NMR and NQR studies of the heavy fermion superconductors Ce T **In**₅ ($T =$ Co and Ir)

Y. Kohori, Y. Yamato, Y. Iwamoto, and T. Kohara

Department of Material Science, Faculty of Science, Himeji Institute of Technology, Kamigori-cho Ako-gun, Hyogo 678-1297, Japan

E. D. Bauer and M. B. Maple

Department of Physics and Institute for Pure and Applied Physical Sciences, University of California, San Diego, La Jolla, California 92093

J. L. Sarrao

Condensed Matter and Thermal Physics, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (Received 8 November 2000; revised manuscript received 20 February 2001; published 13 September 2001)

We have carried out ¹¹⁵In and ⁵⁹Co nuclear quadrupole resonance and nuclear magnetic resonance measurements on CeCoIn₅ and CeIrIn₅. The temperature *T* dependence of the nuclear spin-lattice relaxation rate $1/T_1$ of 115 In in the normal state indicates that CeCoIn₅ is located just at an antiferromagnetic instability, and CeIrIn₅ is in the nearly antiferromagnetic region. In the superconducting state, $1/T_1$ has no Hebel-Slichter coherence peak just below T_c and a power-law *T* dependence (close to $T³$) at very low temperatures, which indicates the existence of line nodes in the superconducting energy gap. The ¹¹⁵In (Ce-In plane) Knight shift in CeCoIn₅ decreases for both parallel and perpendicular directions to the tetragonal *c* axis in the superconducting state, which shows that the spin susceptibility decreases in all directions. These results indicate that CeCoIn₅ and CeIrIn₅ exhibit non-*s*-wave even parity (probably *d*-wave) superconductivity.

DOI: 10.1103/PhysRevB.64.134526 PACS number(s): 74.20.Mn, 71.27. + a, 76.60.Gv

I. INTRODUCTION

The occurrence of superconductivity in strongly correlated *f*-electron systems has intrigued researchers for more than two decades. In these systems, the hybridization between the conduction electrons and the localized *f* electrons results in the formation of heavy quasiparticles and leads to ferromagnetic (F) or antiferromagnetic (AF) spin fluctuations.¹ Since heavy fermion superconductors are located near the F or AF region, the existence of spin fluctuations has led to the prediction that superconductivity with non-*s*-wave symmetry, mediated by magnetic electronelectron coupling, is realized in heavy fermion systems.² More than five years ago, $CeCu₂Si₂$ (Ref. 3) and $CeCu₂Ge₂$ (at high pressure) 4 were the only superconducting members of the 4 *f*-heavy fermion class. Since 1995, however, CePd₂Si₂,^{5,6} CeRh₂Si₂,⁷ CeIn₃,⁸ and CeNi₂Ge₂ (Ref. 9) have been shown to become superconducting under pressure (*P*), which all have very low superconducting transition temperatures (T_C) at high pressure. Owing to the severe experimental conditions, little knowledge of the superconductivity was obtained in these systems. Recently, another pressure induced superconductor CeRhIn₅, which has the tetragonal $HoCoGa₅$ structure, has been discovered.¹⁰ The ground state is AF for $P<16$ kbar, and superconductivity occurs at T_c $=$ 2.2 K for P >16 kbar. The ¹¹⁵In nuclear quadrupole $resonance¹¹$ and the neutron diffraction¹² measurements determined the spiral spin structure of $CeRhIn₅$. Following the discovery of $CeRhIn₅$, two new isostructural superconductors CeIrIn₅ (Ref. 13) and CeCoIn₅,¹⁴ were observed at ambient pressure. The respective values of T_c of the two compounds are 0.4 and 2.3 K. Superconductivity occurs at relatively high temperatures for the Ce $TIn₅$ ($T=Co$, Rh, and Ir) compounds,¹⁵ which makes them very suitable for microscopic measurements.

In CeIrIn₅ and CeCoIn₅, the electrical resistivity passes through a maximum around 50 K that typically is attributed to the cross-over from incoherent scattering of conduction electron at high *T* to the development of correlated bands at low *T*. Below about 20 K, the resistivity of both systems does not have a quadratic *T* dependence. The resistivity varies as $\rho = \rho_0 + aT^n$ with n = 1.3 in CeIrIn₅ and n = 1 in CeCoIn₅, which are not described by the Landau Fermi liquid picture. The electronic specific heat coefficients γ at very low *T* in these systems are large, 750 mJ/mole K^2 for CeIrIn₅ and 350 mJ/mole K^2 for CeCoIn₅. In the stoichiometric compound, deviation from the Landau Fermi liquid picture, the ''non-Fermi-liquid state,'' occurs when the system is located in the vicinity of a quantum critical point (around magnetic instabilities) and thermal and transport properties are affected by strong spin fluctuations.

Nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) are powerful tools for studying magnetism and superconductivity, i.e., the spectrum and nuclear spin lattice relaxation rate $1/T_1$ provide valuable information about the magnetic structure, the spin fluctuations and, also, the symmetry of the superconductivity. The results of such a study of $CeRhIn₅$ have already been published and reveal anisotropic superconductivity with line nodes that occurs near the AF state.¹⁶ In order to understand the interplay of spin fluctuations and superconductivity, NQR and NMR measurements on CeIrIn₅ and CeCoIn₅ have been performed. In CeTIn₅, there are two crystallographically nonequivalent In sites. One site is located in the Ce-In plane. This In site is surrounded by Ce ions and has a symmetry which is invariant under fourfold rotations about the *c* axis (hereafter referred to as site A in this paper). The other site is

FIG. 1. ¹¹⁵In NQR spectra obtained in CeCoIn₅. The closed circles represent the signals from site *A*, and open circles represent those from site *B*. The two lines from site *B* are nearly coincident at 29 MHz, which can be seen clearly in the inset.

surrounded by Ce and Co (or Ir) ions and has a lower crystal symmetry (referred to as site B). Due to the noncubic environment, one expects a large electric field gradient for both In sites, which is favorable for observing distinct NQR lines. In this paper, we report 115 In and 59 Co NMR/NQR studies in CeIrIn₅ and CeCoIn₅ at temperatures down to 50 mK.

II. EXPERIMENTAL

The ¹¹⁵In NQR measurements were performed using a phase-coherent pulsed NMR/NQR spectrometer in the resonance frequency range $5-90$ MHz. Field-swept 115 In and 59Co NMR spectra were obtained using a superconducting magnet with a maximum magnetic field of 50 kOe. Single crystals of CeCoIn₅ and CeIrIn₅ were grown from an In flux and crushed into powders for NQR and NMR measurements. The NMR measurements were carried out on aligned powders, in which the grains were aligned with the *c* axis parallel to magnetic field H_{ext} . Two pieces of CeCoIn₅ crystals which were not crushed, were used to study the directional variation of *K* with respect to H_{ext} . The ⁵⁹Co Knight shift $59K$ was determined with respect to the $59C$ o resonance in $K_3Co(CN)_6$, and the ¹¹⁵In Knight shift ¹¹⁵K with respect to the ¹¹⁵In resonance in InCl₃. The value of T_1 was obtained by the recovery of the nuclear magnetization $m(t)$ after a saturation pulse. The measurements above 1.3 K were performed using a 4 He cryostat, and below 1.3 K with a 3 He cryostat and a 3 He- 4 He dilution refrigerator.

III. RESULTS

A. 115In NQR spectra

Figures 1 and 2 show the 115 In NQR spectra obtained in CeCoIn₅ and CeIrIn₅ at $T=4.2$ K. The respective spectra consist of 8 narrow resonance lines, which could be assigned

FIG. 2. 115 In NQR spectra obtained in CeIrIn₅.

as the signals arising from two In sites. The electric quadrupole Hamiltonian is written as

$$
\mathcal{H}_Q = \frac{e^2 q Q}{4I(2I-1)} \left[3I_z^2 - I(I+1) + \frac{\eta}{2} (I^{+2} + I^{-2}) \right].
$$

