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Finite-temperature time-dependent effective theory for the phase field
in two-dimensional d-wave neutral superconductors
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We derive finite-temperature time-dependent effective actions for the phase of the pairing field, which are
appropriate for a two-dimensional electron system with both nonretardedd- and s-wave attraction. As for
s-wave pairing, thed-wave effective action contains terms with Landau damping, but their structure appears to
be different from thes-wave case due to the fact that the Landau damping is determined by the quasiparticle
group velocityvg , which for d-wave pairing does not have the same direction as the noninteracting Fermi
velocity vF . we show that ford-wave pairing the Landau term has a linear low-temperature dependence and in
contrast to thes-wave case is important for all finite temperatures. A possible experimental observation of the
phase excitations is discussed.
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I. INTRODUCTION

The microscopic derivation of the effective time
dependent Ginzburg-Landau~GL! theory continues to attrac
attention since an early paper by Abrahams and Tsune1

Whereas the static GL potential was derived2 from the mi-
croscopic BCS theory soon after its introduction, the tim
dependent GL theory is still a subject of interest~see Refs.
1,2,3 and 4 for a review on the problem’s history!. One of the
reasons for this is the presence of Landau damping term
the effective action. Fors-wave superconductivity thes
terms are singular at the origin of energy-momentum spa
and consequently they cannot be expanded as a Taylor s
about the origin. In other words, these terms do not hav
well-defined expansion in terms of space and time der
tives of the ordering field and therefore they cannot be r
resented as a part of a local Lagrangian. We recall thatT
50 and for the static~time-independent! case the Landau
damping vanishes, so that either atT50 one still has a loca
well-defined time-dependent GL theory or forTÞ0 the fa-
miliar static GL theory exists. It is known, however, that f
s-wave superconductivity even though the Landau terms
exist, they appear to be small compared to the main term
the effective action in the large temperature region 0,T
&0.6Tc ,4 where Tc is the superconducting transition tem
perature. This is evidently related to the fact that only th
mally excited quasiparticles contribute to the Landau dam
ing. The number of such quasiparticles at low temperatu
appears to be a small fraction of the total charge carr
number in thes-wave superconductor due to the nonze
superconducting gapDs which opens over all directions o
the Fermi surface.

For a d-wave superconductor there are four Dirac poi
~nodes! where the superconducting gapDd(k) becomes zero
on the Fermi surface. The presence of the nodes incre
significantly the number of the thermally excited quasipa
0163-1829/2001/64~13!/134519~18!/$20.00 64 1345
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cles at given temperatureT comparing to thes-wave case.
Therefore one can expect that the Landau damping shoul
stronger for superconductors with ad-wave gap which is
commonly accepted to be the case of high-temperature
perconductors~HTSC’s!.5 Moreover, it is believed that a
temperaturesT!Tc , these quasiparticles are reasonably w
described by the Landau quasiparticles, even though suc
approach fails in these materials at higher energies.6 This is
the reason why one can hope that a generalization of
BCS-like approach4 for the 2D d-wave superconductivity
may be relevant to the description of the low-temperat
time-dependent GL theory in HTSC’s.

In this work we derive such a theory from a microscopic
model withd-wave pairing extending the approach of Ref.
developed fors-wave superconductivity. As known from
Ref. 1 the physical origin of the Landau damping is a sc
tering of the thermally excited quasiparticles~‘‘normal’’
fluid! with group velocityvg from the excitations of phase
~or u! quantums. Such conversion occurs only if the Cˇ eren-
kov condition,V5vgK for the energyV and momentumK
of the u excitation, is satisfied. This phenomenon in sup
conductivity is also called Landau damping since its equi
lent in the plasma theory was originally obtained by Land
~see, e.g., Ref. 7!.

To emphasize the difference between the Landau dam
for s- andd-wave pairing, we also derive for the compariso
the corresponding terms for a two-dimensional~2D! s-wave
superconductor. In addition we compare 2D expressions
tained here with the 3Ds-wave case studied in Ref. 4. Th
collective phase oscillations in chargedd-wave supercon-
ductors for clean and dirty cases were recently studied
Ref. 8. Due to the complexity of the corresponding equatio
they were solved numerically, neglecting damping of t
phase excitations. Thus our fully analytical treatment can
very useful for further studies of the phase excitations.
also mention a recent paper9 where the effective action fo
the phase mode in thed-wave superconductor was obtaine
©2001 The American Physical Society19-1
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using the cumulant expansion. The Landau terms were
glected in Ref. 9 but the effect of Coulomb interaction w
taken into account.

Our main results can be summarized as follows:
~i! We find that the main physical difference between

s- and d-wave cases is related to the fact that ford-wave
superconductivity the direction of the quasiparticle group
locity vg(k)[]E(k)/]k @E(k) is the quasiparticle dispersio
law# does not coincide with the Fermi velocityvF ,6,10 and a
gap velocityvD[]Dd(k)/]k also enters into the Cˇ erenkov
condition along withvF .

~ii ! We show that the intensity of the Landau damping h
a linear temperature dependence at lowT with a coefficient
expressed in terms of the anisotropyaD[vF /vD of the Dirac
spectrumE(k)5AvF

2k1
21vD

2 k2
2. Herek1(k2) are the projec-

tions of the quasiparticle momentum on the directions p
pendicular~parallel! to the Fermi surface. The paramete
vF , vD , and aD proved to be very convenient both in th
theory, for example, of the transport phenomena,6 ultrasonic
attenuation10 in d-wave superconductors, and for the analy
of various experiments.11

~iii ! We find that the Landau damping is sensitive to t
direction of the phason momentum. In particular, for a giv
node the Landau damping is possible only if the compone
of the phason momentumK5(K1 ,K2) ~which are defined
exactly as the components of the quasiparticle momen
above! satisfy the conditionuVu,AvF

2K1
21vD

2 K2
2.

~iv! We derive a simple approximate representation for
Landau damping terms which can be useful for further st
ies of thed-wave superconductors.

~v! We derive an approximate expression for the propa
tor of the Bogolyubov-Anderson mode which includes t
Landau damping.

~vi! Concerning the mathematical formalism used in
paper, we adapt the bilocal Hubbard-Stratonovich fi
method of Ref. 12 to thed-wave pairing. Additionally we
adjust the technique of the derivative expansion for
‘‘phase only’’ action~see Ref. 4 and references therein! for
the model with the tight-binding spectrum.

The paper is organized as follows: In Sec. II we pres
our model and write down the partition function using
bilocal Hubbard-Stratonovich field. In Sec. III, we introdu
the modulus-phase variables and represent the effec
‘‘phase only’’ action as an infinite series. It appears that
low-energy phase dynamics is contained in the first t
13451
e-
s

e

-

s

r-

s

n
ts

m

e
-

-

e
d

e

t

ve
e
o

terms which are evaluated,respectively, in Secs. IV and
with some details considered in the Appendix. The effect
Lagrangians for thed- ands-wave cases without the Landa
damping are discussed in Sec. VI. In Sec. VII we derive
damping terms and in detail compared- and s-wave cases.
The approximate forms of the effective action andu propa-
gator are considered in Sec. VIII. Section IX presents
conclusions and comments on a possible experimental ob
vation of the phase excitations.

II. MODEL

Let us consider the following action:

S52E
0

b

dtF(
s

E d2rcs
†~t,r !]tcs~t,r !1H~t!G ,

r5~x,y!, b[
1

T
, ~1!

where the HamiltonianH(t) is

H~t!5(
s

E d2rcs
†~t,r !@«~2 i¹!2m#cs~t,r !

2
1

2 (
s

E d2r 1E d2r 2cs
†~t,r2!cs̄

†~t,r1!

3V~r1 ;r2!cs̄~t,r1!cs~t,r2!. ~2!

Here cs(t,r ) is a fermion field with the spins5↑,↓,s̄[
2s,t is the imaginary time, andV(r1 ;r2) is an attractive
potential. For the sake of simplicity we consider the disp
sion law «(k)522t(coskxa1cosky a) for a model on a
square lattice with the constanta including the nearest-
neighbor hoppingt only. This, however, is not an essenti
restriction because the final results for thed-wave case will
be formulated in terms of the noninteracting Fermi veloc
vF[]«(k)/]kukÄkF

and the gap velocityvD defined in the

Introduction. We set\5kB51.
The bilocal Hubbard-Stratonovich fieldsF(t,r1 ;r2) and

F†(t,r1 ;r2) ~see, e.g., Ref. 12! can be utilized to study the
model ~1!, ~2!:
expF E
0

b

dtE d2r 1E d2r 2c↑
†~t,r2!c↓

†~t,r1!V~r1 ;r2!c↓~t,r1!c↑~t,r2!G
5E DF†~t,r1 ;r2!DF~t,r1 ;r2!expF2E

0

b

dtE d2r 1E d2r 2

1

V~r1 ;r2! UF~t,r1 ;r2!U2

1E
0

b

dtE d2r 1E d2r 2@F†~t,r1 ;r2!c↓~t,r1!c↑~t,r2!1c↑
†~t,r1!c↓

†~t,r2!F~t,r1 ;r2!#G . ~3!
9-2
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On the right-hand side, 1/V(r1 ;r2) is understood as numeri
division, no matrix inversion being implied. The Hermitia
conjugate ofF(t,r1 ;r2) includes the transpose in the fun
tional sense, i.e.,F†(t,r1 ;r2)[@F(t,r2 ;r1)#* .

