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in two-dimensional d-wave neutral superconductors

S. G. Sharapdvand H. Beck
Institut de Physique, Universitge Neuchtel, 2000 Neuchil, Switzerland

V. M. Loktev*
Bogolyubov Institute for Theoretical Physics, Metrologicheskaya Str. 14-b, Kiev, 03143, Ukraine
(Received 1 January 2001; revised manuscript received 15 March 2001; published 12 September 2001

We derive finite-temperature time-dependent effective actions for the phase of the pairing field, which are
appropriate for a two-dimensional electron system with both nonretaddeshd s-wave attraction. As for
s-wave pairing, thel-wave effective action contains terms with Landau damping, but their structure appears to
be different from thes-wave case due to the fact that the Landau damping is determined by the quasiparticle
group velocityvy, which for d-wave pairing does not have the same direction as the noninteracting Fermi
velocity v . we show that fod-wave pairing the Landau term has a linear low-temperature dependence and in
contrast to theswave case is important for all finite temperatures. A possible experimental observation of the
phase excitations is discussed.
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[. INTRODUCTION cles at given temperaturé comparing to theswave case.
Therefore one can expect that the Landau damping should be
The microscopic derivation of the effective time- stronger for superconductors with cawave gap which is
dependent Ginzburg-Land&GL) theory continues to attract commonly accepted to be the case of high-temperature su-
attention since an early paper by Abrahams and TsunetoPerconductorsHTSC's).> Moreover, it is believed that at
Whereas the static GL potential was deri¥édm the mi-  temperature§ <T,, these quasiparticles are reasonably well
croscopic BCS theory soon after its introduction, the time-described by the Landau quasiparticles, even though such an
dependent GL theory is still a subject of interéste Refs. approach fails in these materials at higher ene[‘bms IS
1,2,3 and 4 for a review on the problem’s histoi@ne of the the reason why one can hope that a generalization of the

reasons for this is the presence of Landau damping terms iRCS ke approach for the 2D d-wave superconductivity
the effective action. Fors-wave superconductivity these may be relevant to the description of the low-temperature

terms are singular at the origin of energy-momentum Spacélme-dependent GL theory in HTSC's.

and consequently they cannot be expanded as a Taylor seriesm this work we derive such a theory from a microscopical
q y they P y model withd-wave pairing extending the approach of Ref. 1

about the origin. In (_)the_r words, these terms do_ not ha\_/e 8eveloped forswave superconductivity. As known from
vyell—deflned expansion in terms of space and time derlvaRef_ 1 the physical origin of the Landau damping is a scat-
tives of the ordering field and therefo're they cannot be "®Pfering of the thermally excited quasiparticlégnormal”
resented as a part of a Ioca_ll Lagrangian. We recall that at fluid) with group velocityv, from the excitations of phase
=0 and for the statidtime-independentcase the Landau (or §) quantums. Such conversion occurs only if theréh-
damping vanishes, so that eitherTat O one still has a local kgy condition, Q2 =v,K for the energyQ and momentunk
well-defined time-dependent GL theory or for#0 the fa-  of the ¢ excitation, is satisfied. This phenomenon in super-
miliar static GL theory exists. It is known, however, that for conductivity is also called Landau damping since its equiva-
swave superconductivity even though the Landau terms dgent in the plasma theory was originally obtained by Landau
exist, they appear to be small compared to the main terms qéee, e.g., Ref.)7
the effective action in the large temperature regiodTO To emphasize the difference between the Landau damping
<0.6T.,* where T, is the superconducting transition tem- for s- andd-wave pairing, we also derive for the comparison
perature. This is evidently related to the fact that only therthe corresponding terms for a two-dimensiofD) s-wave
mally excited quasiparticles contribute to the Landau dampsuperconductor. In addition we compare 2D expressions ob-
ing. The number of such quasiparticles at low temperaturetined here with the 33-wave case studied in Ref. 4. The
appears to be a small fraction of the total charge carriersollective phase oscillations in chargedwave supercon-
number in thes-wave superconductor due to the nonzeroductors for clean and dirty cases were recently studied in
superconducting gap s which opens over all directions on Ref. 8. Due to the complexity of the corresponding equations
the Fermi surface. they were solved numerically, neglecting damping of the
For ad-wave superconductor there are four Dirac pointsphase excitations. Thus our fully analytical treatment can be
(nodeg where the superconducting gap(k) becomes zero very useful for further studies of the phase excitations. We
on the Fermi surface. The presence of the nodes increasefso mention a recent papewrhere the effective action for
significantly the number of the thermally excited quasiparti-the phase mode in thé&¢wave superconductor was obtained
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using the cumulant expansion. The Landau terms were ngerms which are evaluated,respectively, in Secs. IV and V

glected in Ref. 9 but the effect of Coulomb interaction waswith some details considered in the Appendix. The effective

taken into account. Lagrangians for thel- ands-wave cases without the Landau
Our main results can be summarized as follows: damping are discussed in Sec. VI. In Sec. VIl we derive the
(i) We find that the main physical difference between thedamping terms and in detail compade and swave cases.

s- and d-wave cases is related to the fact that tbwave  The approximate forms of the effective action afh@ropa-

superconductivity the direction of the quasiparticle group ve-gator are considered in Sec. VIII. Section IX presents our

locity vg(k)=dE(K)/dk [E(K) is the quasiparticle dispersion conclusions and comments on a possible experimental obser-

law] does not coincide with the Fermi velocity ,**°and a  vation of the phase excitations.

gap velocityvy,=dA4(k)/dk also enters into the €enkov

condition along withvg .

(if) We show that the intensity of the Landau damping has Il. MODEL
a linear temperature dependence at [bwith a coefficient _ _ _
expressed in terms of the anisotropy=uv /v, of the Dirac Let us consider the following action:

spectrumig (k) = \/vzpkleruA2 kzz. Herek,(k,) are the projec-
tions of the quasiparticle momentum on the directions per- B
pendicular(paralle) to the Fermi surface. The parameters Sz—f dr
Vg, va, and ap proved to be very convenient both in the 0
theory, for example, of the transport phenom@nétrasonic
attenuatiof’ in d-wave superconductors, and for the analysis r=(x,y), B= 1 (1)
of various experiment¥: o T

(i) We find that the Landau damping is sensitive to the . .
direction of the phason momentum. In particular, for a givenWhere the Hamiltoniaii(7) is
node the Landau damping is possible only if the components
of the phason momentud = (K1 ,K5) (which are defined H(T)ZE fdz“!/jr(ﬂf)[s(—iV)—M]l//a(T,f)
exactly as the components of the quasiparticle momentum o
above satisfy the conditiodQ| < \JvZK2+v3K2. 1

(iv) We derive a simple approximate representation for the _— f dzflf d2r,ut(7.r,) %( )
Landau damping terms which can be useful for further stud- 275
ies of thed-wave superconductors.

> fd2r¢/§(r,r)(97¢a(r,r)+H(T) ,

(v) We derive an approximate expression for the propaga- XV(r ;1) Yo 7,7 1) Po(7,T2). @
tor of the Bogolyubov-Anderson mode which includes the ) L ) . _
Landau damping. Here ¢, (7,r) is a fermion field with the spinr=71,|,0=

(vi) Concerning the mathematical formalism used in the™ -7 IS the imaginary time, an¥(ry;r;) is an attractive
paper, we adapt the bilocal Hubbard-Stratonovich ﬁe|0p_()tentlal. For the sake of simplicity we consider the disper-
method of Ref. 12 to the-wave pairing. Additionally we Sion law e(k) = —2t(coka+cosk,a) for a model on a
adjust the technique of the derivative expansion for thesduare lattice with the constamt including the nearest-
“phase only” action(see Ref. 4 and references thejeior nelghbpr hopping only. ThIS, however, is not an essent|a|
the model with the tight-binding spectrum. restriction beca_luse the final result_s for tlm_wave case will _

The paper is organized as follows: In Sec. Il we presenpe formulated in terms of the nonlnte-ractlng Ferm|_ velocity
our model and write down the partition function using aVF=3(K)/dk|-x_ and the gap velocity, defined in the
bilocal Hubbard-Stratonovich field. In Sec. Ill, we introduce Introduction. We sefi=kg=1.
the modulus-phase variables and represent the effective The bilocal Hubbard-Stratonovich fields(r,rq;r,) and
“phase only” action as an infinite series. It appears that thedT(7,r;;r,) (see, e.g., Ref. 2Zan be utilized to study the
low-energy phase dynamics is contained in the first twomodel(1), (2):

B
eXF{ fo de dzrlf dzrzl/f}t(ﬂrz)l/fI(Tarl)V(rl;rz)l/’L(Tarl)%(T'rz)

2

D(7,rq;ry)

=JDCDT(7-r 1) DD (7,1, ;r,)ex —jﬁdrj d?r fdzr 1
T2 n2 0 ! 2V("1;r2)

B
+fo de dz"lf d2r [ @T(7,r ;1) ¢ (7,0 ) Py (7,12) + 'lf%r(T:rl)l/fI(T,rz)q)(T,rlH'z)]}- €)
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On the right-hand side, ¥(r;r») is understood as numeric Pi(7.1) R :
division, no matrix inversion being implied. The Hermitian ‘I’(T.f)=(¢T(T r))’ Wi(r,r)= (g (r,r) ¢ (7,1))
conjugate of®(,rq;r,) includes the transpose in the func- B (4)
tional sense, i.ePT(7,ry;r)=[D(7,rp;ry)]*.

