Characterization of the metallic phases in $BaCo_{0.9}Ni_{0.1}S_{1.87}$

J.-S. Zhou, W. J. Zhu, and J. B. Goodenough

Texas Materials Institute, ETC 9.102, University of Texas, Austin, Texas 78712

(Received 1 March 2001; revised manuscript received 27 June 2001; published 17 September 2001)

The temperature dependence of the resistivity along the *c* axis and in the *a-b* plane of layered $BaCo_{0.9}Ni_{0.1}S_{1.87}$ has been measured on a single crystal under hydrostatic pressures. The monoclinic metallic (LTM) phase stable at $T \le 150$ K is suppressed under a pressure $P > 1.5$ kbar; it has a nearly isotropic conductivity. Pressure induces an insulator-metal (IM) transition at $P > 10$ kbar within the tetragonal phase. A change from a nearly isotropic conduction to a highly anisotropic conduction is associated with the IM transition. Isotropic conduction in the LTM phase is consistent with its crystallographic structure; the IM transition in the tetragonal phase has been interpreted to be due to a high-spin to low-spin transition of $Co(II)$ ions. The resistivity and thermal conductivity of the LTM metallic phase are typical of those of a normal metal.

DOI: 10.1103/PhysRevB.64.140101 PACS number(s): 71.30. +h, 72.80.Ga, 73.21. -b, 71.28. +d

In a search for new high-temperature superconductors among layered compounds other than the copper oxides, Martinson and Schweitzer¹ found a first-order metalinsulator transition at $T_t \approx 180$ K on cooling in the compound $BaCo_{1-x}Ni_{x}S_{2-y}$ ($x=0.1$). The physical origin of the metallic phase has, however, remained a mystery. Hydrostatic pressure, which normally stabilizes the metallic phase at an isostructural transition, suppresses the low-temperature metallic phase in $BaCo_{1-x}Ni_{x}S_{2-y}$.² Moreover, infrared data³ have revealed not only a strong coupling of the symmetric in-plane phonon modes to an electronic excitation, but also an extremely small ratio of carrier density to effective mass in the metallic phase.

Tetragonal BaCo_{1-*x*}Ni_{*x*}S₂ contains Co_{1-*x*}Ni_{*x*}S sheets alternating with rock-salt BaS planes.⁴ The $Co_{1-x}Ni_x$ atoms occupy square-pyramidal sites, having their apical anions alternating above and below a square array of sulfur atoms in the S basal planes. Whereas $BaNiS₂$ is a Pauli paramagnetic metal, $BaCoS₂$ is a Mott insulator with an antiferromagnetic Ne´el temperature T_N = 310 K. A continuous change in lattice parameters with *x* indicates a complete solid solution, but an insulator-metal transition occurs at a critical value x_c ≈ 0.22 ⁵ With $x \le x_c$, the introduction of sulfur vacancies introduces the first-order transition to a metallic phase below $T_t \approx 180$ K that was observed by Martinson and Schweitzer. After our investigation had begun, a study 6 of Se substitution for S in BaCo_{0.9}Ni_{0.1}S₂_ySe_y clarified two critical issues: (a) the negative chemical pressure introduced by Se substitution stabilizes the metallic phase appearing below T_t (anion vacancies are not necessary), and (b) the high-temperaturetetragonal (HTT) phase at $T>T_t$ is to be distinguished from the low-temperature-monoclinic (LTM) phase at $T < T_t$. In the monoclinic phase, a cooperative crystallographic shear within the $Co_{1-x}Ni_{x}S$ sheets transforms the edge-shared square-pyramidal sites to pairs of edge-shared tetrahedral sites with an associated increase in volume per formula unit.

A band calculation for metallic BaNiS₂ (Ref. 7) places the Fermi energy ε_F in a partially filled, antibonding $(x^2 - y^2)$ σ^* band that overlaps $(z^2 - r^2)$ and $(yz \pm izx)$ subbands. We should, therefore, anticipate a strongly anisotropic conductivity in the metallic tetragonal phase with $\rho_c \gg \rho_{ab}$. A band calculation for the LTM phase is not yet available. In order to distinguish between the tetragonal and monoclinic metallic phases, we have undertaken a study of the transport properties of single-crystal $BaCo_{0.9}Ni_{0.1}S_{1.87}$ samples under pressure. We demonstrate a crossover from an isotropic threedimensional (3D) conductivity in the insulating HTT phase to a strongly anisotropic 2D conductivity in the metallic HTT phase. We have also measured the thermal conductivity of the LTM phase of $BaCo_{0.9}Ni_{0.1}S_{1.87}$ to provide additional information for interpreting the metallic conduction.

