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Giant vortices in the Ginzburg-Landau description of superconductivity
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Recent experiments on mesoscopic samples and theoretical considerations lead us to analyze multiply
charged (n.1) vortex solutions of the Ginzburg-Landau equations for arbitrary values of the Landau-
Ginzburg parameterk. For n@1, they have a simple structure and a free energyF;n. In order to relate this
behavior to the classic Abrikosov resultF;n2 whenk→1`, we consider the limit where bothn@1 andk
@1, and obtain a scaling function of the variablek/n that describes the crossover between these two behaviors
of F. It is then shown that a small-n expansion can also be performed and the first two terms of this expansion
are calculated. Finally, large and smalln expansions are given for recently computed phenomenological
exponents characterizing the free energy growth withk of a giant vortex.
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I. INTRODUCTION

Recent experiments1–3 have demonstrated that vortices
charge n.1, which are unstable in macroscopic type
superconductors,4 can exist in mesoscopic superconducti
samples and can even be favored over configurations
multiple singly charged vortices. The Ginzburg-Landau d
scription of superconductivity5–7 appears to be an adequa
framework to analyze these results. The magnetization
sponse of a mesoscopic sample can be analytically un
stood by adding a surface energy contribution to
Ginzburg-Landau free energy of a giant-vortex in an infin
system.8,9 Moreover, full numerical solutions of the
Ginzburg-Landau equations accurately reproduce the exp
mental findings.10–12

Motivated by these experimental and theoretical resu
we analyze in the present paper ‘‘giant’’~i.e., n.1) vortex
solutions of the Ginzburg-Landau equations. Well-kno
analytical results have been obtained in the London li
when the Ginzburg-Landau parameterk→`,13,7 and at the
special dual-point valuek51/A2.7,14 Here, we take advan
tage of the supplementary parametern, the vortex charge
and provide a simple analysis of the giant vortices for ar
trary values ofk. We begin in Sec. II, by recalling the
Ginzburg-Landau equations and some elementary prope
of their solutions. In Sec. III, we consider the large vortic
limit n@1. The vortex structure takes the form of a circu
normal core separated by a sharp boundary from the out
superconducting medium. As a consequence, the free en
F of a giant vortex is found to be proportional to its chargen
in contrast to the classic Abrikosov’s resultF;n2 in the
London limit. In order to relate the two results, we consid
in Sec. IV, the double limit in which both the vorticityn and
the Ginzburg-Landau parameterk are large and we obtain
the scaling formF/2p;nkF(k/n). The functionF pro-
vides an explicit interpolation between Abrikosov’s result f
k@n and the result of Sec. III which is valid in the opposi
limit n@k. To complete our analysis of giant vortex sol
tions, we consider in Sec. V, the somewhat more forman
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→0 limit, which has the advantage to be amenable to
simple and systematic expansion scheme; the free ener
obtained up to ordern2. In Sec. VI, we compare our pertur
bative results~valid for arbitrary values ofk) to the known
exact results at the dual pointk51/A2. Besides checking
consistency, we obtain a perturbative expansion of the
energy in the vicinity of the dual point and the large-n ex-
pansion of phenomenological exponents introduced pr
ously and computed numerically.9 The largen expansion
proves to be fairly accurate forn values as small as 3 or 4

II. THE GINZBURG-LANDAU MODEL
OF SUPERCONDUCTIVITY

In the Ginzburg-Landau description of supe
conductivity5–7 the two unknown fields are the comple
order parameterc5ucueix and the potential vectorAW with
¹W 3AW 5BW , whereBW is the local magnetic induction. Thes
fields satisfy the following equations:

2S ¹W 2 i
2p

f0
AW D 2

c5
1

j2
c~12ucu2!, ~1!

¹W 3¹W 3AW 5
ucu2

l2 S f0

¹W x

2p
2AW D . ~2!

Here, the flux quantumf0 is given byf05hc/2e, and the
two characteristic lengthsl ~penetration depth or London
length! and j ~coherence length! appear as phenomenolog
cal parameters. The Ginzburg-Landau parameterk is defined
as their ratio,k5l/j. We shall measure lengths in units o
lA2, the magnetic field in units ofHc /A2k5f0/4pl2 and
the vector potential in units off0/2A2pl. The Ginzburg-
Landau free energy in units ofHc

2j2/4p is then given by

F5E 1

2
B21k2~12ucu2!21u~¹W 2 iAW !cu2. ~3!
©2001 The American Physical Society12-1
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GIANT VORTICES IN THE GINZBURG-LANDAU . . . PHYSICAL REVIEW B64 134512
A giant vortex of vorticityn is a solution of the Ginzburg
Landau equations with cylindrical symmetryc(r ,u)
5 f (r )exp(inu), where (r ,u) are polar coordinates in th
plane. The potential vectorAW can be chosen to lie in th
plane and to have only a nonzero angular componentAu(r ).
It is convenient to introduce an auxiliary functiong that rep-
resents the difference between the flux through a disk
radiusr and the total flux,

g~r !5rAu~r !2n, i.e., B5
1

r

dg

dr
. ~4!

The free energy can be rewritten in terms off andg as

1

2p
F5E

0

`H S d f

dr D
2

1
f 2g2

r 2
1k2~12 f 2!21

1

2r 2 S dg

dr D
2J r dr .

~5!

The allied Ginzburg-Landau equations reduce to

d2f

dr2
1

1

r

d f

dr
2

1

r 2
f g2522k2f ~12 f 2!, ~6!

d2g

dr2
2

1

r

dg

dr
52 f 2g. ~7!

It is useful to note that a very simple form of the free energ7

is obtained by an efficient use of Eqs.~6! and ~7!,

1

2p
F52k2E

0

`

r dr ~12 f 2!. ~8!

A vortex of chargen corresponds to functionsf and g
which satisfy f (0)50 and g(0)52n at the origin and
which obeyf (`)51 andg(`)50 at infinity. Linearization
of Eqs. ~6! and ~7! around f 51 andg50 shows that there
exists two exponentially growing and two exponentially d
caying spatial modes atr 5`. In the same way, linearizatio
for r close to zero shows that there is one diverging mo
with f ;r 2n and one neutral mode corresponding to chan
in the vortex charge@note that at the level of Eqs.~6! and~7!,
n appears simply as a parameter and is not constrained t
an integer#. Once one requires the diverging mode atr 50 to
be absent andg(0)52n, the expansion off and g around
r 50 depends on two arbitrary constants

f ~r !5S r

RD n

1O~r n11!, ~9!

g~r !52nX12S r

r 0
D 2C1O~r 2n12!. ~10!

