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Giant vortices in the Ginzburg-Landau description of superconductivity
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Recent experiments on mesoscopic samples and theoretical considerations lead us to analyze multiply
charged 0>1) vortex solutions of the Ginzburg-Landau equations for arbitrary values of the Landau-
Ginzburg parametex. Forn>1, they have a simple structure and a free enefgyn. In order to relate this
behavior to the classic Abrikosov resuit-n? when x— + o, we consider the limit where both>1 and«
>1, and obtain a scaling function of the variakle that describes the crossover between these two behaviors
of F. Itis then shown that a smafi-expansion can also be performed and the first two terms of this expansion
are calculated. Finally, large and smallexpansions are given for recently computed phenomenological
exponents characterizing the free energy growth withf a giant vortex.
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I. INTRODUCTION —0 limit, which has the advantage to be amenable to a
simple and systematic expansion scheme; the free energy is
Recent experiments® have demonstrated that vortices of obtained up to orden?. In Sec. VI, we compare our pertur-
chargen>1, which are unstable in macroscopic type |l bative resultgvalid for arbitrary values ok) to the known
superconductors,can exist in mesoscopic superconductingexact results at the dual poimt=1/\2. Besides checking
samples and can even be favored over configurations withonsistency, we obtain a perturbative expansion of the free
multiple singly charged vortices. The Ginzburg-Landau de-€nergy in the vicinity of the dual point and the langeex-
scription of superconductivity” appears to be an adequate Pansion of phenomenological exponents introduced previ-
framework to analyze these results. The magnetization reQusly and computed numericaflyThe largen expansion
sponse of a mesoscopic sample can be analytically undeP"Oves to be fairly accurate forvalues as small as 3 or 4.
stood by adding a surface energy contribution to the
Ginzburg-Landau free energy of a giant-vortex in an infinite II. THE GINZBURG-LANDAU MODEL
systen® Moreover, full numerical solutions of the OF SUPERCONDUCTIVITY
Ginzburg-Landau equations accurately reproduce the experi-

mental findingd®-12 In the Ginzburg-Landau description of super-

Motivated by these experimental and theoretical results(,:onducuv't}; the two unknown fields are the complex

we analyze in the present paper “giarfi’e., n>1) vortex ~ order payametecbﬂz/xle‘x and the potential vectoA with
solutions of the Ginzburg-Landau equations. Well-knownV XA=B, whereB is the local magnetic induction. These
analytical results have been obtained in the London limiffields satisfy the following equations:

when the Ginzburg-Landau parameter-=~ > and at the

special dual-point valua=1/y2.""1* Here, we take advan- . 27.\? 1 )

tage of the supplementary parameterthe vortex charge, _(V_'%A) ¢:?¢(1—|¢| ), 1)
and provide a simple analysis of the giant vortices for arbi-

trary values ofx. We begin in Sec. Il, by recalling the _

Ginzburg-Landau equations and some elementary properties I I & Vx -

of their solutions. In Sec. I, we consider the large vorticity VXVXA= N2 ¢0E_A : @

limit n>1. The vortex structure takes the form of a circular
normal core separated by a sharp boundary from the outsiqqere, the flux quantuna, is given by ¢o=hci2e, and the

superconducting medium. As a consequence, the free energy, characteristic lengtha (penetration depth or London
?fof a giant vortex is found to t?e proportional to |2t§ charge length and ¢ (coherence lengihappear as phenomenologi-
in contrast to the classic Abrikosov's resufi~n® in the 5| narameters. The Ginzburg-Landau parametisrdefined
London limit. In order to relate the two results, we conS|deras their ratioc=\/£. We shall measure lengths in units of
in Sec. IV, the double limit in which both the vorticityand )\\/5 the ma(:;netic field in units dfl /\/§K= ¢0/47T)\2 and

1 C

the Ginzburg-Landau parameterare large and we obtain oo . .
; " . """ the vector potential in units ofo/2y27\. The Ginzburg-
the scaling formF/2m~nk®(«/n). The functiond pro Landau free energy in units <b1§§2/47r is then given by

vides an explicit interpolation between Abrikosov’s result for
x>n and the result of Sec. Il which is valid in the opposite .
limit n>«. To complete our analysis of giant vortex solu- f P 202 T
tions, we consider in Sec. V, the somewhat more formal a ZB KL= [ (V=i ©)
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A giant vortex of vorticityn is a solution of the Ginzburg- One can note from the definition of[Eq. (4)] thatrg is
Landau equations with cylindrical symmetryi(r,6) simply related to the value of the magnetic field at the posi-
=f(r)exp(né), where ¢,0) are polar coordinates in the tion of the vortex:

plane. The potential vectoh can be chosen to lie in the

plane and to have only a nonzero angular compoAg(it). 1dg 2n

It is convenient to introduce an auxiliary functigrthat rep- B(0)= (F E) = (11
resents the difference between the flux through a disk of r=0 To

radiusr and the total flux,

1 dg IIl. A GIANT VORTEX

g(r)=rA,(r)—n, ie, B=——". (4) IN THE LARGE VORTICITY LIMIT

We first consider the structure of a giant vortex of charge

The free energy can be rewritten in termsfaindg as n for n>1 and begin with simple estimates. It seems intu-

1 = (df\2 292 1 /dg\?2 itively clear that the vortex core grows with its charge. So,
. f <_> o +K2(1—-f2)2+ _(_g) ] rdr for n>1, one expects the vortex core to be much larger than
2@ o |\dr r? 2r2\dr the London penetration length. As a consequence, the mag-