Single crystals of $BaCo_{0.9}Ni_{0.1}S_{1.87}$ were grown by vapor transport from a starting charge of BaCo_{0.92}Ni_{0.08}S₂. A *ca*. 2-g pellet of the charge material was placed at one end of a 5-cm-long quartz tube that was then sealed under a vacuum of 10^{-3} Torr. The sealed tube was loaded into a tube furnace with the pellet located at the center of the hot zone. The sealed tube was heated at a rate of 250 °C/h to 1050 °C, held at this temperature for 2 h before cooling at 2° C/h to 950 °C, and finally quenched in water. Black, platelike crystals as large as $5 \text{ mm} \times 5 \text{ mm} \times 0.1 \text{ mm}$ formed at the cooler end of the tube. A 1.0 mm \times 0.5 mm \times 0.05 mm crystal portion having a mirrorlike surface was chosen for measurements of transport properties under pressure and thermal conductivity. The Ni concentration $x \approx 0.1$ in the crystal was determined from the Ne^{ϵ}l temperature T_N in accordance with the plot of T_N versus *x* established¹ for BaCo_{1-x}Ni_xS₂. The as-grown crystals were insulators and showed no transition to the LTM phase down to lowest temperatures. In order to introduce sulfur vacancies, the crystals were sealed in a quartz tube under 10^{-3} Torr together with a polycrystalline sample of BaCo_{0.9}Ni_{0.1}S_{1.87} and heated to 920 °C followed by an anneal at 500 °C for 6 h. The resulting sulfur deficiency of a crystal was taken to be the same, $y=0.13$, as that of the polycrystalline material with which it was equilibrated. The sulfur deficiency of the polycrystalline material was determined by a standard atomic-emission spectrum.

A four-probe method was used to measure the resistivity under pressure. Cu wires $(0.0005$ in. diam.) were attached to the crystals with silver epoxy. The measurements under pressure were carried out on a self-clamped Be-Cu cell using silicone oil as a pressure medium. The brittle crystals shattered into small pieces after one or two thermal cycles

FIG. 1. The temperature dependence of resistivity along the *a-b* plane under pressure in single-crystal $BaCo_{0.9}Ni_{0.1}S_{1.87}$. T_{t1} : critical temperature of the structural transition from the HTT to the LTM phase; T_{t2} : temperature of the insulator-to-insulator transition; T_{IM} : temperature of the metal-insulator transition in the HTT phase. Pressures labeled have been measured at room temperature.

through T_t . However, the crystals retain their shape over many thermal cycles if kept under a pressure of several tens of atmospheres. The original $\rho(T)$ is reproducible after the pressure is released from a high value to a lower one greater than ambient. The thermal conductivity was measured by means of a steady-state method.

The resistivity data of Fig. 1 and Fig. 2 exhibit several features that, to the best of our knowledge, have not been observed in previous reports on ceramic samples: (a) the metal-insulator transition at T_{t1} is so sharp that essentially no data points were recorded in a small temperature interval ΔT =0.05 K that spanned *T*_{t1}; (b) the resistivity changes by four orders of magnitude on crossing T_{t1} ; (c) an insulatorinsulator transition, more visible in $\rho_{ab}(T)$, occurs at T_{t2} at pressures $P > 8.0$ kbar measured at room temperature (the transition shows a pressure hysteresis); (d) pressure induces a

FIG. 2. The same as Fig. 1 along the *c* axis.