Thus in the Nambu variables the partition function can be written as

B 1
Z=JD\I”D‘PDCDTDCI> epo dTJ d2r1f erZ[—W|q>(T,rl;r2)|2+«1r*(r,rl)[—a,—ng(—iTSV)]
0 1.12

XW(7,r)8(r1— 1)+ @ (7,ry;r)PT(7,ry) 7"If(T,rz)+‘IfT(T,r1)7'+\I’(T,rz)d)(r,rl;rz)}’ , (5

where ¢é(—im3V)=e(—im3V)—u and r3,7.=(71=i7,)/2  ltis clear that the terms containing(r,—r,) in Eq. (5) can

are Pauli matrices. be treated similarly to the old model and the problem arises
In general an electron-electron attraction on the nearesiwhen one deals with the Hubbard-Stratonovich field. To con-

neighbor lattice sites can be considersee, for example, sider this field we introduce the relative=r;—r, and

Refs. 13 and 14 The momentum representation for this in- center-of-mass coordinaté&=(r,+r,)/2. Now we can in-

teraction contains in the pairing channel extended-, and  troduce the modulus-phase representation for the Hubbard-

evenp-wave pairing terms: Stratonovich field,
V(k—k’)=V[cogk—k,)a+cogk,—kj))a] ®(7,r1,1)=B(r,R,1)=A(r,R,1)exdi6(r,R,1)],
v ' : €)
=3 (cosk,a+coskya)(cosk,a+cosk a)
where A(R,r) is the modulus of the Hubbard-Stratonovich
\V; field and (R,r) is its phase.

+ E(COSkxa_ coskya)(coskga— coskya) Assuming that the global phag€R,r) varies slowly over
distances on the order of a Cooper pair size and thus is not

+V(sink, sink;+sin ky sink)’,). (6) sensitive to the inner pair structure described by the relative

) ] o variabler, we can rewrite Eq(9) as
Motivated by HTSC's we consider hedewave pairing only,

so that for the Fourier transform of the attracting potential

V(ri—t,) we use O(7,R,r)~A(7,R,r)exdif(,R)]. (10

The approximation we made writing Eq10) is in fact
@) equivalent to the Born-Oppenheimer approximatfomhich
allows one to separate the dynamics of the Cooper pair for-
As was mentioned in the Introduction, we will compare mation described by the relative coordinaten A(7,R,r)
the main results for the-wave case with the simplest 2D from the motion of the superconducting condensate de-
continuums-wave pairing mode(see, e.g., Ref. 15 and the scribed by the center-of-mass coordin&tén 6(7,R). If the
review Ref. 16 which has a quadratic dispersion lawk) condensate motion is slow enough this separation becomes

V(k—k")=Vy(cosk,a—cosk,a)(cosk,a—coskya).

=k2/2m and a local attractioW(r;—r,)=Va&(r,—r.,). possible because the dynamics of the Cooper pair formation
can always follow the motion of the condensate. Using the
IIl. EFEFECTIVE ACTION lattice language one can also say about(EQ) that thebond

phase is replaced by ttsite phase™®
While for the model with the local four-fermion Applying the transformation$10) and (8) to the terms
attractior'® the modulus-phase variables could be intro-with the Hubbard-Stratonovich field in E(B) we obtain(the
duced exactly, one should apply an additional approximatioiimaginary timer is omitted
for treating the present model.
Let us split the charged Fermi fieldg 7,r) and ¢'(7,r) @T(R;r)zpl(rl) (1)
in Eq. (5) into the neutral Fermi field/(7,r) (Ref. 19 and

i ; i0(R+r/2
charged Bose-field exi#(r,r)/2], =¢T(R;r)xl(rl)exp{ ( . )}XT(rz)
Po(7,1)=xo(7,r)exdio(7,r)/2],
(8) i0(R—r/2)
yh=x!(rnexd —io(r,r)2]. Xexf{—z }
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in 2 we have omitted higher-order termsWi#, but in order

to keep all relevant terms in the expansion of sii®gV) the
necessary resummation was déh@®ne can easily see that
for the quadratic dispersion lawt2-1/(ma?), cos(iaV)

—1 and sinf-iaV)——iaV, so that Eq.(16) reduces to the
known expression from Refs. 4 and 21. Thus we arrive at the
one-loop effective action

~A(R;r)exd —i0(R) x (r1)x;(rz)
ioR)+ =2y v aR
Xexpié( )+?? «Vp0(R)

~AR;)x (ro)x(ra), (12)

where we used the assumptiéor hydrodynamical, long-
wavelength approximation, see Ref.)2Mat #(R) varies

slowly, 0(R)>§§[V 6(R)]?. Here&, is the coherence length
which for the BCS theory coincides with an average pair

Q=Qyin(v, 1, T,A,00)+ Q5 (v, 1, T,A), (17

size. where
Then the partition function in the modulus-phase vari-
ables is 1
Qin( 1, T,8,00)=TTr 3 —(G%)|assim=0  (18)
Z=f ADADOexd — BQ(A,00)], (12
and
where the effective potential
A%(r)
B A%(7,R,r QM (, T,A =<Jd2RJ d?r
,BQ(A,M):f drf dzrlf dzrz(—)— InG™ 1! por( 1. T:4) V(r)
0 V(ri—rz)
13
_ _ (13 —TTrin g—l) (19
with the Green’s function IAIR=0
G l=g1-3, (14)  Deriving the “phase only” action for theswave model it

was possible to usé (R,r)=const'® The d-wave case is
more complicated because one should keep the dependence
on the relative coordinatéy(R,r)~A(r) which is related to

G Hry, a0y, )=(11,11|G Y 72,12)

:[_Tafl— m3é(—173V ) ]o(71— 7))

XO(ry—ry)+mA(1—7,R,r);

the nontrivial pairing. The dependences of the gagn T, w,
and V, follow from the extremum condition for the mean
field (9A/9R=0) potential 9 y5/dA=0 which results in

(15  the usual BCS gap equation. For ithevave pairing potential
(7) one obtains
9,6 (V. 0)?
(11.11|2]72,12) = 7'3(i 21 +ta? Ai cog—iaVy,) Ay
Aq(k)= 7(coskxa— cosk,a), (20
[ ita’vie
t(X=y) | FI ———F——cod—iaVy)  \hereA, is the gap amplitude. In our case there is no need

to solve the gap equation and exprésgin terms of T, w,
andV since in what follows we will usé\ 4, or more pre-
cisely the velocityv, , as the input parameters and will be
interested in the low-temperaturé€A,) regime.

Thus assuming thah(R,r) does not depend oR one

Thus the gauge transformatid®) resulted in the separation obtains for the frequency-momentum representation of Eq.

of the dependences akh and 6, viz. @ is present only in. (15
The similar method of the derivative expansion was used
before in Refs. 4 and 21. As pointed out in Ref. 4 the method
allows us to maintain explicitly the Galilean invariangthe
Landau terms break)iand the continuity equation, while the
expansion® (x)=A+ ®,(x) +id,(x) used recently in Ref. where A(k) is given by Eq.(20) and w,=7(2n+1)T is
8 demands the additional enforcement of the conservatiofermionic (odd Matsubara frequency.
laws 22 The phase dynamics is contained in the kinetic &,
Since the low-energy dynamics in the phase in which of the effective action which only involves the single degree
#0 is determined by the long-wavelength fluctuations ofof freedomé. As discussed in Ref. 4, it is enough to restrict
6(x), only the lowest-order derivatives of the phase such asurselves to terms witm=1,2 in the infinite series in Eq.
Ve, 3,0, and V20 need be retained in what follows. How- (18) since atT=0 this would give the right answer for a
ever, to take into account the tight-binding electron spectruntocal time-dependent GL functional which involves the de-
the operators sirfiaV) and cos{-iaV) must be kept. Thus rivatives not higher than¥8)* and (5,6)>.