5) netic induction should be approximately constant over the
core. For a vortex of chargeand core size&., one expects
therefore|B|=2n/r2 in the vortex core(the total flux di-

d2f 1df 1 vided by the core area with the chosen normalizatiand

—trar —fgP=—2x%1(1-1?), (6)  B=0 outside. The magnetic energy of such a configuration is

dr r approximatelyf B%/2=27n?/r2. Correlatively, one expects

) =0 in the vortex core andys=1 outside and the corre-
dg _1dg f2g @) sponding energy contributiofi®(1—||%)?=2m«?r2. The
dr2 rdr ' total Ginzburg-Landau enerd$) of such a configuration can

The allied Ginzburg-Landau equations reduce to

, , therefore be estimated to be
It is useful to note that a very simple form of the free enérgy

is obtained by an efficient use of Eq$) and (7), 5 5
1 n K
2
1 o >—F=—+5rcto(k)re, (12
—j’-‘szzf rdr(1—f2). (8) 2@ 2 2
2 0
. where the last term on the right-hand side has been added to
A vortex of chargen corresponds to functionsand g (ake into account the interfacial energy of the transition layer
which satisfy f(0)=0 and g(0)=—n at the origin and  pegween the vortex core and the superconducting bulk. Mini-
which obeyf(=)=1 andg(«)=0 at infinity. Linearization  izing Eq.(12) with respect ta . gives the dominant order
of Egs.(6) and(7) aroundf=1 andg=0 shows that there qgtimates for the vortex size and for its free energyr
exists two exponentially growing and two exponentially de-

caying spatial modes at=cc. In the same way, linearization
for r close to zero shows that there is one diverging mode 2 V2n (13)
with f~r " and one neutral mode corresponding to changes ¢ Kk
in the vortex charggnote that at the level of Eq&) and(7),
n appears simply as a parameter and is not constrained to be 112
' . . : 2n
an integef. Once one requires the diverging mode at0 to —F=nk\2+ _> a(k)+0O(1). (14)
be absent ang(0)= —n, the expansion of and g around 2m K

r=0 depends on two arbitrary constants S
The magnetic field inside the vortex core has the constant

r value

—) +O(r"h, ©)

(=]

B:\/EK

1+

o(k)
> |- (15

2K°r,

2
)+ o(ran+?), (10)

g(r)=—n(1—(L
Mo
The length scalesy andR are uniquely determined by the That is, in the vortex coreB is equal toH; plus a
cancellation of the two divergent modesrats;'®they can-  Gibbs-Thomson correction as expected at a curved
not be calculated from a local analysis near 0. Their deternormal/superconducting boundarysee, e.g., Refs. 16
mination requires the behaviors around0 andr=« to be and 17. In the next subsections, we first present numer-
connected. This can be done numerically for arbitrary paramical solutions of the Ginzburg-Landau equations for
eter values or analytically whemis either large or small as various values ofn which confirm this simple picture
shown in the following sections. of the giant vortex. This picture is then derived from
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FIG. 1. (a) The functionf for k=1.5 andn=4, 16, 28, 40, and 52b) The different front profiles superposed on one anotliery/2 is
shifted tor =0).

a direct analysis of the Ginzburg-Landau equations in the normal regionwheref=0) and a superconducting region
largen limit. (f=1) [see Fig. 1a)]. The interface width does not increase
with n but remains of the order of &/ As expected, the
interface has a well-defined limiting shape: in Figb)] the
curves represented in Fig(d} are shifted in such a way that
Numerical solution of Eq¥6) and(7) consists in solving they take the value 1/2 at the point 0. The shifted curves
a two-point boundary value probletatr =0 andr=«) and  superpose on one another almost perfectly. Only the curve
can be achieved using several methtis. for the small valuen=4 shows a noticeable deviation from
Shooting is generally easy to implement and robust whethe limiting shape.
one mode needs to be cancelled at a boundary: a free param-The simple normal/superconducting interface picture for
eter is adjustedfor example by dichotomyat the other n>1 is also confirmed by the graphs of In Fig. 2, B(r)
boundary until the required cancellation is obtained. In the=1/r dg/dr is plotted for different values af. The magnetic
present case, two diverging modes need to be cancelled giduction is close toH.= 2« in the vortex interior and
infinity which is more difficult to achieve. We kept a simple quickly decreases to zero in the interface region. Again, in

one parameter shooting by integrating from a larger..  the largen limit, the curves can be put over one another by
towardr =0. Of the two free parameters it one was used

to cancel the diverging mode it 0. The value ofj at 0 was
then given as a function of the other paramétehnich could
be adjusted to obtain a particular valueroivhen desired

We also implemented a relaxation method. The system ol 2, ¢
ordinary differential equations is replaced by a set of finite
difference equations satisfied on a mesh of points, and th¢
boundary conditions just appear as equations satisfied by thg
points located at the extremities of the mesh. A multidimen-'5
sional version of Newton's method provides a solution of"§
these finite difference equations by an iterative procedure® ,, |
This method requires the inversion of a matrix of size pro-=
portional to the number of points in the mesh. Because this
matrix is block diagonal, it can be inverted in a very efficient
manner. However, the efficiency of the relaxation method
depends strongly on the starting point of the iteration: for
example, it is useful to take the profile ofravortex as an
initial guess for the 1t + 1)-vortex solution of the Ginzburg-
Landau equations.

Numerical solutions for different values ofare shown in FIG. 2. The magnetic field fok=1.5 andn=4, 16, 28, 40, and
Fig. 1. The plot off shows a well-defined interface between 52.