Here *Q* represents the nuclear quadrupole moment, the electric-field gradients are contained in *eq* and the asymmetric parameter η , defined as $eq \equiv V_{ZZ}$ and $\eta \equiv (V_{XX}$ $-V_{YY}/V_{ZZ}$. By convention, V_{ZZ} has the largest magnitude, and V_{XX} and V_{YY} are chosen so that $0 \le \eta \le 1$. For *I* $=9/2$ (¹¹⁵In), the four "allowed" transitions would be observed when η is small. The resonace frequencies were estimated by diagonalizing the electric quadrupole Hamiltonian. In the case of $\eta=0$, a set of lines would be observed at the resonance frequencies of $v_0 = 3e^2qQ/2I(2I-1)h$, $2v_0$, $3v_O$ and $4v_O$, where *h* represents Planck constant. Indeed, a set of lines observed at 8.17, 16.34, 24.51, and 32.68 MHz in CeCoIn₅ are equally separated, which represents $\eta=0$. Similar signals are also observed in CeIrIn₅ at resonance frequencies of 6.07, 12.13, 18.20, and 24.27 MHz. These signals arise from the site A (In atoms in the Ce-In plane) which has an axially symmetric electric field gradient. From the crystal structure, it is evident that the direction of the electric field gradient V_{ZZ} is parallel to the tetragonal c axis. The values of the electric field gradient were evaluated as e^2qQ/h =196 MHz for CeCoIn₅ and 146 MHz for CeIrIn₅, respectively. Not only the four signals from site *A*, but also other signals are observed at 28.65, 28.98, 45.08, 61.21 MHz in CeCoIn₅, and 33.70, 38.35, 52.19, 71.43 MHz in CeIrIn₅. These signals arise from the site B , in which the 115 In nuclei are surrounded by Ce and Co (or Ir) ions. The corresponding electric field gradients are evaluated as $e^2qQ/h = 372$ MHz with $\eta=0.39$ for CeCoIn₅, and $e^2qQ/h=436$ MHz with η =0.46 for CeIrIn₅. In either case, the associated "forbidden'' transition ($|\Delta m| > 1$), which exists in the case of finite η , was not visible. Since the symmetry of the electric field gradient in this site is lower than uniaxial, the principal axes of the tensor could not be determined only from NQR. Any

FIG. 3. ¹¹⁵In and ⁵⁹Co NMR spectra measured at 4.2K in $CeCoIn₅$. (a) and (b) were obtained with the *c*-axis parallel and perpendicular to H_{ext} , respectively.

change of the spectra were not observed down to 50 mK in both compounds. It is noteworthy that the whole spectra could be explained by only the electric quadrupole interaction, which shows both compounds are in the paramagnetic state.

B. 115In and 59Co NMR spectra in CeCoIn5

The 115 In and 59 Co NMR were measured in CeCoIn₅ at 25.600 MHz and 4.2 K. Displayed in Figs. $3(a)$ and $3(b)$ are spectra obtained with the *c* axis parallel and perpendicular to H_{ext} , respectively. A set of widely separated 115 In NMR lines were observed which was assigned as the signal from site A, indicating a huge electric field gradient at the In site. In addition to 115 In NMR from site *A*, 59 Co NMR was also observed, which showed the direction of V_{ZZ}^{59} Co) to be the *c* axis with the magnitude of $e^2qQ/h=1.58$ MHz and η $=0$. From these spectra, the parallel (\parallel) and perpendicular (\perp) components of ¹¹⁵K and ⁵⁹K with respect to the *c* axis, whose *T* dependences are shown in Fig. 4, were evaluated.

FIG. 4. Temperature dependence of the magnetic susceptibility and Knight shifts ${}^{59}K$ and ${}^{115}K$ in CeCoIn₅. The anisotropy of *K* is larger than that of χ .

FIG. 5. Clogston-Jaccarino plot for ⁵⁹K and ¹¹⁵K versus χ in CeCoIn₅.

These Knight shifts *K* were compared with the magnetic susceptibility χ of CeCoIn₅ which is also plotted in Fig. 4. The presence of crystalline electric field that lifts the degeneracy of $J=5/2$ multiplet and induces the large anisotopy in the magnetic susceptibility and *K*. It is remarkable that $^{115}K_{\parallel}$ has a broad maximum around 50 K, even if the corresponding anomaly in χ_{\parallel} is much smaller. The band structure calculations for CeIrIn₅ indicates that the Fermi surface is produced mainly by 5*d* and 4*f* electrons of Ce and 5*p* electrons of In (site *A*).^{17,18} Hence, there is a strong coupling of electrons in the Ce-In plane. On the contrary, the hybridization of 5*d* electrons of Ir and 5*p* electrons of In at the *B* site makes bonding and antibonding bands, which results in a small density of states around the Fermi level E_F at Ir (Co). In some compounds containing unstable-moments, such as $CeSn₃$ and YbCuAl, the linear relation of χ and the Knight shift breaks down below T_{max} , which reflects the modification of the electronic structure associated with the formation of 4 *f*-ion coherence.19,20 Although the modification of the electronic state is usually small in heavy fermion compounds, one explanation for the anomaly in K is the occurrence of reformation of the band structure below T_{max} . For the perpendicular component, no anomaly was observed in $115K_{\perp}$, which increases monotonicallly with decreasing *T*. Figure 5 gives a Clogston-Jaccarino plot of Knight shift *K* versus susceptibility per mole Ce, with temperature an implicit parameter. A linear relation between K and χ is observed in the parallel component above 90 K with the coupling constant of 14.5 kOe/ μ _B, which is nearly comparable with the coupling constant of the perpendicular component of 10.3 kOe/ μ_B . Presumably reflecting the small coupling of the Ce-In plane and Co at the interlayer site, the *T* dependence of $^{59}K_{\parallel}$, which is different from $115K_{\parallel}$, increases monotonically with decreasing *T*. ${}^{59}K_{\parallel}$ is *T* dependent and is positive, which is induced by antiparallel Co 3*d* spins through 3*d*-core polarization. The positive and nearly *T* independent ${}^{59}K_1$ reveals

