corresponding witla).

both laminates already existing before the macrotwin boundnate. Our goal is a quantitative analysis of this tapering and

ary is formed®® So the variants cannot simply heal acrossbending.

the approximate interface; they must do something more The region near the approximate interface is certainly

complex, to accommodate the change in rotation. stressed, as is seen in FigbjLfrom the strong changes in
Upon examination of Fig. (& it is seen that there are two Mage contrast on a scale of a few nm, and there can be

essentially different local microstructures, labeled “cross-dislocations as well. We believe, however, that incoherence

ings” and “steps.” The steps are locally parallel to alternat- and stress play a relatively minor role, and our theory is
9 pS. P yp founded on this viewpoint. This is supported by the fact that

ing {1105 and{110}4 planes, only on average leading to the atomic lattice remains resolved in nearly the entire HR-
the preferred 100 5 orientation for the microtwin plane at a TEM image, even close to the interface, indicating that the
larger scale. The part labeled “crossings” is actually only aatomic columns remain undistorted along the viewingzor
small portion of the present interface, but it can be distin-direction. _ S
guished by the fact that the microtwins from both laminates In what follows the proposed theoretical description is
penetrate into the other one, whereas at a step several micrB’eSented first, indicating the relevant parameters to be mea-

twins of one laminate are seen to stop at one microtwin planéuigﬁ]ggo;grtgenSé%ﬂ;rg?rg?ﬁlegrigg;ghgg g]niisio?r?t;g&e
of the other laminate. In cases where the crossings exte P P

. . .= .With the theoretical model.
over a large region, the central macrotwin plane is immedi-

ately parallel with 100 5 plane. Examples of the latter are IIl. THEORETICAL ANALYSIS OF THE BENDING
presented and discussed elsewherdn general it is found DEFORMATION

that a crossing type is preferred when the local volume frac- ) ) i .

tions on both sides are constant and stdfl@n the other The microstructures under consideration mix just two

hand. if. for whatever reason. the local volume fraction onvariants of martensite. Their transformation strains relative to

one side differs strongly from the average value, a step typH€ cubic parengg phase ardJ; =diag(»z, 7:,71) andU,

is observed. =diag(n,,73,71) and the twins planes are (110)and
This paper focusses on the step-type interface. At th€110)s. It is convenient, however, to work in a different

scale of a single step, the local orientation of the approximateoordinate system, rotated by'4 about thez axis (i.e., the

interface is a microtwin plane. On one side the microstrucviewing direction of the TEM images so that the twin

ture is simply twinned, ending with the smallest variant 2.planes are coordinate planes. In this rotated coordinate sys-

On the other side the variant 2 twins taper into needles, leatem the transformation strains are

ing only variant 1 at the macrotwin boundary as seen in the

enlargement of Fig. (b). In the latter image the geometry of mtus Mmoo
the white dot pattern reflects the tetragonality of the marten- 2 2
site lattice, for which thec/a ratio can thus immediately be — — +

: } , U, M~ N3 M1t 13 ,
measured. As the microtwins taper, these twins also bend, > > 0
and the resulting rotation changes the orientation of the lat-
tice in the retained variant 1 to match that of the other lami- 0 0 71
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a) reference coordinates b) measuring bending
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FIG. 2. Reference positions and notations used for the description of bending and tapering in the needle patterns, including the definition
of the bending parameters as well as the variant numbers.

mtns m3—Mm 0 (X,¥,2)—=>[X+ g X+ U(X.Y),y+81y+v(X,Y),Z+SzZ]( :
2 2 1

since the associated linear strain is

U= m3— 71 7M1t 73 0

2 2 ty Uy + vy 0
0 0 ” €171 Uy
In the framework of geometrically linear elasticity, it is Uy v e1+v, 0
convenient to write these as
0 0 Eo

€1 1) 0 €1 -0 0
Ul:|+ ) €1 0 U2:|+ -0 €1 0

with u, the partial derivative ofi by x, etc. The ansatzl)
' reduces the problem to one of 2D linear elasticity, involving