The length scalesr 0 andR are uniquely determined by th
cancellation of the two divergent modes atr 5`;15 they can-
not be calculated from a local analysis near 0. Their de
mination requires the behaviors aroundr 50 andr 5` to be
connected. This can be done numerically for arbitrary para
eter values or analytically whenn is either large or small as
shown in the following sections.
13451
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One can note from the definition ofg @Eq. ~4!# that r 0 is
simply related to the value of the magnetic field at the po
tion of the vortex:

B~0!5S 1

r

dg

dr D
r 50

5
2n

r 0
2

. ~11!

III. A GIANT VORTEX
IN THE LARGE VORTICITY LIMIT

We first consider the structure of a giant vortex of char
n for n@1 and begin with simple estimates. It seems in
itively clear that the vortex core grows with its charge. S
for n@1, one expects the vortex core to be much larger th
the London penetration length. As a consequence, the m
netic induction should be approximately constant over
core. For a vortex of chargen and core sizer c , one expects
thereforeuBu52n/r c

2 in the vortex core~the total flux di-
vided by the core area with the chosen normalization! and
B50 outside. The magnetic energy of such a configuratio
approximately*B2/2.2pn2/r c

2 . Correlatively, one expects
c50 in the vortex core andc51 outside and the corre
sponding energy contribution*k2(12ucu2)2.2pk2r c

2 . The
total Ginzburg-Landau energy~3! of such a configuration can
therefore be estimated to be

1

2p
F.

n2

r c
2

1
k2

2
r c

21s~k!r c , ~12!

where the last term on the right-hand side has been adde
take into account the interfacial energy of the transition la
between the vortex core and the superconducting bulk. M
mizing Eq.~12! with respect tor c gives the dominant orde
estimates for the vortex sizer c and for its free energyF

r c
2;

A2n

k
, ~13!

1

2p
F.nkA21SA2n

k D 1/2

s~k!1O~1!. ~14!

The magnetic field inside the vortex core has the cons
value

B5A2kF11
s~k!

2k2r c
G . ~15!

That is, in the vortex coreB is equal to Hc plus a
Gibbs-Thomson correction as expected at a cur
normal/superconducting boundary~see, e.g., Refs. 16
and 17!. In the next subsections, we first present num
ical solutions of the Ginzburg-Landau equations f
various values ofn which confirm this simple picture
of the giant vortex. This picture is then derived fro
2-2
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FIG. 1. ~a! The functionf for k51.5 andn54, 16, 28, 40, and 52.~b! The different front profiles superposed on one another (f 51/2 is
shifted tor 50).
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a direct analysis of the Ginzburg-Landau equations in
largen limit.

A. Numerical results

Numerical solution of Eqs.~6! and~7! consists in solving
a two-point boundary value problem~at r 50 andr 5`) and
can be achieved using several methods.18

Shooting is generally easy to implement and robust w
one mode needs to be cancelled at a boundary: a free pa
eter is adjusted~for example by dichotomy! at the other
boundary until the required cancellation is obtained. In
present case, two diverging modes need to be cancelle
infinity which is more difficult to achieve. We kept a simp
one parameter shooting by integrating from a larger 5r `

towardr 50. Of the two free parameters atr ` one was used
to cancel the diverging mode atr 50. The value ofg at 0 was
then given as a function of the other parameter~which could
be adjusted to obtain a particular value ofn when desired!.

We also implemented a relaxation method. The system
ordinary differential equations is replaced by a set of fin
difference equations satisfied on a mesh of points, and
boundary conditions just appear as equations satisfied by
points located at the extremities of the mesh. A multidime
sional version of Newton’s method provides a solution
these finite difference equations by an iterative proced
This method requires the inversion of a matrix of size p
portional to the number of points in the mesh. Because
matrix is block diagonal, it can be inverted in a very efficie
manner. However, the efficiency of the relaxation meth
depends strongly on the starting point of the iteration:
example, it is useful to take the profile of an-vortex as an
initial guess for the (n11)-vortex solution of the Ginzburg
Landau equations.

Numerical solutions for different values ofn are shown in
Fig. 1. The plot off shows a well-defined interface betwee
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a normal region~where f 50) and a superconducting regio
( f 51) @see Fig. 1~a!#. The interface width does not increas
with n but remains of the order of 1/k. As expected, the
interface has a well-defined limiting shape: in Fig. 1~b!, the
curves represented in Fig. 1~a! are shifted in such a way tha
they take the value 1/2 at the pointr 50. The shifted curves
superpose on one another almost perfectly. Only the cu
for the small valuen54 shows a noticeable deviation from
the limiting shape.

The simple normal/superconducting interface picture
n@1 is also confirmed by the graphs ofg. In Fig. 2, B(r )
51/r dg/dr is plotted for different values ofn. The magnetic
induction is close toHc5A2k in the vortex interior and
quickly decreases to zero in the interface region. Again
the largen limit, the curves can be put over one another

FIG. 2. The magnetic field fork51.5 andn54, 16, 28, 40, and
52.
2-3
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GIANT VORTICES IN THE GINZBURG-LANDAU . . . PHYSICAL REVIEW B64 134512
the same shifts as those used to superpose the differentf ’s in
Fig. 1~b!.

B. Asymptotic analysis of the Ginzburg-Landau equations
for nš1

It is instructive to see how the large-n giant vortex struc-
ture arises in a direct analysis of the Ginzburg-Landau eq
tions ~6! and ~7!.

1. The vortex core

Sinceg52n at r 50 one expectsg to be of ordern in a
whole region nearr 50. Therefore, at dominant order inn,
Eq. ~6! for f reduces to

d2f

dr2
2

1

r 2
f g250. ~16!

The solution of Eq.~16! can be obtained in a WKB manne
but the important point is thatf is exponentially close to zero
in the whole core region. Equation~7! for g thus simplifies to

d2g

dr2
2

1

r

dg

dr
50. ~17!

At dominant order inn, g is therefore given by

g~r !52nX12S r

r 0
D 2C. ~18!

Although Eq.~18! is identical to Eq.~10!, it should be noted
that it is not an expansion near zero but the full functiong in
the vortex core at dominant order inn. Of course, Eq.~18! is
nothing else but the constancy ofB in the vortex core.

Outside the vortex core the medium is in the superc
ducting phase,f 51 andg50. In order to match these dif
ferent solutions of Eqs.~6! and~7!, we analyze the interface
region~i.e., the boundary layer in the usual matched asym
totics terminology!.

It should be noted thatr c the vortex core size andr 0
which is obtained from the second derivative ofg at the
origin @Eq. ~7!# coincide at leading order inn. Their differ-
ence is of the order of the planar normal/superconduc
interface width and depends on the precise criterion use
measure the vortex core size~i.e., on the precise definition o
r c) as shown below.