+taVX19 sin(— ianl) + (x—>y)) }
X S(11—= 1) 0(ry—r3). (16)

iyl + 73E(k)— 71A(K)
0l AT AYK)

G(iwn, k)= (21)
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IV. FIRST-ORDER TERM OF THE EFFECTIVE ACTION
AND THE NODAL APPROXIMATION

In this section we calculate the firsh€1) term of the
sum appearing in Eq18):

Q=TT Gx]

:-I—f:de dzr[ > j(Z > T G(i oy ,K) 73]

9,0 ta? ) ta® )
|7+ T(Vxe) cosk,a+ T(Vy) cosk,a

|

(22

Summing over Matsubara frequencies, one obtains

Q=T fdrj dr U(z )2n<k>(

« V,0)?
<k)( o m;y1<k>—( ys)

| =

with mpt(k)=d2£(k)/ak2, my H(k)=a%é(k)/ k2, and

k) E(Kk)
n(k)zl— E(k)t h—T,

E(k)=VE3(k)+A%(K).

(24)

For T<Ay linearizing the quasiparticle spectrum about

the nodes and defining a coordinate systémK,) at each

node withk,(k,) perpendicular(paralle) to the Fermi sur-

face, we can replace the momentum integration in (28)

by an integral over th&-space area surrounding each néde.

If we further define a scaled momentump=(p4,p,)
=(p,p) we can let

dk,dk, < d2p
f 2w>2 2 f (2m? ﬂ%f(zwzvm

Pmax pdp ZWdQD
_j:1 fO 27vevs Jo on' Pmax™= VTVEV A,
(25)
where  p;=vgk;=e(k)=pcose, po=vky=A4(k)
=psing, and p=.pi+p5=vzki+viki=E(k). Note

PHYSICAL REVIEW B 64 134519

ky
B7Z 2 AN BZ 1
// \\
/// ™
> dr/2 Y
/// ¢, 7r/2 \\\\ kl‘
N —7IT/2 I ,’/ -
\\ ///
\\ /
y T-7/2)
N P
BZ 3 \\ /,’ BZ 4

FIG. 1. Foru=0 the Fermi surfacédotted ling represents the
points wheres (k) = — 2t(cosk,+cosk,)=0 (in the units where the
lattice constana=1). There are four nodes centered at £/2,
+/2) around which the energy spectrum is linearized. The corre-
sponding nodal subzondsee Eq.(25)] are called BZj with j
=1,...,4. Forap<1 the Landau damping develops only if the di-
rection of the phason momentult is within one of the “cones.”
The size of these cones is dependent on the catif)/v K, so that
the cones shrink d|—1 [see Eqs(67)—(69)].

Q=T fdfj d?r

|nf
Pmac PAp (27 de p a’pcog ¢ )
+fo 2TUEU Etanﬁ (Vo)
B 0,0 ~mugv
~ 2050 Or7  NUPUFTA 2
Tfodrfd rlin— 2g (VO } (26)
where
d?k
ng= (2 )Zn(k) (27)

is the density of carriers. We note that due to the slow con-
vergence of the integrand in E6) the final expression
depends explicitly on the value of the momentum cupgff,
which was defined in Ref. 6 in such a way that the area of the
new integration region over four Brillouin subzonsge Fig.

1) is the same as that of the original Brillouin zone. Going
from Eq. (23 to Eq. (26) we essentially replace the averag-
ing over the true Fermi surface of the system by the averag-
ing over four nodal subzones. The validity of this approxi-
mation can only be justified if the corresponding integrals
contain the derivative of the Fermi distribution (k) which

is highly peaked in the vicinity of the nodes. This appears to
be the case of the temperature-dependent parts of the phase
stiffnessJ(T), compressibilityK(T), and the Landau damp-
ing terms. For the zero-temperature valu§§=0) and

that for the particular square lattice model used above thosk(T=0) the nodal approximation is not well justified. How-

velocities arev=2v2ta andv ,=A4a/v2, respectively.
Using Eg.(25) one can express E@23) in terms ofvg
andvA )

ever, as we show in Sec. VI, this approximation can be jus-
tified a forteriory for their ratio (see Fig. 2 which deter-
mines the velocity of the Bogolyubov-Anderson-Goldstone

134519-5
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b7 Qiin = QUn{0076}+ QUG{OK? 0} + QLR 9K Q61

15 / (29
125 i -

where usind ¢- - - 8} we denoted symbolically that the corre-
1 sponding term of Eq(28) is either diagonali.e., its fre-

" 075 guency-momentum representation contaia§Q,,K)Q?:
05 0(—iQ,,—K) or (iQ, ,K)K20(-iQ,,—K)] as
0.25 Q2
kln{aﬂ 0}_ 2 f(z 20(|Qn,K)
0 0.5 115 2
Ag >t 2
n .
FIG. 2. The dependence of the Goldstone mode velagffly X| = T) 0(—=iQ,,—K)

=0) on the amplitude of the gap,. The solid line is the result of
numerical calculation with &(k)=—2(cok+cosk,), A(k)
=A4/2(cosk,—cosky) (we putt=a=1, so thatA is expressed in f 2n )2 (10, Ko ,K);
units oft). The thin line is obtained using E43). The anisotropy

of the Dirac spectrum for this case ig,=4/A4, so thatA;=0.2 (30)
corresponds tevp=20.

|7—oo

. o L T d’K
mode. Finally, we stress that after approximation is used, it |§GQ<ki2n){ K20} = = > f — a(iQn,K)Ki
impossible to recover thewave limit by puttingv ,— 0. 2057w J (2m)

V. SECOND-ORDER TERM OF THE EFFECTIVE ACTION X0(—iQ,,— K)TI :2_00 f %
Let us evaluate the trace of the second term in expan-
sion (18): X oo i Q4 Kiiw) k) (ta)?
Q(Z)——Tr[gzgz] 28 X sin(k,— K /2)a sin(ky+ K,/2)a+ (x—Y)
kin ' (31
Substituting Eq(16) into Eg. (28) we obtain that or mixed

*° 2

d2K K,
BARL KO, 0} = — TE 2 )29(|Qn,K) 5 0=y, ~ K)TZ f(z [7703(|Qn,Klw|,k)

ita
><—S|n(k +K,/2)a+ m3(iQ, ,K;iw) ,k) sm(k K,/2)a|+(x—y). (32
|
In Egs.(30)—(32) we introduced the following shorthand no- T = d2K 0K
tations: BARL KO, 0} = — En;w fW“mmK)

i (100 Kii 0, K) =T G0 +1Qy k+K/2) 7 X 0(= 1€, = K)[Tgyi 20 K)

XG(w k=KI2)7j], m=(1o=1,73). 53¢y, K)], (35)
(33) where
I8 20 K)
More generally, we can rewrite Eq81) and(32) as follows: ®

d%k
E|:E,oo f —(27T)2 WOO(iQn ,K;iw| ’k)UFa(k)UFB(k),

kln{aK 0}~_ E 20(|Qn,K) a B * d2k
J(Z ) Hgg(iQn,K)Elzm fWWOS(iQnaK;iwlyk)UFa(k)a
XG(—Qn,—K)HSg(iQn,K), (34) (36)
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Vea(K)=0&(K)/0k,, we used the approximationg,(k) kln{(at 2

=0 (KxK/2) and took into account  that

(1/2m) [d?kv v g= [kdkv?5,p4/2. It is convenient to intro- f de 0.K 02
duce here (2m)? o( )

X 0(—Q,—K)II35(0K—0)