A. Numerical results

15.0
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the same shifts as those used to superpose the diffésant d2f  1df g2
Fig. 1(b). -+ T f=— 2 _f2
g. b) 02 | To dx réf 2k°f(1—19), (20
B. Asymptotic analysis of the Ginzburg-Landau equations
d’g 1d
for n>1 _9___9:2fzg 21)
It is instructive to see how the largegiant vortex struc- dx® o dx

ture arises in a direct analysis of the Ginzburg-Landau equ

& omparing the magnitude of the different terms in these sim-
tions (6) and (7). paring g

plified equations, we obtaifi~1, g~ry, x~1 and find

that the first-order termdf/dx, dg/dx on the LHS of Egs.

(200 and (21) are subdominant. Introducing the rescaled
Sinceg=—n atr =0 one expectg to be of ordemina  functionsfo=f andGy=g/rg, one derives at dominant order

whole region near =0. Therefore, at dominant order i  in n (indicated by the subscript)&he “inner” equations

Eq. (6) for f reduces to which describe the behavior of the order parameter and the

vector potential in the interface region

1. The vortex core

a1 fg?=0 (16) 2
“ 5 Z197=0. d-f
dr2 r? d—X2°= — 2k2f (1~ f2)+ G2f,, (22)
The solution of Eq(16) can be obtained in a WKB manner
but the important point is thdtis exponentially close to zero d2G,
in the whole core region. Equatidi) for g thus simplifies to O =2f2G,. (23
X
@_ } @_0 17 As expected, these equations are identical to the Ginzburg-
dr2 rdr T Landau equations in one dimensi6re., on an infinite ling

Matching with the superconducting phase for1 and the

At dominant order im, g is therefore given by vortex core forx<—1 imposes the boundary conditions
fo(+2)=1, Gy(+)=0, andfy(—0)=0. This last condi-
r tion implies, using Eq(23), that G, behaves linearly when

2
g(r)=—n(1—(—) ) (18  x——w

o
Although Eq.(18) is identical to Eq(10), it should be noted Go=ax+b. (29)

that it is not an expansion near zero but the full functian
the vortex core at dominant orderm Of course, Eq(18) is I n _contr_ast to Eqsi6) a_nd(?), the Io<_:a|_ sy_stenﬁ22) and(23)
is invariant by translation. Once this is fixg@r example by

nothing else but the constancy Bfin the vortex core. . . . o ~ .
Outside the vortex core the medium is in the superconlmposmg the arbitrary criteriofip(0)=1/2] the functionsf,

ducting phasef=1 andg=0. In order to match these dif- andG, and the constarii are uniquely determinedhe value

ferent solutions of Eq96) and(7), we analyze the interface ofals mdepend_ent of this arp|trary _cho)ceF_mdmga andb_

S : appears to require an explicit solution. This can be avoided,
region(i.e., the boundary layer in the usual matched asymp-+\east fora. because the reduced systé2®) and (23) re-
totics terminology. '

It should be noted that, the vortex core size and, tains the variational structure of the original equations and is

which is obtained from the second derivative gfat the invariant by translation irx. The locally conserved quantity

origin [Eq. (7)] coincide at leading order in. Their differ- £ associated with this continuous symmetry red@hat is, the

ence is of the order of the planar normal/superconducting:Enagne’[IC field in the vortex cor

interface width and depends on the precise criterion used to 1/df
measure the vortex core sigee., on the precise definition of E= _(_0
ro) as shown below. 21 dx

2 1

dGO)Z 1 2
+ [
4

K
0| ~3C0f— 5 (1-f)% (29

) ) Conservation of between—« and +« leads to
2. Local equations near the interface
The solution(18) vanishes forr=r, and therefore the 0=E(+»)=E(—»)=a%/4—k*/2. (26)
assumptiorg~n under which it was derived breaks down at
the interface. A different simplification of the Ginzburg-
Landau equations can be made in the vicinity rgf We
define a different variablg, centered around,, such that

Thus,a= 2k andB=H, in the normal phase at dominant
order inn, as expected.

3. Matching the vortex core and the interface region

r=x+rg. (19 In order to determine the constary and the interface
position, we have to match the solutions in the vortex core
We assuméand will verify at the englthatr,>|x|. Substi- and in the interface region.
tuting Eq.(19) into Egs.(6) and(7) we obtain Rewriting Eq.(10) in terms of the local variablr leads to
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FIG. 3. (&) The vortex-core size. (dot-dashed curyeand the lengthr, (solid line curve are plotted fork=1.5 and for values of
ranging from 1 to 100. The dashed curve is the largesymptotic estimatél3). The dots represent the next-to-leading order asymptotic
expressior(38), using the numerical value(1.5)=—1.172.(b) DifferenceA, betweenr, and its asymptotic expressi¢as).

x\2\ 2n 1 o 1/1dg 2
—_nl1_ o I Pt o ol it _2¢4
g= n(l 1+rO ) rOx 277]-" nK\/§+f0rdr[2(rdr K 2) Kf].
(32)
hence
The function
G g_2n (27 1/1d 2
0T T2k e _ 24
0 rg S(r) AT 2 k“f (33
The family of solutions of Eqs(22) and (23) is fo(X  is nonzero only in the vicinity of ,. Hence,S can be con-
—Xc),Go(X—Xc) with the asymptotic behavior sidered to be as a function &f=r —r,. Replacing the func-
tions f(r) andg(r) in Eq. (33) by their dominant order ap-
Go(X—Xo) = V2k(X—X.) +b. (28)  proximations fo(x—x;) and Gy(x—x.), respectively,
" ) solutions of Eqs(22) and(23), we obtain
Identifying the two local expression®7) and (28) for the
function g in their common region of validity =r y+x with o o
[X|<r(, andx— — determines, andx. f rS(r)drzrof S(x)dx
0 —
2
ra=\2n/«, (29 = (1{dG, 2
= =0 _ 2¢4
rOJ_m:Z( ax K\/E) K fo}dx
b
c \/EK roo(x) (34