Thus in the Nambu variables
es
,
n-

tia

re

e

ro
tio

13451
C~t,r !5S c↑~t,r !

c↓
†~t,r ! D , C†~t,r !5~c↑

†~t,r !c↓~t,r !!

~4!

the partition function can be written as
Z5E DC†DCDF†DF expH E
0

b

dtE d2r 1E d2r 2F2
1

V~r1 ;r2!
uF~t,r1 ;r2!u21C†~t,r1!@2]t2t3j~2 i t3¹!#

3C~t,r2!d~r12r2!1F†~t,r1 ;r2!C†~t,r1!t2C~t,r2!1C†~t,r1!t1C~t,r2!F~t,r1 ;r2!G J , ~5!
ses
on-

ard-

h

not
tive

for-

de-

mes
tion
the
where j(2 i t3¹)[«(2 i t3¹)2m and t3 ,t65(t16 i t2)/2
are Pauli matrices.

In general an electron-electron attraction on the near
neighbor lattice sites can be considered~see, for example
Refs. 13 and 14!. The momentum representation for this i
teraction contains in the pairing channel extendeds-, d-, and
evenp-wave pairing terms:

V~k2k8!5V@cos~kx2kx8!a1cos~ky2ky8!a#

5
V

2
~coskxa1coskya!~coskx8a1cosky8a!

1
V

2
~coskxa2coskya!~coskx8a2cosky8a!

1V~sinkx sinkx81sinky sinky8!. ~6!

Motivated by HTSC’s we consider hered-wave pairing only,
so that for the Fourier transform of the attracting poten
V(r12r2) we use

V~k2k8!5Vd~coskxa2coskya!~coskx8a2cosky8a!.
~7!

As was mentioned in the Introduction, we will compa
the main results for thed-wave case with the simplest 2D
continuums-wave pairing model~see, e.g., Ref. 15 and th
review Ref. 16! which has a quadratic dispersion law«(k)
5k2/2m and a local attractionV(r12r2)5Vd(r12r2).

III. EFFECTIVE ACTION

While for the model with the local four-fermion
attraction4,15 the modulus-phase variables could be int
duced exactly, one should apply an additional approxima
for treating the present model.

Let us split the charged Fermi fieldsc(t,r ) andc†(t,r )
in Eq. ~5! into the neutral Fermi fieldx(t,r ) ~Ref. 17! and
charged Bose-field exp@iu(t,r )/2#,

cs~t,r !5xs~t,r !exp@ iu~t,r !/2#,
~8!

cs
†5xs

†~t,r !exp@2 iu~t,r !/2#.
t-

l

-
n

It is clear that the terms containingd(r12r2) in Eq. ~5! can
be treated similarly to the old model and the problem ari
when one deals with the Hubbard-Stratonovich field. To c
sider this field we introduce the relativer5r12r2 and
center-of-mass coordinatesR5(r11r2)/2. Now we can in-
troduce the modulus-phase representation for the Hubb
Stratonovich field,

F~t,r1 ,r2![F~t,R,r !5D~t,R,r !exp@ iu~t,R,r !#,

~9!

whereD(R,r) is the modulus of the Hubbard-Stratonovic
field andu(R,r) is its phase.

Assuming that the global phaseu(R,r) varies slowly over
distances on the order of a Cooper pair size and thus is
sensitive to the inner pair structure described by the rela
variabler , we can rewrite Eq.~9! as

F~t,R,r !'D~t,R,r !exp@ iu~t,R!#. ~10!

The approximation we made writing Eq.~10! is in fact
equivalent to the Born-Oppenheimer approximation18 which
allows one to separate the dynamics of the Cooper pair
mation described by the relative coordinater in D(t,R,r)
from the motion of the superconducting condensate
scribed by the center-of-mass coordinateR in u(t,R). If the
condensate motion is slow enough this separation beco
possible because the dynamics of the Cooper pair forma
can always follow the motion of the condensate. Using
lattice language one can also say about Eq.~10! that thebond
phase is replaced by thesite phase.19

Applying the transformations~10! and ~8! to the terms
with the Hubbard-Stratonovich field in Eq.~3! we obtain~the
imaginary timet is omitted!

F†~R;r !c↓~r1!c↑~r2!

5F†~R;r !x↓~r1!expF iu~R1r /2!

2 Gx↑~r2!

3expF iu~R2r /2!

2 G

9-3
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'D~R;r !exp@2 iu~R!#x↓~r1!x↑~r2!

3expF iu~R!1
r a

2

r b

2
¹a¹bu~R!G

'D~R;r !x↓~r1!x↑~r2!, ~11!

where we used the assumption~or hydrodynamical, long-
wavelength approximation, see Ref. 20! that u(R) varies
slowly, u(R)@j0

2@¹u(R)#2. Herej0 is the coherence lengt
which for the BCS theory coincides with an average p
size.

Then the partition function in the modulus-phase va
ables is

Z5E DDDDu exp@2bV~D,]u!#, ~12!

where the effective potential

bV~D,]u!5E
0

b

dtE d2r 1E d2r 2

D2~t,R,r !

V~r12r2!
2Tr ln G21

~13!

with the Green’s function

G215G212S, ~14!

G21~t1 ,t2 ;r1 ,r2![^t1 ,r1uG21ut2 ,r2&

5@2 Î ]t1
2t3j~2 i t3¹1!#d~t12t2!

3d~r12r2!1t1D~t12t2 ,R,r !;

~15!

^t1 ,r1uSut2 ,r2&5F t3S i
]t1

u

2
1ta2

~¹x1
u!2

4
cos~2 ia¹x1

!

1~x→y! D 1 Î S 2
i ta2¹x1

2 u

2
cos~2 ia¹x1

!

1ta¹x1
u sin~2 ia¹x1

!1~x→y!D G
3d~t12t2!d~r12r2!. ~16!

Thus the gauge transformation~8! resulted in the separatio
of the dependences onD andu, viz. u is present only inS.
The similar method of the derivative expansion was u
before in Refs. 4 and 21. As pointed out in Ref. 4 the meth
allows us to maintain explicitly the Galilean invariance~the
Landau terms break it! and the continuity equation, while th
expansionF(x)5D1F1(x)1 iF2(x) used recently in Ref.
8 demands the additional enforcement of the conserva
laws.22

Since the low-energy dynamics in the phase in whichD
Þ0 is determined by the long-wavelength fluctuations
u(x), only the lowest-order derivatives of the phase such
¹u, ]tu, and¹2u need be retained in what follows. How
ever, to take into account the tight-binding electron spectr
the operators sin(2ia¹) and cos(2ia¹) must be kept. Thus
13451
r
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in S we have omitted higher-order terms in¹u, but in order
to keep all relevant terms in the expansion of sin(2ia¹) the
necessary resummation was done.23 One can easily see tha
for the quadratic dispersion law 2t→1/(ma2), cos(2ia¹)
→1 and sin(2ia¹)→2ia¹, so that Eq.~16! reduces to the
known expression from Refs. 4 and 21. Thus we arrive at
one-loop effective action

V.Vkin~v,m,T,D,]u!1Vpot
MF~v,m,T,D!, ~17!

where

Vkin~m,T,D,]u!5T Tr (
n51

`
1

n
~GS!nu]D/]R50 ~18!

and

Vpot
MF~m,T,D!5S E d2RE d2r

D2~r !

V~r !

2T Tr ln G21D U
]D/]R50

. ~19!

Deriving the ‘‘phase only’’ action for thes-wave model it
was possible to useD(R,r)5const.16 The d-wave case is
more complicated because one should keep the depend
on the relative coordinate,D(R,r)'D(r ) which is related to
the nontrivial pairing. The dependences of the gapD on T, m,
and Vd follow from the extremum condition for the mea
field (]D/]R50) potential]Vpot

MF/]D50 which results in
the usual BCS gap equation. For thed-wave pairing potential
~7! one obtains

Dd~k!5
Dd

2
~coskxa2coskya!, ~20!

whereDd is the gap amplitude. In our case there is no ne
to solve the gap equation and expressDd in terms ofT, m,
andVd since in what follows we will useDd , or more pre-
cisely the velocityvD , as the input parameters and will b
interested in the low-temperature (T!Dd) regime.

Thus assuming thatD(R,r) does not depend onR one
obtains for the frequency-momentum representation of
~15!

G~ ivn ,k!52
ivnÎ 1t3j~k!2t1D~k!

vn
21j2~k!1D2~k!

, ~21!

where D(k) is given by Eq.~20! and vn5p(2n11)T is
fermionic ~odd! Matsubara frequency.

