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Theory of the martensitic transformation in cobalt
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A phenomenological theory of the martensitic fcc-hcp transformation is proposed and applied to the illus-
trative example of cobalt. The fcc and hcp structures are shown to result from different ordering mechanisms
from a disordered polytypic structure and to be intrinsically faulted. The three, fcc, hcp, and disordered
polytype, structures are inserted in the framework of the segregation process which leads to the formation of
close-packed structures from the melt. The essential features reported for the fcc-hcp transformation in cobalt
are explained within the preceding model, namely, the asymmetry of the interphase region, the phonon spec-
trum, thed-shape of its specific heat anomaly, and the existence of an intermediate modulated structure. The
property of the transformation enthalpy to be different on heating and cooling is related to the different degree
of order of the hcp and fcc structures. The partial dislocation mechanism currently assumed for the transfor-
mation is deduced from the secondary shear strains involved at the transformation.
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I. INTRODUCTION

Face centered cubic~fcc! and hexagonal close packe
~hcp! structures coexist in the pressure-temperature ph
diagrams of more than twenty elemental crystals,1,2 but only
for six of them~He, Fe, Co, Tl, Pb, and Yb! is there a direct
transition between a fcc phase and the simplest~hcp! close-
packed bilayer structure. Hence in the lanthanides Sm,
Tb, Dy, and Y, the fcc and hcp phases are separated
higher-order polytypes, namely, the double hcp~dhcp! and
nine-layered rhombohedral~9R! structures. In other lan
thanides~La, Ce, Pr, Nd, Pm! and some heavy actinide
~Am, Cm, Bk, Cf! the hcp phase is absent and only t
fcc-dhcp and fcc-triple hcp~thcp! transitions take place. In
Cs and Xe the high-pressure hcp and low-pressure fcc ph
are separated by intermediate structures.

With the exception of cobalt all the elements displaying
fcc-hcp transition possess also a body centered~bcc! phase in
their phase diagram. For example, in Fe, Tl and Yb the
phase occupies a large region of the phase diagram b
adjacent to both the fcc and hcp phases. In these three
ments the fcc and hcp structures can therefore be ded
from their parent bcc structure via the Bain deformation3 and
Burgers4 mechanisms as described in Refs. 5 and 6. In c
trast the phase diagram of cobalt, which has been rece
explored up to 100 GPa and 3000 K~Ref. 7! shows no pres-
ence of a bcc phase. Accordingly the preceding mechani
cannot be invoked for describing its fcc-hcp transformati
This remark holds for3He and4He for which the bcc phase
occupies a restricted region of the corresponding ph
diagrams1 being exclusively in contact with the hcp phas
far from the region of stability of the fcc phase. In Pb t
high-pressure bcc phase8 seems also to have no contact wi
the fcc phase but the phase diagram is still largely un
plored.

The fcc-hcp transformation in Co is currently designa
as martensitic9–11 due to its diffusionless character, its co
siderable thermal hysteresis and the typical nucleation
0163-1829/2001/64~14!/144104~17!/$20.00 64 1441
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growth processes. It shows a shape memory type ef
which concerns the relative orientation of the fcc and h
structures when cycling across the transition.12 Furthermore
the transformation temperatureTm , as well as the amoun
and extent of transformed structures is drastically affected
various factors, namely, the external stresses13 or the alloying
with soluble atoms~such as Fe and Ni!14 or with metallic and
nonmetallic elements of limited solubility range.15 There ex-
ist however, a number of features which makes the transi
in Co different than the martensitic transformations foun
for example, in bcc-based metals and alloys. Thus the tra
formation, which takes place atTm.695 K at ambient pres-
sure is weakly first order, as attested by small change
enthalpy (Dh5113 cal mol21 on heating! and volume
(DV/V.3.331023) and by a sharp singularity of the spe
cific heat.16 On the other hand no significant softening of t
relevant phonon branches could be observed17–21 in the low-
temperature~hcp! or high-temperature~fcc! phases but only
a slight decrease of thec44 hexagonal shear constant19,21

when approachingTm from the hcp phase. There is also
strong tendency to disordering of the structure which is
flected in the dependence with temperature of the width
some diffraction lines22 and anomalous diffuse scattering23

along certain directions in reciprocal space which can b
be interpreted in terms of stacking faults.24 In the region of
coexistence of the two structures aroundTm the disorder is
also manifested in pure cobalt by the appearance of a mo
lated structure23 and in cobalt alloys by the stabilization o
high-order polytypes.25,26

Many theoretical models10,27–39 have discussed the fcc
hcp transformation in metals and alloys. Most of them27–35

focus on the transformation mechanism between the
close-packed structures described in terms of nucleation
growth processes. They differ in the details of the nucleat
process and in the way the partial dislocations propag
from plane to plane. Other approaches are formulated
terms of shearing mechanisms,4,10,36 or Fermi-surface
mechanisms taking into account the average electron con
©2001 The American Physical Society04-1
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tration per atom.37–39 None of the proposed models allow
give a comprehensive picture of the intricate variety of e
perimental features reported for the transformation in cob
The aim of the present work is to propose a unified desc
tion of this transformation in the framework of the segreg
tion process which leads to the formation of the fcc and h
close-packed structures from the melt. The observed pro
ties of Co will be deduced from the ordering nature of t
segregation mechanism and from the corresponding sym
try of the transformation order-parameter defined in terms
the proper critical variables and thermodynamic function

The article is organized as follows. In Sec. II we give
phenomenological description of the crystallographic a
thermodynamic properties which characterize the fcc-
transformation extending the ideas developed in Ref. 40
insert this description in a theoretical approach to the se
gation of close-packed structures from the melt. We th
illustrate the preceding model in the case of cobalt~Sec. III!.
In Sec. IV we summarize our results and conclude by und
lining the properties which differentiate ordering-type ma
tensitic transformations.

II. PHENOMENOLOGICAL THEORY OF THE FCC-HCP
TRANSFORMATION

A. Crystallographic description and order-parameter
symmetries

Although a close packing of atoms represented by h
spheres may be realized in several ways,41,42 in real crystals
close packing always corresponds to a layered configura
which gives the possibility of isolating planes of atoms pa
ing in closest manner. These planes are stacked accordi
some rules of filling up space and they represent hexag
packing of spheres each of which is in contact with six ne
est neighbors@point A in Fig. 1~a!#. In the centers of the
triangles formed by neighboring atoms exist geometrica
equivalent sites denotedB andC in Fig. 1~a!. A spatial close
packing is realized when each of the successive layers

FIG. 1. ~a! Close packing of hard spheres. Projection of t
layers in the~001! plane. Centers of the circles are inA position,
small solid dots represent theB position and small open circle
denote theC position. ~b! Two-layered hcp structure.~c! Three-
layered fcc structure.~d! Unit-cell of the disordered polytype struc
ture within the hcp structure.~e! Unit-cell of the disordered poly-
type structure within the fcc structure.
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cupy the free spacings left by the preceding layer related
positions of theB or C type. The stacking order of the layer
determines the type of close packed structure. For the equ
dii ~R! close packed spheres shown in Fig. 1~a! in addition to
the conditionah5bh52R whereah andbh are the hexago-
nal lattice parameters one has additional conditions reflec
the close packing in the third dimension:ch5ahA8/3 for a
two-layer stacking structure,ch5ahA6 for a three-layer
structure, etc.

The two-layered~hcp! and three-layered~fcc! structures
represent the simplest close-packed configurations of h
sphere atoms. In their unit cells shown in Figs. 1~b! and 1~c!
each layer is shifted with respect to the adjacent layer
ahA3 in the @120#hcp crystallographic direction. The basi
vectors of the hcp unit cell is expressed in functions of
basic vectors of the fcc rhombohedral~primitive! unit cell as

ah5bc2cc,bh5ac2cc , ch5
2

3
~ac1bc1cc!. ~1!

From Eq.~1! or directly from the hcp and fcc structure
one can deduce that the maximal substructure common to
hcp and fcc structures is composed by a monolayer hexa
nal structure which has the simple hexagonal symmetryD6h

1

and unit cell volumeV5Vh/65Vc/3 whereVh and Vc are
the respective volumes of the hcp and fcc unit cells. Figu
1~d! and 1~e! show the unit cell of the substructure which w
denominate theL structure within the hcp and fcc structure
One can see from these figures that theL unit cell is filled by
1/3 atoms, i.e., it corresponds to an occupancyZ51/3 for the
L structure. This fractional number must be understood
follows: In a given monolayer the atoms occupy the cryst
lographic position 1~a!: ~000! and only one among the thre
positionsA, B, andC is occupied. In the next layer the atom
cannot be again in positionA but only in positionB or C, say
B. In the following layer they will occupy the positionA or
C, and so forth. In other words theL-layer stacking corre-
sponds to a statistically disordered polytype structure
which theA, B, andC sites are equivalent, the 1~a! positions
being occupied with equal probabilities 1/3 by atoms. W
will now assume that the polytypeL structure is theparent-
structure for our description of the fcc-hcp transition. Wit
that goal let us write the basis vectors of the hcp and fcc u
cells in terms of the basis vectors (aL,bL ,cL) of the L struc-
ture:

ah52aL2bL,bh5aL12bL, ch52cL , ~2!

ac5aL1bL1cL,bc52aL1cL, cc52bL1cL . ~3!