_ _ . _ The last integral is nothing else but the surface enerfy)
The largen asymptotic estimate af, [which agrees with  of a one-dimensional domain wall between normal and su-

Eq. (13)] is compared with numerical results in FigaB perconducting phase¥’?°(see Appendix A Using Eq.(34)
o in Eq. (32 gives exactly the large expression14) of the
4. Large n limit of the energy free energy of a giant-vortex witha(«) the surface energy

The free energy of a giant vortex can now be calculatef @ one dimensional normal/superconducting interface. The

for n>1. Using Eq.(6) and integrating by parts, the free €Xxpression(14) is valid for any value ofx in the limit n
energy(5) becomes —oo, It is compared to the numerical resuffer «k=1.5) in
Fig. 4.

BZ
-+ K2— K2f4} . (3D 5. Finite-n correction to H,

L [Cra
Z = o rar
The leading finitea correction toB in the vortex core can
Completing the square with the first two terms inside thebe derived from the previous results. Integrating B8).by
brackets and using relatiqgd) betweenB andg, leads to parts leads to

134512-5
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22 T T T szg
B(0)= —Zf Tdr

201 This allowed us to obtaim,, from Eq. (11), with a good
precision. The vortex size. was found from the equation
f(r.)=1/2. In Fig. 3a), the two numerical curves far, and
18 1 r. are plotted as a function of. To the leading order im,
these two curves differ by a constaqt=—0.797 . . . ,func-

! tion of « only, as predicted by Eq.39). Solving indepen-

i dently the “inner” Ginzburg-Landau equation@2) and

i (23), we found that the unique value of such thatfy(0)

| =1/2 is given byb=1.691 . . . . Hence the relatiori30) be-

.: tweenx, andb is verified. We also tested the accuracy of the
E largen asymptotic expansion af, to the first ordel(13) and
.0

1.6 |

Free energy per unit flux

1.4

to the second ordgB8). The difference betweern, and Eq.
e 50,0 150.0 200.0 (38), hardly visible in Fig. 8a), is plotted in Fig. 80). The
n agreement is very good.

FIG. 4. Free energy/27n as a function oh for x=1.5 (solid . SUDSt'tUt.mg. this value of, in Eq. (11), we obtain the
field value inside the core

line). The horizontal dot-dashed line is the asymptotic vatu®
=2.121. The dashed curve is the langdehavior(14), using the
numerical valuer(1.5)=—1.172. B(0)= K\/§+

1.2
0

o(k)
23/4\%

Hence, whem— o, the field at the origin is indeed the ther-
modynamic critical fieldH .= k2 with a Gibbs-Thomson

) ) ] N correction as expectddeq. (15)].
The functiong(r) is localized at the position of the front and

1
+ (9( ﬁ) . (40)

LY d ith =2f a
E]:—K for ¢(rydr  with ¢(r)= (r)a. (35

its width is of the order 1#. Using the local variablex=r :
) . - . IV. RELATION TO ABRIKOSOV'S FORMULA
—ry defined in Eq.(19), Eq. (35 can be rewritten, in the
largen limit, as The self-energy of a unit vortex was first calculated by

Abrikosov*®’in the largex limit

x()dx+O(1).  (36)

1 2.2 2

s—F=kr5+2krg 1

2m ——F=log k+0.081. (41)

2

The fintegral in Eq.(36) cand'be expressed in terms of the |, the previous section we have studied the aases keep-

interface energysee Appendix A ing « fixed and finite. In order to relate our results to the
classical calculation of Abrikosov, we consider in this section
the double limith—o~ and k—~ keeping the ratiau= «/n

X finite and fixed. With these assumptions, we shall see that the

Ginzburg-Landau equations decouple and that a scaling form

is obtained for the free energy

- - 1 dG
zxzf (X)X dx=2,<2f ((1—f§)———° d
—x — k2 dX

3
= EO’(K). (37

1
Comparing Eq(36) with Eq. (14) provides the large ex- Z}—:nK(D(K/n) ' (42)

ansion ofr to the second order
pansi o UP The function® is plotted in Fig. 5.

1/2
ro= @ — o(x) + i . (39 A. The double limit n>1 and ¥>1
K 4K2 n1/2

After rescaling the functiory by a factor 1, and intro-

The vortex size ., defined by the criteriori(r.)=1/2, can ducing the ratiau= «/n, the Ginzburg-Landau equations be-

be meaningfully calculated to the same order: come
re=rotXc, (39 1(d 1df P PR R
nz(dr2+ Cdr 2u<f| 1 2u2r2g f<|, (43
with x; given by Eq.(30).
In order to verify numerically these relations, we first g 1d
computed the value of the magnetic field at the origin using F9_ 299,
52T dr 2f2g; (44)

the following relation, that derives from Eq&l) and (7):

134512-6
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FIG. 5. The scaling functio® as a function of the variable

(solid line). The dot-dashed curve and the dashed curve represent,

respectively, the larga (65 and smallu (76) approximations.