FIG. 3. (a) The pressure dependence of the critical temperatures T_{t1} , T_{t2} , T_{IM} , and (b) the resistivity at 290 and 50 K. T_{t2} is taken from the curves of ρ_{ab} versus *T* under different pressures. Pressures have been measured at the critical temperatures in Fig. $3(a)$, and at 290 and 50 K in Fig. $3(b)$. PM stands for Pauli paramagnetic metal. LTM phase is shaded with dark gray.

first-order insulator-metal transition in the HTT phase at a T_{IM} that decreases with increasing pressure; (e) the resistivity of the HTT phase below T_{IM} decreases with increasing pressure until it becomes metallic before T_{IM} falls to zero; (f) ρ_c of the metallic LTM phase is lower than ρ_c of the metallic HTT phase, but the opposite is found for $\rho_{ab}(T)$. The pressure dependence of the critical temperatures is summarized in the *P*-*T* phase diagram of Fig. 3(a), and the ρ_{ab} -*P*, ρ_c -*P* plots obtained at 50 and 290 K are shown in Fig. $3(b)$ in order to demonstrate the crossover from 3D to 2D conductivity in the HTT phase. An accurate calculation of the ratio between ρ_c and ρ_{ab} becomes impossible because of errors in the measurement of resistivity. However, the change of this ratio under pressure is highly reliable. From the curves of ρ_c and ρ_{ab} at 290 K, which are within the HTT phase according to Fig. 3(a), a ratio of $\rho_c / \rho_{ab} \approx 10$ remains throughout the insulating phase and changes to 100 in the metallic phase. The ratio at 50 K looks complicated as pressure introduces three phase transitions, as is shown in Fig. $3(a)$. A change in the ratio of ρ_c / ρ_{ab} from 3 in the LTM phase to 100 in the metallic HTT phase has been found. The ratio becomes unreliable in the insulating HTT phase because an insulator to insulator transition at T_{12} appears to be highly sensitive to shear strain in the pressure medium, which makes it difficult to duplicate the strain state in the measurements of ρ_c and ρ_{ab} . It is interesting to compare the metallic LTM phase and the metallic HTT phase. Both phases fall into the ''bad metal'' regime. In both phases, ρ_c is higher than ρ_{ab} . However, the LTM phase is more conductive along the *c* axis than the HTT phase.

In order to understand these transport properties, we begin with the crystallographic structures of the *MS* sheets shown in Fig. 4. Schematic one-electron representations of the an-

FIG. 4. The crystallographic structures (after Ref. 6) of the high-temperature tetragonal phase and the low-temperature monoclinic phase; schematic energy diagrams are also shown.

tibonding states of $Co(II)-3d$ parentage are also shown. Neutron-diffraction data⁸ have shown that the $Co(II)$ of BaCoS₂ have a localized high-spin configuration with *S* $=$ $\frac{3}{2}$. In our compound, the ambient-pressure HTT phase would also have a localized high-spin configuration on the $Co(II)$. In the metallic HTT phase, stronger Co-S covalent bonding raises the majority-spin $(x^2 - y^2)$ level above the minority-spin ($yz\pm izx$) level, which fills all the *xy*, (yz $\pm i z x$) orbitals with spin-paired electrons. The transition to low-spin Co(II) also transforms the localized $(x^2 - y^2)$ level into a narrow σ^* band of itinerant-electron states that overlaps the (z^2-r^2) level. With the transfer of (z^2-r^2) electrons to the σ^* band, the spin degeneracy of the (z^2-r^2) level is no longer lifted. The Ni atoms and sulfur vacancies are electron donors that perturb the periodic potential, but the Fermi energy ε_F lies above any mobility edge in the σ^* band. The tetragonal structure allows Co-S-Co interactions in the basal planes, but only Co-S-S-Co interactions for *c* axis conduction. Therefore, a highly anisotropic resistivity with $\rho_{ab} \ll \rho_c$ follows directly from the model of a high-spin to low-spin transition that contracts the volume of the HTT phase but does not change the symmetry. Therefore, high pressure stabilizes the metallic low-spin HTT phase. In the LTM phase, on the other hand, the tetrahedral-site $Co(II)$ have spin-paired *e* electrons and a little more than half-filled σ_t^* band of *t*-orbital parentage that is connected in 3D. In this case, filled *e* orbitals prevent metal-metal bonding across the shared tetrahedral-site edge and a nearly isotropic conductivity is due to electrons in the σ_t^* band. As in the LTM phase, the high-spin state of the HTT insulator phase provides electron transport via partially occupied *t* orbitals, which allows more isotropic conduction via the sulfur atoms than does conduction in an (x^2-y^2) band.