From Eqs.~2! and ~3! one can deduce the wave vecto
expressing the breaking of the translational symmetry at
virtual L→hcp andL→fcc transitions. One finds, respec
tively, k155

1
3 (aL* 1bL* )1 1

2 cL* and k105
1
3 (aL* 1bL* 1cL* ),

whereaL* , bL* , andcL* are the reciprocal lattice vectors of th
L-hexagonal Brillouin zone. The notation of thek vectors
refers to Kovalev’s tables.43

~a! The L-hcp transition.The wave vectork15 associated
with the L-hcp transition coincides with theH point of the
4-2
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THEORY OF THE MARTENSITIC TRANSFORMATION IN . . . PHYSICAL REVIEW B64 144104
hexagonal Brillouin zone boundary.44 Its invariance group is
Ĝ(k15)5D3h . Hence the stark15

! has two branchesk15
1 5

2k15
2 5(4p/3aL,0,p/cL). Since the small irreducible repre

sentation IRt̂1 of D3h which describes the permutation o
atoms in theL structure is the identity IR, one can deduce t
232 matrices given in the Appendix, which generate the
t1(k15

! ) of the D6h
1 space group. Using the transformatio

properties of the matrices formingt1(k15
! ) within a standard

Landau procedure45 one obtains the possible symmetries
the phases induced byt1(k15

! ) and the equilibrium values o
the corresponding two-component order parameter den
(h1h2). Three different symmetries are found:~i! D6h

1 (V
36) for h15h2Þ0, ~ii ! D6h

4 (V36) for h152h2Þ0, and
~iii ! D3h

1 (V36) for h1Þh2Þ0. The second solution coin
cides with the sixfold unit cell and space group of the h
structure. Accordingly theL-hcp transition correspond
to the equilibrium values of the two-component ord
parameter

h152h25hÞ0. ~4!

At the crystallographic level theorderingmechanism tak-
ing place at theL-hcp transition corresponds to the splittin
of the initial onefold site 1~a! into three twofold positions:

2~b!: (000,001
2 ), 2~c!: 6( 1

3
2
3

1
4 ), and 2~d!: 6( 1

3
2
3

3
4 ). Since in

the initial disorderedL-structure only one 1~a! position
among three is occupied in the ordered hcp structure o
one of the twofold positions will be occupied by two atom
Actually as a result of close packing the hard sphere sys
of atoms will occupy either position 2~c! or 2~d! since they
are crystallographically equivalent. The resulting tw
layered hcp structure will fulfil the standard ratio for the u
cell parametersch /ah5A8/3.1.63.

~b!The L-fcc transition.The wave vectork10 associated
with theL-fcc transition is located on the edge~theKH-line!
of the hexagonalL-Brillouin zone.44 Its invariance group is
Ĝ(k10)5C3v .43 Therefore the stark10

! has four branches
which are k10

1 52k10
2 5(4p/3aL,0,2p/3cL) k10

3 52k10
4

5(4p/3aL,0,22p/3cL). From the identity IR ofC3v one
can construct the 434 matrices generating the IRt1(k10

! )
which are given in the Appendix from which the possib
symmetries induced byt1(k10

! ) and the equilibrium values o
the corresponding four-component order parameter den
(z1 ,z2,z3 ,z4) are obtained. One finds seven different sy
metries:~i! D6h

1 (V39) for z15z25z35z4, ~ii ! C3v
1 (V39)

for z1Þz2Þz3Þz4, ~iii ! D3d
3 (V39) for z15z2,z35«* z4,

~iv! D3d
5 (V33) for z15z2Þ0,z35z450, ~v! C3v

5 (V33)
for z15z250,z3Þz4, ~vi! D3h

1 (V39) for z15z3 and z2

5z4, and ~vii ! C6v
1 (V39) for z1Þ0,z25z35«* z4. Only

two of the preceding solutions~iv and v! involve a threefold
multiplication of theL unit cell in agreement with Eq.~3!.
The solution iv actually coincides with the fcc symmet
(Oh

5,Z51) due to the specific crystallogeometrical con
tions fulfilled by theL unit cell which are~i! a 1/3 occupancy
of the L structure by the atoms and~ii ! a ratio cL /aL5A2
corresponding to a close-packed structure. In order to un
stand why the fulfillment of the preceding conditions leads
14410
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a coincidence of the rhombohedralD3d
5 and cubicOh

5 space
groups let us clarify the crystallographic aspect of t
D6h

1 (L)→D3d
5 (V33) ordering mechanism. In this mecha

nism the initial 1~a! position splits into 1~a! and 2~c!:

6( 1
3

1
3

1
3 ) positions. Since atoms occupy only one of the 1~a!

positions in the rhombohedral structure they are localized
lattice nodes but not on sites located inside the unit ce
This is illustrated in Figs. 2~a! and 2~b! showing that within
the preceding unit cell the position denotedX, for example,
is empty. Consequently additional fourfold rotations are c
ated in the structure which are connected with the sixf
rotations of the L structure by $C6

zu00cL% acting as
$C4

zu00cL%. This correspondence is indicated in Fig. 2~a! in
which the effect of a fourfold rotation transforms the positi
X into the position Y which is empty. The coincidence
D3d

5 ↔Oh
5 requires also that the close-packing conditi

cL /aL5A2 which is equivalent to a 60° angle between t
basis vectorsac , bc , andcc of the fcc rhombohedron shoul
be satisfied. It is notorious that a rhombohedral structure p
sessing equal anglesa between its basis vectors has the f
cubic symmetry fora560°. Note in this respect that th
Oh

5→D3d
5 lowering of symmetry corresponds to a ferroelas

transition45 involving the spontaneous shear straine45eyz .
Therefore the reverse mechanismD3d

5 →Oh
5 assumed in our

description of theL→fcc transition requires to take into ac
counte4 as a secondary order parameter coupled to the

FIG. 2. Connection existing between the degree of occupanc
the latent phase and theD3d

5 →Oh
5 increase in symmetry. In~a! a

fourfold rotation exists only if atoms of theX type are absent. The
Y position corresponds to the transformation of theX position under
the effect of a fourfold rotation.~b! Projection on the~111! cubic
plane of the fcc structure.
4-3
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FIG. 3. Phase diagram corresponding to t
order-parameter expansion expressed by Eq.~6!:
~a! when D54a3b22c2,0 and c.0 with §
.0. ~b! and ~c! Existence of two disjuncted re
gions of stability for the fcc phase denoted II an
II8, which are separated by a forbidden interv
~b! c.0, ~c! c,0. ~d! Phase diagram forD,0
andc.0 but with two distinct regions of stability
for the fcc phase.~e! and ~f! Phase diagrams fo
D.0 and~e! c.0 or ~f! c,0. Phase III splits in
this case into separated regions of stability~III
and III8). In all the phase diagrams only the lim
of stability lines are represented.
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mary (z i) order parameter in order to adjust theD3d
5 rhom-

bohedron to its close-packedOh
5 form. Accordingly theL-fcc

transition is associated with the nonvanishing component
the four-component order parameter:

z15z25zÞ0 ~5!

and to an eventual shear strain (e4) acting as an adjusting
secondary order parameter. In summary the fcc-hcp trans
mation can be interpreted as a transition between two
dered phases corresponding to different ordering mec
nisms starting from a common disordered polytypic phase
hexagonal symmetryD6h

1 . In this interpretation the paren
polytypic phase has been considered as a virtual struc
which is not necessarily stabilized in the system. Its phys
realization will be discussed in a more precise way
Sec. II C.