The phase dynamics is contained in the kinetic partVkin
of the effective action which only involves the single degr
of freedomu. As discussed in Ref. 4, it is enough to restr
ourselves to terms withn51,2 in the infinite series in Eq
~18! since atT50 this would give the right answer for
local time-dependent GL functional which involves the d
rivatives not higher than (¹u)4 and (] tu)2.
9-4
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IV. FIRST-ORDER TERM OF THE EFFECTIVE ACTION
AND THE NODAL APPROXIMATION

In this section we calculate the first (n51) term of the
sum appearing in Eq.~18!:

Vkin
~1!5T Tr@GS#

5TE
0

b

dtE d2r H T (
n52`

` E d2k

~2p!2 Tr@G~ ivn ,k!t3#

3S i
]tu

2
1

ta2

4
~¹xu!2coskxa1

ta2

4
~¹y!2 coskyaD J .

~22!

Summing over Matsubara frequencies, one obtains

Vkin
~1!5TE

0

b

dtE d2r F E d2k

~2p!2 n~k!S i
]tu

2

1mxx
21~k!

~¹xu!2

8
1myy

21~k!
~¹yu!2

8 D G ~23!

with mxx
21(k)[]2j(k)/]kx

2, myy
21(k)[]2j(k)/]ky

2, and

n~k!512
j~k!

E~k!
tanh

E~k!

2T
, E~k!5Aj2~k!1D2~k!.

~24!

For T!Dd linearizing the quasiparticle spectrum abo
the nodes and defining a coordinate system (k1 ,k2) at each
node with k̂1( k̂2) perpendicular~parallel! to the Fermi sur-
face, we can replace the momentum integration in Eq.~23!
by an integral over thek-space area surrounding each nod6

If we further define a scaled momentump5(p1 ,p2)
5(p,w) we can let

E d2k

~2p!2 →(
j 51

4 E dk1dk2

~2p!2 →(
j 51

4 E d2p

~2p!2vFvD

5(
j 51

4 E
0

pmax pdp

2pvFvD
E

0

2p dw

2p
, pmax5ApvFvD,

~25!

where p1[vFk15«(k)5p cosw, p2[vDk25Dd(k)

5p sinw, and p5Ap1
21p2

25AvF
2k1

21vD
2 k2

25E(k). Note
that for the particular square lattice model used above th
velocities arevF52&ta andvD5Dda/&, respectively.

Using Eq.~25! one can express Eq.~23! in terms ofvF
andvD ,
13451
t

se

Vkin
~1!5TE

0

b

dtE d2r F in f

]tu

2

1E
0

pmax pdp

2pvFvD
E

0

2p dw

2p
tanh

p

2T

a2p cos2 w

4
~¹u!2G

'TE
0

b

drE d2r F in f

] ru

2
1

ApvFvD

48a
~¹u!2G , ~26!

where

nf5E d2k

~2p!2 n~k! ~27!

is the density of carriers. We note that due to the slow c
vergence of the integrand in Eq.~26! the final expression
depends explicitly on the value of the momentum cutoffpmax
which was defined in Ref. 6 in such a way that the area of
new integration region over four Brillouin subzones~see Fig.
1! is the same as that of the original Brillouin zone. Goi
from Eq. ~23! to Eq. ~26! we essentially replace the avera
ing over the true Fermi surface of the system by the aver
ing over four nodal subzones. The validity of this appro
mation can only be justified if the corresponding integr
contain the derivative of the Fermi distributionnF(k) which
is highly peaked in the vicinity of the nodes. This appears
be the case of the temperature-dependent parts of the p
stiffnessJ(T), compressibilityK(T), and the Landau damp
ing terms. For the zero-temperature valuesJ(T50) and
K(T50) the nodal approximation is not well justified. How
ever, as we show in Sec. VI, this approximation can be j
tified a forteriory for their ratio ~see Fig. 2! which deter-
mines the velocity of the Bogolyubov-Anderson-Goldsto

FIG. 1. Form50 the Fermi surface~dotted line! represents the
points where«(k)522t(coskx1cosky)50 ~in the units where the
lattice constanta51!. There are four nodes centered at (6p/2,
6p/2) around which the energy spectrum is linearized. The co
sponding nodal subzones@see Eq.~25!# are called BZj with j
51,...,4. ForaD!1 the Landau damping develops only if the d
rection of the phason momentumK is within one of the ‘‘cones.’’
The size of these cones is dependent on the ratioc5V/vFK, so that
the cones shrink asucu→1 @see Eqs.~67!–~69!#.
9-5



it

a

-

S. G. SHARAPOV, H. BECK, AND V. M. LOKTEV PHYSICAL REVIEW B64 134519
mode. Finally, we stress that after approximation is used,
impossible to recover thes-wave limit by puttingvD→0.

V. SECOND-ORDER TERM OF THE EFFECTIVE ACTION

Let us evaluate the trace of the second term in exp
sion ~18!:

Vkin
~2!5

T

2
Tr@GSGS#. ~28!

Substituting Eq.~16! into Eq. ~28! we obtain that

FIG. 2. The dependence of the Goldstone mode velocityv(T
50) on the amplitude of the gapDd . The solid line is the result of
numerical calculation with j(k)522(coskx1cosky), D(k)
5Dd/2(coskx2cosky) ~we put t5a51, so thatDd is expressed in
units of t!. The thin line is obtained using Eq.~43!. The anisotropy
of the Dirac spectrum for this case isaD54/Dd , so thatDd50.2
corresponds toaD520.
-
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is

n-

Vkin
~2!5Vkin

~2!$uVn
2u%1Vkin

~2!$uK2u%1Vkin
~2!$uKVnu%,

~29!

where using$u¯u% we denoted symbolically that the corre
sponding term of Eq.~28! is either diagonal@i.e., its fre-
quency-momentum representation containsu( iVn ,K )Vn

2

u(2 iVn ,2K ) or u( iVn ,K )K2u(2 iVn ,2K )# as

bVkin
~2!$uVn

2u%5
T

2 (
n52`

` E d2K

~2p!2 u~ iVn ,K !

3S 2
Vn

2

4 D u~2 iVn ,2K !

3T (
l 52`

` E d2k

~2p!2 p33~ iVn ,K ; iv l ,k!;

~30!

bVkin
~2!$uK2u%5

T

2 (
n52`

` E d2K

~2p!2 u~ iVn ,K !Kx
2

3u~2 iVn ,2K !T (
l 52`

` E d2k

~2p!2

3p00~ iVn ,K ; iv l ,k!~ ta!2

3sin~kx2Kx/2!a sin~kx1Kx/2!a1~x→y!

~31!

or mixed
bVkin
~2!$uKVnu%52T (

n52`

` E d2K

~2p!2 u~ iVn ,K !
KxVn

2
u~2 iVn ,2K !T (

l 52`

` E d2k

~2p!2Fp03~ iVn ,K ; iv l ,k!

3
i ta

2
sin~kx1Kx/2!a1p30~ iVn ,K ; iv l ,k!

i ta

2
sin~kx2Kx/2!aG1~x→y!. ~32!
In Eqs.~30!–~32! we introduced the following shorthand no
tations:

p i j ~ iVn ,K ; iv l ,k![Tr@G~ iv l1 iVn ,k1K /2!t i

3G~v l ,k2K /2!t j #, t i5~t0[ Î ,t3!.

~33!

More generally, we can rewrite Eqs.~31! and~32! as follows:

bVkin
~2!$uK2u%.

T

2 (
n52`

` E d2K

~2p!2 u~ iVn ,K !
KaKb

4

3u~2Vn ,2K !P00
ab~ iVn ,K !, ~34!
bVkin
~2!$uKVnu%52

T

2 (
n52`

` E d2K

~2p!2 u~ iVn ,K !
iVnKa

4

3u~2 iVn ,2K !@P03
a ~ iVn ,K !

1P30
a ~ iVn ,K !#, ~35!

where

P00
ab~ iVn ,K !

[ (
l 52`

` E d2k

~2p!2 p00~ iVn ,K ; iv l ,k!vFa~k!vFb~k!,

P03
a ~ iVn ,K ![ (

l 52`

` E d2k

~2p!2 p03~ iVn ,K ; iv l ,k!vFa~k!,

~36!
9-6
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vFa(k)5]j(k)/]ka , we used the approximationvFa(k)
.vFa(k6K /2) and took into account tha
(1/2p)*d2kvavb5*kdkv2dab/2. It is convenient to intro-
duce here

P33~ iVn ,K ![ (
l 52`

` E d2k

~2p!2 p33~ iVn ,K ; iv l ,k!

~37!

which would allow us to rewrite Eq.~30! in the same fashion
as Eq.~34!.