- d%k
MaiQn K= X | g masliQ Kiiwr k) T o [OLOT° [ d%
|=—o (271') —|§ dt d r 4 (271_)2
(37)
s I (O O ()
>< - 3 tanh A 2 h
which would allow us to rewrite Eq30) in the same fashion E°(k) 2T 2TE (k) 2T
as Eq.(34). (39)
As one could notice the product of the Fermi velocities
enters Eq.34) via Eq. (36). There is nothing surprising in (2>{ V)2
this fact since this piece of the effective action is related to kin
the paramagnetic current correlatgrj ) (Ref. 9 and in its i K K
turn the current operatgrcontains the Fermi velocityg (k). = J 2
We will return to this point considering the Landau term
which originates from Eq(34), so that here we note only X O(—Q,— K)HOB(O K —0)
that the current correlator term along with the diamagnetic
term~(V 6)2 in Eq. (22) from together the mean-field phase T , Va0(t,r)Vgo(tr) dk
stiffness. = dr 4 (27)2
The matrix tracesr;; and the corresponding expressions
for I1;; are calculated in the Appendix. Although the expres- 1 E(k)
Y : X | — ==cosh 2 e (Kvgg(k), (39
sions for them are rather lengthy they have a clear physical 2T 2T |“Fe FA™/s

interpretation which is also discussed in the Appendix.
and the mixed tern{35) does not contribute to the regular
part within the used approximation, sintE0,K—0)=0.
VI. EFFECTIVE LAGRANGIAN AT T#0 WITHOUT THE Evaluating Eqs(38) and (39) we performed the analytical
LANDAU TERMS continuationiQ,,—Q+i0 back to the real continuous fre-
o . _quencies, so thatis the real time.
The contribution of the first-order term to the effective Using the nodal expansid25) to calculate Eqs(38) and

action is given in Eq.(26). Concerning the second-order (39) and adding Eq(26), we finally obtain the regular ef-
term, we note that when the Landau terms are neglected it igctive  Lagrangian £R  such  that BQ,=

enough to sef),=0 insidell in Eqgs.(30), (34), and(35). To  _jrqtfd? £R(t,r) for T<A4 and ignoring the Landau
be more precise, the Landau terms arise from the second lingrmg

of Egs.(A2) and(A3) which contains “dangerous” denomi-

nators 1/, —E_=*iQ,). One can, however, notice that the N K J

second line of Eq(A2) leads also to the regular terms which LR=——0,600t,r)+ =[8,0(t,r)]°— =[V(t,r)]>%

are proportional to the derivativin:(E)/dE. These lead to 2 2 2
the second term in the square brackets in B8) and the
whole expression(39) shown below. For theswave

superconductivity® in the temperature region <OT

(40

where the phase stiffnes¥=Jy s and compressibilityK

=Ky are
=<0.6T. these terms are very small compared to the main
terms. Although the contribution from these terms is still
local, their presence breaks the Galilean invarighthis is _Nmupvy N2 ve _ 1 (41)
the reason why it was more natural for Ref. 4 to treat them d 24a 2m vp ¢ 4a\/7-ervA'

along with “true” Landau terms since they also originate

from the same denominators of the second line of @)  The linear time derivative term in E@40) is important for

as was mentioned above. For thavave superconductivity the description of vortex dynami¢see Ref. 9 and references

this splitting, however, appears to be rather artificial sinceherein, but we omit it in what follows. We stress that the

these terms are not small even for low temperatures due tgecond, temperature-dependent terndjrfollows from Eq.

the presence of the nodal quasiparticles, so here we will cor(39) which contains the derivative of the Fermi distribution

sider all regular terms. dn:(E)/dE. Its presence, as we mentioned in Sec. IV, makes
For the regular terms from the second-order term we obthe nodal approximation valitiSince we consider only the

tain a local effective action, involving time and space derivalow-temperaturel <A, region, we restrict ourselves by the

tives of 6(t,r): valuesAy andv, at T=0, so that all temperature depen-
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dences appear to be linear. For higher temperatures it is neehere the group velocity is given by
essary to take into account thiag(T) andv,(T) are, in fact,
decreasing functions df. 1
It is useful to compare the stiffness and compressibility Vo(K) =V E(K) = == [ &(K)Ve+ A(K)V,]. (45)
from Eq. (41) with those parameters derived in Ref. 15 for E(k)

the continuum 2D model witls-wave pairing: It is obvious that due to the gak dependence Eq44)

differs from thes-wave casé,where the difference is simply

f ” m
Jo=— 1—f dx . Ke=o—.
* 4m( 0 costx?+A2/4T? 4w (k)

42 E(k+K/2)—E(k=KI2)= groveK  [A(K)=Aq]

(46)
First of all one can see that for low temperatures the su- ) . )
perfluid stiffness in Eq(42) does not contain any term which It is convenient to rewrite Eq$44) and(45) in terms of the
goes to zero more slowly than expd./T), while Eq. (41) nodal approximation described after Eg5). In the vicinity
has a term proportional t&. The origin of this difference is ©f one of the nodes we have
well known and related to the presence of the nodal quasi-
particles. Second, we can compare_the values of th_e zero- VoK =vgK; cose+v,K,sing=P cog ¢ — ),
temperature superfluid stiffness which for the continuum
translationally invariant system has to be equah@m, so
that all carriers participate in the superfluid ground state. E(k£K/2)<Ay, (47)
Since the presence of a lattice evidently breaks the con-
tinuu'm tr:anslationr;ll Einvz;iancT the r?uper;luid density'kl;at where the momentunK =(K,,K,) of @ particle was
=0 in the case of Eq(4]) is less thamni/4m as can be expressed in the nodal coordinate systenk,, so that
readily seen from Eq23). Finally, since we consider here a P =y K. —P cos P@ =y, Ko—Psin and P
neutral system it has the Berezinskii-Kosterlitz-Thouless ok 1~ ¥ LA £
: 6 (12— 2K2 i = J(PM)2+ (PP)2= \[pZKi+v3K3. (We denoted the
(BKT) collective mode® Q2=v?K? with v=J/K. One RS S _
can see that for the continuuswave case =vg/v2Z and ~ components oP asP'~,P“) to make them different from
the node labeP; used in what follows.
The corresponding substitution in the integrals oter

mupv,y  2IN2ave  [ug reads similarly to Eq(25),
v= - —T (43
Ua
4

6 Vm
- - . f de _>E meax PJdP] JZW% (48)

for the d-wave model on lattice &~ 0. Equation(43) gives (2m)° =1 Jo 2mupvy Jo 27

a rather simple approximate expression for the BKT mode

velocity for the lattice model ofd-wave superconductor. whereP,,,, is evidently related to the maximal value Kf

Comparing in Fig. 2 the results obtained #ofT=0) using  discussed at the end of Sec. VI. Finally, we can approximate

Eq. (43) with the numerical computation without the nodal the differenceng(E.)—ng(E_) as

approximation, we can see that even being very simple Eq.

(43) predicts the correct behavior o{ T=0). dne(E dne(E

Following Ref. 9 we estimate the upper values for the _ - ne(E) _ N:(E) _
_ _ ne(EL)—ng(E-) VK P codo— ).

frequency(Q in Eq. (38) and the momenturi in Eq. (39). dE dE

The “phase-only” effective action is appropriate for phase (49

distortions whose energy is smaller than the condensation . ) )

energy, E.one=N(0)A2/2, where N(0) is the density of Having the difference$47) and (49) we can now derive

states. For theswave casg4?) this leads to the following the imaginary part for_the Landau terms. In the subsequent

restrictions: )< A,,v K <Ay, and for thed-wave casé41), subsections we consider all three terms of E29) for

Q<A ap, veK <A ian. whereay is the anisotropy of d-wave pairing an_d compare them with theiwave counter-
the Dirac sgectrFum defined in Introduction Py parts. We would like to note that the Landau terms have also

thereal partwhich for the 3Ds-wave case was considered in
detail in Ref. 4. This real part consists of regular and irregu-

VIl IMAGINARY PART OF THE LANDAU TERMS FOR lar terms. The regular term was already taken into account in
2D D-WAVE AND S'WAVE CASES Sec. VI and the irregular term is not considered in this paper.
The key values which are necessary for evaluation of the
Landau terms are the differencés, —E_ and ng(E.) A. Q216026} term

~Ne(E-). Bxpanding ink, Let us consider first the contribution frof{){ 6026}

[see Eqgs(30) and (A2) for A_], which after the analytical
E(k+K/2)—(k—=K/2)=v4(k)K, (44) continuationi Q,—Q +i0 takes the form
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Imli B2 602 fdﬂdz Q,K ol Q,-K dk 1 £-a” 2 Ane(E)
i 000 0 0 1+ | K
mLi BQiin{ 61760}~ (2m? K o= '] GmE2 E2 |V K+0Q+i0 dE °
max PjdP; (27 dy; 02
f f — BQK) —6(-Q,~K)
2mvgvp Jo 27
Pmax pdp 2w dn;:(E)
xf f de cos ¢8(P;j cod o— i) +Q) P;cogo— ;)
0 2mUgvy JO