2. Local equations near the interface

The solution~18! vanishes forr 5r 0 and therefore the
assumptiong;n under which it was derived breaks down
the interface. A different simplification of the Ginzburg
Landau equations can be made in the vicinity ofr 0. We
define a different variablex, centered aroundr 0, such that

r 5x1r 0 . ~19!

We assume~and will verify at the end! that r 0@uxu. Substi-
tuting Eq.~19! into Eqs.~6! and ~7! we obtain
13451
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d2f

dx2
1

1

r 0

d f

dx
2

g2

r 0
2

f 522k2f ~12 f 2!, ~20!

d2g

dx2
2

1

r 0

dg

dx
52 f 2g. ~21!

Comparing the magnitude of the different terms in these s
plified equations, we obtainf ;1, g;r 0 , x;1 and find
that the first-order termsd f /dx, dg/dx on the LHS of Eqs.
~20! and ~21! are subdominant. Introducing the rescal
functionsf 05 f andG05g/r 0, one derives at dominant orde
in n ~indicated by the subscript 0! the ‘‘inner’’ equations
which describe the behavior of the order parameter and
vector potential in the interface region

d2f 0

dx2
522k2f 0~12 f 0

2!1G0
2f 0 , ~22!

d2G0

dx2
52 f 0

2G0 . ~23!

As expected, these equations are identical to the Ginzb
Landau equations in one dimension~i.e., on an infinite line!.
Matching with the superconducting phase forx@1 and the
vortex core for x!21 imposes the boundary condition
f 0(1`)51, G0(1`)50, andf 0(2`)50. This last condi-
tion implies, using Eq.~23!, that G0 behaves linearly when
x→2`

G0.ax1b. ~24!

In contrast to Eqs.~6! and~7!, the local system~22! and~23!
is invariant by translation. Once this is fixed@for example by
imposing the arbitrary criterionf 0(0)51/2] the functionsf 0
andG0 and the constantb are uniquely determined~the value
of a is independent of this arbitrary choice!. Findinga andb
appears to require an explicit solution. This can be avoid
at least fora, because the reduced system~22! and ~23! re-
tains the variational structure of the original equations an
invariant by translation inx. The locally conserved quantity
E associated with this continuous symmetry reads~that is, the
magnetic field in the vortex core!5

E5
1

2 S d f0

dx D 2

1
1

4 S dG0

dx D 2

2
1

2
G0

2f 0
22

k2

2
~12 f 0

2!2. ~25!

Conservation ofE between2` and1` leads to

05E~1`!5E~2`!5a2/42k2/2. ~26!

Thus,a5A2k andB5Hc in the normal phase at dominan
order inn, as expected.

3. Matching the vortex core and the interface region

In order to determine the constantr 0 and the interface
position, we have to match the solutions in the vortex c
and in the interface region.

Rewriting Eq.~10! in terms of the local variablex leads to
2-4
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FIG. 3. ~a! The vortex-core sizer c ~dot-dashed curve! and the lengthr 0 ~solid line curve! are plotted fork51.5 and for values ofn
ranging from 1 to 100. The dashed curve is the large-n asymptotic estimate~13!. The dots represent the next-to-leading order asympt
expression~38!, using the numerical values(1.5).21.172.~b! DifferenceD r 0

betweenr 0 and its asymptotic expression~38!.
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g.2nX12S 11
x

r 0
D C. 2n

r 0
x

hence

G05
g

r 0
.

2n

r 0
2

x. ~27!

The family of solutions of Eqs.~22! and ~23! is f 0(x
2xc),G0(x2xc) with the asymptotic behavior

G0~x2xc!5A2k~x2xc!1b. ~28!

Identifying the two local expressions~27! and ~28! for the
functiong in their common region of validityr 5r 01x with
uxu!r 0, andx→2` determinesr 0 andxc

r 0
2.A2n/k, ~29!

xc5
b

A2k
. ~30!

The large-n asymptotic estimate ofr 0 @which agrees with
Eq. ~13!# is compared with numerical results in Fig. 3~a!.

4. Large n limit of the energy

The free energy of a giant vortex can now be calcula
for n@1. Using Eq.~6! and integrating by parts, the fre
energy~5! becomes

1

2p
F5E

0

`

r dr H B2

2
1k22k2f 4J . ~31!

Completing the square with the first two terms inside
brackets and using relation~4! betweenB andg, leads to
13451
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e

1

2p
F5nkA21E

0
r dr H 1

2 S 1

r

dg

dr
2kA2D 2k2f 4J .

~32!

The function

S~r !5
1

2 S 1

r

dg

dr
2kA2D 2

2k2f 4 ~33!

is nonzero only in the vicinity ofr 0. Hence,S can be con-
sidered to be as a function ofx5r 2r 0. Replacing the func-
tions f (r ) andg(r ) in Eq. ~33! by their dominant order ap
proximations f 0(x2xc) and G0(x2xc), respectively,
solutions of Eqs.~22! and ~23!, we obtain

E
0

`

rS~r !dr.r 0E
2`

`

S~x!dx

5r 0E
2`

` H 1

2 S dG0

dx
2kA2D 2

2k2f 0
4J dx

5r 0s~k!. ~34!

The last integral is nothing else but the surface energys(k)
of a one-dimensional domain wall between normal and
perconducting phases5,19,20~see Appendix A!. Using Eq.~34!
in Eq. ~32! gives exactly the largen expression~14! of the
free energy of an giant-vortex withs(k) the surface energy
of a one dimensional normal/superconducting interface. T
expression~14! is valid for any value ofk in the limit n
→`. It is compared to the numerical results~for k51.5) in
Fig. 4.

5. Finite-n correction to Hc

The leading finite-n correction toB in the vortex core can
be derived from the previous results. Integrating Eq.~8! by
parts leads to
2-5
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1

2p
F5k2E

0

`

r 2f~r !dr with f~r !52 f ~r !
d f

dr
. ~35!

The functionf(r ) is localized at the position of the front an
its width is of the order 1/k. Using the local variablex5r
2r 0 defined in Eq.~19!, Eq. ~35! can be rewritten, in the
largen limit, as

1

2p
F5k2r 0

212k2r 0E
2`

`

xf~x!dx1O~1!. ~36!

The integral in Eq.~36! can be expressed in terms of th
interface energy~see Appendix A!:

2k2E
2`

`

f~x!x dx52k2E
2`

` S ~12 f 0
2!2

1

kA2

dG0

dx D dx

5
3

2
s~k!. ~37!