B. Phase diagrams

Let us work out the different types of phase diagra
involving the fcc and hcp phases which can be deduced f
the preceding considerations. The transformation prope
of the (h i) ( i 51,2) and (z i) ( i 51 –4) order parameters re
spectively associated with theL2hcp andL2fcc transitions
allow one to construct45 the following independent invari
ants: I 15h1

21h2
2, I 185( i 51

4 z i
2 , I 285z1

31z3
323(z1z2

2

1z3z4
2), I 385( i 51

4 z i
4 where only monomials of degree<4

have been taken into account. Using the equilibrium relati
ships~4! and~5! between the order parameter components
the hcp and fcc phases the preceding invariants reduce t
effective forms:I 15h2, I 185z2, I 285z3, I 385z4 which yield
the effective order parameter expansion

F~T,P,z,h!5F0~T,P!1a1z21a2z31a3z41b1h21b2h4

1cz2h2 ~6!

in which the lowest degree biquadratic coupling betweez
andh has been included.ai , bi , andc are phenomenologi
cal coefficients some of which may depend on tempera
and pressure. The corresponding equations of state
14410
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z~2a113a2z14a3z212ch2!50, ~7!

h~2b114b2h212cz2!50 ~8!

have been discussed by Rochal.46 They lead to different
phase diagram topologies depending essentially on the s
of c, a2, and D54a3b22c2. Figure 3~a! shows the phase
diagrams corresponding toc.0 andD,0 in the plane of the
coefficients (a1 ,b1) which are assumed to vary linearly a
functions of the two external variablesT and P. It contains
four phases denoted 0, I, II, and III. 0 is theL phase obtained
for h50, z50. I is the hcp phase forming forhÞ0, z50.
II is the fcc phase (h50,zÞ0). III is a six-layered structure
which corresponds to the minimal superstructure common
the hcp and fcc structures. This additional stable state res
from the coupling of the two irreducible order paramete
(h i) and (z i) and is stabilized forhÞ0 zÞ0. In Fig. 3~a!
the boundaries~limit of stability lines! of the L phase with
respect to the hcp and fcc phases are given byb150 and
a150, respectively. The limit of stability of the hcp phas
with respect to the fcc phase is also a straight line defined
the equationa15cb1/2b2 and the value of the hcp orde
parameter within phase I is given byh252b1/2b2 with b1
<0, b2.0. The boundaries of the fcc phase II are det
mined by the equations

z~3a218a3z!>0 and cz1b1>0. ~9!

For positive values ofz one has the situation found in Fig
3~a! in which the boundaries of the fcc phase correspond
parabolic branch and to thea150 line. In this case the re
gion of coexistence of the hcp and fcc phases contains
domain of stability of phase III. The topology of the pha
diagram is more complicated if the value of the fcc ord
parameterz changes its sign. Figures. 3~b! and 3~c! ~corre-
sponding toc.0 andc,0, respectively! show that in this
case there are two disjunct regions of stability for the
phase denoted II and II8, which are separated by a forbidde
~unstable! interval for the z values 2(3a2/4a3),z,0,
wherea2 anda3 are assumed to be positive~i.e., takinga2
,0 is equivalent to changing the sign ofz in our consider-
ations!. Figure 3~d! shows the phase diagram correspond
4-4
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THEORY OF THE MARTENSITIC TRANSFORMATION IN . . . PHYSICAL REVIEW B64 144104
to the same conditions (c.0,D,0), as in Fig. 3~a!, but with
two distinct regions of stability for the fcc phase denoted
and II8 which are separated by phase III. Note that phase8
occupies a region of the (a1b1) plane which is adjacent to
phase II. Therefore a first-order anti-isostructural transit
II-II 8 corresponding to a change in the sign ofz can occur.
Figures. 3~e! and 3~f! represent the possible phase diagra
in which the conditions (D.0, c.0) and (D.0, c,0)
hold, respectively. One can see that for such conditions ph
III may also split into separated regions of stability det
mined by different signs ofz. The effective coupled orde
parameter expansion given by Eq.~6! has the simplest form
which can be taken for describing the phase diagrams a
ciated with the (h i) and (z i) order parameters. More com
plex expansions can be assumed that would produce diffe
topologies of the theoretical phase diagrams. Considering
example, a sixth degree term inh ~i.e., a first-orderL-hcp
transition! may lead to a situation in which phase III b
comes unstable and only a direct fcc-hcp transition ta
place. Some of the qualitative features of the phase diagr
shown in Fig. 3 correspond, however, to specific proper
of the fcc-hcp transition. In particular Fig. 3~a! shows that
the region of coexistence of the two phases varies with
creasing values ofa1 andb1, i.e., the discontinuous charact
of the transition changes with temperature and pressure
may reach as it is observed in some fcc-hcp transformati
a weakly first-order regime. A six-layered structure betwe
the fcc and hcp structure and the antiisostructural pha
(II 8 and III8) are further remarkable features of th
phase diagrams represented in Fig. 3.

C. Stacking faults and domain structure

From our proposed approach to the fcc-hcp transition
can deduce that the fcc and hcp structures are intrinsic
faulted. There are two different origins for the stacki
faults. One type of stacking fault which is symmetry induc
and independent of temperature results form the existenc
antiphase and orientational domains which occur at
L-hcp andL-fcc transitions. Another type of~temperature
dependent! stacking fault relates to the ordering character
the order parameters. Let us first analyze the stacking fa
associated with the domain texture of the phases. At thL
2hcp transition the point group symmetry (D6h

1 →D6h
4 ) is

not modified but one has a sixfold decrease of the tran
tional symmetry expressed by Eq.~2!. Therefore antiphase
domains are created which transform into one another by
translations lost at the transition. Table I lists the equilibriu
values of the two-component order parameter (h1h2) for
each of the six types of antiphase domains@column ~b!# as
well as the possible sequences of layers correspondin
each type of domain@column~c!#. For example, the first do
main (h2h) implies a layer sequence of the type••
•CBCB••• whereas the domain (2hh) yields the sequence
•••BCBC•••. The symmetry operators which transform t
antiphase domain denoted 1 into the other antiphase dom
are listed in column~d!. The domain texture in the hcp phas
must be compatible with the atomic packing. This exclud
certain contacts between the domains that would gene
sequences
14410
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of the typeAA, BB, or CC. Therefore, the number of al
lowed contacts is limited. Using the standard notatio47

which labelsh a hexagonal layer having an identical su
rounding~e.g.,B in ABA) andc a hexagonal layer having
nonsymmetrical surrounding~e.g., B in ABC) one finds
two sorts of possible contacts•••hhhchhh••• and
•••hhhcchhh••• which both correspond todeformation
stacking faults.47

At the L-fcc transition the underlying change in the poin
group symmetry (D6h→D3d) and the corresponding three
fold multiplication of theL unit cell lead to two different
types of domains:~i! two orientational domains transformin
into one another by the lost sixfold rotation and~ii ! three
antiphase domains. Table II lists the six different types
domains and the corresponding equilibrium values of
four-component order-parameter (z i). In column~c! of Table
II one finds the layer sequences associated with each dom
e.g., •••ACBACB••• for (z,z,0,0) and•••BACBAC•••
for («,z,«* ,z0,0). Column~d! indicates the symmetry op
erators which transform the first domain into the others.

As for the L-hcp transition the contacts between the d
mains in the fcc structure must preserve the atomic cl
packing. At variance with the hcp structure one finds tw
types of stacking faults:~1! deformation-type stacking fault
resulting from the contact between for example, the doma
denoted 1 and 3 in Table II. It gives the layer stacki

TABLE I. Antiphase domains corresponding to theL-hcp tran-
sition. ~b! Equilibrium values of the two-component orde
parameter (h1 ,h2) for each of the six types of antiphase domai
numbered in column~a!. ~c! Sequence of layers corresponding
each type of domain.~d! Symmetry operations transforming th
domain 1 into the other domains.v5exp$ip/3%,«5exp$2ip/3%.

~a! ~b! ~c! ~d!

1 h 2h CBCB $C1u000%
2 2h h BCBC $C1ucL%
3 «h vh ABAB $C1uaL%
4 v* h «* h BABA $C1uaL1cL%
5 «* h v* h ACAC $C1u2aL%
6 vh «h CACA $C1u 2aL1cL%

TABLE II. Antiphase and orientational domains correspondi
to theL-fcc transition.~a! Numbering of the domains.~b! Equilib-
rium values of the four-component order parameter (§1,§2,§3 ,§4)
for each domain.~c! Layer sequences associated with each dom
~d! Symmetry operations transforming the first domain into the o
ers.«5exp$2ip/3%.

~a! ~b! ~c! ~d!

1 § § 0 0 ACBACB $C1u000%
2 «§ «* § 0 0 BACBAC $C1ubL%
3 «* § «§ 0 0 CBACBA $C1u2aL%
4 0 0 § § ABCABC $szu000%
5 0 0 «§ «* § CABCAB $szuaL%
6 0 0 «* § «§ BCABCA $szu2aL%
4-5
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•••ACBABACB••• corresponding to•••ccchhccc•••
~2! Twining ~growth! stacking faults due, for example, to th
contacts between the domains denoted 1 and 4. The l
sequence is in this case•••ACBABCABC••• correspond-
ing to •••ccchccc•••.

Accordingly the domain structure and the structure of
domain walls lead to intrinsically faulted hcp and fcc stru
tures the distribution of stacking faults being symmetry
duced. These stacking faults are independent from temp
ture, i.e., they cannot be annihilated by external fields~aging,
annealing, etc.! and give rise to a single domain, since w
deal with a probabilistic mechanism with no conjugat
field. Another type of temperature-dependent defects can
found in the close-packed fcc and hcp structures origina
in the nonmaximal character of the order parameters whic
inherent to the assumed ordering-type mechanism. In the
ordered polytype structure each close-packed layer co
sponds to a stacking fault. The ordering process lead
to the hcp and fcc structures can be characterized by
number

D512
Nd

N
, ~10!

whereN is the total number of close packed layers andNd is
the number of stacking faults.Nd /N represents the concen
tration of stacking faults and one hasD50 in the disordered
polytype structure andD51 in the ideal close packed struc
tures. Intermediate states correspond to 0,D,1. The value
of D at a given temperature and pressure is determined
the number of defects. Far from the transition within t
close packed phases, the asymptotic value ofD will reflect
the symmetry induced type of stacking faults. Close to
transitionD accounts as well for the temperature depend
defects. In the following subsection we formalize such co
siderations in the framework of a phenomenological desc
tion of the ordering of close-packed structure which is
spired by a model of segregation in complex fluids.48 This
will give a more realistic picture of the parent polytype stru
ture assumed in our approach.