As one could notice the product of the Fermi velociti
enters Eq.~34! via Eq. ~36!. There is nothing surprising in
this fact since this piece of the effective action is related
the paramagnetic current correlator^ j a j b& ~Ref. 9! and in its
turn the current operatorj contains the Fermi velocityvF(k).
We will return to this point considering the Landau ter
which originates from Eq.~34!, so that here we note onl
that the current correlator term along with the diamagne
term;(¹u)2 in Eq. ~22! from together the mean-field phas
stiffness.

The matrix tracesp i j and the corresponding expressio
for P i j are calculated in the Appendix. Although the expre
sions for them are rather lengthy they have a clear phys
interpretation which is also discussed in the Appendix.

VI. EFFECTIVE LAGRANGIAN AT TÅ0 WITHOUT THE
LANDAU TERMS

The contribution of the first-order term to the effectiv
action is given in Eq.~26!. Concerning the second-orde
term, we note that when the Landau terms are neglected
enough to setVn50 insideP in Eqs.~30!, ~34!, and~35!. To
be more precise, the Landau terms arise from the second
of Eqs.~A2! and~A3! which contains ‘‘dangerous’’ denomi
nators 1/(E12E26 iVn). One can, however, notice that th
second line of Eq.~A2! leads also to the regular terms whic
are proportional to the derivativednF(E)/dE. These lead to
the second term in the square brackets in Eq.~38! and the
whole expression~39! shown below. For thes-wave
superconductivity4,15 in the temperature region 0,T
&0.6Tc these terms are very small compared to the m
terms. Although the contribution from these terms is s
local, their presence breaks the Galilean invariance.4 This is
the reason why it was more natural for Ref. 4 to treat th
along with ‘‘true’’ Landau terms since they also origina
from the same denominators of the second line of Eq.~A2!
as was mentioned above. For thed-wave superconductivity
this splitting, however, appears to be rather artificial sin
these terms are not small even for low temperatures du
the presence of the nodal quasiparticles, so here we will c
sider all regular terms.

For the regular terms from the second-order term we
tain a local effective action, involving time and space deriv
tives of u(t,r ):
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bVkin
~2!$~] tu!2%

5
i

2 E dV

2p E d2K

~2p!2 u~V,K !
V2

4

3u~2V,2K !P33~0,K→0!

5 i
T

2 E dtE d2r
@] tu~ t,r !#2

4 E d2k

~2p!2

3F2
D2~k!

E3~k!
tanh

E~k!

2T
2

1

2T

j2~k!

E2~k!
cosh22

E~k!

2T G ,
~38!

bVkin
~2!$~¹u!2%

5
i

2 E dV

2p E d2K

~2p!2 u~V,K !
KaKb

4

3u~2V,2K !P00
ab~0,K→0!

5 i
T

2 E dtE d2r
¹au~ t,r !¹bu~ t,r !

4 E d2k

~2p!2

3F2
1

2T
cosh22

E~k!

2T GvFa~k!vFb~k!, ~39!

and the mixed term~35! does not contribute to the regula
part within the used approximation, sinceP30

a (0,K→0)50.
Evaluating Eqs.~38! and ~39! we performed the analytica
continuationiVn→V1 i0 back to the real continuous fre
quencies, so thatt is the real time.

Using the nodal expansion~25! to calculate Eqs.~38! and
~39!, and adding Eq.~26!, we finally obtain the regular ef-
fective Lagrangian LR such that bVkin5
2 i *dt*d2rLR(t,r ) for T!Dd and ignoring the Landau
terms,

LR52
nf

2
] tu~ t,r !1

K

2
@] tu~ t,r !#22

J

2
@¹u~ t,r !#2,

~40!

where the phase stiffnessJ[Jd,s and compressibilityK
[Kd,s are

Jd5
ApvFvD

24a
2

ln 2

2p

vF

vD
T, Kd5

1

4aApvFvD

. ~41!

The linear time derivative term in Eq.~40! is important for
the description of vortex dynamics~see Ref. 9 and reference
therein!, but we omit it in what follows. We stress that th
second, temperature-dependent term inJd follows from Eq.
~39! which contains the derivative of the Fermi distributio
dnF(E)/dE. Its presence, as we mentioned in Sec. IV, ma
the nodal approximation valid.6 Since we consider only the
low-temperatureT!Dd region, we restrict ourselves by th
valuesDd and vD at T50, so that all temperature depen
9-7
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dences appear to be linear. For higher temperatures it is
essary to take into account thatDd(T) andvD(T) are, in fact,
decreasing functions ofT.

It is useful to compare the stiffness and compressibi
from Eq. ~41! with those parameters derived in Ref. 15 f
the continuum 2D model withs-wave pairing:

Js5
nf

4m S 12E
0

`

dx
1

cosh2Ax21Ds
2/4T2D , Ks5

m

4p
.

~42!

First of all one can see that for low temperatures the
perfluid stiffness in Eq.~42! does not contain any term whic
goes to zero more slowly than exp(2Ds/T), while Eq. ~41!
has a term proportional toT. The origin of this difference is
well known and related to the presence of the nodal qu
particles. Second, we can compare the values of the z
temperature superfluid stiffness which for the continu
translationally invariant system has to be equal tonf /4m, so
that all carriers participate in the superfluid ground stat25

Since the presence of a lattice evidently breaks the c
tinuum translational invariance the superfluid density aT
50 in the case of Eq.~41! is less thannf /4m as can be
readily seen from Eq.~23!. Finally, since we consider here
neutral system it has the Berezinskii-Kosterlitz-Thoule
~BKT! collective mode,26 V25v2K2 with v5AJ/K. One
can see that for the continuums-wave casev5vF /& and

v5ApvFvD

6
2

2 ln 2avF

Ap
AvF

vD
T ~43!

for thed-wave model on lattice atT;0. Equation~43! gives
a rather simple approximate expression for the BKT mo
velocity for the lattice model ofd-wave superconductor
Comparing in Fig. 2 the results obtained forv(T50) using
Eq. ~43! with the numerical computation without the nod
approximation, we can see that even being very simple
~43! predicts the correct behavior ofv(T50).

Following Ref. 9 we estimate the upper values for t
frequencyV in Eq. ~38! and the momentumK in Eq. ~39!.
The ‘‘phase-only’’ effective action is appropriate for pha
distortions whose energy is smaller than the condensa
energy, Econd.N(0)D2/2, where N(0) is the density of
states. For thes-wave case~42! this leads to the following
restrictions:V,Ds ,vFK,Ds , and for thed-wave case~41!,
V,DdA4 1/aD, vFK,DdA4 aD, whereaD is the anisotropy of
the Dirac spectrum defined in Introduction.

VII. IMAGINARY PART OF THE LANDAU TERMS FOR
2D D-WAVE AND S-WAVE CASES

The key values which are necessary for evaluation of
Landau terms are the differencesE12E2 and nF(E1)
2nF(E2). Expanding inK ,

E~k1K /2!2~k2K /2!5vg~k!K , ~44!
13451
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where the group velocity is given by

vg~k!5¹kE~k!5
1

E~k!
@j~k!vF1D~k!vD#. ~45!

It is obvious that due to the gapk dependence Eq.~44!
differs from thes-wave case,4 where the difference is simply

E~k1K /2!2E~k2K /2!5
j~k!

E~k!
vFK @D~k!5Ds#.

~46!

It is convenient to rewrite Eqs.~44! and~45! in terms of the
nodal approximation described after Eq.~25!. In the vicinity
of one of the nodes we have

vgK5vFK1 cosw1vDK2 sinw[P cos~w2c!,

E~k6K /2!!Dd , ~47!

where the momentumK5(K1 ,K2) of u particle was
also expressed in the nodal coordinate systemk̂1 ,k̂2 , so that
P(1)[vFK15P cosc, P(2)[vDK25P sinc, and P
5A(P(1))21(P(2))25AvF

2K1
21vD

2 K2
2. ~We denoted the

components ofP as P(1),P(2) to make them different from
the node labelPj used in what follows.!

The corresponding substitution in the integrals overK
reads similarly to Eq.~25!,

E d2K

~2p!2 →(
j 51

4 E
0

Pmax PjdPj

2pvFvD
E

0

2p dc j

2p
, ~48!

wherePmax is evidently related to the maximal value ofK
discussed at the end of Sec. VI. Finally, we can approxim
the differencenF(E1)2nF(E2) as

nF~E1!2nF~E2!'
dnF~E!

dE
vgK5

dnF~E!

dE
P cos~w2c!.

~49!

Having the differences~47! and ~49! we can now derive
the imaginary part for the Landau terms. In the subsequ
subsections we consider all three terms of Eq.~29! for
d-wave pairing and compare them with theirs-wave counter-
parts. We would like to note that the Landau terms have a
thereal part which for the 3Ds-wave case was considered
detail in Ref. 4. This real part consists of regular and irreg
lar terms. The regular term was already taken into accoun
Sec. VI and the irregular term is not considered in this pap

A. Vkin
„2…

ˆuV2u‰ term

Let us consider first the contribution fromVkin
(2)$uVn

2u%
@see Eqs.~30! and ~A2! for A2#, which after the analytical
continuationiVn→V1 i0 takes the form
9-8
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Im@ ibVkin
~2!$uV2u%#'2

1

2
E dVd2K

~2p!3 u~V,K !
V2

4
u~2V,2K !E d2k

~2p!2

1

2
S 11

j22D2

E2 D Im
2

vgK1V1 i0

dnF~E!

dE
vgK

'(
j 51

4 E dV

2p
E

0

Pmax PjdPj

2pvFvD
E

0

2p dc j

2p
u~V,K !