4 2
Pmax PidP; 2z diy Q In2 T
=2f f = C0(0,K) — 0(— 0, —K) —
= 27 Jo 8

2mvpvpy Joo 27 T UEUA
1 Q0?2 2 0?2 2ule Q]
X — | sin® i; 1-—. 50
cho W+ sz S 3 (50

\/WP
1=-73
P]

Here ®(x) is the step function and we used the integral ~ condition was interpreted in Ref. 1 as the é@nkov” irra-
diation (absorption condition for the process: “thermally ex-
fw pdp 1 1 In2 1 T (51 cited  ¢-fluctuation  quantum (phasoj+quasiparticle

0 2mvevy 2T @ p T URU4 —phasonr-quasiparticle” (or phason being absorbed and
2T scattering thermally excited quasipartiole®\s was dis-

cussed in Ref. 6 since definite energy is carried by the qua-
siparticles, this process is defined by their group velocity
_ vy,=JE(k)/dk (Ref. 1) as well as thermal and spin currents.
cos=—Q/P;, sing=y1-0*/P} and cosp=—Q/P;, ®Itis in fact a coincidence that for thewave supercon-
sing=—V1-02/P? ductor the directions of; and v are the same, so that for

As we can see from the first equality in E¢pO) the the 2Ds-wave superconductor using Eg6) instead of Egs.
imaginary part develops whel=E,—E_~vgK. This (44) and (45) one can obtain

Integrating overp we had to take into account that there are
two points where thé function contributes into the integral:

Q(Z) 02 fdﬂdz Q, Q, f o’k 262 ! dn(E) ‘

Im[i 0020} | = 0(Q,K 0 - —VeK

[iB k|n{ }] (2 ) ( ) ( K) (24 )2 EZ dE E F
—vFK+Q+i0
E

1 ¢ dQd?K 0?2 Agmc (= dy dn 2ly| vl
=——J—39(Q,K)—0(—Q,—K) f ® ~Ic| ],
(2m) 4 2m J-e 1+y2dE Vi+y? | 1+y?
1-¢?
y

where following Ref. 4 we used the notatiops- ¢/A; and  ferent measures for the angular integration in 2D and 3D
c=0/veK. Comparing Eq(52) with the 3D casé(in the  where the extra sirp is present. Comparing also Eq&0)
notations of Ref. 4 the term we consider is related to the surand (52) one can see that their main analytical structure ap-
B, +C,) one can notice that the only difference between thepears to be the same, vizQ3/P; for the swave case and
corresponding expressions is in the square root in the de~Q3vK for the swave case, so that the momentum vari-
nominator of Eq.(52). It obviously originates from the dif- ablesP; andvgK do not appear in the numerator.
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We note that the calculation of the ultrasonic attenuation S(E.—E_+Q)[ne(E_)—ng(E.)]
asound T,K) in d-wave superconductors results in the expres-
sion =0(E, —E_+Q)[ng(V+E,)—ne(Ey)]
(E)
=Q6(E;— (54
2 2
Asound T, K) ~ dk £k ! 8(vgK) leading to Eq.(53). This is the reason why in the limit

(27)% E*(k) cosH[E(k)/2T] Q/veK—0 the angular dependence of the Landau damping

(53 (50) which we consider in Sec. VIII would appear to be the
same as the angular dependence of the ultrasonic
attenuatiort®

which has the same structure as Egf). This can be easily

. ; Q®

seen if one takes into account that for the ultrasound fre- Qi {OK6} term

quency rangd)<vgK,A,, so that the corresponding terms  The contribution fromQ(kizn){aK 0} [see Egs.(34) and
from Eq. (50) can be simplified as follows: (A2) for A_] can be treated in the same manner,

P 1f dQd?K K.Kg f d*k 1 £+ A2
Im[i BQEH K20 ]~ — = | ——=0(Q.K)——0(—QK) | —— =| 1+ ——
m[IB km{ }] 2 (271_)3 ( ) 4 ( ) (277)2 2 E2
X Im (K)ve (k) ane®) |
ng+Q+ioUF“ TR
maXPdP 2 an(E)
f . f da(P; cos ¢ )+ Q) P, cos o= )
TUEU A
Q (Po PidP; (27 dij ? cogy, In2 T
—f j—(QK)—H(Q—)—
2mvpv, Jo 27 8 T UpUA
10 10|
X——— 0| 1- — (55
N
1__
2
P]
and for thes-wave case
dQd?K KoK 2 dn(E) ¢
Im[i BQUG{ 0K?6}] = — f(zﬂs 0(Q,K) 6(_9'_K)f(277)2lm(g/E)vFK+Q+iOUF“UFB dE E'F
1 [ dQd2K Q2 Agmc (= dy dn 2(1+y?)%?
:——f—30(Q,K)—0(—Q,—K) —
2) (2w 4 —e1-cA(1+y?)iy2 dE Y|
lyl )
X 0 _—|| (56)

Let us now compare the expressidbs) and(56). Evidently  different we have obtained two different answers. Indeed, for
their analytical structure is different since for th&vave case the swave case the argument is proportionalweK that

we have again that it is proportional 8%/veK, while for  coincides with the productvgK)?[dns(E)/dE]veK outside
d-wave pairingP; enters the numerator, so that the mainthe & function[see Sec. V after Eq34), where the origin of
structure(excludlng the measure of integration oweyand  the term~ (veK)? is discusse}] so that the angular integra-
the square root in the denomingtas ~QP;. This differ- tion removeXK from the numerator. Thé-wave case appears
ence originates from the angular integration in E§$) and  to be different since we hawgK inside thes function and
(56) which is performed using thé function. Since the ar- (veK)?[dng(E)/d EJvgK outside, so that the angular inte-
guments of thes function for thed- ands- wave cases are gration leave®; in the numerator. Despite the fact tHaP;
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looks substantially less singular th&@P;, the first expres- the specific form of the Landau damping terms id-wave
sion still remains nonanalytical ne&~0 because it is ex- superconductor has the same physical origin as the source of
pressed in terms of/K? the coordrnate representation of the extra terms in the thermal and spin conductiVitigkich

which is the nonlocal operatof— V2. are related to the presence\vp of both ve andv, compo-
Thus physically the difference between the analyticalnents.
form of the Landau damping id- ands-wave superconduct- ~ The swave Landau dampingb6) itself can be again re-

ors originates from thi dependence of the gaypy(k) which  lated to the 3D caséwhere it is expressed via the difference
in its turn makes the direction of the quasiparticle groupB, —C, .

velocity v, different from the Fermi velocitwg. The last

velocity, however, still enters the numerator of EH&5)

since, as was already mentioned in Sec. V, it originates from C. Q2{0KQ 6} term

the current-current correlator. The electrical current is pro-

portional tovg, notvy because quasiparticles carry definite ~ Finally we consider the contribution fromf(2){ 9K (1 6}
energy and spin, but do not carry definite charge. Thereforgsee Eqs(35) and (A3)]:

R 1  dQd?’K d’k ¢ 1 dng(E)
|m[lﬁﬂkm{9KQQ9}] _EJWQ(Q,K)QKQQ(_Q,_K)J'(ZW)ZEIngK-i-Q-I—iOUF“(k) dE g

Pmax PjdP; 2wd¢J QP,;
f f f 0, K)—coswle( 0,—K)
ji=1

2mvpvp Jo 27

Pmax pdp 2m dn (E)
Xf f de cosd] Pjcog o — i) + 2] ———Pjcog o — ;)
0 2mUgv, Jo

max PjdP} 27 dy; 0? n2 T
f f — 6(Q, K)—0( Q,—K)—
2TURU 2 T URUA
2 2 9]
><— — 5
2P, cos ¢,® P 57
P
and for thes-wave case
0 N Jdﬂdz b0 - J» 1 dn(E) ¢
| KOO} |=— —_— K)QK,0 K —Im —VeK
m[i Q2N H 2m° 6(€2,K) (= ) 2mPE™E vk, gE EVF
—VeK+Q+i0
E
1 dQd?K Amc = dy dn (1+y?)? ly]
=— 0(Q,K)Q%0(—Q,—K f 0