III. SEGREGATION PROCESS TO CLOSE PACKED
STRUCTURES

Let us consider the transformation from the melt to
structure formed by stacked hexagonal layers. The symm
of the isotropic liquid is the extended Euclidean groupẼ3
5O(3)3R3 whereO(3) is the full orthogonal group andR3

is the three-dimensional group of continuous translatio
The IR’s of Ẽ3 are spanned by the basis functions49

Fk j

6m~r ,u,w!5eik j •r
•Ym

l ~u,w!, ~11!

where thek j are the infinite set of wave vectors ending on
sphere of given radiusuk j u and transforming into one anothe
by the symmetry operators ofO(3). TheYm

l (m52 l , . . . ,
1 l ) are the spherical harmonics of orderl. The infinite-
dimensional IR’s ofẼ3 are denotedDmkj . For givenm two
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conjugated functionsFk j

6m are needed to construct a re

~physically irreducible! representation.
Let r0(r )5const be the probability density of atoms

the isotropic state andrs(r ) the corresponding probability
density in a segregated state. The incrementdr5rs(r )
2r0(r ) can be expanded on theFk j

6m :

dr~r !5(
k j

hmk j
•Fk j

6m~r ,u,w!. ~12!

The coefficientshm,k j define the components of th
infinite-dimensional order-parameter associated with
transition between the isotropic liquid and a segregated s
Since the transition corresponds to an ordering mechan
the hm,k j necessarily transform as the IR denotedD0kj , i.e.,
they correspond to the set$h0k j% ~denoted hereafter a
$hk j

%!. This results from the following arguments: Any IR o

Ẽ3 is constructed from a small IR (t1) associated with the
invariance group of one branch~sayk1) of the stark1

! which
is Gk1

5SO(2).50 Since the ‘‘unit cell’’ of the parent isotro-
pic state is reduced to a single atom which is invariant un
all the symmetry operations ofẼ3 t1 will necessarily coin-
cide for an ordering mechanism,51,52 with the identity IR of
SO(2) corresponding tom50. D0kj is spanned by the basi
functions Fk j

0 5Y0
0
•eik j •r where the arbitrarily oriented

wave-vectorsk j belong to the same star. It follows immed
ately that thenth power invariants of the order-paramet
componentsI n(hk j

) correspond to products of the bas

functions determined by the conditions( i 51
n k i50. There-

fore the variational free-energy densityF(hk j
) associated

with the transition from the isotropic state will contain in
variants of all powersn except the linear invariantI 1(hk j

)
which has been implicitly excluded from Eq.~12! by assum-
ing a lowering of symmetry when going from the isotropic
the segregated state. In particular~one or two! cubic invari-
ants will be present. Hence the transition to the segrega
state is necessarily first order except essentially at an isol
point of the phase diagram~Landau point! where the coeffi-
cient of the~single! cubic invariant vanishes identically.

Depending on the number of nonvanishing independenk j
and on the respective equilibrium values of thehk j

different
segregated phases can be stabilized below the isotropic
whose symmetries correspond to subgroups ofG of Ẽ3. Fig-
ure 4 show the orientation of the wave vectors involved
the formation of the hcp and fcc structures from the me
Hence the hcp structure requires three independent w
vectors of equal lengthsuk j u53A3 pertaining to a twelve
arms irreducible star43,45 with the following orientations in
the hexagonal reciprocal space shown in Fig. 4.k1 //@ 4̄,4,1#,
k2 //@0,4̄,1#, k3 //@ 4̄,0,1#, k4 //@4,4,1̄#, k5 //@0,4̄,1̄#,
k6 //@ 4̄,0,1̄#, andk i 1652k i ( i 5126). The twelve compo-
nents of the corresponding order-parameter fulfil the equi
rium relationshipshki

5hk ( i 51212) which gives rise to
the effective free-energy density, associated with
isotropic-hcp transformation
4-6
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F~hk!5a1hk
21a2hk

31a3hk
41•••. ~13!

The segregation of a fcc structure involves an eight-arm
star whose branches arek1 , k2 , k3 , k6 //@ 4̄,4̄,1̄#,
k8 //@0,4,1̄#, k952k3, k135@0,0,3#, and k1452k13. One
has again for the eight components of the correspond
order-parameter:hki

5hk ( i 5128), i.e. the free-energy
density associated with the formation of a fcc structure fr
the melt has the same effective form expressed by Eq.~13!.

The ordering process which leads to the formation of h
and fcc structures proceeds via the formation of lame
~plates! of different thickness53 with a progressive coales
cence of the neighboring lamellas. One can therefore in
the existence below the melt of segregated regions in wh
the layers form short range sequences~e.g., hcp or fcc se-
quences! alternating with nonsegregated regions in which
layers are randomly stacked~disordered polytypes!. Let us
denotejk the normalized probability for a given layer to b
in a segregated region in the direction defined by thek vector
and assume the order-parameterhk to be a function ofjk .
The explicit form forhk(jk) for a given segregated structur
can be obtained by minimizing the thermodynamic poten

E $F@hk~jk!#1g~,hk!2%djk , ~14!

where the integral is over a volume in thejk space.F is the
free-energy density given by Eq.~13! and the Ginzburg
g-invariant accounts for the fluctuations ofhk with respect to
jk . One gets the equation of state

g
d2hk

djk
2

5a1hk1
3

2
hk

212a3hk
31•••. ~15!

When the right-hand expansion is restricted to the th
power Eq.~15! coincides with the general elliptic equation54

which can be solved exactly55. More generally the bifurca-
tion from the solutionhk(0)50 which corresponds to th
isotropic state, to the solutionhk(jk)Þ0 corresponding to a
fully or partially segregated state can be obtained by line
izing Eq. ~15! around the valuehk(0)50.56 One gets the
second-order linear differential equation

FIG. 4. Orientation of the wave-vectors involved in the form
tion of the hcp and fcc structures from the melt in projection on
~001! hexagonal reciprocal lattice plane.
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djk
2

5a1* hk* , ~16!

wherehk* is the eigenfunction corresponding to the eige
value a1* at which the solutionhk(jk)Þ0 branches off the
solutionhk(0)50. Taking into account the boundary cond
tions defining the initial isotropic state@hk(0)50# and the
fully segregated~ordered! state @hk(1)51# one finds the
asymptotically exact solution,56 in the vicinity of a15a1*
which is expressed as

hk~jk!5hmax
k Usin

p

2
jkU, ~17!

where the amplitudehmax
k is to be determined by the nonlin

ear terms in Eq.~15! and depends on the coefficientsg, a1 ,
(a1* ), a2 , a3, . . . . Theperiodic dependence expressed
Eq. ~17! has two levels of interpretation in terms of the cry
tal structure. It shows on the one hand, that in the order
process the crystal stratifies periodically forming success
stacked regions in which on the other hand, there is
sinusoidal-type variation from partially ordered to fully o
dered subregions. Introducing the functionhk(jk) given by
Eq. ~17! in the effective free-energy densityF(hk) one gets
by minimizing F with respect tojk the equation of state

hk

]hk

]jk
~a113hk14a3hk

2!50. ~18!

In addition to the isotropic ~disordered! state (hk
50 for jk50) one obtains the fully segregated~or-
dered! state for]hk /]jk50, i.e., forucos(p/2)jku50 which
yields jk51. The partially segregated state corresponds
the equilibrium valueshk :

hk
e.sin

p

2
jk

e52
3a26~9a2

2232a1a3!1/2

8a3
. ~19!

In contrast to the fully ordered state which coincides with
fixed limit value ofjk

e51 thejk
e values associated with par

tially ordered regions vary with the phenomenological co
ficients of the free-energy density, i.e., they vary with te
perature and pressure.

Figure 5 shows the phase diagram associated with
equation of state~18! assuming thata3 is positive. Thus, the

e

FIG. 5. Phase diagram corresponding to the equation of s
~18! showing the topology of the partially and fully ordered clos
packed states below the melt.
4-7
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partially and fully segregated~ordered! states which display
an identical~e.g., hcp or fcc! symmetry are separated b
lines of topological transformations which are determined
the property that the probabilityjk reaches its maximal valu
jk51. The two partially and fully ordered states boundi
such lines can be reached from the isotropic state across
order transition lines and meet at a three-phase point den
N1 ~or N2) in Fig. 5. Note that close to the Landau pointN3

the isotropic to ordered state transformation is weakly fi
order. Note also that each segregated region possesses a
metric analog corresponding to an opposite sign forhk(jk),
i.e., each stable state has an anti-isostructural analog.
existence of antiisostructural states has been already not
the phase diagrams of Figs. 3~b!, 3~c!, and 3~d!.