FIG. 6. *T* dependence of *K* in the superconducting state of CeCoIn₅. The values of $1/T_1$ in CeCoIn₅. The values of $1/T_1$ in CeCoIn₅. The values of $1/T_1$

that the shift is almost determined by the Co orbital contribution. A Clogston-Jaccarino plot for $59K$ is also shown in Fig. 5. The evaluated coupling constants are 4.7 kOe/ μ_B for ⁵⁹K_{||} and 4.6 kOe/ μ_B for ⁵⁹K_|.

As seen in Fig. 6, a large decrease of ^{115}K was observed in both directions below T_c . For ⁵⁹K, the decrease was observed only in the parallel component, and not in the perpendicular component. It is expected that no decrease of 59 K_| reflects large *T*-independent Co 3*d* orbital contribution and small transferred contribution from Ce. The Ce susceptibility has also van Vleck component $\chi_{vv,\alpha\beta} \propto \sum_n [(0|J_{\alpha}|n)$ $\times (n|J_{\beta}|0)/(E_n-E_0)$, where (0) and |n) is the ground and excited states splitted by the crystalline electric field. It is noted that $\chi_{vv,\alpha\beta}$ contains spin part and induces spin polarization at the Co site, which does not decrease in the superconducting state.

C. nuclear spin-lattice relaxation rate $1/T_1$

Using 115 In NQR at site A, the nuclear spin lattice relaxation rates in both systems were measured. The expected functional form for $m(t)$ for spin $I=9/2$ and $\eta=0$ is a sum of four exponents with the coefficients determined by the initial conditions.²¹ The function $m(t)$ contained only two fitting parameters $1/T_1$ and the numerical factor *C*, which is given by

$$
1 - \frac{m(t)}{m(\infty)} = C \bigg[b_1 \exp \bigg(-\frac{3t}{T_1} \bigg) + b_2 \exp \bigg(-\frac{10t}{T_1} \bigg) + b_3 \exp \bigg(-\frac{21t}{T_1} \bigg) + b_4 \exp \bigg(-\frac{36t}{T_1} \bigg) \bigg].
$$

In our measurements, $1/T_1$ was obtained by different quadrupole transitions $\pm 1/2 \leftrightarrow \pm 3/2$, $\pm 3/2 \leftrightarrow \pm 5/2$, and \pm 7/2 \leftrightarrow \pm 9/2. The corresponding *b*- coefficients are de-

below 1.3 K and above 1.3 K were evaluated from the $\pm 1/2 \leftrightarrow$ \pm 3/2 and \pm 7/2↔ \pm 9/2 transitions, respectively. 1/*T*₁ evaluated with the polar model is shown as the solid line. Below 0.2 K, the recovery curves could not be fitted by a unique value of $1/T₁$. The shorter components are plotted as open triangles.

scribed in Ref. 21. The *T* dependence of the $1/T_1$'s obtained in both compounds are shown in Figs. 7 and 8. In $CeCoIn₅$, the *T* dependence is close to $T^{1/4}$. In CeIrIn₅, $1/T_1$ in the normal state varies nearly as $T^{1/2}$ in the temperature range

FIG. 8. *T* dependence of $1/T_1$ in CeIrIn₅. The values of $1/T_1$ below 1.3, between 1.3 and 4.2 K, and above 4.2 K were evaluated from the $\pm 1/2 \leftrightarrow \pm 3/2$, $\pm 3/2 \leftrightarrow \pm 5/2$, and $\pm 7/2 \leftrightarrow \pm 9/2$ transitions, respectively.