0 0 e 0 0 e a displacemenitu(x,y),v(x,y)] whose linear strain
Where81: ( 7]1+ 7]3)/2_ 1, Er=1M1— 1 and o= ( e 7]3)/2 uy+ Uy
Figure 2 shows schematically the structure that will be Ux T2
analyzed. The local approximate interface is the plas® e(x,y)=
in reference coordinates of the austenite. To its left is a re- Uy +2x -
gion of twinned martensite, with twin planes parallel to the 2 Y

(y,2) plane, ending ak=0 with variant 2. To its right is a
different region of twinned martensite, with twin planes par-
allel to the &,z) plane. Far from the approximate interface
the twins on the right are uniform. Near the approximate e =
interface, however, the twins of variant 2 taper into needles,

so that atx=0 only variant 1 is present. The volume fraction
\ of the needle variant 2 is thus a function>gfwith X (0)
=0 and\(x)—\,, asx—oe. In the reference coordinates the
shapes that will become the needles after the transformati

prefers eigenstrains, in variant 1 ance, in variant 2, where

0 ¢ 0 -9¢
[} e2:

6 0 -5 0/ @

This 2D, two-phase problem was studied in Ref. 8 where
elastic energy minimization was used to simulate the micro-
structure. The viewpoint of the present paper, however, is

. - . ) %bmewhat different from that of Ref. 8. Here, we do not
are symmetric, as shown in Figia2 Deforma_t|on during the attempt to predict the shapes of the needles. Rather, these
transformation breaks the Symmetry, making them be_:nd _a§hapes are treated as data to be determined experimentally by
they approach t_he approximate interface, as shown in I:'Ql‘neasuring}\(x), the volume fraction of the needles at dis-
2(b) [see also F.'g'.(b)].' . o tancex from the approximate interface. A simple, kinematic
T.he schematic in Fig. 2 is pe'rlodlc.m Th? pre;ent the- relation linking the bending of the needles to their tapering
oretical approach does not require strict periodicity, but macy, . e derived. The theoretical 2D approach is supported by

roscqpic homogene_ity in thy _direction is_ _assumed. This the fact that the HRTEM images taken along whdirection
permits the averaging of various quantitiésg., volume still reveal a well-resolved lattice indicating no or very little

fraction or Strim' with respect toy. For any functiorf (x,y), lattice distortions along the atomic columns.

one can writef (x) =average of with respect toy. The present analysis is founded on a few basic principles,
Neglecting dislocations, the present microstructure can bhich are now stated and their origin explained. Principle 1.

viewed as a mixture of two coherent elastic phases, i.e., thg the uniformly twinned region far from the approximate
two martensite variants 1 and'2Within the framework of interface, i.e., ax—
linear elasticity, it is natural to assume that the map from

reference to deformed position has the form u,=0, u,==*26, wv=v,=0. (3
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FIG. 4. Example of a deformation satisfying principles 1-3
(Ref. 8 with u(x,y+d)=u(x,y)+28(1—2\,)d and a'(x)
=2[N(X)—\s].

of EF in the deformedphysica) variables is also straight—
this is the step. The images AB andCD are, however, not
straight; rather, they oscillate around macroscopic lines with
a well-defined slope. Principle 2 tells us that these lines are
parallel to the step, as shown in Fig. 3.

Notice that principles 1 and 2 determine the valueupf
uniquely:

FIG. 3. Microstructural interpretation of principle 2: the=
constant linesAB, CD, and EF remain macroscopically parallel
with one another after deformation.

Indeed, the uniformly twinned structure is exactly stress- Uy=26(1-N) +(=28)A=26(1-2\.), (9
free, soe(x,y) takes exactly the values, ande,. This de-
terminesu andv up to an infinitesimal rigid motion. A con-
venient choice of this rigid motion gives E().