From the preceding results one can infer a qualitat
scheme for the segregation process leading to the forma
of close-packed structures below the melt. In the partia
ordered state shown in Fig. 5 the crystal is organized i
periodic array of stacked domains in which lamellas of
dered ~hcp or fcc! structure are surrounded by disorder
sequences of close packed polytypes. On cooling and
proaching the fully ordered state the fraction of disorde
sequences of layers reduce in each domain increasing
thickness of the lamellas, and simultaneously the neigh
ing domains tend to coalesce. At the topological transit
the fusion of the domains is achieved and the phase
formed by an ordered close packed structure. This pic
provides a justification and an interpretation of the dis
dered polytype structure which has been assumed from s
metry considerations~Sec. IIA! to be the parent structure fo
the fcc and hcp structures. Let us stress that for a real
description of the close packed structures the picture ha
be completed by taking into account the existence of sta
ing faults as discussed in Sec. II C.

Consequently the fcc-hcp transformation will be favor
if the system is in the partially ordered state since the coh
ency stresses between the two structures will be reduce
contrast the transformation will take place more abrup
when approaching the fully ordered state. This is attested
the form of the region of coexistence between the fcc a
hcp structures found for example in La,57 Pr,58 and Nd59

which merges at high temperature and enlarges at low t
perature, going from weakly first-order to a strongly firs
order regime. To our knowledge the fcc-hcp transformat
in 4He is the only counterexample to such a behavior, i
the region of coexistence between the two phases beco
more narrow on cooling from about 30 to 14 K as found
Frank and Daniels.60,61 However, this exception can be ex
plained by the Nernst principle as assumed by these auth

IV. THE MARTENSITIC TRANSFORMATION IN COBALT

In this section we show that the fcc-hcp martensitic tra
formation in cobalt provides a concrete illustrative exam
of the general considerations developed in Sec. II. The
sential experimental features of the transformation
interpreted in terms of its reordering and reconstruct
characters.
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A. Specific features of the transformation in Co

The hcp(a or «)→fcc(b or g) transformation in Co
takes place aroundTm5695 K at ambient pressure mor
than one thousand degree below the melting transitionTf
51768 K).1,2 With increasing pressure up to above 70 GP
the hcp-fcc transition line remains almost parallel to t
melting line.7 The fact that the fcc structure is always stab
above the hcp structure has been attributed to the presen
magnetism which favors the hcp phase as a ground state62,63

Despite the loss of group-subgroup relationship between
symmetries of the phases which typifies reconstructive ph
transitions64 the transition in Co has a weakly discontinuo
~first-order! character. This is attested by the small jump
enthalpy (Dh;113 cal mol21 on heating65! and volume
(DV/V50.329%)16 involved atTm and by a relatively small
hysteresis of about 20 K at ambient pressure.65 It is also
reflected in the close relationship between the structural
tures of the two phases,10,66namely,~1! the distance between
the close packed planes varies only by about 0.3% atTm
both structures displaying the almost ideal close packed
c/a.1.623,~2! the same atomic coordination exists for th
first and second nearest neighbors, and~3! the fcc and hcp
lattices reversibly connect with the epitaxial relationsh
(111)fcc //(001)hcp and @112̄# fcc //@120#hcp.

The main distinctive feature of the transformation in Co
the strong asymmetry of the fcc→hcp and hcp→fcc thermo-
dynamic paths which manifests in the following propertie
~i! The average value of the transformation enthalpy
different on heating (113 cal mol21) and cooling
(84 cal mol21).65 ~ii ! The hcp→fcc transformation is al-
ways complete but the reverse fcc→hcp transformation is
incomplete: even at room temperature weak reflections of
fcc structure are still present.~iii ! The dhcp«8 phase found
at high pressure7 is stabilized on quenching the fcc phase b
not on heating the hcp phase.~iv! The disorder behavior o
hcp and fcc Co differ greatly.24 The fcc phase just aboveTm
is well ordered. In contrast a stacking disorder is alwa
present in the hcp phase even during the early stages o
transformation. This is attested by the observation of diffu
streaks along the@10§# hcp direction which are not detecte
in the fcc structure.24 Analysis of the Debye-Waller facto
reveals no anomaly in the hcp phase but an increase of
atomic square amplitude in the fcc phase on approachingTm
from above.21~v! The fcc and hcp precursor regimes are a
different.24 In the hcp phase small but distinct preforme
cubic lamellae with a volume ratio of 1/100~fcc/hcp! exist
far belowTm and start to grow at 20 K belowTm . Some ten
degrees aboveTm small hcp ordered packets exist which d
not survive above the hysteresis region.24 Independently
from the cubic domains thec44 hexagonal elastic constan
decreases some 50 K belowTm by above 27%,19 but the

corresponding fcc constant@ 1
3 (c112c121c44)# shows no

equivalent.21

Other intriguing features of the transformation in Co a
~1! the form of the specific heat anomaly which shows
sharp increase from both sides ofTm with almost the same
slope,67 at variance with the current shape ofcp found at
first-order transformations.64 ~2! The absence of soft mod
4-8
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behavior64 when approachingTm from the fcc or hcp sides
despite thec44 anomaly, which is accompanied by an i
crease of the internal friction68 and a simultaneous decrea
of the entire branch of transverse acoustic vibration co
sponding to the mode. In the following subsections we giv
unified description of the preceding properties in the fram
work of the theoretical model developed in Sec. II.

B. Asymmetry of the interphase region

The fcc-hcp transformation has been assumed in Sec.
to take place between two differently ordered structures c
responding to the distinct set of effective order-parame
components: (h,2h) for the hcp phase and (§,§,0,0) for the
fcc phase. As shown recently for reconstructive transform
tions between SiO2 polymorphs69 when two adjacent phase
are associated to distinct subgroup symmetries of a pa
phase their interphase is asymmetric. Furthermore, if
considers a thick phase boundary, i.e., not reduced to on
two layers, there exists a surfaceSm inside the phase bound
ary which coincides with a minimal deformation. Therefo
the volumes of the phases on each side ofSm will be differ-
ent and possess the respective symmetries of the phase
the other hand, since at the surfaceSm one shifts from one to
another set of order-parameter components (h,2h)
→(§,§,0,0), the symmetry of theSm surface will correspond
to a cross section of the parent phase.

The preceding picture applies to the fcc-hcp transform
tion in Co. It is consistent with the difference of fcc and h
volumes involved in the region of coexistence of the tw
phases which is much larger on the hcp side than on the
side. TheSm surface has in Co the simple hexagonal sy
metryD6h

1 of the disordered polytype structure and the ph
boundary between the hcp and fcc interphase volum
should be macroscopically distorted by the shear strainexy
required for the formation of the fcc close-packing but n
for the hcp structure.

C. Specific heat anomaly

Since the transformation occurs between two differen
ordered structures the order-parameter moduli correspon
to the hcp and fcc phases fulfill the conditions

h

hmax
k

5
§

§max
k

51, ~20!

wherek is the wave vector corresponding to theGA direc-
tion in the hexagonal Brillouin zone and to theGL direction
in the cubic Brillouin zone. Therefore the temperature dep
dence of the effective order-parameter associated with
direct fcc-hcp mechanism will display a steplike behav
represented in Fig. 6~a!. Such behavior is typical of recon
structive transitions between fully ordered phases.64 From
the conditions~20! one can deduce that the specific heatcp
52T(]2F/]T2)p whereF is given by Eq.~7! has the same
expression on both sides of Tm : cp

hcp5cp
fcc5

2T(]2F0 /]T2)p . Therefore (Dcp)T5Tm
50, i.e., no jump of

the specific heat takes place at the transition. This is in c
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trast with the upward jump found forDcp on cooling at first-
and second-order transitions between group-subgroup re
phases.45 On the other hand, assuminga15a0(T2Tc1

) and

b15b0(T2Tc2
) in Eq. ~6! where a0 and b0 are positive

constants one finds a finite discontinuity of the entropyS5
2]F/]T at Tm which on cooling is given by

Sfcc2Shcp
5b0~hmax

k !22a0~§max
k !2. ~21!

Accordingly70 cp(T) will display a narrowd-shaped peak a
Tm as shown in Fig. 6~b!. The two preceding properties o
the specific heat (Dcp50 and d-shaped peak atTm) have
been shown64 to constitute a typical signature of reconstru
tive transformations. Such properties are well illustrated
the experimental curve found forcp(T) in cobalt67 which is
reproduced in Fig. 6~c!.