Comparing Eq.~36! with Eq. ~14! provides the largen ex-
pansion ofr 0 up to the second order

r 05SA2n

k D 1/2

2
s~k!

4k2
1OS 1

n1/2D . ~38!

The vortex sizer c , defined by the criterionf (r c)51/2, can
be meaningfully calculated to the same order:

r c5r 01xc , ~39!

with xc given by Eq.~30!.
In order to verify numerically these relations, we fir

computed the value of the magnetic field at the origin us
the following relation, that derives from Eqs.~4! and ~7!:

FIG. 4. Free energyF/2pn as a function ofn for k51.5 ~solid
line!. The horizontal dot-dashed line is the asymptotic valuekA2
.2.121. The dashed curve is the largen behavior~14!, using the
numerical values(1.5).21.172.
13451
g

B~0!522E
0

` f 2g

r
dr.

This allowed us to obtainr 0, from Eq. ~11!, with a good
precision. The vortex sizer c was found from the equation
f (r c)51/2. In Fig. 3~a!, the two numerical curves forr 0 and
r c are plotted as a function ofn. To the leading order inn,
these two curves differ by a constantxc.20.797 . . . , func-
tion of k only, as predicted by Eq.~39!. Solving indepen-
dently the ‘‘inner’’ Ginzburg-Landau equations~22! and
~23!, we found that the unique value ofb such thatf 0(0)
51/2 is given byb.1.691 . . . . Hence the relation~30! be-
tweenxc andb is verified. We also tested the accuracy of t
largen asymptotic expansion ofr 0 to the first order~13! and
to the second order~38!. The difference betweenr 0 and Eq.
~38!, hardly visible in Fig. 3~a!, is plotted in Fig. 3~b!. The
agreement is very good.

Substituting this value ofr 0 in Eq. ~11!, we obtain the
field value inside the core

B~0!5kA21
s~k!

23/4Akn
1OS 1

nD . ~40!

Hence, whenn→`, the field at the origin is indeed the the
modynamic critical fieldHc5kA2 with a Gibbs-Thomson
correction as expected@Eq. ~15!#.

IV. RELATION TO ABRIKOSOV’S FORMULA

The self-energy of a unit vortex was first calculated
Abrikosov13,7 in the largek limit

1

2p
F5 logk10.081. ~41!

In the previous section we have studied the casen→` keep-
ing k fixed and finite. In order to relate our results to th
classical calculation of Abrikosov, we consider in this secti
the double limitn→` andk→` keeping the ratiou5k/n
finite and fixed. With these assumptions, we shall see that
Ginzburg-Landau equations decouple and that a scaling f
is obtained for the free energy

1

2p
F5nkF~k/n!. ~42!

The functionF is plotted in Fig. 5.

A. The double limit nš1 and kš1

After rescaling the functiong by a factor 1/n, and intro-
ducing the ratiou5k/n, the Ginzburg-Landau equations b
come

1

n2 S d2f

dr2
1

1

r

d f

dr D 522u2f S 12
1

2u2r 2
g22 f 2D , ~43!

d2g

dr2
2

1

r

dg

dr
52 f 2g; ~44!
2-6
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the boundary conditions aref (0)50 andg(0)521 at the
origin, and f (`)51 andg(`)50 at infinity. In then→`
limit, there are two domains wheref is slowly varying and
the derivative terms in Eq.~43! can be neglected

f 50 for r<R,

f 5S 12
g2

2u2r 2D 1/2

for r>R. ~45!

As shown below, these two domains match through a bou
ary layer atr 5R wheref has a rapid variation but remain
small. Matching the two slowly varying expressions~45! of f
requires thatf (R)50 in the second one and gives

g~R!52A2uR. ~46!

Substituting Eq.~45! in Eq. ~44! leads to the following
closed equations forg:

d2g

dr2
2

1

r

dg

dr
50 for r<R, ~47!

d2g

dr2
2

1

r

dg

dr
52gS 12

g2

2u2r 2D for r>R. ~48!

From Eq.~47!, one has

g~r !5211S r

r 0
D 2

for r<R. ~49!

Continuity of the functiong and of its derivative atR, and
Eq. ~46! imply that

g~R!5211S R

r 0
D 2

52A2uR, ~50!

FIG. 5. The scaling functionF as a function of the variableu
~solid line!. The dot-dashed curve and the dashed curve repre
respectively, the largeu ~65! and smallu ~76! approximations.
13451
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g8~R!52
R

r 0
2

5
2

R
22A2u ~51!

@the second equality of Eq.~51! is derived using Eq.~50!#.
The scaling limit for the free energy whenn→` and k
→` is obtained from Eqs.~8! and ~45!

1

2p
F5nkS uR21

1

uER

`g2

r
dr D 5nkuS R212E

R

`

rh2~r ! D ,

~52!

where we have introduced a functionh:

g[hA2ur. ~53!

This provides the explicit expression of the interpolati
function F ~42!

F~u!5uS R212E
R

`

rh2~r ! D . ~54!

In order to calculate explicitlyF one has to determine th
position R of the front and the functionh as a function of
u5k/n. In terms ofh, Eq. ~48! becomes

d2h

dr2
1

1

r

dh

dr
2

1

r 2
h52h~12h2!, ~55!

and, from Eq.~46!, the boundary conditions forh are

h~R!521 and h~`!50. ~56!

Relation~51! implies, however, one more condition onh:

h8~R!5
A2

uR2
2

1

R
. ~57!

The differential equation~55! with the two boundary condi-
tions ~56! and the supplementary condition~57! is overdeter-
mined: there is a unique value ofR such that all the condi-
tions can be satisfied. Indeed, Eq.~55! with the boundary
conditions~56! has a unique solution for any given value
R, i.e., for a givenR, the value ofh8(R) is unique and can
easily be computed numerically by solving Eq.~55! by a
shooting method; onceh8(R) is known,u is determined as a
function of R from Eq. ~57!

u

A2
5

1

R1R2h8~R!
. ~58!

Inverting this relation givesR as a function ofu ~Fig. 6! and
the functionF using Eq.~54!. This calculation can be per
formed analytically whenu is either very large or very smal
as shown below.

Before considering these limits, we complete the abo
analysis by giving the boundary-layer equation satisfied bf
in the neighborhood ofr 5R. It is convenient to introduce
the local variablex5r 2R. Assuming thatf remains small in
the neighborhood ofr 5R and keeping the dominant contr
bution of each term of Eq.~43!, we obtain

nt,
2-7
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1

n2 S d2f

dx2
1

1

R

d f

dxD 52u2f „22h8~R!x1 f 2
…. ~59!