between 10 and 80 K, and the *T* dependence increases gradually below about 10 K with decreasing *T*. $1/T_1$ is expected to be proportional to the temperature in a model of simple Fermi-liquid behavior, which was not observed in both compounds. $1/T_1$ decreases rapidly just below $T_C = 2.3$ K in CeCoIn₅, and below about 0.3 K, which is lower than T_C $=0.4$ K of a single crystal, in CeIrIn₅. Since NQR measurements were performed on a powder, T_c might decrease due to defects induced by crushing of the single crystal. It is expected that compounds having a lower T_c and a larger superconducting coherence length would be more sensitive to defects. In both compounds, Hebel-Slichter coherence peaks were not observed. In CeIrIn₅, $1/T_1$ varies nearly proportionally to T^3 at low temperatures. In CeCoIn₅, however, the *T* dependence becomes saturated below 0.3 K, where the recovery curve was not fitted by a unique T_1 . The shorter and longer components of $1/T_1$ are shown in Fig. 7. This saturation would be caused by the extrinsic contribution to T_1 from a small amount of paramagnetic impurities, which masks the intrinsic superconducting quasiparticle contribution.

IV. DISCUSSION

It was found recently that AF ordering appears in $Ce(\text{Ir}_x \text{Rh}_{1-x})\text{In}_5$ for $x < 0.6$ (Ref. 22) and in Ce(Co*xRh_{1-x})In₅* for $x < 0.7$.²³ Also the *T* dependence of the resistivity in $CeCoIn₅$ and $CeInIn₅$ are not described by the Landau Fermi-liquid picture.^{13,14} These results suggest that CeIrIn₅ and CeCoIn₅ are located close to AF state. Indeed, the observed *T* dependence of $1/T_1$ in CeCoIn₅ and $CelrIn₅$ differs from the issue expected in the simple Fermiliquid state, i.e., $1/T_1$ varies in proportion to *T*. $1/T_1$ would be governed by the strong AF spin fluctuations. In this case, one way to analyze $1/T_1$ is the use of the spin fluctuation theory developed by Moriya, which shows $1/(T_1T) \propto \sqrt{\chi_0}$ around antiferromagnetic instabilities in the threedimensional case. Here χ_Q represents the staggered susceptibility. In the theory,²⁴ χ_0^2 is determined by four parameters, which, however, were not yet determined in CeTIn₅. Therefore, we simply assume Curie-Weiss behavior for χ_Q , which is similar to the 3*d* transition metal case, 2^5

$$
\chi_{\mathcal{Q}} \propto \frac{1}{T + \theta}.
$$

In this model, the observed *T* dependence of $1/T_1$ (close to \sqrt{T}) in CeIrIn₅ was explained by taking the value of θ \sim 0.67. The spin fluctuation theory predicts a $T^{1/4}$ dependence of $1/T_1$ near an AF instability, which was observed in $CeCoIn₅$.

Next, the ratio of $1/T_1$ in the superconducting state and that of the normal state, T_{1N}/T_{1S} , is related to the density of states (DOS) $N_S(E)$ as

$$
\frac{T_{1N}}{T_{1S}} = \frac{2}{k_B T} \int_0^\infty [N_S(E)^2 + M(E)^2] f(E) [1 - f(E)] dE,
$$

where $M(E)$ is the "anomalous DOS" arising from the coherence effect which only exists in *s*-wave superconductivity, and $f(E)$ is the Fermi distribution function. $1/T_{1N}$ is evaluated by extending the normal state data from high temperatures. Unconventional superconductivity is characterized by the superconducting gap structure which has nodes along certain direction. Generally, energy gap has points or line nodes, which satisfy the group theoretical restriction arising from the crystal symmetry. In most of the case, the detailed structure of the gap function is remaining as an unresolved issue. However, a crude evaluation of $1/T_1$ would be possible by the simple polar model $\Delta = \Delta_0 \cos \theta$, since $1/T_1$ would likely be insensitive to points nodes in the presence of line nodes. If we calculate T_1 , tentatively assuming $2\Delta_0(0)$ $=10$ *k_BT_C* for CeCoIn₅ and 5 *k_BT_C* for CeIrIn₅, the experimental values are reproduced well as plotted in Figs. 7 and 8. The nearly T^3 law of $1/T_1$ is reminiscent of the relaxation behavior in many heavy fermion superconductors CeCu₂Si₂,²⁶ UPt₃,²⁷ UBe₁₃,²⁸ URu₂Si₂,²⁹ and UPd₂Al₃.³⁰