D. Degree of order in the fcc and hcp structures

The antiphase and orientational domains associated w
transition from a disordered polytype structure to hcp and
structures are listed in Tables I and II. It has been stres
~Sec. II C! in our description of the ordering process to clo
packed structures that the preceding transitions should o

FIG. 6. Temperature dependence of~a! the order parameter an
~b! the specific heatcp across a transition between fully ordered h
and fcc states.~c! Specific heat anomaly measured at the fcc-h
transformation in cobalt from Ref. 67.
4-9
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within periodically stacked domains which form the partia
ordered state taking place below the melt. Therefore the
sulting deformation and growth stacking faults preexist
the hcp structures independently from the martensitic tra
formation between the two structures. When going from o
structure to the other domains are created originating in
loss of symmetry operations related to the absence of gro
subgroup relationship between the symmetries of the st
tures.

At the fcc→hcp transformation four types of orientation
domains are produced which can be deduced from one
other by fourfold cubic rotations or equivalently by the fo
$111% cubic planes. In the hcp structures two neighbor
domains differ by 70.5° as found in Refs. 12 and 13. Figu
7~a! and 7~b! represent two among the cubic domains form
by BCBCBC••• sequences of hexagonal close pack
planes in the cubic framework and corresponding to hexa

FIG. 7. ~a! and ~b!: Two among the four cubic orientationa
domains within the hcp structure formed byBCBCBC••• se-
quences of hexagonal close packed planes in the cubic frame
and corresponding to the@0001# hexagonal direction.~c!–~e! Three
antiphase domains in the hcp structure associated with one c
domain and corresponding toABAB••• ~c!, ACAC••• ~d!, and
CBCB••• ~d! sequences.~f! One of the three type of antiphas
domains formed at the hcp→fcc transformation and correspondin
to theABCABC••• sequence of planes.
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nal @0001# direction. In addition each cubic variant gives ris
to three types of antiphase domains since the fcc translat
are lost in the hcp lattice as shown by Eq.~1!, at the corre-
sponding cell doubling transition. Three antiphase doma
corresponding toABAB•••,ACAC•••, and CBCB••• se-
quences are represented in Figs. 7~c!–7~e!. The full set of
twelve ~antiphase and orientational! domains have been ob
served by Bibring and Sebilleau13 and Nelson and
Altstetter12 whereas the variants associated to only three
bic directions were reported by Gaunt and Christian71 and
Babkevichet al.72

The reverse hcp→fcc transformation creates also thre
types of antiphase domains which shift the atoms along

$21̄1̄0%L //$1̄010%h and $1̄21̄0%L //$01̄10%h directions by
uaau/A3. Figure 7~f! shows one of such cubic domain
corresponding to the sequence of hexagonal pla
ABCABC•••. Two other domains (BCABCA•••
and CABCAB•••) can be derived from the correspondin
shifts of theABCABC••• structure. Since the cubic phas
corresponds to a sheared rhombohedralD3d

5 symmetry two
types of orientational domains may be produced which tra
form into one another by the~001! hexagonal plane. How-
ever only one variant is generally observed after the tra
formation from the hcp phase.23

As shown in Sec. II C these different symmetry induc
variants should produce temperature independent~growth or
deformation! stacking faults at variance with the temperatu
dependent stacking faults inherently associated with a n
maximal value of the ordering order parameter. The deta
investigation by Frey and Boysen24 based on elastic neutro
scattering data on single crystal conclude that the hcp and
phases of Co are disordered by a smaller amount than
ported in previous studies on powder samples,22,73 i.e., 2.5%
for the hcp phase and 0.5% for the fcc phase. The degre
disorder in the hcp phase is essentially due to growth fa
and is temperature independent when approaching the tr
formation being also not affected by ageing the sam
across the transformation. In contrast the fcc phase, be
and above the transformation is well ordered with no e
dence of growth faults. However, the observation12,71 that a
crystal of cobalt cycled through the transformation and
maining below 600° C gives on cooling the same sin
variant in the hcp phase, is in favor of the existence ab
the transformation of symmetry induced~deformation! stack-
ing faults.

Summarizing the reordering process between the hcp
fcc cobalt phases, assumed in our model takes place fro
less ordered hcp to a more ordered fcc structure. In the
phases in the region surrounding the transformation the
served ~small! disorder corresponds to symmetry induc
stacking faults which are predominantly of the growth ty
in the hcp phase and of the deformation type in the fcc pha
The residual random disorder associated with the orderin
the two close packed structures below the melt is negligib

E. Irreversibility of the latent heat and the intermediate
6-layered structure

One of the striking features of the martensitic transform
tion of cobalt is the fact that the transformation enthalpyDh

rk

bic
4-10
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THEORY OF THE MARTENSITIC TRANSFORMATION IN . . . PHYSICAL REVIEW B64 144104
is greater on heating (Dhh.113 cal mol21) than on cooling
(Dhc584 cal mol21). This was first reported by Adams an
Altstetter65 and confirmed by Munieret al.74 who found a
differenceDhh2Dhc.5 cal mol21. Both studies also show
that when the number of transformation cycles increasesDh
diminishes and the hysteresis width increases.65,74 A similar
interpretation of this ‘‘irreversible’’ behavior is proposed b
the two groups of searchers: Cycling through the transfor
tion induces defects in the two close packed structures
the difference found forDhh2Dhc is due to the amount o
energy needed for their formation. The fact thatDhh is larger
that Dhc is consistent with the property assumed in our d
scription, that the fcc phase is more ordered than the
phase: More energy will be required to create defects in
fcc phase when heating from hcp, than in the hcp phase
cooling from fcc. A great part of these symmetry induc
defects remain in the structures and they influence the
lowing cycles. This explains the diminishing ofDh during
the successive transformation cycles. Note that there is
contradiction between a decrease ofDh and an increase o
the region of coexistence of the phases as observed by
nier at al.74 sinceDh expresses, in part, the energy requir
to create new defects the number of which decreases on
cling due to saturation. On the other hand the extension
the hysteresis region should be related to a pinning of
increasing number of defects which favors the phase co
istence.

From the values found in Refs. 65 and 74 forDhh

2Dhc.5230 cal mol21 a rough estimate of the number o
stacking faults created in one cycle can be given using
amount of energyE;1024 cal mol21 calculated by Hitzen-
bergeret al.75 necessary to create one stacking fault in h
cobalt close to the transformation. One getsN.105 stacking
faults per mole corresponding approximately to one stack
fault every hundred hexagonal planes.

The enlargement of the hysteresis region on cycl
across the transformation is consistent with the form of
region of coexistence of the hcp and fcc phases shown in
theoretical phase diagram of Fig. 3~a!. This region diverges
from theN-point enlarging between the lines denoted 32N
and 42N in the figure. Crossing the preceding lines o
goes from the starting martensite to the starting auste
points denotedMs and As in Ref. 74. Further cycling will
shift the thermodynamic path towards a larger region of
existence of the phases. Figure 4 in Ref. 74 shows that
width of the hysteresis region increases from aboutAs2Ms
520°C toAs2Ms547°C. Therefore in the initial cycles th
thermodynamic path is closer to the three-phaseN point at
which the six-layered phase III begins to be stable a
should cross the region comprised between theMA line and
line 3 in Fig. 3~a!. The MA line represents the limit of sta
bility of phase III with respect to the fcc phase and line
close to theN point is the limit of stability of the fcc and
six-layered phase within the hcp phase. Hence the prece
region should correspond to the modulated structure of ab
20°C extension observed by Blaschkoet al.23 This is consis-
tent with the description given by these authors in terms
periodic modulation with a six-layer wavelength of the~111!
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fcc lattice planes fraction in which platelike nuclei of the h
phase are coherently inserted into the fcc matrix. In our
terpretation the modulated structure reflects the closenes
a stable six-layered phase. An estimate of the location
range of stability of this phase in the pressure-tempera
phase diagram of cobalt76 would require knowledge of the
limit of stability lines denoted 32N and 42N in Fig. 3,
which have not been determined experimentally in p
cobalt.

It has to be noted that the modulated structure reported
Blaschkoet al.23 and confirmed by Babkevitchet al.,72 is not
symmetric with respect to the fcc and hcp structures but c
responds to a deformation of the fcc structure since the
ellite spots are found about the~111! fcc reflections. Note
also that our proposed interpretation is compatible with
description in terms of strain field modulation due to coh
ency stresses as suggested in Ref. 23, although the cohe
stresses should be due to the coexistence ofthreephases~hcp
fcc and 6-layered!. By contrast it differs from the interpreta
tion given by Babkevitchet al.72 in terms of a nonrandom
segregation of impurity atoms occupying part of the laye
or with that of Mishin and Razumovskii77 who describe the
modulation as a pretranslational effect induced by h
erophase fluctuations.

F. The phonon spectrum of cobalt and the elastic anomaly

Investigations of the dynamical properties of cobalt17–21

have been performed in order to verify the eventual existe
of a soft-mode in connection with the martensitic nature
the transformation and with the suggestion78 that its mecha-
nism could be triggered by a small decrease of phonon
ergy related to small displacements. No softening beha
has been found when approaching the transition either f
the hcp~Ref. 19! or fcc ~Ref. 17,21! sides. This is consisten
with the purely reordering character of the transformat
assumed in our approach since the average atomic posi
remain fixed across ordering-type transitions and the jum
of atoms between the sites are supposed to be uncorrel
This picture is still reinforced by the reconstructive charac
of the transition which as shown in Ref. 64, implies no cri
cal fluctuations.