V2

8
u~2V,2K !

3E
0

pmax pdp

2pvFvD
E

0

2p

dw cos2 wd~Pj cos~w2c j !1V!
dnF~E!

dE
Pj cos~w2c j !

5(
j 51

4 E dV

2p
E

0

Pmax PjdPj

2pvFvD
E

0

2p dck

2p
u~V,K !

V2

8
u~2V,2K !

ln 2

p

T

vFvD

3
1

A12
V2

Pj
2

V

Pj
FV2

Pj
2 cos2 c j1S 12

V2

Pj
2 D sin2 c j GQS 12

uVu

Pj
D . ~50!
re
l:

-

d

ua-
ity
s.

r

HereQ(x) is the step function and we used the integral

E
0

` pdp

2pnFvD

1

2T

1

cosh2
p

2T

5
ln 2

p

1

vFvD
T. ~51!

Integrating overw we had to take into account that there a
two points where thed function contributes into the integra
cosw52V/Pj , sinw5A12V2 /Pj

2 and cosw52V/Pj ,

sinw52A12V2 /Pj
2.

As we can see from the first equality in Eq.~50! the
imaginary part develops whenV5E12E2'vgK . This
u
th
d

13451
condition was interpreted in Ref. 1 as the ‘‘Cˇ erenkov’’ irra-
diation~absorption! condition for the process: ‘‘thermally ex
cited u-fluctuation quantum ~phason!1quasiparticle
↔phason1quasiparticle’’ ~or phason being absorbed an
scattering thermally excited quasiparticles!. As was dis-
cussed in Ref. 6 since definite energy is carried by the q
siparticles, this process is defined by their group veloc
vg5]E(k)/]k ~Ref. 1! as well as thermal and spin current

It is in fact a coincidence that for thes-wave supercon-
ductor the directions ofvg and vF are the same, so that fo
the 2Ds-wave superconductor using Eq.~46! instead of Eqs.
~44! and ~45! one can obtain
Im@ ibVkin
~2!$uV2u%#5

1

2
E dVd2K

~2p!3 u~V,K !
V2

4
u~2V,2K !E d2k

~2p!2

2j2

E2 Im
1

j

E
vFK1V1 i0

dn~E!

dE

j

E
vFK

52
1

2
E dVd2K

~2p!3 u~V,K !
V2

4
u~2V,2K !

Dsmc

2p
E

2`

` dy

A12c2
11y2

y2

dn

dE

2uyu

A11y2
QS uyu

A11y2
2ucu D ,

~52!
3D

ap-

ri-
where following Ref. 4 we used the notationsy5j/Ds and
c5V/vFK. Comparing Eq.~52! with the 3D case4 ~in the
notations of Ref. 4 the term we consider is related to the s
B̄L1C̄L! one can notice that the only difference between
corresponding expressions is in the square root in the
nominator of Eq.~52!. It obviously originates from the dif-
m
e
e-

ferent measures for the angular integration in 2D and
where the extra sinw is present. Comparing also Eqs.~50!
and ~52! one can see that their main analytical structure
pears to be the same, viz.;V3/Pj for the s-wave case and
;V3/vFK for the s-wave case, so that the momentum va
ablesPj andvFK do not appear in the numerator.
9-9
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We note that the calculation of the ultrasonic attenuat
asound(T,K ) in d-wave superconductors results in the expr
sion

asound~T,K !;
V

2T E d2k

~2p!2

j2~k!

E2~k!

1

cosh2@E~k!/2T#
d~vgK !,

~53!

which has the same structure as Eq.~50!. This can be easily
seen if one takes into account that for the ultrasound
quency rangeV!vFK,Dd , so that the corresponding term
from Eq. ~50! can be simplified as follows:
in

13451
n
-

-

d~E12E21V!@nF~E2!2nF~E1!#

5d~E12E21V!@nF~C1E1!2nF~E1!#

.Vd~E12E2!
nF~E!

dE
~54!

leading to Eq.~53!. This is the reason why in the limi
V/vFK→0 the angular dependence of the Landau damp
~50! which we consider in Sec. VIII would appear to be th
same as the angular dependence of the ultras
attenuation.10

B. Vkin
„2…

ˆuK2u‰ term

The contribution fromVkin
(2)$uK2u% @see Eqs.~34! and

~A2! for A2# can be treated in the same manner,
Im@ ibVkin
~2!$uK2u%#'2

1

2
E dVd2K

~2p!3 u~V,K !
KaKb

4
u~2V,K !E d2k

~2p!2

1

2
S 11

j21D2

E2 D
3Im

2

vgK1V1 i0
vFa~k!vFb~k!

dnF~E!

dE
vgK

'(
j 51

4 E dV

2p
E

0

Pmax PjdPj

2pvFvD
E

0

2p

dwd~Pj cos~w2c j !1V!
dnF~E!

dE
Pj cos~w2c j !

5(
j 51

4 E dV

2p
E

0

Pmax PjdPj

2pvFvD
E

0

2p dc j

2p
u~V,K !

Pj
2 cos2c j

8
u~2V,2K !

ln 2

p

T

vFvD

3
1

A12
V2

Pj
2

V

Pj
QS 12

uVu

Pj
D ~55!

and for thes-wave case

Im@ ibVkin
~2!$uK2u%#52

1

2 E dVd2K

~2p!3 u~V,K !
KaKb

4
u~2V,2K !E d2k

~2p!2 Im
2

~j/E!vFK1V1 i0
vFavFb

dn~E!

dE

j

E
vFK

52
1

2 E dVd2K

~2p!3 u~V,K !
V2

4
u~2V,2K !

Dsmc

2p E
2`

` dy

A12c2~11y2!/y2

dn

dE

2~11y2!3/2

y2uyu

3QS uyu

A11y2
2ucu D . ~56!
for

-
s

-

Let us now compare the expressions~55! and~56!. Evidently
their analytical structure is different since for thes-wave case
we have again that it is proportional toV3/vFK, while for
d-wave pairingPj enters the numerator, so that the ma
structure~excluding the measure of integration overPj and
the square root in the denominator! is ;VPj . This differ-
ence originates from the angular integration in Eqs.~55! and
~56! which is performed using thed function. Since the ar-
guments of thed function for thed- and s- wave cases are
different we have obtained two different answers. Indeed,
the s-wave case the argument is proportional tovFK that
coincides with the product (vFK )2@dnF(E)/dE#vFK outside
thed function @see Sec. V after Eq.~34!, where the origin of
the term;(vFK )2 is discussed#, so that the angular integra
tion removesK from the numerator. Thed-wave case appear
to be different since we havevgK inside thed function and
(vFK )2@dnF(E)/dE#vgK outside, so that the angular inte
gration leavesPj in the numerator. Despite the fact thatVPj
9-10
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looks substantially less singular thanV/Pj , the first expres-
sion still remains nonanalytical nearPj'0 because it is ex-
pressed in terms ofAK2 the coordinate representation
which is the nonlocal operatorA2¹2.

Thus physically the difference between the analyti
form of the Landau damping ind- ands-wave superconduct
ors originates from thek dependence of the gapDd(k) which
in its turn makes the direction of the quasiparticle gro
velocity vg different from the Fermi velocityvF . The last
velocity, however, still enters the numerator of Eq.~55!
since, as was already mentioned in Sec. V, it originates fr
the current-current correlator. The electrical current is p
portional tovF , not vg because quasiparticles carry defin
energy and spin, but do not carry definite charge. There
13451
l

m
-

re

the specific form of the Landau damping terms in ad-wave
superconductor has the same physical origin as the sourc
the extra terms in the thermal and spin conductivities6 which
are related to the presence invg of both vF andvD compo-
nents.

The s-wave Landau damping~56! itself can be again re-
lated to the 3D case,4 where it is expressed via the differenc
B̃L2C̃L .

C. Vkin
„2…

ˆuKVu‰ term

Finally we consider the contribution fromVkin
(2)$uKVu%

@see Eqs.~35! and ~A3!#:
Im@ ibVkin
~2!$uKVu%#'2

1

2
E dVd2K

~2p!3 u~V,K !VKau~2V,2K !E d2k

~2p!2

j

E
Im

1

vgK1V1 i0
vFa

~k!
dnF~E!

dE
vgK

'(
j 51

4 E dV

2p
E

0

Pmax PjdPj

2pvFvD
E

0

2p dc j

2p
u~V,K !

VPj

4
cosc ju~2V,2K !

3E
0

pmax pdp

2pvFvD
E

0

2p

dw coswd@Pj cos~w2c j !1V#
dnF~E!

dE
Pj cos~w2c j !