Principle 2. The planeg=constant remain macroscopi-
cally parallel after deformation, i.e., u+tw, [~ inside the needles,

wherel ., is the volume fraction of the needlégariant 2 far
from the approximate interface.
Principle 3. The shear straim , takes valuest 4, i.e.,

_ . (6)
u, is independent ofx. (4) 2 6 outside the needles,

This follows from the form of the eigenstrains. Indeed, sincefor all x>0. This follows again from the form of the eigen-

both variants prefeu,=0, we expectu, to be negligible strains, which prefege,,= 6 in variant 1(outside the needlg¢s

throughout the microstructure. So for any<®,<x, and ande;;=— 4 in variant 2(inside the needlgsAs we expect
anyy, the microstructure to be approximately stress-free, &j.

holds, up to small corrections due to deviatioregf from its
stress-free values.

One might wonder whether these principles are consis-
. o . ] ) tent, and what sort of deformation they permit. Figure 4 an-
Differentiating iny and then integratingaveraging overy,  swers these questions by providing an example of an elastic
we conclude that displacement consistent with our principles. The horizontal
componentu is periodic iny with u(x,y+d)=u(x,y)
+25(1—2\.,)d, so it hasu,=245(1—2\..), consistent with
This gives Eq(4), up to small corrections due to deviation of principles 1 and 2. The vertical componenvis —2da(X),
u, from its stress-free value of 0. Translating this into theindependent ofy. Outside the needles the example consists
actual microstructure and atomic lattice deformations yieldof pure bending plus a uniform shear; inside the needlliss
Fig. 3. The linesAB, CD, andEF (i.e., x=const) are par- determined by linear interpolation 1 Therefore we have,
allel and straight in the reference austenite lattice. The imagalong any linex=x,

X

u(Xz,y) —u(xy,y)= f “Uy(x,y)dx=0.

X1

Uy(Xz) = Uy(X1) ~0.

1 1-x
_u —_——
_ y
u,={ A \

26(a’ +1) outside the needlgd$raction (1—2\)]

26(a’ +1) inside the needledraction \),
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from which it follows that Our analysis shows that the amount of bending is propor-
tional to\,,. Thus the bending should be most pronounced
268[(N=2\,—a')/\] inside the needles, when the volume fraction of the needle variant is larye (
Ut %=155 outside the needles. ~1). This effect cannot easily be observed in Ni-Al alloys,

because the value of, is always around 1/3However, the
Therefore the example satisfies principle 3 as well, ifeffect of varying\.. is very clear in the work of Abeyaratne,
a' (X)=2[N(X) —Nu]. Chu and James on CuAlNiwhere similar two-phase micro-
We claim that, for any deformation satisfying principles structures are observed and the volume fraction is varied by
1-3, the observed bending angléx) at distancex from the  applying stress.
approximate interface satisfies

IV. COMPARISON OF THEORY WITH EXPERIMENT

tanf(x)= 4|Zl;773|

1+ 73 (A=A 0 From the theoretical treatment it is clear that the bending
is expected to be related to the tapering, which can be mea-
sured through the changing volume fraction. The common
parameter here is the distance into the plate accommodating

the bending variants and measured from the atomic plane

[See Fig. 2b) for the definitions off(x), A(x), and\., .]
Indeed, as noted above, principles 1 and 2 give

Uy=25(1—2\..). separating the bending variants from the unaffected plate.
However, principle 3 gives The valuess ande,, which depend on the deformation pa-
rameters and thus are constant for a given composition, have
Uy+ v =28 1= N (X) ]+ (—28)[N(X)] to be measured. In what follows different approaches for
obtaining these parameters from the experimental images are
=26[1-2\(x)] forany x>0 discussed.

so it is concluded that
A. Determining é and &4

U= 49 A= MX)]. ®) The parameters$=(7,— 73)/2 ande;=(7,+ 73)/2— 1

can be obtained by measuring the elongatigrof the cubic
c direction and the compressiap, of thea andb directions
during the martensitic transformation. This should in prin-
X—>[X+e1X+HUX, Vo), Yot e1Yot v(X,Yo)s  Zo+e2Zo], ciple be performed by measuring the lattice parameters of the
austenite as well as the martensite at the transformation tem-
so its slope is perature(approximately 400 °C). However, the present HR-
TEM work is based on the study of materials which are
—tan(6)= Ux _ 9) completely transformed into martensite, which means that
1+gq+uy one can not access the cell parameter of the austenitic state.
Thus, as the exaat and e, values for our material are un-
Since the microstructure is nearly stress-free, hgthnd  known, a first option is to use values available from the
vy are negligible(see the discussion of principle.2Zrhere-  literature on Ni-Al material, possibly with a slightly different
fore we may ignore the contribution of, on the right-hand  composition. Alternatively, as the Ni-Al martensitic transfor-
side of Eq.(9), and we may replace, by v,. Taking abso- mation implies shape memory behavior, one can assume vol-