The absence of temperature dependence of the rele
phonon branches constitutes, however, only a partial con
mation of our proposed reordering type mechanism. A m
precise confirmation of the mechanism can be found in
frequency dependencev(k) on the reducedk-vector of the
phonon spectra as it can be used to verify the coincidenc
the structures surrounding the transformation in the dir
tions of space preserved by the reconstruction of the latt
i.e., one expects to find a coincidence of the phonon branc
for the two structures in these directions and a softening
v(k) at special points corresponding to the translational c
nection of the two structures. Let us show that an indir
confirmation of the underlying existence of a latent polytyp
phase can be found in the phonon spectra reported
cubic17,18,21and hexagonal19,20 cobalt.

In order to disclose the structural relationship between
fcc and hcp structures in reciprocal space let us represen
4-11
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connections between the Brillouin-zones of the three fcc,
and L structures. Figures 8~a!, 8~b!, and 8~c! show, respec-
tively, the fcc and hcp Brillouin zones and their embeddi
within the L-hexagonal Brillouin zone. Figure 8~c! reveals
that the coinciding symmetry directions for the three zon
areGAL5GLc52GAh andGML //GKh //GKc where the in-
dicesL, c, andh refer to theL, fcc and hcp structures. Fig
ures 9~a! and 9~b! show the phonon spectra obtained for t
hcp and fcc phases of Co in the preceding directions. Fig
9~c! represents the superposition of the two spectra the
circles corresponding to hexagonal cobalt20 and the open
circles to cubic cobalt.17,18We can verify the following:~i! In
the directionGAL there is a perfect coincidence for the fu
and open circles which lie on the same phonon branche
agreement with the doubling of the basic translation in t
direction. ~ii ! Along the GKM reciprocal space direction
there is a good agreement for two phonon branches, whe
for the third branch the two structures give different curv
This discrepancy can be explained by the fact that the
periments on fcc and hcp cobalt were performed at temp
tures differing by about 700 K,17,18,20and by the observation
by Freyet al.19 that the slope of this branch increases wh
the temperature decreases. This explanation is supporte
the convergence of the two curves when approaching
transition temperatureTm . Note also that the hexagona
spectrum20

FIG. 8. ~a! fcc Brillouin zone.~b! hcp Brillouin zone.~c! Em-
bedding of the fcc and hcp Brillouin zones in theL-phase Brillouin
zone.
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was obtained on pure cobalt while the cubic spectrum w
measured on Co0.92Fe0.08.17,18 ~iii ! The crossing of two
branches at theKh point in the hexagonal spectrum@Fig.
9~a!# is related to the fact that at this point two small IRs
the C2v point group degenerate in a two-dimensional IR
the point groupD3h . However the crossing atKh of the two
branches in the cubic spectrum@Fig. 9~b!# despite the fact
that this point is not at the surface of the fcc Brillouin zo
constitutes a verification of the existence of theL structure

FIG. 9. ~a! Phonon spectrum of hexagonal cobalt from Ref. 2
~b! Phonon spectrum of cubic cobalt from Refs. 17,18.~c! Super-
position of the two preceding spectra. In~c! full and open circles
correspond to hexagonal and cubic cobalt, respectively.
4-12
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THEORY OF THE MARTENSITIC TRANSFORMATION IN . . . PHYSICAL REVIEW B64 144104
sinceKh coincides@Fig. 9~c!# with the surface pointKL of
the L structure: AtKh the cubic structure is reminiscent o
the ‘‘parent’’ disordered L structure.

The phonon spectrum may also serve as a test to ch
the influence of macroscopic deformations which are
volved at reconstructive transformation mechanisms as s
deformations modify the distance between equivalent site
the initial and final structure~i.e., they change themetric of
the structures!. The optical phonon curves will thus displa
shifts with respect to their location in the undeformed str
ture whereas acoustic phonon branches undergo chang
their slopes. In this respect the small dip of the opti
branch reported by Freyet al.19 in the hexagonal phase in th
directionGAh at 2

3 (0,0,p/c) on approachingTm , can be re-
lated to the coupling of the primary optical instability to th
secondary shear straine4 which as noted in Sec. II A is re
quired for the formation of the fcc structure. One has eff
tively 2

3 ch* 5 1
3 cL* which corresponds to the wave vectork10

associated with theL→fcc virtual transition.
The preceding anomalous dip observed in the hcp ph

represents a precursor indication of the shear straine45eyz
arising spontaneously in the fcc structure. The correspond
acoustic instability will consist in a decrease in the slope
the hexagonal elastic constantc44. c44 actually diminishes
about 50 K belowTm from the value 0.731012 to 0.53
31012 dyn/cm3 at Tm , i.e., Dc44/c44.27%. This has been
first observed by Freyet al.19 and confirmed by Strausset
al.21 The elastic constant anomaly is consistent with a dip
the Debye-Waller factor measured by Bokshteinet al.79 and
with the increase of the internal friction related by Bidauxet
al.68 to shear modes parallel to the hexagonal planes.
fact that in our approach no spontaneous strain is needed
secondary order-parameter for the formation of the hcp ph
is confirmed by the absence of elastic constant anoma
within the fcc phase on approachingTm and especially of
c8;c112c121c44.

G. The high-pressure double hcp phase

Yoo et al.7 disclosed a high pressure phase in Co ide
fied as a double hcp~dhcp! structure. The phase denoted«8,
is stabilized on quenching fcc-Co below 60 GPa but not
heating hcp-Co. As the region of stability of the«8 phase lies
between the fcc and hcp phases it suggests an adaptive n
for the corresponding structure. The fact that the fcc struc
is more ordered than the hcp structure explains why an a
tive structure is required to go through the fcc→hcp thermo-
dynamic path, i.e., the more defective hcp structure can a
more easily for a direct hcp→fcc path. The x-ray pattern
reported for«82Co ~Figs. 1 and 2 in Ref. 7! show that the
main Bragg reflections associated with the assumed d
structure are surrounded by weak reflections correspon
to a more complex stacking. Such reflections can be in
preted by the property of the four-layered lamellas charac
izing a dhcp structure to be surrounded by longer-per
polytypes. Note that symmetry considerations~see Secs. II
and III E! favor six-layered~thcp! ‘‘adaptive’’ lamellas be-
tween the hcp and fcc structures. This possibility has
been tested in the structural analysis of the«8 phase.7
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The «8 phase appears below the extrapolation of
paramagnetic-ferromagnetic transition line within fcc-Co.
indicates that the lowering of energy barrier between the
and hcp structures is favored by the onset of the magn
ordering. Such property can be foreseen by considering
mixed free-energy expansion

F8~TP,§,h,M !5F~T,P,§,h!1
d1

2
M21

d2

4
M4

1
d1

2
M2h21

d2

2
M2§2, ~22!

where F(T,P,§,h) is the effective order-parameter expa
sion, given by Eq.~6! associated with the fcc-hcp transfo
mation. The remaining terms in Eq.~22! express the free-
energy associated with the onset of the magnetizationM at
the paramagnetic-ferromagnetic transition in fcc Co and
coupling ofM with the structural order parameter. Minim
zation with respect toM of F8 provides the equation of stat

M ~d11d2M21d1h21d2§2!50 ~23!

which yields the equilibrium value ofM in the ferromagnetic
state

~Me!252
1

d2
~d11d1h21d2§2!. ~24!

IntroducingMe in Eq. ~22! gives the renormalized form o
F8 at lower order

F8~T,P,§,h!5F~T,P,§,h!2
d1

2

4d2
2

d1

d2
~d1h21d2§2!

1 . . . ~25!

showing that ford2.0 and d1,0 an attractive coupling
(d1,0d2,0) decreases the value of F and therefore lead80

to a reduction of the energy barrier between the fcc and
phases.