52(
j 51

4 E dV

2p
E

0

Pmax PjdPj

2pvFvD
E

0

2p dc j

2p
u~V,K !

V2

8
u~2V,2K !

ln 2

p

T

vFvD

3
2

A12
V2

Pj
2

V

Pj
cos2 c jQS 12

uVu

Pj
D ~57!

and for thes-wave case

Im@ ibVkin
~2!$uKVu%#52

1

2
E dVd2K

~2p!3 u~V,K !VKau~2V,2K !E d2k

~2p!2

j

E
Im

1

j

E
vFK1V1 i0

vFa

dn~E!

dE

j

E
vFK

5
1

2
E dVd2K

~2p!3 u~V,K !V2u~2V,2K !
Dsmc

2p
E

2`

` dy

A12c2
11y2

y2

dn

dE

~11y2!1/2

uyu
QS uyu

A11y2
2ucu D .

~58!
ct
the
ita-

the
f

rmi
Once again the difference betweend- and s-wave cases is
related to the different directions ofvg and vF . Since this
time we had cosfvFK @dnF(E)/dE#vgK outside thed func-
tion, we could not getVPj as in Eq.~55! and obtained again
;V3/Pj as in Eq.~50!. Furthermore, because we have cosw
instead of cos2 w as in Eq. ~50! we got only V/Pj coscj
@compare with the square brackets in Eq.~50!# which after
multiplying by V2Pj gives the final result;V3/Pj . It is
interesting to note that the mixed term ford @see Eq.~57!#
ands wave@see Eq.~58!# has the opposite sign with respe
to other terms. This means that the mixed term describes
energy transfer from the quasiparticles to the phase exc
tions. It turns out, however, that the whole sum~59! of the
Landau damping terms has the sign which corresponds to
phason damping.~We stress that the different sign in front o
all final s-wave expressions and theird-wave counterparts
are due to the explicit presence of the derivative of the Fe
distribution, which is negative, in the former expression.!
9-11
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D. Final expression for the Landau damping term
in the s-wave case

Since the Landau damping terms fors-wave pairing all
are;V3/vFK, we can combine Eqs.~52!, ~56!, and~58!:

Im@ ibVkin
~2!#52

1

2 E dVd2K

~2p!3 u~V,K !V2u~2V,2K !
Dsmc

2p

3E
2`

` dy

A12c2~11y2!/y2

dn

dE

1

2y2uyuA11y2

3QS uyu

A11y2
2ucu D . ~59!

This expression coincides with the functionHi
(1)(c) intro-

duced in Ref. 4 except for the above-mentioned differe
between angular integration in 2D and 3D. Thus the sim
taneous derivation of thes- andd-wave cases allowed us t
be sure that all relevant terms were included and to see
plicitly why the correspondings- and d-wave terms behave
so differently.

E. Temperature and energy-momenta dependences
of Landau damping

We now compare the conditions on the momenta and
ergies for the existence of the nonzero Landau terms ind-
ands-wave cases and the temperature dependences of
terms. As one can see from Eqs.~50!, ~55!, and ~57! for a
given node the imaginary parts develop whenPj.uVu ~or
AvF

2K1
21vD

2 K2
2.uVu!. Thus in contrast to thes-wave case

when the imaginary part is nonzero for all directions of t
phason momentumK satisfying the condition2vFuK u,V
,vFuK u @or ucu,1, wherec is defined after Eq.~52!#, for the
d-wave it is sensitive to the direction of the phason mome
as shown in Fig. 3. As we will discuss in Sec. VIII fo
HTSC’s vF@vD , so that the directional anisotropy of th
Landau damping becomes very strong. Indeed, as can
seen from Fig. 3 foruVu/vFK&1 and aD@1 the Landau
damping would exist only in a narrow region of the momen
directions. Furthermore, if the projectionK1 of the phason
momentumK is not exactly zero (KÞ k̂2), the condition
uVu,Pj can be well replaced byuVu,vFuK1u. We will dis-
cuss the validity of this approximation in Sec. VIII. It i
important to stress that the sharp directional dependence
cussed here is not related to the nodal approximation
follows only from the gap anisotropy and the fact that t
difference of the Fermi distribution functions~49! which is
present in Eqs.~50!, ~55!, and ~57! has a very sharpk de-
pendence, so that in principle unbounded@for example,
vF(k)5k/m for the model with the quadratic dispersio
law4# functionsvg(k) and vF(k) in the corresponding inte
grals were replaced by their values at the Fermi surface

The final expressions~50!, ~55!, and~57! for the d-wave
case are in fact simpler than theirs-wave counterparts, Eqs
~52!, ~56!, and~58! @or the final expression~59!# because the
13451
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latter expressions still have one integration which depe
on the ratioucu via the Q function. Thus if ucu5uVu/vFK
→1, only largey5j/Ds contribute into the correspondin
integrals. This circumstance and the opening of an isotro
gap Ds make the contribution from the Landau terms ve
small comparing to the main terms. Ford-wave pairing a
relative contribution of the Landau terms does not depend
the ratioV/Pj via p integration, so that all frequencies an
momenta satisfying the conditions imposed by theQ func-
tions in Eqs. ~50! and ~55! have the same temperatur
dependent weight.

As in the case with the superfluid density the temperat
dependence of the Landau terms is linear inT, but while the
superfluid density is nonzero atT50, there is no Landau
damping atT50. The linearT dependence and the absen
of damping atT50 are obviously related to the fact that fo
d-wave pairing there are only four gapless points on
Fermi surface. It is known, for example, that for a norm
~nonsuperconducting! system the Lindhard function~or po-
larization bubble!,

L~V,K !5E d2k

~2p!2

nF~j1!2nF~j2!

~2p!2j12j21V1 i0
, ~60!

has a nonzero imaginary part even atT50 ~Ref. 24! if the
Fermi surface remains ungapped since the derivative of

FIG. 3. The directional dependence of the Landau damping
one node imposed byU(12uVu/AvF

2K1
21vD

2 K2
2) for aD52. For a

givenV only excitations with the momentaK which are outside the
ellipse~in the shaded region! can contribute into the Landau damp
ing. For a fixed ratiouVu/vFuK u the presence of the Landau dam
ing depends not only onuK u, but also on its direction. For example
for a vector having the length of the vectorK shown in the figure
the Landau damping is possible only if its direction is sufficien

close to the direction ofk̂1 normal to the Fermi surface.
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Fermi distribution atT→0 becomes singular on the enti
Fermi surface~or line in 2D!.

Finally, we note that there is also an imaginary contrib
tion even from the first, ‘‘superfluid’’ term in Eq.~A2! for
A2 . As we already mentioned, this term involves pair bre
ing which for s-wave pairing has the threshold energy 2Ds .
For d-wave pairing this energy is zero forK50 due to the
presence of nodes. Nevertheless, ifKÞ0 a finite energyPj is
necessary to create these excitations and the imaginary
tribution is nonzero only foruVu.Pj . Besides the analytica
structure of this term is regular and it has a higher order t
the terms considered here. Thus this term appears to be
important than the Landau terms we just considered.
’s
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d

-

c

on
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VIII. APPROXIMATE FORM OF THE EFFECTIVE
ACTION AND u PROPAGATOR

Whereas the local nodal coordinate systems (Pj ,c j ) are
convenient to write down the corresponding contributio
from each node, the final result should be presented in
global or laboratory coordinate system~K, f!. It is conve-

nient to measure the anglef from the vectork̂x , so thatf
50 corresponds to the corner of the Fermi surface~see Fig.
1! and the first node is atf5p/4. Thus the transformation
from the global coordinate system into the local system
lated to thej th node are
Pj5KAvF
2 cos2S f2

p

4
1

p

2
~ j 21! D1vD

2 sin2S f2
p

4
1

p

2
~ j 21! D ,
n

ore
-

-

ing
cosc j5
vFK

Pj
cosS f2

p

4
1

p

2
~ j 21! D ,

sinc j5
vDK

Pj
sinS f2

p

4
1

p

2
~ j 21! D , j 51,...,4. ~61!

The estimates of Ref. 11 show that in HTSC
YBCOaD[vF /vD514 and in BSCCOaD519 ~see Table
I!. Thus we can also use the inequalityaD@1 in what fol-
lows. First of all this inequality implies that for thej th node
we may assume that

Pj'KvF
UcosS f2

p

4
2

p

2
~ j 21! D U. ~62!