/l 21+y2dE I
y

(58)

Once again the difference betwedn and sswave cases is andswave[see Eq(58)] has the opposite sign with respect
related to the different directions of; and ve. Since this  to other terms. This means that the mixed term describes the
time we had cogveK[dng(E)/dE]v¢K outside thes func-  energy transfer from the quasiparticles to the phase excita-
tion, we could not gef)P; as in Eq. (55) and obtained again tions. It turns out, however, that the whole s&9) of the
~Q3/P as in Eq.(50). Furthermore because we have gos Landau damping terms has the sign which corresponds to the
mstead of cos¢ as in Eq.(50) we got only Q/Pj cosy; phason dampingWe stress that the different sign in front of
[compare with the square brackets in E50)] Wh|ch after  all final swave expressions and thelrwave counterparts
multiplying by Qsz gives the final result- Q3IPJ- . Itis  are due to the explicit presence of the derivative of the Fermi
interesting to note that the mixed term fdr{see Eq.(57)] distribution, which is negative, in the former expressjon.
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D. Final expression for the Landau damping term
in the swave case

Since the Landau damping terms fewave pairing all
are~Q3%veK, we can combine Eq$52), (56), and(59): K

Im[i Q2= 1JdeZKQQK920 Q KASmC
mli B ]=—5 W( K)Q2O(—Q,— )277

» o dy dn 1 v
—=1=cX(1+y?)ly? dE 2y2)y| 1 +y?

| Y —|c|). (59)
V1+y?

This expression coincides with the functi¢t{)(c) intro-
duced in Ref. 4 except for the above-mentioned difference
between angular integration in 2D and 3D. Thus the simul-
taneous derivation of the andd-wave cases allowed us to K>
be sure that all relevant terms were included and to see ex-

- . FIG. 3. The directional dependence of the Landau damping for
licitly why th rr ndin nd d-wave term hav
gocdi%eregtly e corresponding- andd-wave terms behave one node imposed b§ (1—|Q|/\vZK2+v2K2) for ap=2. For a

given() only excitations with the moment& which are outside the
ellipse(in the shaded regigrcan contribute into the Landau damp-
E. Temperature and energy-momenta dependences ing. For a fixed ratidQ|/vg|K| the presence of the Landau damp-
of Landau damping ing depends not only ofK|, but also on its direction. For example,
. for a vector having the length of the vectidrshown in the figure
We now compare the conditions on the momenta and enye | andau damping is possible only if its direction is sufficiently
ergies for the existence of the nonzero Landau termd-in close to the direction of, normal to the Fermi surface.

ands-wave cases and the temperature dependences of these

terms. As one can see from Ed80), (55), and (57) for a ) ] ) ) )
given node the imaginary parts develop WH@f’>|Q| (or latter expressions still have one integration which depends

WZKZ+02K2>|Q|). Thus in contrast to the-wave case " the ratio|c| via the ® function. Thus if|c|=|Q|/veK

when the imaginary part is nonzero for all directions of the L only largey=¢/As contribute into the corresponding

phason momenturi satisfying the condition- o ¢|K|< € mtegAraIs. Tkh|strc1;|rcumtst_?)nf_e arf\d the:[hopinlng oftan isotropic
<wvg|K| [or|c|<1, wherec is defined after Eq(52)], for the gap 4s make the contribution from theé Landau terms very

d-wave it is sensitive to the direction of the phason momentzfmal.I comparing 1o the main terms. Fdiwave pairing a
as shown in Fig. 3. As we will discuss in Sec. VIII for relative contribution of the Landau terms does not depend on

HTSC's vg>v,, SO that the directional anisotropy of the the ratioQ/Pj_ via_\ P integratior_1,_ S0 t_hat all frequencies and
Landau damping becomes very strong. Indeed, as can omenta satisfying the conditions imposed by @dunc-

seen from Fig. 3 fo]Q|/veK=1 and ap>1 the Landau ions in Egs.(50) and (55 have the same temperature-

. . g ; dependent weight.
damping would exist only in a narrow region of the momenta As in the case with the superfluid density the temperature

directions. Fur-thermore, if the prolecnfml of the ph§1§on dependence of the Landau terms is lineaf iut while the
momentumK is not exactly zero K+#ky), the condition g nerfluid density is nonzero at=0, there is no Landau
|©[<P; can be well replaced by)[<vg|K,|. We will dis- damping atT=0. The linearT dependence and the absence

cuss the validity of this approximation in Sec. VIII. It is damping aff =0 are obviously related to the fact that for
important to stress that the sharp directional dependence dig:,ave pairing there are only four gapless points on the

cussed here is not related to the nodal approximation a”ﬁermi surface. It is known, for example, that for a normal

follows only from the gap anisotropy and the fact that the(nonsuperconductirjgsystem the Lindhard functiofor po-
difference of the Fermi distribution functiorid9) which is larization bubblg,

present in Eqs(50), (55), and (57) has a very sharj de-
pendence, so that in principle unboundgdr example,
ve(k)=k/m for the model with the quadratic dispersion d’k  np(é.)—ng(é€)
law*] functionsv (k) andv(k) in the corresponding inte- L(Q,K)= 2m)2 (2m)2E, —E +O+i10’ (60)
i ) =&

grals were replaced by their values at the Fermi surface.

The final expression&0), (55), and(57) for the d-wave
case are in fact simpler than theiwave counterparts, Egs. has a nonzero imaginary part evenTat O (Ref. 24 if the
(52), (56), and(58) [or the final expressiofb9)] because the Fermi surface remains ungapped since the derivative of the
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Fermi distribution atT—0 becomes singular on the entire VIll. APPROXIMATE FORM OF THE EFFECTIVE

Fermi surfacgor line in 2D). ACTION AND 6# PROPAGATOR
Finally, we note that there is also an imaginary contribu-

tion even from the first, “superfluid” term in EqA2) for

A_ . As we already mentioned, this term involves pair break-

ing which for sswave pairing has the threshold energy 2

Whereas the local nodal coordinate systers, (;) are
convenient to write down the corresponding contributions
For d-wave pairing this energy is zero fé=0 due to the from each node, the final result should be presented in the

presence of nodes. Nevertheless i 0 a finite energyp; is global or laboratory coordinate systefi, ¢). It is conve-
necessary to create these excitations and the imaginary cofient to measure the angtg from the vectork,, so thate
tribution is nonzero only fofQ2|>P; . Besides the analytical =0 corresponds to the corner of the Fermi surfesze Fig.
structure of this term is regular and it has a higher order thad) and the first node is ab= m/4. Thus the transformations
the terms considered here. Thus this term appears to be lefssm the global coordinate system into the local system re-
important than the Landau terms we just considered. lated to thejth node are

PJ-=K\/v§c0§(¢—g+g(j—l))+vi5in2(¢—; g(l— ))

_veK T -1 Q|<veK LT 63
COSlﬁj—P—jCO b=z +50- )| |Q|<veK|co b7 +50- )] (63)
K - One can easily see that the conditi@3) is in fact equiva-
sin 4//,-=P—sin< - il E(j — 1)), j=1,...,4.(61) lent to the conditior]Q|<vg|K;| we already mentioned.
j The effective actior{18) in the momentum representation
The estimates of Ref. 11 show that in HTSC's N the global coordinate system can be written as
YBCO ap=vg/vy=14 and in BSCCQyp=19 (see Table KdK (27 d
I). Thus we can also use the inequalityy>1 in what fol- BQuin= J j _g(Q K)[FR(Q,K)
lows. First of all this inequality implies that for theh node 0
we may assume that

+FY(Q,K, ¢)]0(—Q,—K) (64)
P;~K,|co S(¢_ " _(J _1))‘ 62) with the regulafcompare with Eqs(40) and (41)]
/ 2
This approximation is, of course, valid onlyKf is not par-  ER(() k)= ( mopvs  2IN2ve T) LA
allel to the Fermi surfacel(#k,). We note that this direc- 4| 6a T Ua 4 aymuevy
tion which is “dangerous” for theth node is the nodal di- (65

rection for the neighboring nodes. The size of the dangeroug,q4 LandauF'(Q,K, &), parts.
direction where Eq(62) becomes invalid can be estimated It is possible to write dowrF-(Q,K, &) substituting Eq.

from thﬁ conditionKuvg sinA¢~Kv, cosA¢ which gives (g1 directly into Egs.(50) and (55), but to have a more