The pressure-induced insulator-metal transition in the HTT phase is not like that predicted by Mott and Hubbard; it is a transition from a high-spin Mott-Hubbard insulator to a low-spin metallic phase that appears to go in two steps. The decrease in resistivity with pressure on the approach to the metallic phase in the interval $T_{t2} < T < T_{IM}$ of the intermediate step is similar to that found in the insulator phase of $PrNiO₃$, where the insulator phase also becomes metallic under pressure while the transition temperature remains finite. The insulator phase in $PrNiO₃$ was interpreted to be a longrange ordering of strong-correlation fluctuations already present in an itinerant-electron matrix in the metallic phase.⁹

Finally, we turn to the character of the 3D metallic conduction in the more-than-half-filled σ_t^* band of the LTM phase. We found the basal-plane thermoelectric power to be small and negative, which indicates a deep minimum in the density of states in the middle of the σ_t^* band as a result of intra-atomic electron-electron interactions. The σ_t^* bands are antibonding with respect to the Co-S interactions, but electron correlations within a narrow band may stabilize Co-Co bonding states relative to the Co-Co antibonding states within the band. Although the conductivity is of the same order of magnitude as that of ρ_{ab} in the high- T_c cuprates, the infrared reflectivity gave an anomalously small nm_e/m^{*} ratio for the charge carriers. A small nm_e/m^{*} and a metallic $\sigma = ne^2 \tau/m^*$ would suggest a large mean free path for a few itinerant electrons above a mobility edge, the Ni-atom and sulfur-vacancy donors introducing Anderson-localized states in the middle of the σ_t^* band just below the Fermi energy ε_F . It has been suggested³ that the long mean free path of the electrons is due to a strong coupling to a traveling charge-density wave (CDW). Since electron coupling in a traveling CDW is known¹⁰ to give an enhancement of the thermal conductivity $\kappa(T)$, we decided to determine whether such an enhancement was present in our single crystal.

Figure 5 shows that the $\kappa_{ab}(T)$ of our single crystal is significantly higher than the $\kappa(T)$ obtained¹¹ on a ceramic sample. The temperature dependence of $\kappa_{ab}(T)$ reveals two significant features: (a) on cooling, κ_{ab} jumps abruptly at T_{t1}

FIG. 5. The temperature dependence of thermal conductivity κ in the *a-b* plane of a $Ba_{0.9}Ni_{0.1}S_{1.87}$ crystal. Circles represent the κ measured; solid line represents the κ after correction for the electronic contribution (see text for the detail). The dashed line is a fitting to the power law $\kappa \sim 1/T^{1.1}$.

and (b) κ_{ab} increases with decreasing temperature in the LTM phase. In this plot, the upper bound of the electronic contribution obtained from the Wiedemann-Franz (W-F) law is much smaller than the phonon contribution. The jump in $\kappa_{ab}(T)$ on passing from the HTT to the LTM phase at T_{t1} therefore reflects a release of phonons on passing from the localized-electron to the itinerant-electron phase. Both $\kappa_{ab}(T)$ and the lattice contribution to $\kappa_{ab}(T)$, which was obtained by subtracting the electronic contribution as calculated from ρ_{ab} and the W-F law, can be fitted by a power law $\kappa \sim T^{-1.1}$. The relaxation-time-approximation formula is normally used to describe the lattice contribution at low temperatures; at $T \geq \theta_D$, the formula can be replaced by a $1/T$ law.¹² Julian¹³ has pointed out that in many cases the $1/T$ law remains applicable to temperatures as low as $\theta_D/4$. We have observed a $\kappa \sim 1/T$ in LaMnO₃ down to 30 K.¹⁴ The magnitude of $\kappa_{ab}(T)$ is also comparable to that of metallic

 $BaNiO₃$.¹⁵ Both the temperature dependence and magnitude of $\kappa_{ab}(T)$ in the LTM phase rule out the possibility that a travelling CDW is formed.