This approximation is, of course, valid only ifK is not par-
allel to the Fermi surface (KÞ k̂2). We note that this direc-
tion which is ‘‘dangerous’’ for thej th node is the nodal di-
rection for the neighboring nodes. The size of the danger
direction where Eq.~62! becomes invalid can be estimate
from the conditionKvF sinDf'KvD cosDf which gives
Df'aD

21. SinceaD.15, Eq. ~62! is in fact well justified
outside the nodal regions.

Using Eq. ~62! we can also rewrite the inequality dis
cussed in Sec. VII E,uVu,Pj , imposed byQ functions
which define the region where the Cˇ erenkov condition can be
satisfied as

TABLE I. The Fermi velocitiesvF and anisotropies of the Dira
spectrumaD of YBa2Cu3O6.9 and Bi2Sr2CaCu2O8 at optimal doping
from Ref. 11. The velocities of the phase excitations for the c
tinuum vcont and latticev lat limits at T50.

vF ,3107 cm/s aD vcont,3107 sm/s v lat ,3106 sm/c

YBCO 2.5 14 1.77 4.8
BSCCO 2.5 19 1.77 4.2
us

uVu,vFKUcosS f2
p

4
1

p

2
~ j 21! D U. ~63!

One can easily see that the condition~63! is in fact equiva-
lent to the conditionuVu,vFuK1u we already mentioned.

The effective action~18! in the momentum representatio
in the global coordinate system can be written as

bVkin5
i

2 E dV

2p E KdK

2p E
0

2p df

2p
u~V,K !@FR~V,K !

1FL~V,K,f!#u~2V,2K ! ~64!

with the regular@compare with Eqs.~40! and ~41!#

FR~V,K !5
K2

4 SApvFvD

6a
2

2 ln 2

p

vF

vD
TD 2

V2

4

1

aApvFvD
~65!

and Landau,FL(V,K,f), parts.
It is possible to write downFL(V,K,f) substituting Eq.

~61! directly into Eqs.~50! and ~55!, but to have a more
transparent expression we would like to consider a m
simple case,uVu/vFK!1. This condition becomes equiva
lent to uVu/Pj!1 due to the presence ofQ functions in Eqs.
~50!, ~55!, and~57! which are cutting out the forbidden do
mains withuVu/Pj.1. Physically, the conditionV/vFK!1
is relevant if one, for instance, estimates the Landau damp
for the BKT mode~43! because it follows from Eq.~43! that
uVu/vFK5Ap/(6aD)!1. Thus we obtain

FL~V,K,f!

52 i
V3

K

ln 2

p

T

vDvF
2 F f 1S V

vFK
,f D12 f 3S V

vFK
,f D G

2 iVK
ln 2

p

T

vD
f 2S V

vFK
,f D , ~66!

-
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FIG. 4. ~a! The angular depen-
dence, f 1(V/vFK,f) given by
Eq. ~67! of the Landau term
;V3/K for aD520 and uVu/
vFK50.1 ~b! The same function
calculated directly from Eq.~50!.
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f 1S V

vFK
,f D5

aD
22 sin2~f2p/4!

@cos2~f2p/4!1aD
22 sin2~f2p/4!#3/2

3QS ucos~f2p/4!u2
uVu
vFK D

1
aD

22 cos2~f2p/4!

@sin2~f2p/4!1aD
22 cos2~f2p/4!#3/2

3QS usin~f2p/4!u2
uVu
vFK D , ~67!

f 2S V

vFK
,f D5

cos2~f2p/4!

@cos2~f2p/4!1aD
22 sin2~f2p/4!#1/2

3QS ucos~f2p/4!u2
uVu
vFK D

1
sin2~f2p/4!

@sin2~f2p/4!1aD
22 cos2~f2p/4!#1/2

3QS usin~f2p/4!u2
uVu
vFK D , ~68!

and

f 3S V

vFK
,f D52

cos2~f2p/4!

@cos2~f2p/4!1aD
22 sin2~f2p/4!#3/2

3QS ucos~f2p/4!u2
uVu
vFK D

2
sin2~f2p/4!

@sin2~f2p/4!1aD
22 cos2~f2p/4!#3/2

3QS usin~f2p/4!u2
uVu
vFK D , ~69!

The functionsf 1 , f 2 , and f 3 are obtained from Eqs.~50!,
~55!, and~57!, respectively. Deriving Eqs.~67!–~69! we used
the assumptionuVu/Pj!1 replacing the square roots in Eq
~50!, ~55!, and~57! by 1. Furthermore, we kept only sin2 cj
13451
from Eq. ~50!. Nevertheless, we kept theU functions which
are present in Eqs.~50!, ~55!, and ~57! because they are
essential in imposing the conditionV/Pj .

In Figs. 4~a!, 5~a!, and 6~a! we show the functionsf 1 , f 2 ,
and f 3 which describe the intensity of Landau damping~f 1

and f 3 for the term ;V3/K and f 2 for the term ;VK,
respectively! as a function of the direction in the plane. A
though the functionsf 1 and f 3 describe the directional de
pendence for the same;V3/K term, we do not combine
these functions into the single function because they or
nate from the different expressions.@We recall thatf 1 origi-
nates from Eq.~50! and f 3 originates from Eq.~57!, respec-
tively.# For the comparison in Figs. 4~b!, 5~b!, and 6~b! we
show the directional dependences calculated by the di
substitution of Eq.~61! into Eqs.~50!, ~55!, and~57! without
making the approximations we just described. As one
see, the approximate representation~66! and ~67!–~69! de-
spite its relatively simple form~we have used only the term
;V3/K and ;VK! gives reasonably good expression f
the Landau damping terms. The biggest discrepancies
seen between Figs. 4~a! and 4~b! because more approxima
tions were made to obtain thef 1 term.

As we mentioned in Sec. VII, the angular dependen
described byf 1 @see Fig. 4~a!# coincides with the angula
dependence of the ultrasonic attenuation10 in the limit
V/vFK→0. Indeed theU functions from Eq.~67! disappear
whenV/vFK→0 and Eq.~67! reduces to the correspondin
equation from Ref. 10.

We stress also that the analytical structure of the damp
terms in Eq.~66! appears to be quite different from the di
sipation introduced in Ref. 27 into the ‘‘phase only’’ actio
basing on the low-frequency conductivity measurements

Since f 112 f 3 and f 2 terms are odd functions of the fre
quencyV, they integrate to zero inVkin . Nevertheless, the
damping terms are manifest in the equation of motion and
the propagator of the BKT mode which is considered belo

Comparing Figs. 4, 5, and 6, one can see that the fu
tions f 1 and f 3 have more pronounced angular depende
than f 2 . Although as we explained above, the contributi
from a given node is zero if for someK the condition~63! is
not satisfied, this condition can still simultaneously be sa
fied for the neighboring nodes, so that the sum over all no
in f 12 f 3 is not necessarily zero. We note also that by t
absolute value bothf 1 ~or f 3! and f 2 terms are practically the
same. This can be easily seen if we rewrite, for example,
f 1 term as
9-14
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FIG. 5. ~a! The angular depen-
dence, f 2(V/vFK,f) given by
Eq. ~68! of the Landau term
;VK. The parametersaD and
uVu/vFK are the same as in Fig. 4
~b! The same function calculate
directly from Eq.~55!.
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K

ln 2

p

T

vDvF
2 f 1S V

vFK
,f D

5VKS V

vFK D 2 ln 2

p

T

vD
f 1S V

vFK
,f D

'VK
ln 2

6

T

vF
f 1SA p

6aD
,f D , ~70!

where writing the last identity we explicitly used the rat
V/vFK for the BKT mode atT50 given above.

In such a way following Ref. 4 we can write an approx
mate propagator of the BKT mode nearT50 as

Du
R~V,K !'H 1

4aApvFvD
FV22K2S pvFvD

6

2
2 ln 2avF

p
AaDTD12iag~f!TVKG J 21

~71!

with

g~f!5 ln 2H 1

6
A p

aD
F f 1SA p

6aD
,f D 12 f 3SA p

6aD
,f D G

1AaD

p
f 2SA p

6aD
,f D J . ~72!

As discussed in Ref. 4 Eq.~71! has the form of a bosonic
propagator with damping and its linewidth has an explicitK
dependence. In contrast to thes-wave case, the width de
pends not only on the absolute value ofuK u, but also on the
direction ofK . The angular dependence forg~f! is shown in
13451
Fig. 7. Despite a simple form of the propagator~71!, the
corresponding effective wave operator~the transform ofDu

21

to space and time! has a nonlocal form in coordinate spa
due to the presence of the damping term which depends4 on
uK u.

Comparing the second term in parentheses of Eq.~71!
with the damping term one can see that they have the s
order of magnitude showing that even for the low
temperature region the Landau damping becomes impor
and its magnitude is comparable with the term which d
scribes the linear low-temperature decrease in the super
stiffness.

We stress also the difference between the Landau da
ing representation in Eqs.~71! and~66!. While the propaga-
tor ~71! relies on the particular dispersion law for the BK
mode with the approximatev given by Eq.~43!, our Eq.~66!
along with Eqs.~67!–~69! present a rather general represe
tation for the Landau damping terms derivation which d
not rely on any particular dispersion law for the phase ex
tations. Thus it can be, in principle, used to describe
damping of the plasmons in a charged superconductor.
only assumption we made is thatV/vFK!1, which was
used to derive more simple and transparent representatio
the Landau damping. For the more general case one sh
use the results from Sec. VII.