A consistent dominant balance between the different te
of Eq. ~59! is obtained whenf /(x2n2); f x; f 3. Therefore,
as assumed,f evolves on a short scalex;n22/3 around
r 5R but remains small f ;n21/3. With the rescaled
coordinate and function, j5x„4u2h8(R)…1/3n2/3,
F5(nu)1/3

„A2h8(R)…21/3f , the boundary-layer equatio
reads

d2F

dj2
52jF1F3. ~60!

The two different functions of Eq.~45! can be matched
through the solution of~the Painleve´! Eq. ~60!.

B. The large u limit „kšnš1…

Recalling thatR andr 0 are positive, we see from Eq.~51!
thatR<1/(A2u). Therefore, whenu tends to infinity,R tends
to 0. In the largeu limit, Eqs. ~47! and ~48! reduce to

d2g

dr2
2

1

r

dg

dr
52g, ~61!

with the boundary conditionsg(0)521 andg→0 at infin-
ity. The solution of this equation is readily obtained

g~r !52rA2K1~rA2!

and therefore

h~r !52K1~rA2!/u, ~62!

whereK1 is the modified Bessel function of order 1. Usin
the behavior ofK1 in the vicinity of zero~see Appendix B!,
we deduce that

FIG. 6. The inverse ofR plotted as a function of the scalin
variableu ~solid line!. The dashed curve represents the linear
havior of 1/R for large values ofu ~64!, and the dotted curve show
the asymptotic behavior for small values ofu ~71!.
13451
s

h8~R!.
1

A2uR2
. ~63!

Substituting Eq.~63! in Eq. ~58! leads to

R.
1

A2u
. ~64!

Inserting Eqs.~62! and ~64! in the expression~52! for the
free energy, we obtain

1

2p
F.

nk

u F1

2
1E

1/u

`

r „K1~r !…2drG
5

nk

2u H 11
1

u2 FK0S 1

uDK2S 1

uD2K1S 1

uD 2G J
.

nk

u
~ ln u1 ln 22g!.n2XlnS k

nD10.116C, ~65!

where theKn are modified Bessel functions andg is the
Euler constant.21 This relation generalizes the classical res
~41! of Abrikosov to the case of a giant vortex. Indeed, t
structure of the giant vortex is very similar to then51 case
with f varying on a fast scale of ordern/k andg on a slow
scale of order one. However, the structure off is simpler in
the largen limit @being 0 forr less thann/(A2k) and linked
to g otherwise# than for generaln. This is the reason why no
new constant needs to be numerically determined in Eq.~65!.

C. The small u limit „nškš1…

In the smallu case, the lengthR tends to infinity. Defining
a local variablex5r 2R, the differential equation~55! for h
becomes

d2h

dx2
1

1

R1x

dh

dx
2

1

~R1x!2
h52h~12h2!, ~66!

with the following boundary conditions:

h~x50!521 and h~`!50. ~67!

WhenR→`, Eq. ~66! reduces to

d2h/dx2 52h~12h2!. ~68!

The solution that satisfies the boundary conditions is

h~x!52A2„12tanh@A2~x1x0!#…1/2 with

tanh~A2x0!5
1

A2
. ~69!

From this expression, we derive that

h8~r 5R!5h8~x50!51. ~70!

Substituting this result in Eq.~58! leads to the smallu be-
havior of R

-

2-8
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R.SA2

u D 1/2

. ~71!

The subleading behavior ofR as a function ofu is found by
retaining only the first order term in 1/R in Eq. ~66!:

d2h

dx2
1

1

R

dh

dx
52h~12h2!, ~72!

with the same boundary conditions as in Eq.~67!. This equa-
tion can be solved perturbatively, but we only need to de
mine the correction to Eq.~70!; i.e., we need to calculate th
coefficientC such thath8(r 5R)511C/R. We use an argu-
ment of energy conservation. Defining

E25
1

2 S dh

dxD
2

2h21
h4

2
,

we readily obtain from Eq.~72! that

dE2

dx
52

1

R S dh

dxD
2

.

Integrating this relation from 0 tò and evaluating the en
ergy E2 at both ends leads to

C5E
0

`S dh

dxD
2

dx. ~73!

Using the 0th-order solution~69! for h in Eq. ~73! we obtain

h8~r 5R!5h8~x50!511S 2A221

3 D 1

R
. ~74!

Substituting this result in Eq.~58! and solving forR leads to

R.SA2

u D 1/2S 12221/4
A211

3
u1/21O~u! D . ~75!

Substituting the expressions~75! and ~69! for R and h, re-
spectively, in Eq.~52! we obtain the free energy

1

2p
F.nkS uR212RE

0

`

h2~x!dxD
.nkA2S 12

4

3
~A221!21/4S k

nD 1/2

1O~u! D . ~76!

These results are consistent with those obtained in Sec. II
fact the smallu limit amounts to first taking the limitn
→` and then takingk→`. For instance, it can be show
that Eq.~38! reduces to Eq.~75! in the k→` limit. More-
over, comparing Eq.~76! with Eq. ~14! we retrieve the
asymptotic behavior of the surface tension in the largek
limit: 7,20

s~k!.2
4A2

3
~A221!k2.20.7810k2. ~77!
13451
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In

V. A VORTEX IN THE SMALL VORTICITY LIMIT

The winding numbern must be a priori an integer
because the phase of the wave functionc has to be a
2p periodic function. However, as already noted, in the c
lindrically symmetric Ginzburg-Landau equations~6! and
~7!, n appears only as a parameter in the boundary condi
at the origin and can be given any real value. In this sect
we taken to be close to 0 and determine perturbatively t
solutions of Eqs.~6! and ~7! and the free energy.

Away from the origin r 50, f is close to one andg is
small. Thus, we expandf andg as follows:

f 511n f11n2f 21••• and g5ng11n2g21•••.
~78!

The functionsf 1,g1, f 2,g2 . . . satisfy a hierarchical system
of linear differential equations that can be solved recursiv
by imposing the boundary conditions:f i→0 and gi→0
when r→`, for all i>1.

Thus the first order termsf 1 andg1 are solutions of

d2f 1

dr2
1

1

r

d f1

dr
54k2f 1 , ~79!

d2g1

dr2
2

1

r

dg1

dr
52g1 . ~80!

Implementing the boundary and the matching conditions,
obtain

f 15AK0~2kr !, g15BA2rK 1~A2r !, ~81!

whereA andB are two undetermined constants at this sta
The expansion~78! breaks down in the vicinity of the

origin sincef (0)50. The expansion off nearr 50 is given
by Eq. ~9!

f ~r !5S r

RD n

1O~r n11!. ~82!