In conclusion, $BaCo_{0.9}Ni_{0.1}S_{1.87}$ contains a localized, high-spin $3d$ -electron configuration at the $Co(II)$ ions in the antiferromagnetic-insulator HTT phase that is stable above $T_t \approx 150$ K at ambient pressure; it undergoes a first-order transition to a metallic phase in two distinguishable ways. An insulator to metal transition at $T_{t1} \approx 150 \text{ K}$ is accompanied by a structural transition and an insulator to metal transition at T_{IM} is induced by pressure within the HTT phase. The latter transition is preceded by an insulator-insulator transition that marks the appearance of an intermediate phase in which the resistivity approaches metallic behavior before T_{IM} is reached. Measurement under pressure of the resistivity of single crystals has not only demonstrated the evolution of the phase transitions as a function of pressure, but also revealed an isotropic conduction in the LTM phase and a crossover from 3D to 2D conduction associated with the IM transition in the HTT phase. At atmospheric pressure, the structure changes on cooling through T_{t1} to the 3D-metallic LTM phase in which the transition-metal atoms are displaced from edge-shared square-pyramidal sites to pairs of edge-shared tetrahedral sites. The volume of the LTM phase is larger than that of the HTT phase, and a modest pressure suppresses the LTM phase. The crossover from 3D to 2D conduction at T_{IM} allows us to associate the IM transition with a high-spin to low-spin transition within the HTT phases that produces a first-order contraction of the lattice and a delocalization of the electrons in σ -bonding orbitals. The tetragonal symmetry of the square-pyramidal sites stabilizes the $(z^2 - r^2)$ level relative to the (x^2-y^2) level in the HTT insulator phase; in the HTT metallic phase, broadening of the $(x^2 - y^2) \sigma^*$ band makes this band overlap the $(z^2 - r^2)$ level, which prevents removal of the spin degeneracy of the $(z^2 - r^2)$ level. Both the electrical and thermal conductivity of the LTM phase show that its metallic conduction behaves as a normal metal.

We thank the Robert A. Welch Foundation and TCSUH, both of Houston, Texas, and the NSF for financial support.

- ¹L. S. Martinson, J. W. Schweitzer, and N. C. Baenziger, Phys. Rev. Lett. **71**, 125 (1993).
- 2 C. Looney, J. S. Schilling, L. S. Martinson, and J. W. Schweitzer, Phys. Rev. Lett. **76**, 4789 (1996).
- 3 K. H. Kim, Y. H. Kim, L. S. Martinson, and J. W. Schweitzer, Phys. Rev. Lett. **78**, 4498 (1997).
- 4 I. E. Grey and H. Steinfink, J. Am. Chem. Soc. **92**, 5093 (1970).
- ⁵L. S. Martinson, J. W. Schweitzer, and N. C. Baenziger, Phys. Rev. B 54, 11 265 (1996).
- ⁶ J. W. Schweitzer, L. S. Martinson, N. C. Baenziger, D. C. Swenson, V. G. Young, Jr., and I. Guzei, Phys. Rev. B **62**, 12 792 $(2000).$
- 7 L. F. Mattheiss, Solid State Commun. 93, 879 (1995).
- 8K. Kodama, S. Shamoto, H. Harashina, J. Takeda, M. Sato, K. Kakurai, and M. Nishi, J. Phys. Soc. Jpn. 65, 1782 (1996).
- ⁹ J.-S. Zhou, J. B. Goodenough, B. Dabrowski, P. W. Klamut, and Z. Bukowski, Phys. Rev. B 61, 4401 (2000).
- 10Z. Bhihar, D. Staresinic, K. Kiljakovic, and T. Sambongi, Europhys. Lett. **40**, 73 (1997).
- ¹¹H. Kang, P. Mandal, I. V. Medvedeva, J. Liebe, G. H. Rao, K. Bärner, A. Poddar, and E. Gmelin, J. Appl. Phys. 83, 6977 $(1998).$
- ¹²R. Berman, *Thermal Conductivity in Solids* (Oxford University Press, New York, 1976).
- ¹³C. L. Julian, Phys. Rev. **137**, A128 (1965).
- ¹⁴ J.-S. Zhou and J. B. Goodenough, Phys. Rev. B **64**, 024421 $(2001).$
- ¹⁵ J. Takeda, J. Sakurai, A. Nakamura, M. Kato, Y. Kobayshi, and M. Sato, J. Phys. Soc. Jpn. 68, 1602 (1999).