A¢~ap". Sinceap>15, Eq.(62) is in fact well justified  yransparent expression we would like to consider a more

outside the nodal regions. _ _ ~ simple case|Q|/vgK<1. This condition becomes equiva-
Using Eq.(62) we can also rewrite the inequality dis- |ent to|(|/P;<1 due to the presence 6F functions in Egs.

cussed in Sec. VIl E|Q|<P;, imposed by® functions (50) (55), and(57) which are cutting out the forbidden do-

wh[ch define the region where the@nkov condition can be qains With|Q|/pj>1_ Physically, the conditiof)/vK<1

satisfied as is relevant if one, for instance, estimates the Landau damping

for the BKT mode(43) because it follows from Eq43) that

TABLE I. The Fermi velocities r and anisotropies of the Dirac — e :
spectrumep of YBa,CusOg o and BibSKLCaCyO; at optimal doping |2f/veK =Vl (Bap)<1. Thus we obtain

from Ref. 11. The velocities of the phase excitations for the con- FL(Q K, )
tinuum v o, and latticev 5, limits at T=0. Y

- - Q¥n2 T Q
vE,X10"cm/s ap  veon X 107 SMIS vy, X 10° smic :_'?7UAUF ¢|+21s UFK’d’
YBCO 25 14 1.77 4.8 n2 T Q
BSCCO 25 19 1.77 4.2 _iQKn——f (_ ¢) (66)
vy 2ok’ )
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L5 15 FIG. 4. (a) The angular depen-
dence, f{(Q/veK,¢) given by
fi fi Eq. (67) of the Landau term
~0%/K for ap=20 and |Q|/
0.5 0.5 veK=0.1 (b) The same function
calculated directly from Eq50).
0 0.5 1 15 2 0 0.5 1 15 2
¢ w7l o *q1
where from Eg. (50). Nevertheless, we kept th@ functions which

ap? sirt(¢p—ml4)
[coS(p— mlh)+ ag? sirP(p— m/4)]%?

Q]
X O |C05(<1>—7T/4)|——v K
F

Q
ot

ap? cog(p—mld)
[sm2(¢ 7l4)+ ap? co(p— i) %2

(67)

. [
Q) |S|ﬂ(¢_7T/4)|—vF—K s

f( Q ) cos(p— mlh)
ZUF_K’¢ [coZ(p— m/d)+ ap? Sin( p— ml4) ]2

Q|
X0 |COS(¢—7T/4)|—UF—K

Sir?(p— ml4)
[S|r12(¢> ml4)+ ag? cod(p— wl4)]?

. ||
0 |S|n(¢—7-r/4)|—UF—K , (68)
and
f( Q )_ cog(p— ml4)
BUF_K'¢ "~ [coS(¢p— mlh)+ ap?sit(p— w4

i
C) |COE{¢—7T/4)|— U|:_K

Sir?(p— ml4)
~ [Sir(¢— ml4) + ap? cod(p— ml4) 32

(69

. ]
O\ |sin(p— m/d)| - VK]’

The functionsf, f,, andf; are obtained from Eq$50),
(55), and(57), respectively. Deriving Eq$67)—(69) we used

the assumptiof(}|/P;<1 replacing the square roots in Egs.

(50), (55), and(57) by 1. Furthermore, we kept only Sit

are present in Eqs50), (55), and (57) because they are
essential in imposing the conditidd/P; .

In Figs. 4a), 5(a), and &a) we show the function§;, f,,
and f5 which describe the intensity of Landau dampiiig
and f, for the term ~Q°%K and f, for the term ~QK,
respectively as a function of the direction in the plane. Al-
though the functiond; and f5 describe the directional de-
pendence for the same Q%K term, we do not combine
these functions into the single function because they origi-
nate from the different expressiori§Ve recall thatf, origi-
nates from Eq(50) andf; originates from Eq(57), respec-
tively.] For the comparison in Figs.(), 5(b), and &b) we
show the directional dependences calculated by the direct
substitution of Eq(61) into Egs.(50), (55), and(57) without
making the approximations we just described. As one can
see, the approximate representatié6) and (67)—(69) de-
spite its relatively simple forniwe have used only the terms
~ 03K and ~QK) gives reasonably good expression for
the Landau damping terms. The biggest discrepancies are
seen between Figs(a and 4b) because more approxima-
tions were made to obtain tifg term.

As we mentioned in Sec. VII, the angular dependence
described byf; [see Fig. 4a)] coincides with the angular
dependence of the ultrasonic attenuafloin the limit
Q/veK—0. Indeed thed functions from Eq(67) disappear
whenQ/vK—0 and Eq.(67) reduces to the corresponding
equation from Ref. 10.

We stress also that the analytical structure of the damping
terms in Eq.(66) appears to be quite different from the dis-
sipation introduced in Ref. 27 into the “phase only” action
basing on the low-frequency conductivity measurements.

Sincef,+2f; andf, terms are odd functions of the fre-
quency(}, they integrate to zero if},;,. Nevertheless, the
damping terms are manifest in the equation of motion and in
the propagator of the BKT mode which is considered below.

Comparing Figs. 4, 5, and 6, one can see that the func-
tions f, and f5 have more pronounced angular dependence
than f,. Although as we explained above, the contribution
from a given node is zero if for soni€ the condition(63) is
not satisfied, this condition can still simultaneously be satis-
fied for the neighboring nodes, so that the sum over all nodes
in f;—f3 is not necessarily zero. We note also that by the
absolute value both, (or f3) andf, terms are practically the
same. This can be easily seen if we rewrite, for example, the
f, term as
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1.6 1.6
FIG. 5. (a) The angular depen-

1.4 14 dence, f,(Q/veK,¢) given by
¢ ¢ \ /\ /\ /\ / Eq. (68 of the Landau term
212 ‘12 ~QK. The parametersyy and

|Q|/veK are the same as in Fig. 4.
1 1 - - - = (b) The same function calculated
directly from Eq.(55).

! ’ wq!
¢*m o*w

Q*n2 T (Q
K ’7TUAU|:1

Fig. 7. Despite a simple form of the propagat@r), the
) corresponding effective wave operafttire transform ot);l

to space and timehas a nonlocal form in coordinate space

QK( Q )2 In2 T . ( Q ¢) due to the presence of the damping term which degeoils
= K o ok IK].
oF Al Comparing the second term in parentheses of [#d)
n2 T T with the damping term one can see that they have the same
~OK— 1 _6aD'¢ : (700 order of magnitude showing that even for the low-

temperature region the Landau damping becomes important
and its magnitude is comparable with the term which de-
scribes the linear low-temperature decrease in the superfluid
stiffness.

We stress also the difference between the Landau damp-
ing representation in Eq$71) and (66). While the propaga-
tor (71) relies on the particular dispersion law for the BKT

where writing the last identity we explicitly used the ratio
Q/veK for the BKT mode aff=0 given above.

In such a way following Ref. 4 we can write an approxi-
mate propagator of the BKT mode neb+0 as

DR(Q,K)~ o 02— K2< TUFUA mode with the approximate given by Eq.(43), our Eq.(66)
4amUEU 6 along with Eqs(67)—(69) present a rather general represen-
1 tation for the Landau damping terms derivation which did
_ 2In2ave not rely on any particular dispersion law for the phase exci-

VapT

w

+2iay(¢)TQK}

tations. Thus it can be, in principle, used to describe the

damping of the plasmons in a charged superconductor. The
(7D only assumption we made is th&t/veK<1, which was
with used to derive more simple and transparent representation for
the Landau damping. For the more general case one should

\/T use the results from Sec. VII.
6“0'(]5”

ap T IX. CONCLUDING REMARKS
T\ =2 Va9 (- (72) , , : .
™ 6ap It is very important to note that the collective phase exci-

tations described by the propagator similar to &{) can be
As discussed in Ref. 4 Eq71) has the form of a bosonic and have been studied experimentally. Indeed, the measure-
propagator with damping and its linewidth has an explkcit ments of the order-parameter dynamical structure factor in
dependence. In contrast to tsevave case, the width de- the dirty Al films allowed us to extract the dispersion relation
pends not only on the absolute value|Kf, but also on the of the corresponding Carlson-Goldman mode and to investi-
direction ofK . The angular dependence fgf¢) is shown in  gate its temperature dependeftét is important to stress

+21,

0 a 0 b
. ] ] ] ] -2 FIG. 6. (a) The angular depen-
dence, f3(Q/veK,$) given by
. -4 . -4 Eq. (69) of the Landau term
3 3

~Q3/K. The parametersp, and
|Q|/veK are the same as in Fig. 4.
-8 (b) The same function calculated
directly from Eq.(57).