Under the ansat#l) the deformed midline of a needle is
the image of

lute values, this gives ume preservatidid*® during the transformation which en-
ables one to obtainy; and 75 only from the martensite
|;X| 4|6 lattice. To begin with, three sets of values, obtained from
tané(x)= (A+ey) (1+e )[)\w—)\(x)], (100 different sources and under different assumptions, are sug-
! ! gested.
which is precisely relatior7). (1) 3=1.083 andzn;=0.939 from N, sAl 37 s melt-spun

The preceding analysis determines the direction of thesamples measured by electron microscopy as both austenite
bending as well as its magnitude. The present Ni-Al materiahnd martensite coexist for this compositidrThis gives a
has 6=(7,— 73)/2<0, so Eq.(8) givesv,<0, consistent first set of values ob;=—0.072 ande;,=0.011.
with Fig. 2(b). If the needles contained variant 1 rather than (2) 73=1.1302 and»;=0.9392 for NjgAl34 bulk mate-
variant 2 then they would bend the other way. Indeed, thisial and obtained by combining x-ray diffractibh and
case is obtained by replacirjby — & in the formulas given HRTEM.? This gives a second set of values &h=
above, which changes the signwf. In this case variant 2 —0.0955 ands;,=0.0347.
would be retained at the approximate interface which has (3) #3=1.15 andz,;=0.93 from the preserjtl10], HR-
indeed to be rotated in opposite sense in order to match thEEM images assuming volume preservation. This gives a
variant 2 orientation to the left of the boundary. Note that ifthird set of values o;=—0.11 ande,3=0.04.
the needles contain variant 1 then the layer just to the left of As the § an e, values from the Nj Al;; 5 compound
the approximate interface must also contain variant 1. differ quite strongly from those for the pjAl;, and those
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eters of the martensite are known.

As indicated in Fig. #h), for a givenx, the indicative
parameter of the bending is the valivg which measures the
displacement in the direction of a lattice point from the
reference plane. When the functiary = f ,(x) is experimen-
tally measured, it can be compared to the theory by numeri-
cally integrating the proposed expression foAy/dx=
—tané(x) given in Eq.(7). As the experimental measures
are always performed in the deformed system, the coordi-
nates used when measuring HRTEM images are actually
X(1+e&4) andy(1l+e4) when compared with the reference
(x,y) coordinates used in the theory. As the final comparison

FIG. 5. Typical HRTEM image of a nanoscale martensite needlds that of tand(x), this, however, has no impact on the final
pattern. The microtwin boundaries are emphasized as well as a typitumerical results.
cal length for measuring the volume fraction To measure the bending deformation for a given step in

) o ) practice, typically three traces of (_11,9 planes are chosen
assuming volume preservation in the present material, onlys indicated in Fig. 6. For each tradey= f () is measured

the second and third suggestions will be retained. followed by averaging pex position. The calculation of the
function tanf(x) given in the theoritical relation is per-
B. Measuring A, and A (x) formed from the experimental measure\di). The theoret-

ical estimate of the functiody=f,(x) is then obtained by
numerical integratioficumulative suof tané(x). The val-
uesAy=f,(x) found from this calculation can then be com-
pared directly with the observed ones.