H. The transformation mechanisms between the fcc and hcp
structures in cobalt

Let us show that the order-parameter symmetries assu
in Sec. II A for the ordering mechanisms leading to the f
and hcp structures allow one to account qualitatively for
observations reported for the fcc→hcp and hcp→fcc trans-
formations in the series of studies by Karnthaler and
co-workers53,75,81–84on cobalt and Co-Ni alloys as well a
for the previously proposed mechanisms.27–35 In Sec. II A, it
has been shown that the fcc structure results from spe
crystallogeometrical conditions fulfilled by the three-layer
rhombohedral structure of symmetryD3d

5 (R3̄m) induced in
the ordering process, which leads to an enlargement of
rhombohedral symmetry to cubic. Therefore the fcc→hcp
and hcp→fcc transformations proceed via an underlying i
termediate structure.
4-13
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TOLÉDANO, KREXNER, PREM, WEBER, AND DMITRIEV PHYSICAL REVIEW B64 144104
As already noted in Sec. II A theOh
5→D3d

5 symmetry
change corresponds to a ‘‘pseudo-proper’’ ferroelas
transition85 at which the spontaneous straine45eyz couples
bilineary to the primary ordering parameter§. The shear
stresssyz conjugated toeyz is parallel to the close-packe
layers and induces as a secondary effect a deformation c
ciding with the strain componentexx between two hexagona
planes where the atoms are, for example inA and C posi-
tions. Such deformation results in a stretching of, let say
A atoms, which due to the geometrical constraints, produ
a jumplike shifting of the atoms from theirA positions to the
B positions as represented in Fig. 10. In this figure one
see that this shifting give rise to the onset of a gliss
Schockley partial dislocation~so called ‘‘partial’’! character-
ized by one among the three equivalent Burgers vectorspi of

the (ah/3)^11̄00& type whereah is the hexagonal lattice vec
tor. Note that the onset of a partial in a layer formed byA
atoms does not deform the layer with atoms inC positions,
since theA atoms are located in the hollows of theC layer.
Only the atoms ofC type located above and below the di
location line can be slightly shifted~but not necessarily! in
the @111# cubic direction. The row of these out-of-plane a
oms therefore appears as a nucleus for a dislocation in thC
layer. This process being repeated leads to the growth o
hexagonal lamella in the cubic structure. Besides the se
partials in successive planes appear as a sharp interp
front parallel to the (101̄0) hexagonal plane@i.e., the cubic
~210! plane# ~Fig. 10!.

The preceding atomistic mechanism is consistent with
dislocation mechanisms assumed in most models of the
hcp transformation.27–35 and with the direct electron
microscopy observations.83 An almost similar mechanism
leading to the onset of a partial dislocation in a close-pac
hexagonal plane may be invoked for the reversed hcp→fcc
transformation although it is less directly grounded on
corresponding order-parameter symmetry. TheD6h

4 →D3d
5

symmetry change is an ‘‘improper’’ ferroelastic transition86

i.e., it corresponds to the spontaneous onset of the ela
constantc145cxxyz as the result of an improper coupling o

FIG. 10. Onset of a partial in a close packed atomic plane. Sm
open circles represent positionsA small full circles are positionsC.
Half-filled small circles are positionsB. The dashed line represen
a glissile Schockley partial dislocation characterized by thepi Bur-

gers vector and belonging to the (1010̄) hexagonal plane.
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the order parameter withc14 of the form h2c14. Since the
physical quantity conjugated toc14 is the stress produc
sxxsyz it may lead again to the coupled strainsexx andeyz

which produce the stretching of hexagonal layers and
resulting partial dislocation shown in Fig. 10. Hence the a
mistic mechanism leading to partial dislocations in the h
agonal layers can be only considered as a secondary e
for the hcp→fcc thermodynamic path. A more consistent fo
mation of the hcp→fcc transformation mechanism should b
made in terms of an accumulation of stacking faults nucle
ing initial fcc lamellas of a few atoms in the hcp phase whi
then grow and expand to form the fcc structure. Such mec
nism is supported by the faulting disorder found in the h
structure~Sec. III D! which is essentially symmetry induce
~antiphase domains! as discussed in Sec. II, and does n
correspond to a random distribution of stacking faults as
sumed by Fujita and Veda31 or Pandey and Lele.35 Note,
however, that a small amount of disorder in the stacking fa
distribution is predicted in our approach due to the nonma
mal character of the ordering parameterD expressed by
Eq. ~10!.

I. Comparison with the experimental phase diagram of cobalt

Recently two studies have focused on the experime
phase diagram of cobalt7,87 which is schematized in Fig
11~a!. One can see that the hcp phase is embedded within
region of stability of fcc cobalt. When comparing with th
theoretical phase diagrams of Fig. 3 it clearly appears
the fourth-degree expansion given by Eq.~6! is insufficient
to account for the experimental features. Figure 11~b! shows

ll

FIG. 11. ~a! Experimental phase diagram of cobalt from Re
7,87. The shadowed area corresponds to the region of coexist
between the hcp and fcc phases.~b! Theoretical phase diagram i
the (a1b1) plane, associated with the free-energy expansion defi
by Eq. ~26!. The dotted arrows represent the pressure and temp
ture axes in reference to the phase diagram of Fig. 11~a!.
4-14
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one of the theoretical phase diagrams associated with
sixth degree expansion inh:

F~TP,z,h!5F0~T,P!1a1z21a2z31a3z41b1h21b2h4

1b3h61cz2h2 ~26!

which differs from the theoretical phase diagram of Fig. 3
the experimental property that the limit of stability line b
tween the hcp and fcc phases is curved toward the hcp p
as suggested by experimental phase diagram. In order to
tain a suitable fitting with the experimental curves one ne
to take into account a linear dependence of three coeffici
(a1 ,a2 , and b1) on temperature and pressure. The ph
diagram shown in Fig. 11~b! assumesb3.0 and D15b2

2

23b1b3.0. A more precise quantitative model~with deter-
mined numerical values of the coefficients! would require
more experimental points for the phase boundaries.

V. SUMMARY AND CONCLUSION

The present work deals with a general phenomenolog
description of the transformation between the fcc and
structures which is applied to the illustrative example of c
balt. The following results are independent from the spec
situation found in cobalt.

~1! The fcc and hcp structures can be described as re
ing from different ordering mechanisms from a disorder
polytypic structure. Within the segregation process leadin
the formation of close-packed structures from the melt
fcc and hcp structures are assumed to order progressivel
a periodic array of stacked domains in which lamellas of
ordered structures are surrounded by disordered sequenc
hexagonal layers. On approaching the fully ordered states
fraction of disordered polytype sequences reduces in e
domain increasing the thickness of the lamellas, and sim
taneously the neighboring domains coalesce. The direc
constructive reordering mechanism between the fcc and
structure involves an underlying rhombohedral intermed
structure which produces in both the fcc→hcp and hcp
→fcc thermodynamic paths a shear straineyz giving rise to
glissile partial dislocations acting as nuclei for the formati
of hcp and fcc lamellas. Note that these pretransitional lam
las are different in origin and nature from the lamellas
voked in the segregation process of the close packed s
tures.

~2! The preceding picture of the fcc-hcp transformati
has to be completed by the property of the two structure
be intrinsically faulted due to symmetry induced antipha
and orientational domains. There are also temperature de
dent stacking faults which originate in the nonmaximal ch
acter of the order-parameter inherent to the assumed orde
mechanism.

~3! Other general properties of the fcc-hcp transformat
which result from the reconstructive and ordering charac
of this transformation are~i! the absence of soft mode be
havior which does not exclude the softening of elastic c
stants related to secondary strains.~ii ! The typicald -shaped
anomaly of the specific heat.~iii ! The existence of a six
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layered structure intermediate between the fcc and hcp st
tures which is stabilized in a region of the phase diagr
close to the disordered polytype regime.

A number of general symmetry arguments have be
given for explaining the asymmetric features characteriz
the transformation in cobalt such as, for example,~i! the
asymmetry of the interphase region which has been relate
the property of the fcc and hcp structures to correspond
distinct subgroup symmetries of the parent disordered ph
and~ii ! the difference in the fcc→hcp and hcp→fcc mecha-
nisms which have been deduced from the different stra
and couplings involved by the underlying rhombohed
structure. However, the asymmetry of the thermodynam
fcc→hcp paths seems to be more enhanced in cobalt du
the specific property of the fcc and hcp structures in t
element to display a different degree of order. This prope
results, for example, in different transformation enthalp
for the two paths which is not a general feature of the fcc-h
transformation.

In a recent study devoted to the phase transformation
lithium and sodium80 the properties characterizing reco
structive martensitic transformations of the displacive ty
were underlined. From the present study one can verify
reconstructive martensitic transformations induced by a re
dering mechanism present drastically different theoret
features, namely,~1! the parent phase~e.g., the bcc phase in
Li and Na! is adjacent to the transformation in the displaci
case whereas the parent polytypic structure does not in
eral, correspond to a definite region of the phase diagram
reordering martensitic transformations.~2! Although second-
ary spontaneous strains are required in both types of tr
formations they play an essential role in the symmetry bre
ing mechanism leading to displacive martensites wher
they only take part to the transformation kinetics in the re
dering mechanism.~3! The precursor effects show importa
differences. A slight softening of the phonon mode asso
ated with the order parameter can be observed on appro
ing displacive martensitic transformations while no soften
occurs for reordering type martensitic transformations. C
versely a nucleation process is hardly evidenced in the
placive case while it is clearly observed~lamellas! in the
reordering mechanism. There is however, an essential c
mon theoretical property of the phases surrounding dis
cive or reordering martensitic transformations of the rec
structive type. In both cases the phases coincide with li
states which result either from fixed critical displaceme
~and fixed critical strains! or from definite crystallogeometri
cal conditions, required for the formation of close pack
structures.
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APPENDIX

Generators of the 232 matrices forming the IRt1(k15* )
associated with theD6h

1 →D6h
4 (V36) (L→hcp) transition
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