¢xm! ¢!
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FIG. 7. The angular dependence of the decay constant
¥(QueK,¢) in @ propagator(71) for ap=20 and |Q|/veK
=\ m/6ap=0.16.

that since the real systems aneargedthis mode appears to
be different from the soundlike Bogolyubov-Anderson mode
which exists in aneutral superfluid Fermi liquid. However,
as discussed in Ref. 2isee also Ref. 8 and references
therein the discovery of the Carlson-Goldman collective
modé€® overcame the widespread opinion that the
Bogolyubov-Anderson collective oscillations predicted for a i)
neutral superfluid should be forced to the frequencies on the
order of the plasma frequency. It appears that if under certain
conditions the frequency of the phase excitations is suffi-
ciently low, the normal electron fluid may screen completely
the associated electric field, thereby making the theory of the
uncharged superconductor applica®ielhe conditions for
screening and occurrence of the Carlson-Goldman mode in
s-wave superconductors are favorable only if the systems are
dirty (to suppress the Landau dampingnd T<T..?? As
recently claimed in Ref. 8 ird-wave superconductors the
conditions appear to be much less strict, so that the Carlson-
Goldman mode may be observed in the clean system$ for
down to 0.Z.. Now there are some new questions which
would be interesting to address from both experimental and
theoretical points of view.

PHYSICAL REVIEW B64 134519

vicinity of this direction which should likely result in
the widening of the corresponding peak. If this wid-
ening is so big that the peak may become unobserv-
able, this would again suggest that the dirty samples
should be used for the experiment.

Taking into account the lattice effects and the domi-
nance of the nodal excitations we have obtained that
the velocity of the phase excitations &t 0 is given

by via=veV7/6ap [see Eq.43) and the discussion
after Eqg.(23)]. This expression appears to be quite
different from the well-known continuum result,
Veon= Vg /V2. The estimates of the velocities.qn
andv ,; Obtained from the valuas: andap (Ref. 1]

are presented in Table I. It is seen from these esti-
mates that the difference between the description pro-
ceeding from continuum and lattice models can be
quite different. However, the estimates of the minimal
for the observation of the Carlson-Goldman mode
temperature in Ref. 8 are based on the continuum ex-
pressionv .on=ve /v2. Thus it would be interesting to
reconsider these estimates for the lattice case.
Finally, as pointed out in Ref. 9 if the plasmon is at
finite frequency atk —0, the Landau damping does
not occur since whetff) is finite andK—0 it is im-
possible to satisfy the €enkov condition discussed
above. However, a very small value of the plasma
frequency in HTSC's suggests that the Landau damp-
ing may still be relevant wheK is nonzero and the
Cerenkov condition can be satisfied. Thus the corre-
sponding damping terms should be included in the
“phase only” actions which are used to describe
plasma excitations ird-wave superconductors. Pre-
dicted anisotropy of the Landau damping would result
in the damping anisotropy for the plasma excitations.

To summarize, we have considered the phase only effec-

First of all, there is a general question of whether thetjye action for so-callecheutral (or uncharged fermionic
Carlson-Goldman mode which is the equivalent of the Goldsyperfluid with d- and swave pairing in 2D. When the

stone mode for the charged system can be observed expegamping terms are included into this action, it turns out non-
mentally. There are also a lot of theoretical questions thgoca| in coordinate space and its analytical structure for the
study of which would make this kind of experiment possible.q.wave case is very different from trewave case. To con-
Leaving aside the specifics of the Carlson-Goldman modgjder a charged superfluid it is necessary to combine the ap-
studied in Ref. 8 we mention some of them which are di-nroaches used in the present paper and in Refs. 8 and 9 to
rectly related to the present work. consider the Landau damping in the presence of Coulomb

(i)  The Carlson-Goldman experiméitmeasures so- Interaction.
called dynamical structure factor. This factor has a
peak associated with the phase excitations the width
of which is primarily controlled by the Landau damp-

ing. Therefore our result that the intensity of Landau e gratefully acknowledge Dr. E. V. Gorbar, Dr. M. Ca-
damping has a strong directional dependence shoulezzali, Professor V. Mkrtchian, and especially Professor V.
be taken into account in the calculation of the StrUC'P_ Gusynin for careful reading of the manuscript and valu-
ture factor. In particular, the lowest for the observa-able suggestions. We thank Professor P. Martinoli and Dr. X.
tion of the Carlson-Goldman mode temperatur€l@.2  Zotos for stimulating discussion and for bringing Refs. 8, 28,
in Ref. 8 is obtained for the nodal direction. As can beand 29 to our attention. S.G. Sh. is grateful to the members
seen from, for example, Figs. 4 and 5, the correspondef the Institute de Physique, Universide Neuchtel for hos-
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Fisica do PortqPortugal for hospitality. for the diagonal terms we obtain

A

:{Hgg(inn;m}_ i f d’k  2[(iw+iQ,)iw+&k—K/2)E(k+K/2)=A(k—K/2)A(k+K/2)]V. (k)
- - (

I35(i1Q,,K) == 2m) 2 [(iw+10Q,)2— E2(k+K/2)— A2(k+K/2) [ (iw))%— £2(k— K/2)— A%(k—K/2)]’

(A1)
vea(K)vpg(k), * +7;
veos| T
1, =",

Performing in Eq(Al) the summation over Matsubara frequencies and simplifying the result we arrive at
d’k (1 EELANA, 1
S (277)2(§< T EE, ) E.+E 0. E,+E —in, [t Ne(EITNR(EL)]
iy -6 =84y ! E E.)]iVa(k A2
E E_E+ E+_E_+iQn+E+_E__iQn [nF( *)_nF( +)] i( )1 ( )

whereé.=¢(k+K/2), E.=E(k*=K/2), andA .=A(k*=K/2). The second term in EgA2) can be further simplified if one
notices that the term with 1, —E_ —i(},)) transforms into the term«(1)/(E, —E_+i(Q,) whenk— — k. Note that theA..
terms do coincide with the corresponding terms in Ref. 4.

For the mixed term(35) one obtains

dok 20(iw+i0,)E(k—K/2)+ (k+K/2)i w v (k)
2m)° [(iw+1Q,)°— E(k+K/2)— A%(k+K/2) ][ (i)’ — €2(k—K/2) — A?’(k—K/2)]

[ dk (§+ 6)
B (277)2[ 2E, 2E_

Mg, K)=T > J(

1 .
E.fE_+i0, E++E_—iﬂn}[l_nF(E)_nF(E+)]+(2E+ *2E )

1
X E.-E_+iQ, E.—E_—iQ, [nF(E)—nF(E+)]}UFa(k)
_ d’k & 1
=) @2 |EL |E.FE Ti0, E,—E i, |t NR(E)TNR(EL]
BBt e el )
E, E_JE,—E_+iq, MFEITNeEITfurdk). (A3)

The get the last identity we again repladee- —k and took  d-wave case the minimum energy turns out to be zero in the
into account thabv (k) also changes sign under this trans-four nodal points, see the discussions at the end of Seg. VII.

formation. One can also check thall5y(iQ,,K) On the other hand, the normal-fluid term involves scatter-
=TIg4(iQ,,K). Equation(A3) is also in agreement with the ing of the quasiparticlealready presentind the excitation
corresponding term in Ref. 4 denoteds energy in this case can be arbitrary small, as in the normal

The first and second terms in Ed&2) and (A3) have a metal, independently whether we are in the vicinity of the
clear physical interpretatioff. The first term gives the con- node or not. Of course, the number of the quasiparticles par-
tribution from “superfluid” electrons. The second term give ticipating in this scattering depends on the value of the gap
the contribution of the thermally excited quasiparticles.,  and drastically increases if the gap is equal to zero in some
“normal”-fluid componen). The essential physical differ- points. As we shall see, the Landau damping terms originate
ence between the two terms is that the superfluid term infrom the second, normal-fluid term. Note that our E@2)
volves creation of two quasipatrticles, with the minimum ex-and(A3) [as well as Eq9.30), (34), and(35)] are suitable for
citation energy in theswave case being &;. (For the studying boths- andd-wave cases.
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