IX. CONCLUDING REMARKS

It is very important to note that the collective phase ex
tations described by the propagator similar to Eq.~71! can be
and have been studied experimentally. Indeed, the meas
ments of the order-parameter dynamical structure facto
the dirty Al films allowed us to extract the dispersion relati
of the corresponding Carlson-Goldman mode and to inve
gate its temperature dependence.28 It is important to stress
.
d

FIG. 6. ~a! The angular depen-
dence, f 3(V/vFK,f) given by
Eq. ~69! of the Landau term
;V3/K. The parametersaD and
uVu/vFK are the same as in Fig. 4
~b! The same function calculate
directly from Eq.~57!.
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that since the real systems arechargedthis mode appears to
be different from the soundlike Bogolyubov-Anderson mo
which exists in aneutral superfluid Fermi liquid. However
as discussed in Ref. 22~see also Ref. 8 and referenc
therein! the discovery of the Carlson-Goldman collecti
mode28 overcame the widespread opinion that t
Bogolyubov-Anderson collective oscillations predicted fo
neutral superfluid should be forced to the frequencies on
order of the plasma frequency. It appears that if under cer
conditions the frequency of the phase excitations is su
ciently low, the normal electron fluid may screen complet
the associated electric field, thereby making the theory of
uncharged superconductor applicable.29 The conditions for
screening and occurrence of the Carlson-Goldman mod
s-wave superconductors are favorable only if the systems
dirty ~to suppress the Landau damping! and T&Tc .22 As
recently claimed in Ref. 8 ind-wave superconductors th
conditions appear to be much less strict, so that the Carl
Goldman mode may be observed in the clean systems fT
down to 0.2Tc . Now there are some new questions whi
would be interesting to address from both experimental
theoretical points of view.

First of all, there is a general question of whether t
Carlson-Goldman mode which is the equivalent of the Go
stone mode for the charged system can be observed ex
mentally. There are also a lot of theoretical questions
study of which would make this kind of experiment possib
Leaving aside the specifics of the Carlson-Goldman m
studied in Ref. 8 we mention some of them which are
rectly related to the present work.

~i! The Carlson-Goldman experiment28 measures so
called dynamical structure factor. This factor has
peak associated with the phase excitations the w
of which is primarily controlled by the Landau damp
ing. Therefore our result that the intensity of Land
damping has a strong directional dependence sho
be taken into account in the calculation of the stru
ture factor. In particular, the lowest for the observ
tion of the Carlson-Goldman mode temperature 0.2Tc

in Ref. 8 is obtained for the nodal direction. As can
seen from, for example, Figs. 4 and 5, the correspo
ing Landau damping terms become maximal in t

FIG. 7. The angular dependence of the decay cons
g(VvFK,f) in u propagator ~71! for aD520 and uVu/vFK
5Ap/6aD.0.16.
13451
e
in
-

y
e

in
re

n-

d

e
-
ri-
e
.
e
-

th

ld
-
-

-

vicinity of this direction which should likely result in
the widening of the corresponding peak. If this wi
ening is so big that the peak may become unobse
able, this would again suggest that the dirty samp
should be used for the experiment.

~ii ! Taking into account the lattice effects and the dom
nance of the nodal excitations we have obtained t
the velocity of the phase excitations atT→0 is given
by v lat5vFAp/6aD @see Eq.~43! and the discussion
after Eq. ~23!#. This expression appears to be qu
different from the well-known continuum resul
vcont5vF /&. The estimates of the velocitiesvcont

andv lat obtained from the valuesvF andaD ~Ref. 11!
are presented in Table I. It is seen from these e
mates that the difference between the description p
ceeding from continuum and lattice models can
quite different. However, the estimates of the minim
for the observation of the Carlson-Goldman mo
temperature in Ref. 8 are based on the continuum
pressionvcont5vF /&. Thus it would be interesting to
reconsider these estimates for the lattice case.

~iii ! Finally, as pointed out in Ref. 9 if the plasmon is
finite frequency atK→0, the Landau damping doe
not occur since whenV is finite andK→0 it is im-
possible to satisfy the Cˇ erenkov condition discusse
above. However, a very small value of the plasm
frequency in HTSC’s suggests that the Landau dam
ing may still be relevant whenK is nonzero and the
Čerenkov condition can be satisfied. Thus the cor
sponding damping terms should be included in t
‘‘phase only’’ actions which are used to describ
plasma excitations ind-wave superconductors. Pre
dicted anisotropy of the Landau damping would res
in the damping anisotropy for the plasma excitation

To summarize, we have considered the phase only ef
tive action for so-calledneutral ~or uncharged! fermionic
superfluid with d- and s-wave pairing in 2D. When the
damping terms are included into this action, it turns out no
local in coordinate space and its analytical structure for
d-wave case is very different from thes-wave case. To con-
sider a charged superfluid it is necessary to combine the
proaches used in the present paper and in Refs. 8 and
consider the Landau damping in the presence of Coulo
interaction.
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APPENDIX

Substituting Eq.~21! into Eqs. ~30! and ~34!, using the
definitions forp i j and P i j and evaluating the matrix trace
for the diagonal terms we obtain
A6[FP00
ab~ iVn ;K !

P33~ iVn ,K ! G5T (
l 52`

` E d2k

~2p!2

2@~ iv l1 iVn!iv l1j~k2K /2!j~k1K /2!6D~k2K /2!D~k1K /2!#V6~k!

@~ iv l1 iVn!22j2~k1K /2!2D2~k1K /2!#@~ iv l !
22j2~k2K /2!2D2~k2K /2!#

,

~A1!

V6~k![FvFa~k!vFb~k!, ‘ ‘ 1 ’ ’ ;

1, ‘ ‘ 2 ’ ’ . G
Performing in Eq.~A1! the summation over Matsubara frequencies and simplifying the result we arrive at

A652E d2k

~2p!2 H 1

2 S 12
j2j1D2D1

E2E1
D F 1

E11E21 iVn
1

1

E11E22 iVn
G@12nF~E2!2nF~E1!#

1
1

2 S 11
j2j16D2D1

E2E1
D F 1

E12E21 iVn
1

1

E12E22 iVn
G@nF~E2!2nF~E1!#J V6~k!, ~A2!

wherej6[j(k6K /2), E6[E(k6K /2), andD6[D(k6K /2). The second term in Eq.~A2! can be further simplified if one
notices that the term with 1/(E12E22 iVn) transforms into the term (21)/(E12E21 iVn) whenk→2k. Note that theA6

terms do coincide with the corresponding terms in Ref. 4.
For the mixed term~35! one obtains

P03
a ~ iVn ,K !5T (

l 52`

` E d2k

~2p!2

2@~ iv l1 iVn!j~k2K /2!1j~k1K /2!iv l #vFa~k!

@~ iv l1 iVn!22j2~k1K /2!2D2~k1K /2!#@~ iv l !
22j2~k2K /2!2D2~k2K /2!#

5E d2k

~2p!2 H S j1

2E1
2

j2

2E2
D F 1

E11E21 iVn
2

1

E11E22 iVn
G@12nF~E2!2nF~E1!#1S j1

2E1
1

j2

2E2
D

3F 1

E12E21 iVn
2

1

E12E22 iVn
G@nF~E2!2nF~E1!#J vFa~k!

5E d2k

~2p!2 H j1

E1
F 1

E11E21 iVn
2

1

E12E22 iVn
G@12nF~E2!2nF~E1!#

1S j1

E1
1

j2

E2
D 1

E12E21 iVn
@nF~E2!2nF~E1!#J vFa~k!. ~A3!
the
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The get the last identity we again replacedk→2k and took
into account thatvF(k) also changes sign under this tran
formation. One can also check thatP30

a ( iVn ,K )
5P03

a ( iVn ,K ). Equation~A3! is also in agreement with th
corresponding term in Ref. 4 denoted asD.

The first and second terms in Eqs.~A2! and ~A3! have a
clear physical interpretation.24 The first term gives the con
tribution from ‘‘superfluid’’ electrons. The second term giv
the contribution of the thermally excited quasiparticles~i.e.,
‘‘normal’’-fluid component!. The essential physical differ
ence between the two terms is that the superfluid term
volves creation of two quasiparticles, with the minimum e
citation energy in thes-wave case being 2Ds . ~For the
-
-

d-wave case the minimum energy turns out to be zero in
four nodal points, see the discussions at the end of Sec. V!

On the other hand, the normal-fluid term involves scatt
ing of the quasiparticlesalready presentand the excitation
energy in this case can be arbitrary small, as in the nor
metal, independently whether we are in the vicinity of t
node or not. Of course, the number of the quasiparticles
ticipating in this scattering depends on the value of the g
and drastically increases if the gap is equal to zero in so
points. As we shall see, the Landau damping terms origin
from the second, normal-fluid term. Note that our Eqs.~A2!
and~A3! @as well as Eqs.~30!, ~34!, and~35!# are suitable for
studying boths- andd-wave cases.
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