The parameters., and\(x) can easily be obtained from
a TEM image by measuring the relative widths of the microt-
win variants at a given value fot. Attention should be paid
to measurea for the local area under investigation: only four
to a maximum of eight microtwin variants are typically
present at a single step regifsee Fig. 1a)]. The transition
layer in which the bending occurs is typically of the order of
10 nm wide measured along theaxis (see Fig. 5. Conse- In the example of Fig. 5, the bending of the three traces of

quently, the parameteds, and\(x) can be obtained from a  the (111), planes is very similar. In another case, taken from
single HRTEM image. The measure bfis made manually the same sample, the presence of dislocations disturbs the

with & ruler on an enlarged HRTEM picture. The major un-cqniinuous bending of the traces of the ()} planes, which
certainty on the measures comes from the choice of the eny sirates the experimental difficulty to estimate an average
velope of the needles since its limits are not necessarily 0ljenging deformation for a given area. This also illustrates the
vious in the picture especially when getting closer to thegyt that the bending deformation can be different from one
interface, i.e., for the tips of the needles. area to the other. When limiting our measurements to situa-
tions where no dislocations are observed, a full treatment of
C. Comparing theory with experiment the experimental measures yields the plots shown in Fig. 7.

The values ford(x) cannot directly be measured from the _Here both thex dependence oky an(_j)\ are presented. It Is
HRTEM pictures and the following procedure is used |nimportant to note that both factors indeed start to change at
order to be able to easily follow the bending, the traces of théhe_ same distance from th_e_ reference planex-aD. Th_e
(110), or (1T1) planesi.e., the microtwin plangsare en major influence on the precision of the measurements is that

ﬁ 0 . .y =

h 4 by Fourier filterina. Then the filtered i _ of the averaging over different planes or variants.
anced by Fourierfiitering. nen the hitered image Is super-—, Fig. 8 the latter results are compared with the calcula-

|mpo§ed onto the original HRTEM_lmage, as shown in Flg'tion as explained above and using both suggested values for
6, which provides a reference for distances as the cell params ands,. The uncertainty on the input values fye ;, and\
are incorporated into the theoretical curves, yielding the un-
certainty flags around the calculated points. It can be seen
that the correlation between the start of the bending and ta-
pering is very well reproduced. Changing the valueg ahd
g, yields a slightly different curvature, with the best match
found for the deformation parameters and ¢, obtained
from the present HRTEM images assuming volume preser-
vation. Still, the curvature of the experimental graph when
approaching the interface is stronger than that of the two
cases of the theoretical approach, even when including the
FIG. 6. Superposition of an original and a filtered HRTEM pic- uncertainty flags. When data is collected from an image in
ture. The three planes taken to measure the bending deformation anhich the bending is accompanied by dislocations, the ex-
indicated by dashed lines perimental graph tends to have a slower curve.

V. DISCUSSION
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The experiments bear this out, even quantitatively, in the
region very near the approximate interface where the slopes
of all curves are indeed the same. The theory is less success-
ful in the region around 5—10 nm from the approximate in-
terface, where the bending and tapering are small. The cur-
vature in the x,Ay) graph is clearly larger in this region
than our theory would suggest.

It is not surprising that our theory does best where the
tapering and bending are largest. Indeed, our analysis ignores
any role of incoherence or stress, but there is of course some
stress, and often some incoherence. Where the geometrical
effects(tapering and bendingare large, the impact of stress
and incoherence is truly secondary. But where the geometri-
cal effects are smallest the roles of stress and incoherence are
naturally more significant. It is not clear at present whether a
more extensive theory as that of finite elastitityvould
solve this discrepancy, as the latter occurs far from the ap-
proximate interface where the loss of accuracy due to linear-
ization would seem to be smallest. Still it should be re-
marked that the atomic scale bending and measures from
images of a discrete lattice are relatively well described in
the framework of a continuum theory, which opens potential
ways for bridging the gap between those essentially different
concepts and dimensionality scales.

ing as Obtained by averaging over several planes and variantS, re- |I’1 relat|0n W|th the OVera” nanostructures and mICI’OStI’UC-

spectively.

It should be noted that the present theory successfull
captures the link between bending and tapering in the regi
where both effects are large, i.e., ferbelow about 5 nm.