the boundary conditions afg§0)=0 andg(0)=—1 at the
origin, andf(«)=1 andg(«)=0 at infinity. In then—~

limit, there are two domains wheffeis slowly varying and
the derivative terms in Eq43) can be neglected

f=0

1/2
1-—— for r
( 2u2r2)

for r=R,

=

=

R. (45)

PHYSICAL REVIEW B 64 134512

R 2
g (R)=2—==-2\2u (51)
ra R
[the second equality of Eq51) is derived using Eq(50)].
The scaling limit for the free energy whem—« and «

— o is obtained from Eqs(8) and (45)
2

l o)
uR2+—f g—dr
UJjr I

where we have introduced a functibin

g=hy2ur. (53)

This provides the explicit expression of the interpolating
function ® (42)

)ZnKU

R2+ warhz(r)),
R
(52

1}__
Z =Nk

d(u)=u (59

R2+merh2(r)).
R

In order to calculate expliciti® one has to determine the
position R of the front and the functiom as a function of
u=«/n. In terms ofh, Eq. (48) becomes

d'h  1dn 1h—2h 1-h? 55
sz rar 2T (1-h%), (55)

and, from Eq.(46), the boundary conditions fdr are
h(R)=—1 and h(«)=0. (56)

Relation(51) implies, however, one more condition dn

As shown below, these two domains match through a bound-

ary layer atr =R wheref has a rapid variation but remains
small. Matching the two slowly varying expressia@$) of f
requires thaff (R)=0 in the second one and gives

g(R)=—2uR.

Substituting Eq.(45) in Eqg. (44) leads to the following
closed equations fag:

(46)

d’g 1dg

a2 rdr for r=R, 47

d’g 1dg 9°
F—Fa ( 2u2r2 for r=R. (48)

From Eq.(47), one has
2
g(r)y=—1+ - for r<R. (49
0

Continuity of the functiong and of its derivative aR, and
Eq. (46) imply that

R

)

2
=—\2uR,

(50

2 1

urR? R’

h'(R) (57)
The differential equatiot55) with the two boundary condi-
tions (56) and the supplementary conditi¢s7) is overdeter-
mined: there is a unique value & such that all the condi-
tions can be satisfied. Indeed, E&5) with the boundary
conditions(56) has a unique solution for any given value of
R, i.e., for a givenRr, the value ofh’(R) is unique and can
easily be computed numerically by solving E®5) by a
shooting method; once’ (R) is known,u is determined as a
function of R from Eq. (57)

u 1

V2 R+R?*h(R)’ 8
Inverting this relation giveR as a function ot (Fig. 6) and
the function® using Eq.(54). This calculation can be per-
formed analytically whew is either very large or very small
as shown below.

Before considering these limits, we complete the above
analysis by giving the boundary-layer equation satisfied by
in the neighborhood of =R. It is convenient to introduce
the local variablex=r — R. Assuming thaf remains small in
the neighborhood of =R and keeping the dominant contri-
bution of each term of Eq43), we obtain
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10.0

8.0 of

6.0 | s

1/R

40 -

2.0 -

0.0 . . I
0.0 6.0

8.0

FIG. 6. The inverse oR plotted as a function of the scaling

variableu (solid line). The dashed curve represents the linear be-

havior of 1R for large values ofi (64), and the dotted curve shows
the asymptotic behavior for small valueswf71).

d’ 1 df

1
| = 2e0_ ’ 2
nz(dxz+RdX) 2u?f(—2h"(R)x+f2). (59

PHYSICAL REVIEW B64 134512

1
h'(R)y=——. 63
R= 7 (63
Substituting Eq(63) in Eq. (58) leads to
R ! (64)
V2u’

Inserting Eqs.(62) and (64) in the expressior{52) for the
free energy, we obtain

1}_ Nk
27 U

Bl Gled el ol

+0.ll6), (65)

1 * 2
§+ L/ur(Kl(r)) dr}

nKl +In2 2{In| =
=—/(nu+In2—y)=n4|In| =
u( u Y) =

where theK, are modified Bessel functions and is the
Euler constant! This relation generalizes the classical result
(41) of Abrikosov to the case of a giant vortex. Indeed, the
structure of the giant vortex is very similar to the=1 case
with f varying on a fast scale of order « andg on a slow

A consistent dominant balance between the different termscale of order one. However, the structuref & simpler in

of Eq. (59) is obtained wherf/(x?n?)~ fx~ f3. Therefore,
as assumedf evolves on a short scale~n~%° around
r=R but remains smallf~n~%3 With the rescaled
coordinate  and  function, &=x(4u’h’(R))¥n?3,
F=(nu)*3(y2h’(R))"?f, the boundary-layer equation
reads

d?F

=—¢F+F3 (60)

dg
The two different functions of Eq(45 can be matched
through the solution ofthe Painlevi Eq. (60).

B. The large u limit (k«>n>1)

Recalling thaiR andr, are positive, we see from E¢1)
thatR<1/(\2u). Therefore, whem tends to infinity,R tends
to 0. In the largeu limit, Egs. (47) and (48) reduce to

d’g 1dg
F—F§—29, (61)

with the boundary conditiong(0)=—1 andg—0 at infin-
ity. The solution of this equation is readily obtained

g(r)=—r\2K(r2)

and therefore

h(r)=—Ky(ry2)/u, (62)

whereK, is the modified Bessel function of order 1. Using

the behavior oK, in the vicinity of zero(see Appendix B
we deduce that

the largen limit [being O forr less tham/(\/2«) and linked
to g otherwisg than for generah. This is the reason why no
new constant needs to be numerically determined in(&).