By using the same energy gap, the *T* dependence of *K* is also analyzed in the case of even parity

$$
K_S \propto \chi_S \propto \int N_S(E) \frac{df(E)}{dE} dE,
$$

which is also plotted as the solid lines in Fig. 6. The calculation has reproduced the *T* dependence of the observed Knight shift. One of the aspects of *K* in the superconducting state is that *K* varies nearly linearly with *T* at very low temperatures, which arises from the low-energy excitation of quasiparticles in the superconducting state. The existence of line nodes explains the *T* dependence. The fact that *K* and $1/T_1$ were consistently explained by an anisotropic spin singlet model, strongly indicates the appearance of anisotropic even parity (probably d wave) superconductivity in CeTIn₅. Further measurements using a directional probe in *k* space, such as thermal conductivity, would be useful for determining the precise gap symmetry and the position of the gap at the Fermi surface.³¹

V. SUMMARY

In CeCoIn₅, the $1/T_1$ varies nearly as $T^{1/4}$ in the normal state. In CeIrIn₅, $1/T_1$ varies as $T^{1/2}$ in the temperature range between 10 and 80 K, which are well explained as these compounds located close to the AF instability (quantum critical point). In the superconducting state, the Knight shift K deceases in all directions and $1/T_1$ reveals the anisotropic nature of the superconducting energy gap. These results indicate that $CeCoIn₅$ and $CeInIn₅$ exhibit anisotropic even parity (probably *d*-wave) superconductivity.

Note added in proof. A detail thermal conductivity measurement of CeCoIn⁵ has recently been performed. The measurement shows that the symmetry of the superconductivity is most likely to be $d_{x^2-y^2}$.³² The ¹¹⁵In NQR measurement of CeIrln⁵ has been recently performed by another group.³³ Their results are similar to ours.

ACKNOWLEDGMENTS

This work was supported by a grant-in-aid from the Ministry of Education, Science and Culture of Japan. Research at

UCSD was supported by U.S. Department of Energy under Grant No. DE-FG-03-45230 and the National Science Foundation under Grant No. DMR-97-05454. Work at LANL was performed under the auspices of the U.S. Department of Energy.

- 1 T. Moriya and T. Takimoto, J. Phys. Soc. Jpn. 64 , 960 (1995).
- 2 P. W. Anderson, Phys. Rev. B 30, 1549 (1984).
- 3F. Steglich, J. Aarts, C. D. Bredl, W. Lieke, D. Meschede, W. Franz, and H. Schafer, Phys. Rev. Lett. **43**, 1892 (1979).
- 4D. Jaccard, K. Behnia, and J. Sierro, Phys. Lett. A **163**, 475 $(1992).$
- ⁵F. M. Grosche, S. R. Julian, N. D. Mathur, and G. G. Lonzarich, Physica B 224, 50 (1996).
- 6F. M. Grosche, S. R. Julian, N. D. Mathur, F. V. Carter, and G. G. Lonzarich, Physica B 237, 197 (1997).
- 7R. Movshovich, T. Graf, D. Mandrus, J. D. Thompson, J. L. Smith, and Z. Fisk, Phys. Rev. B 53, 8241 (1996).
- ⁸ I. R. Walker, F. M. Grosche, D. M. Freye, and G. G. Lonzarich, Physica C 282, 303 (1997).
- ⁹S. J. S. Lister, F. M. Grosche, F. V. Carter, R. K. W. Haselwimmer, S. S. Saxena, N. D. Mathur, S. R. Julian, and G. G. Lonzarich, Z. Phys. B 103, 263 (1997).
- ¹⁰H. Hegger, C. Petrovic, E. G. Moshopoulou, M. F. Hundley, J. L. Sarrao, Z. Fisk, and J. D. Thompson, Phys. Rev. Lett. **84**, 4986 $(2000).$
- 11N. J. Curro, P. C. Hammel, P. G. Pagliuso, J. L. Sarrao, J. D. Thompson, and Z. Fisk, Phys. Rev. B 62, R6100 (2000).
- 12W. Bao, P. G. Pagliuso, J. L. Sarrao, J. D. Thompson, and Z. Fisk, J. W. Lynn, and R. W. Erwin, Phys. Rev. B 62, R14 621 (2000).
- 13C. Petrovic, R. Movshovich, M. Jamime, P. G. Pagliuso, M. F. Hundley, J. L. Sarrao, Z. Fisk, and J. D. Thompson, Europhys. Lett. 53, 354 (2001).
- 14C. Petrovic, P. G. Pagliuso, M. F. Hundley, R. Movshovich, J. L. Sarrao, J. D. Thompson, Z. Fisk, and P. Monthoux, J. Phys.: Condens. Matter 13, L337 (2001).
- ¹⁵ J. D. Thompson, R. Movshovich, Z. Fisk, F. Bouquet, N. J. Curro, R. A. Fisher, P. C. Hammel, H. Hegger, M. F. Hundley, M. Jaime, P. G. Pagliuso, C. Petrovic, N. E. Phillips, and J. L. Sarrao, J. Magn. Magn. Mater. (to be published).
- 16Y. Kohori, Y. Yamato, Y. Iwamoto, and T. Kohara, Eur. Phys. J. B **18**, 601 (2000).
- 17Y. Haga, Y. Inada, H. Harima, K. Oikawa, M. Murakawa, H.