The two expressions~81! and ~82! can be matched in the
parameter range wherer !1 but nu log(r)u!1. When r !1,
the correcting terms in Eq.~82! are negligible and when in
additionnu log(r)u!1, one obtains

f 511n ln
r

R 1O~n2,r !. ~83!

In the same parameter range, expansion of Eq.~81! gives

f 511nA„2 ln~kr !2g1O~r 2ln r !…. ~84!

Consistency of these two expressions requiresA521 and

R5
1

k
exp~2g!.

0.561

k
, ~85!

g being the Euler constant.
We can proceed in a similar way for the functiong. Near

r 50, the expansion ofg is
2-9



ll

u-
e

n

s

n
on
y
tic
l

rst

nyi

ual
e I

vi-

n
-

the

ee
s it

all
ate

GIANT VORTICES IN THE GINZBURG-LANDAU . . . PHYSICAL REVIEW B64 134512
g5nX211S r

r 0
D 2C2 r 2

2~n11! S r

RD 2n

1O~r 2n14!.

~86!

For r !1 andnu log(r)u!1, this gives

g52n1r 2S 2
1

2
1

n

r 0
2

1
n

2
2n ln

r

R 1O~n2,r !D . ~87!

Again, an alternative expression is obtained from the smar
behavior of Eq.~81!

g5nBS 11r 2ln r 1
r 2

2
~2g212 ln 2!1O~r 2ln r ! D .

~88!

Comparing Eqs.~87! and ~88! givesB521 and

r 0
252n22n2ln~2k2!. ~89!

Having determined the small-n expression forf, the free
energy limit can be calculated from Eq.~8!. Actually, the
expression~81! for f is sufficient for this purpose~the range
where it is not valid gives an exponentially small contrib
tion! and by performing the integral over modified Bess
functions, one obtainsF/(2p)5n1O(n2).

A similar procedure can be carried out for the seco
order terms. The expressions forf 2 andg2 are more intricate
and are given in Appendix B. Using Eq.~8!, they provide the
free energy in the smalln limit up to ordern2

1

2p
F5n1n2log~kA2!1O~n3!. ~90!

VI. THE DUAL POINT OF THE GINZBURG-LANDAU
EQUATIONS

A. The dual point equations

Equation~90! suggests that the valuek51/A2 has special
properties@for instance, fork51/A2 the functionsf 1 andg1
of Eq. ~81! satisfy simple identities such a
d f1 /dr52g1 /r ]. It is indeed well-known that at this
‘‘dual’’ point the second order Ginzburg-Landau equatio
reduce to first order equations, leading to special relati
between the functionsf i andgi . Moreover, the free energ
at the dual point has been calculated exactly and is iden
to the topological numbern. We recall briefly these specia
properties.

At the dual point the free energy~5! can be written as
follows:
13451
l

d

s
s

al

1

2p
F5E

0

` H S d f

dr
1

f g

r D 2

1
1

2 S ~12 f 2!2
1

r

dg

dr D
2J r dr

1E
0

`

drH d

dr
@g~12 f 2!#J

5E
0

` H S d f

dr
1

f g

r D 2

1
1

2 S ~12 f 2!2
1

r

dg

dr D
2J r dr 1n.

~91!

The minimal free energy is obtained when the following fi
order system is satisfied~Bogomol’nyi equations7,22,14!:

S d

dr
1

g

r D f 50, ~92!

B5
1

r

dg

dr
5~12 f 2!. ~93!

Substituting Eqs.~92! and ~93! in Eq. ~91! we obtain the
minimal energy

1

2p
F5n. ~94!

Equation~93! implies that

g52n1
r 2

2
2E

0

r

r f 2~r !dr, i.e., r 0
252n. ~95!

Another remarkable consequence of the Bogomol’
equations is that the surface energys(k), defined in Eq.
~34!, vanishes identically and changes its sign at the d
point ~this is the reason why the dual point separates typ
from type II superconductors7!:

sS k5
1

A2
D 50. ~96!

All the calculations that we have carried out in the pre
ous sections are consistent with these~nonperturbative! prop-
erties of the dual point. In the smalln case of Sec. V, one ca
verify, using Eq.~81! and the expressions given in the Ap
pendix, that the equations~92! and~93! are satisfied order by
order by the expansions~78! of f and g at the dual point.
Moreover, then2 correction to the free energy in Eq.~90!
and to r 0 in Eq. ~89! vanishes identically atk51/A2, as
expected. In the largen case, the expression~14! for the free
energy reduces to Eq.~94! because then1/2 correction disap-
pears thanks to the vanishing of the surface energy; for
same reason, the formula~38! simplifies tor 05(2n)1/2.

At the dual point, the vortices do not interact and the fr
energy does not depend upon their location. This make
possible to obtain exactn-vortices solutions, in the largen
limit, for arbitrary locations of the vortex cores.23 However,
whenk deviates from the special value 1/A2, vortices start
interacting and their interaction energy is extremal when
the vortices are located at the same point. We now evalu
2-10
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the energy of such a configuration with cylindrical symme
whenk is close to the dual point.

B. Free energy of a giant vortex in the vicinity
of the dual point

We apply our results to the case wherek is close to the
dual point valuek51/A2. In experiments on mesoscop
superconductors, values ofk are close to the dual poin
value1,9 and in previous theoretical studies the special c
k51/A2 was found to be very useful to study analytica
the magnetization of a sample as a function of the app
field. In the vicinity of the dual point, a relevant quantity
the relative growth of the free energy:

a~n!5
1

kA221

F~k,n!2F~1/A2,n!

F~1/A2,n!
when k→ 1

A2
.

~97!

This relation is a local form of an empirical scaling of th
free energy

1

2p
F~k,n!.n~kA2!a(n), ~98!

found in Ref. 9, where the exponentsa(n) were computed
numerically. Differentiating the Ginzburg-Landau free e
ergy ~5! with respect to the parameterk at the dual point we
obtain

a~n!5
1

nE0

`

~12 f 2!2r dr 5
1

nE0

`dr

r S dg

dr D
2

. ~99!

The last relation was derived from the Bogomol’n
equation~93!.

We now explain how a largen expansion of the exponent
a(n) can be derived from our previous results. Integrat
Eq. ~99! by parts, we find

a~n!5
1

nE0

`r 2

2
c~r !dr with c54 f ~12 f 2!

d f

dr
.

~100!

The functionc(r ) is localized at the position of the front an
its width is of the order 1/k. Hence we can expand Eq.~100!
using the local variablex5r 2r 0 and in the largen limit
replacef by f 0 ~as in Sec. III B 5!:

a~n!5
1

n

r 0
2

2
1

r 0

n E2`

`

xc~x!dx with c54 f 0~12 f 0
2!

d f0

dx
.