Indeed, our main conclusion is that

dAy 71— 73

[N = A(X)].

dx 71+ 713

tures observed around these type of macrotwin boundaries,
i.e., those with the same combination of martensite variants
with the same volume ratio on both sides, it should be men-

Yioned that the present bending and tapering is only one of

the possible structural features the system uses to accommo-
date remaining stresses when two laminates meet. Other
means include very small regionss(5 nm diameterat the
interface with a slightly different lattice deformation and
atomic ledges displacing the microtwin planes from one
close packed plane to the ndxt the range between 50 and
500 nm away from the interfagé > Although the steps in-

bending Ay (nm)

o—o experimental bending
o —e theoretical bending (5=-0.0955,€,=0.0347)
oo theoretical bending (3=-0.11,€,=0.04)

X, distance to the interface (nm)
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FIG. 8. Comparison of the bending deforma-
tion as obtained from experimental data and the-
oretical prediction. Very near the approximate in-
terface(0-5 nnj the slopes of all curves are the
same. The curvature of the experimental graph is
clearly larger than the theory suggests in the re-
gion around 5-10 nm from the approximate in-
terface, i.e., where the bending and tapering are
small.
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vestigated here seem to be related with an unstable volunresolution transmission electron microscopy images. Al-
fraction on one side of the interface, the underlying reasothough the numerical curves obtained from the theoretical

for this remains unclear for now. predictions and experimental observations fall outside the
respective precision ranges, the general trends of the obser-
VI. CONCLUSIONS vations are well reproduced by the theory, particularly in the

region where the bending and tapering are largest. This can

The relation between bending and tapering of martensitge ynderstood by noting that in this region the assumptions
needles at a macrotwin boundary inghlil 35 is investigated  of the theory are indeed best met.

both from theoretical as well as experimental point of view.

The theoretical approach is based on the assumption that the

microstructure is es_sentlally s’gress-_free and uses linear _elas- ACKNOWLEDGMENTS

ticity. It predicts a linear relationship between the bending

and tapering of the needles, the latter expressed as a function Part of this work was supported by the Trade and Mobility
of the volume fraction of the small needle variants. The de-Research program of the EEC under the Project No. FMRX-
formation parameters of the austenite-martensite transform&T98-0229 within the network entitled “Phase Transitions in
tion appear as constants in the obtained expression. The pr€rystalline Solids.” Additional support was provided by the
dictions of this theory are compared with atomic-scaleU.S. National Science Foundation, and the Isaac Newton In-
measurements, obtained by analyzing experimental higtstitute at Cambridge University.

1s. Chakravorty and C. M. Wayman, Metall. Trans.7A 555 (1995.

(1976. s, Chakravorty and C. M. Wayman, Metall. Trans.7A 569
D, Schryvers, Philos. Mag. A8, 1017(1993. (1976.
3Ph. Boullay, D. Schryvers, and J. Béilinpublishedl 10A. G. KhatchaturyanTheory of Structural Transformations in
4D. Schryvers, P. Boullay, R. Kohn, and J. Ball, Proceedings of ~Solids(John Wiley & Sons, New York, 1983

ESOMAT 2000[J. de Physiquéto be publishey. 113. M. Ball and R. D. James, Arch. Ration. Mech. AnkD0, 13
5p. Schryvers, P. Boullay, P. Potapov, and C. Satto, Adv. Solid (1987.

State Phys40, 375(2000. 2K Bhattacharya, Acta Metall. MateB9, 2431(1991).
5D. Schryvers and D. Holland-Moritz, Intermetallics, 427  °K. Bhattacharya, Arch. Ration. Mech. Andl20, 201 (1992).

(1998. 14p. L. Potapov, P. Ochin, J. Pons, and D. Schryvers, Acta Mater.
"R. Abeyaratne, C. Chu, and R. D. James, Philos. M&y.457 48, 3833(2000.

(1996. 153, Ochiai, O. Noguchi, and M. Ueno, J. Jpn. Inst. MV&t, 686
8R. D. James, R. V. Kohn, and T. W. Shield, J. Phys.5\V253 (1987.

144105-8