Nakawaki, Y. Tokiwa, D. Aoki, H. Shishido, S. Ikeda, N. Watanabe, and Y. Onuki, Phys. Rev. B 63, 060503 (2001).

- 18D. Hall, E. Palm, T. Murphy, S. Tozer, E. Miller-Ricci, L. Peabody, C. Q. H. Li, U. Alver, R. G. Goodrich, J. L. Sarrao, P. G. Pagliuso, J. M. Wills, and Z. Fisk, cond-mat/0011395, Phys. Rev. B (to be published).
- ¹⁹D. E. MacLaughlin, J. Magn. Magn. Mater. **47&48**, 121 (1985).
- 20 E. Kim and D. L. Cox, Phys. Rev. B **58**, 3313 (1998).
- 21 D. E. MacLaughlin, J. D. Williamson, and J. Butterworth, Phys. Rev. B 4, 53 (1971).
- 22P. G. Pagliuso, C. Petrovic, R. Movshovich, D. Hall, M. F. Hundley, J. L. Sarrao, J. D. Thompson, and Z. Fisk, cond-mat/0101316 (unpublished).
- 23V. S. Zapf, E. J. Freeman, E. D. Bauer, J. Petricka, C. Sirvent, N. A. Frederick, R. P. Dickey, and M. B. Maple (unpublished).
- 24 A. Ishigaki and T. Moriya, J. Phys. Soc. Jpn. 65 , 3402 (1996).
- 25 T. Moriya and K. Ueda, Solid State Commun. **15**, 169 (1974).
- 26Y. Kitaoka, K. Ueda, T. Kohara, K. Asayama, Y. Onuki, and T. Komatsubara, J. Magn. Magn. Mater. **52**, 341 (1985).
- 27Y. Kohori, T. Kohara, H. Shibai, Y. Oda, Y. Kitaoka, and K. Asayama, J. Phys. Soc. Jpn. 57, 395 (1988).
- 28D. E. MacLaughlin, C. Tien, W. G. Clark, M. D. Lan, Z. Fisk, J. L. Smith, and H. R. Ott, Phys. Rev. Lett. **53**, 1833 (1984).
- 29K. Matsuda, Y. Kohori, and T. Kohara, J. Phys. Soc. Jpn. **65**, 679 $(1996).$
- 30K. Matsuda, Y. Kohori, and T. Kohara, Phys. Rev. B **55**, 15 223 $(1997).$
- ³¹ In the case of high T_c YBa₂Cu₃O₇, a clear four-fold modulation of the thermal conductivity with an in-plane magnetic field which reflects the angular position of nodes of $d_{x^2-y^2}$ symmetry has been observed, F. Yu et al., Phys. Rev. Lett. **74**, 5136 (1995); K. Izawa et al., *ibid.* **86**, 2653 (2001).
- 32K. Izawa, H. Yamaguchi, Y. Matsuda, H. Shishido, R. Settai and Y. Onuki, Phys. Rev. Lett. **87**, 057002 (2001).
- 33G.-q. Zheng, K. Tanabe, T. Mito, S. Kawasaki, Y. Kitaoka, D. Aoki, Y. Haga and Y. Onuki, Phys. Rev. Lett. **86**, 4664 (2001).