C. The smallu limit (n>k>1)

In the smallu case, the lengtR tends to infinity. Defining
a local variablex=r — R, the differential equatioi55) for h
becomes

d?h 1 dh
@Jr R Ox (R+X)2h=2h(1—h2), (66)
with the following boundary conditions:
h(x=0)=—-1 and h(«)=0. (67)
WhenR—x, Eq. (66) reduces to
d2h/dx? =2h(1—h?). (68)

The solution that satisfies the boundary conditions is

h(x)=— 2(1—tanH V2(x+x) )2  with

1
tanh(/2Xxq) =—. 69
h(V2xo) % (69
From this expression, we derive that
h'(r=R)=h'(x=0)=1. (70

Substituting this result in Eq58) leads to the smalli be-
havior of R

134512-8
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r- (22

172 V. AVORTEX IN THE SMALL VORTICITY LIMIT
(71)

u

The winding numbern must bea priori an integer
because the phase of the wave functignhas to be a
27 periodic function. However, as already noted, in the cy-
lindrically symmetric Ginzburg-Landau equatiori6) and
(7), n appears only as a parameter in the boundary condition
d*h 1dh ) at the origin and can be given any real value. In this section,
EJF R &_Zh(l_h ), (72) we taken to be close to 0 and determine perturbatively the
solutions of Eqs(6) and(7) and the free energy.

with the same boundary conditions as in Ej/). This equa- Away from the originr=0, f is close to one ang is

tion can be solved perturbatively, but we only need to detersmall. Thus, we expanflandg as follows:

mine the correction to Eq70); i.e., we need to calculate the

coefficientC such thath’(r =R) =1+ C/R. We use an argu- f=1+nfi+n’f,+... and g=ng;+ngy+---.

ment of energy conservation. Defining (78

The functionsf,,g4,f5,9, . .. satisfy a hierarchical system
of linear differential equations that can be solved recursively
2’ by imposing the boundary conditiong;—0 and g;—0
whenr—oo, for alli=1.

Thus the first order termf; andg, are solutions of

The subleading behavior & as a function ol is found by
retaining only the first order term in R/in Eq. (66):

1

5225

dh\? h*
| —h%+—
dx

we readily obtain from Eq(72) that

2
%:_i(ﬁ) ' AL 79
dx R\ dx FEII AR ONEY (79
Integrating this relation from O tee and evaluating the en-
ergy &, at both ends leads to d? 1d
gy ¢z 91__&2291_ (80
dr2 r dr
~ (=(dh 2
C= fo dx dx. (73 Implementing the boundary and the matching conditions, we
obtain
Using the Oth-order solutio(69) for h in Eq. (73) we obtain
fo=AKo(2xr), g1=B\2rK,(y2r), (81)
22-1\1 . .
h'(r=R)=h'(x=0)=1+ 3 5" (74) whereA andB are two undetermined constants at this stage.

The expansion78) breaks down in the vicinity of the
origin sincef(0)=0. The expansion df nearr =0 is given

Substituting this result in Ed58) and solving forR leads to
g q58) g by Eq. (9)

1/2
R2<\/_§) (1_2—1/4@u1/2+ O(u)) (75)

u

n

+0(r" ), (82

r
f(r):(ﬁ

The two expressiong81l) and (82) can be matched in the
parameter range wheme<1 but n|log(r)|<1. Whenr<1,
the correcting terms in Eq82) are negligible and when in

Substituting the expressiorig5) and (69) for R and h, re-
spectively, in Eq(52) we obtain the free energy

i}-an UR2+2Rfmh2(X)dX> additionn|log(r)|<1, one obtains
2 0
r
4 K\ 2 f=1+nln=+0O(n%r). (83
~nk\2 1—5(@—1)21’4(H +O(u)>. (76) R
In the same parameter range, expansion of(Bf). gives
These results are consistent with those obtained in Sec. Ill. In
fact the smallu limit amounts to first taking the limih f=1+nA(—In(«r)—y+O(r?nr)). (84)

—oo and then takingc—cc. For instance, it can be shown
that Eq.(38) reduces to Eq(75) in the k—oo limit. More-
over, comparing Eq(76) with Eqg. (14) we retrieve the 1
asymptotic behavior of the surface tension in the lakge R=—exp—y)=
limit: 720 K

Consistency of these two expressions requikes—1 and

0.561

K

, (89
42 v being the Euler constant.
- N2 2 We can proceed in a similar way for the functignNear
o (k) 3 (N2~ 1)« 0.7810¢ (77 r=0, the expansion af is
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r

o

g=n|—1+

2n
ﬁ) +O(ra ).
(86)

2 r.2
)_ 2(n+1)
Forr<1 andn|log(r)|<1, this gives

1 n

"
5 —nIn—+O(n2,r)). (87

__ 2
g n+r< R

+_
rg 2

Again, an alternative expression is obtained from the small
behavior of Eq(81)

2

r
g=nB|1+r?nr+ S (2y=1=In 2)+O(r?In r)) .
(88)
Comparing Egs(87) and (88) givesB=—1 and
r3=2n—2n%n(2«?). (89)

Having determined the smaitl-expression foff, the free
energy limit can be calculated from E¢B). Actually, the
expression(81) for f is sufficient for this purposéhe range

where it is not valid gives an exponentially small contribu-
tion) and by performing the integral over modified Bessel

functions, one obtaing/(2)=n-+0(n?).

PHYSICAL REVIEW B64 134512

af 19 1@Zrdr
r dr

1 oc 21
2= [ |G+ 7] rala-m-
= [d
+JO dr[a[g(l—fz)]]

Jol(&+

ar T
The minimal free energy is obtained when the following first
order system is satisfis@ogomol’nyi equation§?%14:

- 2

rdr+n.