~101!

Integrating the last term by parts, we obtain
13451
e
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g

E
2`

`

xc~x!dx5E
2`

0

dx$~12 f 0
2!221%1E

0

`

dx~12 f 0
2!2

5E
2`

`

dxH ~12 f 0
2!22

dG0

dx J
52E

2`

`

f 0
2~12 f 0

2!dx. ~102!

In the last equality we used the fact that the functionsf 0 and
G0 satisfy the following Bogomol’nyi equations at the du
point:16

dG0

dx
5~12 f 0

2! and
d f0

dx
1G0f 050. ~103!

The functionv defined byf 05exp(2v/2), satisfies a second
order differential equation that can be solved explicitly:16

1

2

d2v

dx2
512exp~2v !

which implies

dv
dx

522~e2v211v !1/2. ~104!

Now changing the variablex to v, we rewrite the last integra
in Eq. ~102! as

2E
0

`

dv
e2v~12e2v!dv

~e2v211v !1/2
52E

0

`

dve2v~e2v211v !1/2

.20.5482. ~105!

Substituting this result in Eq.~101! and knowing thatr 0
2

52n exactly@Eq. ~95!#, we find an asymptotic expansion fo
a(n) in the largen limit:

a~n!512
0.7753

n1/2
1OS 1

nD . ~106!

We have not calculated the subleading behavior of the
energy but our numerical results provide an estimate of
higher order term in Eq.~106!:

a~n!512
0.7753

n1/2
1

K
n

1OS 1

n3/2D with K.0.125.

~107!

From Eqs.~106! and ~97!, the expansion of the free energ
neark51/A2 is found. This allows us to retrieve, using E
~14!, the local behavior of the surface energy in the vicin
of the dual point, first calculated by Dorsey:16

s~k!.2~kA221!E
0

`

dv~e2v211v !1/2e2v

.20.5482~kA221!. ~108!
2-11
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In the same way, from the smalln expansion of the free
energy up to the second order, we derive that~see Appendix
B!

a~n!5n24n2E
0

`

r 2K0
2~r !K1~r !dr1O~n3!

.n21.5626n21O~n3!. ~109!

We have computed numerically from Eq.~97! the function
a(n) for n ranging from 1 to 250 and some significant valu
are given in Table I. The numerically computed and the la
n asymptotic expansion~106! of a(n) agree to better than
7% even forn as small as 4. In particular we notice from E
~106! that a(n)→1 whenn→`. In then→0 limit, the sec-
ond order expansion~109! provides a fairly good approxima
tion for n<0.25. In Fig. 7, numerically computed values
a are compared to largen and smalln expansions.

TABLE I. Numerical values of the functiona(n) obtained from
Eq. ~99! for different n in the range 1 to 250.

n a(n) n a(n) n a(n)

1 0.415 12 0.789 50 0.893
2 0.542 13 0.797 60 0.902
3 0.611 14 0.804 80 0.915
4 0.655 15 0.810 100 0.924
5 0.687 16 0.816 120 0.930
6 0.711 17 0.821 140 0.935
7 0.730 18 0.826 160 0.940
8 0.746 19 0.830 180 0.943
9 0.759 20 0.834 200 0.946

10 0.770 30 0.863 225 0.949
11 0.780 40 0.881 250 0.951

FIG. 7. The functiona(n) is plotted forn between 1 and 200
and in inset for values ofn between 0 and 1~solid line curves!. The
dashed lines represent the asymptotic expansions for largen ~106!
and smalln ~109!.
13451
e

VII. CONCLUSION

We have analyzed the structure of a giant vortex of win
ing numbern in an infinite plane for arbitrary values of th
parameterk in contrast to previous analytical results o
tained only in the London limit or at the dual point. Th
vortex and magnetic field profiles are computed by solv
the Ginzburg-Landau equations which minimize the free
ergy of the system. These numerical solutions are compa
with analytical results derived in the cases where the vor
multiplicity n is either very large or very small. In particula
a simple structure has been found for largen, its relation to
the classic result of Abrikosov has been elucidated and
perturbative expansions are found to agree well with pre
ous numerical computations of a giant vortex free energy.
hope that some of these results will prove useful for
current very active experimental investigations of me
scopic superconductors.
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APPENDIX A: EXPRESSIONS OF THE NORMAL Õ
SUPERCONDUCTING INTERFACE ENERGY

The energy per unit area of a planar norm
superconducting interface is obtained from the Ginzbu
Landau energy~3! under the form5

s~k!5E
2`

` H S d f0

dx D 2

1 f 0
2G0

21k2~12 f 0
2!2

1
1

2 S dG0

dx D 2

2kA2
dG0

dx J dx, ~A1!

where f 0 and G0 satisfy Eqs.~22! and ~23!. We notice that
for a magnetic field oriented along thez direction,G0 repre-
sents they component of the potential vector. The express
~A1! can be written in different forms by making use of th
identities:

E
2`

` S d f0

dx D 2

dx5E
2`

`

$2k2f 0
2~12 f 0

2!2G0
2f 0

2%dx, ~A2!

E
2`

`

dxH S dG0

dx D 2

2kA2
dG0

dx J 522E
2`

`

G0
2f 0

2dx,

~A3!

G0
2f 0

25S d f0

dx D 2

1
1

2 S dG0

dx D 2

2k2~12 f 0
2!2. ~A4!

The first two identities are obtained~e.g., Ref. 20! from Eqs.
~22! and ~23! by integration by parts. The third identity re
sults from the conservation law~25!. Using Eq. ~A2! to
2-12
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eliminate*(d f0 /dx)2 from Eq.~A1! provides the expressio
~34! of the main text. Similarly, using Eqs.~A2!, ~A3!, and
~A4! to eliminate*(d f0 /dx)2, *(dG0 /dx)2 and* f 0

2G0
2 from

Eq. ~A1! leads to the alternative expression~37! of the main
text:

s~k!5
4

3
k2E

2`

` S ~12 f 0
2!2

1

kA2

dG0

dx D dx. ~A5!

Finally, we note that the integral ofxf in Eq. ~37! is trans-
formed into Eq.~A5! by integrating separately by parts th
integrals between2` and 0 and between 0 and1`:

E
2`

`

f~x!xdx5E
2`

` S ~x1xc!
d f0

2

dx Ddx

5E
2xc

`

~12 f 0
2!dx2E

2`

2xc
f 0

2dx

5E
2`

` S ~12 f 0
2!2

1

kA2

dG0

dx D dx. ~A6!

The last equality is obtained by adding 0 under the com
cated form

05E
2xc

1`

dxF2
1

kA2

dG0

dx G1E
2`

2xc
dxF12

1

kA2

dG0

dx G .