1dg\?
RS

g
Frai (92
dg )
B—Fa—(l—f ). (93

Substituting Eqs(92) and (93) in Eqg. (91) we obtain the
minimal energy

1

Z}-z n. (94)

Equation(93) implies that

2

r

r
g= frfz(r)dr, ie, rg=2n. (95
2 Jo

Another remarkable consequence of the Bogomol'nyi
equations is that the surface energyx), defined in Eq.

A similar procedure can be carried out for the second34), vanishes identically and changes its sign at the dual

order terms. The expressions fgrandg, are more intricate
and are given in Appendix B. Using E@), they provide the
free energy in the smafi limit up to ordern?

%]-“:nwt n?log(k+/2)+O(n%). (90

VI. THE DUAL POINT OF THE GINZBURG-LANDAU
EQUATIONS

A. The dual point equations

Equation(90) suggests that the value=1//2 has special
propertieq for instance, fork=1/y/2 the functionsf; andg;
of Eg. (81) satisfy simple identities such as

point (this is the reason why the dual point separates type |
from type Il superconductofs

(96)

All the calculations that we have carried out in the previ-
ous sections are consistent with thésenperturbativeprop-
erties of the dual point. In the smailcase of Sec. V, one can
verify, using Eq.(81) and the expressions given in the Ap-
pendix, that the equatior{92) and(93) are satisfied order by
order by the expansion&8) of f and g at the dual point.
Moreover, then? correction to the free energy in E(0)
and torg in Eq. (89) vanishes identically ak=1/\/2, as
expected. In the large case, the expressiqnd) for the free
energy reduces to E¢94) because the'’? correction disap-

df,/dr=—g;/r]. It is indeed well-known that at this pears thanks to the vanishing of the surface energy; for the
“dual” point the second order Ginzburg-Landau equationssame reason, the formu(&8) simplifies tor o= (2n)*2

reduce to first order equations, leading to special relations At the dual point, the vortices do not interact and the free
between the function§; andg;. Moreover, the free energy energy does not depend upon their location. This makes it
at the dual point has been calculated exactly and is identicalossible to obtain exact-vortices solutions, in the large

to the topological numben. We recall briefly these special limit, for arbitrary locations of the vortex corédHowever,

properties. when « deviates from the special value\®, vortices start
At the dual point the free energ§p) can be written as interacting and their interaction energy is extremal when all
follows: the vortices are located at the same point. We now evaluate
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the energy of such a configuration with cylindrical symmetry oc 0 - o -
when is close to the dual point. xgdx= J_wdx{(l—fo) —1}+ fo dx(1—-f5)
B. Free energy of a giant vortex in the vicinity — Jw dx[ (1— fg)z_ dGO]
of the dual point . dx
We apply our results to the case whetds close to the =, 5
dual point valuexk=1/y2. In experiments on mesoscopic =—J7wfo(l—fo)dx. (102

superconductors, values af are close to the dual point

value® and in previous theoretical studies the special casgn the last equality we used the fact that the functiénand
k=1/\/2 was found to be very useful to study analytically G, satisfy the following Bogomol'nyi equations at the dual
the magnetization of a sample as a function of the appliegoint:*®

field. In the vicinity of the dual point, a relevant quantity is

the relative growth of the free energy: dGy ) dfg
O —(1-fo and - +Gofo=0. (103

1 Fx,n)—F1N2,n) h 1 The functionv defined byf,=exp(—v/2), satisfies a second
a(n)= 21 FAN2.0) when k= V2 order differential equation that can be solved explictly:
(97) 5
1dv
. o . . 5 5 =1—exp(—v)
This relation is a local form of an empirical scaling of the 2 dx?

free ener
9 which implies

1
Ef(x,n):n(Kﬁ)am), (99 %=—2(e—v—1+v)1’2. (104)

. Now changing the variabbeto v, we rewrite the last integral
found in Ref. 9, where the exponenign) were computed in Eq. (102%] ag v g

numerically. Differentiating the Ginzburg-Landau free en-
ergy (5) with respect to the parameterat the dual point we

. © e Y(1l—e Y)dv ®
obtain —f dv;=—f dve V(e ?—1+v)¥?
0 (e V—1+p)¥? 0

1(= 1 (=dr(dg\? =—0.5482. 10
a(n):ﬁf (l—fz)zrdr=ﬁJ’ T(d_?) . (99) ( 5)
0 0 Substituting this result in Eq(101) and knowing thatr3

=2n exactly[Eq. (95)], we find an asymptotic expansion for
The last relation was derived from the Bogomol'nyi «(n) in the largen limit:

equation(93).
We now explain how a large expansion of the exponents 0.7753 1
a(n) can be derived from our previous results. Integrating a(n)=1- Tz O(ﬁ)- (106)

Eqg. (99) by parts, we find

We have not calculated the subleading behavior of the free

1 [er? df energy but our numerical results provide an estimate of the
a(n)== f —
n dr

S ¢(rdr with = 4f(1—1?) higher order term in Eq(106):
0

(100 07753 Kk [ 1\
a(n)=1—T+ ﬁ—i-(/) Y with K£=0.125.
The functionys(r) is localized at the position of the front and n n
its width is of the order 1#. Hence we can expand E{.00 (107
using the local variablx=r—r, and in the largen limit  From Eqgs.(106) and(97), the expansion of the free energy
replacef by f, (as in Sec. llIB 3 nearx=1/\/2 is found. This allows us to retrieve, using Eq.
(14), the local behavior of the surface energy in the vicinity
112 (e df of the dual point, first calculated by Dors&:
_ 0 0 . . 2 0

a(n)_ﬁerF wx:,//(x)dx with <,/;—4f0(1—f0)a. B

(101) a(K):—(Kﬁ—l)fo dv(e " —1+v)Y%™"
Integrating the last term by parts, we obtain =—0.5482«\2—-1). (108
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TABLE I. Numerical values of the functior(n) obtained from
Eq. (99 for differentn in the range 1 to 250.