~A7!

APPENDIX B: SECOND ORDER COMPUTATION IN THE
n\0 LIMIT AND SOME USEFUL FORMULAS

We first recall some useful asymptotic formulas for t
modified Bessel functions:

K0~r !52 ln
r

2
2g1O~r 2ln r !,

K1~r !5
1

r
1

r

2
ln

r

2
1

r

4
~2g21!1O~r 2ln r !,

K2~r !5
2

r 2
1O~r 21!. ~B1!

dK0

dr
52K1~r ! and

d

dr
@rK 1~r !#52rK 0~r !,

dI0

dr
5I 1~r ! and

d

dr
@rI 1~r !#5rI 0~r !. ~B2!

We now explain how the matching procedure is carried
up to the second order in the casen→0. The functionsf 2
andg2 solve the linear system:

d2f 2

dr2
1

1

r

d f2

dr
54k2f 21

g1
2

r 2
16k2f 1

2 ,
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t

d2g2

dr2
2

1

r

dg2

dr
52g214 f 1g1 .

Solving this system by ‘‘variation of constants,’’ we obtain

f 25AK0~2kr !1BI0~2kr !2I 0~2kr !

3E
r

`

u duK0~2ku!†2K1~uA2!2

16k2K0~2ku!2
‡2K0~2kr !

3E
1

r

u duI0~2ku!@2K1~uA2!216k2K0~2ku!2
‡,

~B3!

g25CK0~2kr !1DI 0~2kr !24A2rI 1~A2r !

3E
r

`

K0~2ku!@K1~A2u!#2u du24A2rK 1~A2r !

3E
0

r

K0~2ku!K1~A2u!I 1~A2u!u du. ~B4!

Since f 2 and g2 must be finite at infinity, we haveB5D
50. The two other coefficients are found by matching w
the inner expansions in the vicinity of zero. For this purpo
we need the local expansions off andg in the vicinity of 0
up to the ordern2. Using Eqs.~82! and ~86!, we obtain

f ~r !511nS ln
r

R 1O~r ln r ! D1
n2

2 XS ln
r

RD 2

1O~r ln r ! C
1O~n3!. ~B5!

g~r !52n„11O~r 2ln r !…1n2Xr 2ln
r

R S 12 ln
r

RD1O~r 2! C
1O~n3!. ~B6!

Because the coefficient ofn2 in the local expansion~B6! of g
tends to zero whenr vanishes, one must haveg2→0 when
r→0 and thereforeC50. To obtain the coefficientA, we
must determine the divergences off 2 given by Eq. ~B3!
when r→0: the termAK0(2kr ) produces a singular term
2A ln r whenr→0; from the expansions of the Bessel fun
tions ~B1!, we find the diverging part of the first integral i
Eq. ~B3! to be 2* r

`2u duK0(2ku)K1(uA2)2 which is
equivalent to*2kr

1 @ ln(u/2)1g#du/u; thus the first integral
gives a singular term equal to

2
~ ln r !2

2
1~2g2 ln k!ln r ;

similarly the singular term due to the second integral in E
~B3! is given by
2-13
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~ ln r !22 ln r X2g2 ln k12E
0

1

u du

3S I 0~2ku!K1~uA2!22
1

2u2D C.
Hence the total diverging part off 2 is

~ ln r !2

2
2 ln r XA12E

0

1

u duS I 0~2ku!K1~uA2!22
1

2u2D C.
~B7!

Identifying this expression with the singular part of then2

term in the expansion~B5! of f and using Eq.~85! provides
the value ofA and leads to the second order terms in
small n expansion off andg:

f 25AK0~2kr !2I 0~2kr !E
r

`

u duK0~2ku!„2K1~uA2!2

16k2K0~2ku!2
…

2K0~2kr !E
1

r

u duI0~2ku!„2K1~uA2!2

16k2K0~2ku!2
…,

with A52g2 ln k22E
0

1

u du

3S I 0~2ku!K1~uA2!22
1

2u2D ; ~B8!

g2524A2rI 1~A2r !E
r

`

K0~2ku!„K1~A2u!…2u du

24A2rK 1~A2r !E
0

r

K0~2ku!K1~A2u!I 1~A2u!u du.

~B9!

We can now derive the smalln asymptotic behavior of
a(n). From the explicit relation~99!, we obtain, up to the
second order inn,

a~n!5
1

nE0

`dr

r S dg

dr D
2

5nE
0

`dr

r S dg1

dr D 2

12n2E
0

`dr

r S dg1

dr

dg2

dr D1O~n3!, ~B10!

where the functionsgi are calculated at the dual pointk
51/A2. Recalling thatg152A2rK 1(A2r ) @see Eq.~81!#
and using Eq.~B2! we have

E
0

`dr

r S dg1

dr D 2

52E
0

`

xK0
2~x!dx51. ~B11!
13451
e

From Eqs.~B2! and ~B9!, we obtaindg1 /dr52rK 0(A2r )
and

dg2

dr
54r H 2I 0~A2r !E

A2r

`

K0~u!„K1~u!…2u du

1K0~A2r !E
0

A2r
K0~u!K1~u!I 1~u!u duJ .

~B12!

The coefficient ofn2 in Eq. ~B10! is therefore given by

2E
0

`dr

r S dg1

dr

dg2

dr D
54E

0

`

dr K0~A2r !
dg2

dr

528E
0

`

dv vK0~v !I 0~v !E
v

`

K0~u!„K1~u!…2u du

18E
0

`

dv vK0
2~v !E

0

v
K0~u!K1~u!I 1~u!u du.

~B13!

From Eq.~B2! we can verify that

E dv vK0
2~v !5

v2

2
~K0

22K1
2! and

E dv vK0~v !I 0~v !5
v2

2
~K0I 01K1I 1!. ~B14!

Integrating Eq.~B13! by parts leads to

28E
0

`

dv vK0~v !I 0~v !E
v

`

K0~u!„K1~u!…2u du

524E
0

`

dv v3~K0I 01K1I 1!K0K1
2 ,

8E
0

`

dv vK0
2~v !E

0

v
K0~u!K1~u!I 1~u!u du

524E
0

`

dv v3~K0
22K1

2!K0K1I 1 . ~B15!

Summing these two expressions and usingK0I 11K1I 0
51/v leads to

2E
0

`dr

r S dg1

dr

dg2

dr D524E
0

`

dv v2K0
2~v !K1~v !.

~B16!

This concludes the derivation of Eq.~109!. The free energy
in the smalln limit up to ordern2 ~90! is derived by similar
calculations.
2-14
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