n a(n) n a(n) n a(n)

1 0.415 12 0.789 50 0.893
2 0.542 13 0.797 60 0.902
3 0.611 14 0.804 80 0.915
4 0.655 15 0.810 100 0.924
5 0.687 16 0.816 120 0.930
6 0.711 17 0.821 140 0.935
7 0.730 18 0.826 160 0.940
8 0.746 19 0.830 180 0.943
9 0.759 20 0.834 200 0.946
10 0.770 30 0.863 225 0.949
11 0.780 40 0.881 250 0.951

In the same way, from the smail expansion of the free
energy up to the second order, we derive lsae Appendix

B)

a(n)=n—4n2fxr2K§(r)K1(r)dr+O(n3)
0
=n—1.5626°+ O(n3). (109

We have computed numerically from E@7) the function

a(n) for nranging from 1 to 250 and some significant values
are given in Table I. The numerically computed and the large
n asymptotic expansiofil06) of a(n) agree to better than
7% even fom as small as 4. In particular we notice from Eq.

(106 that @(n)—1 whenn—o. In then—0 limit, the sec-

PHYSICAL REVIEW B64 134512

VII. CONCLUSION

We have analyzed the structure of a giant vortex of wind-
ing numbern in an infinite plane for arbitrary values of the
parameterx in contrast to previous analytical results ob-
tained only in the London limit or at the dual point. The
vortex and magnetic field profiles are computed by solving
the Ginzburg-Landau equations which minimize the free en-
ergy of the system. These numerical solutions are compared
with analytical results derived in the cases where the vortex
multiplicity n is either very large or very small. In particular,

a simple structure has been found for largets relation to

the classic result of Abrikosov has been elucidated and the
perturbative expansions are found to agree well with previ-
ous numerical computations of a giant vortex free energy. We
hope that some of these results will prove useful for the
current very active experimental investigations of meso-
scopic superconductors.
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APPENDIX A: EXPRESSIONS OF THE NORMAL /
SUPERCONDUCTING INTERFACE ENERGY

The energy per unit area of a planar normal/
superconducting interface is obtained from the Ginzburg-

ond order expansioL.09) provides a fairly good approxima- Landau energy3) under the form

tion for n=0.25. In Fig. 7, numerically computed values of

a are compared to large and smalln expansions.

1.0

0.8

0.4

0.0 100.0 200.0
n

FIG. 7. The functiona(n) is plotted forn between 1 and 200,
and in inset for values af between 0 and tsolid line curves The
dashed lines represent the asymptotic expansions for rate6)
and smalin (109.

2
+13G3+ k?(1—13)?

o[}

ol el ez o

wheref, and G, satisfy Eqs.(22) and(23). We notice that
for a magnetic field oriented along taelirection,G, repre-
sents they component of the potential vector. The expression
(A1) can be written in different forms by making use of the
identities:

jw dfy)?
— 00 W

fw dx{(deo) —deGO}z—zf G2f2dx,

(A1)

dx=f {2k%F3(1—3)— G3f2ldx, (A2)

(A3)

G212 dfp\? 1/dGy\2
dx] 2| dx

The first two identities are obtaingd.g., Ref. 20from Egs.
(22) and (23) by integration by parts. The third identity re-
sults from the conservation la25). Using Eg. (A2) to

—k2(1-13)2.  (Ad)
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eIiminatef(df()./dx)2 fror_‘n !Eq.(Al) _provides the expression d292 1dg,

(34) of the main text. Similarly, using Eq$A2), (A3), and ar =2g,+4f.0;.

(A4) to eliminatef (dfo/dx)2, [(dGy/dx)? and[ 2GZ from dr? T dr

Eqg. (Al) leads to the alternative expressi(@¥) of the main ) ) o _
text: Solving this system by “variation of constants,” we obtain

fo,=AKy(2 Bly(2 —14(2
”("):g"zﬁ ((1 for- Klfddi)dx (A5) 2= AKo(2xT) +Blo(2KT) ~lo(2T)

xf u duKy(2xu)[2K 1 (u2)2
Finally, we note that the integral of¢ in Eq. (37) is trans- r

formed into Eq.(A5) by integrating separately by parts the 2 21

integrals between-o and 0 and between 0 antle; 61 Ko(20cU)"]= Ko(24r)

;
» © df? xf u duly(2xU)[ 2K 1 (Uv2)2+ 62K o(2ku)2],
f ¢(x)xdx=f (X+Xc)a dx 1
- - (B3)
foo 2 Yoo
= 1-f dx—f fgdx
_xc( o e 0 g,=CKo(2kr)+Dlo(2kr) —42r1 1(v/2r)
o 1 dGy *
=j (<1—fg) )dx (AB) xf Ko(2xu)[K1(v2u)]?u du—442rK ,(y2r)
e K\/— dx r
. . . . . r
The last equality is obtained by adding 0 under the compli- Xf Ko(2kU)K \/fu)ll( \/fu)u du. (B4)
cated form 0
+oo 1 dGo —Xc 1 dGq Since f, and g, must be finite at infinity, we hav8=D
0= dx| — dx|1— —=—— .~ . .
. X« 2 “dx o /2 dx |’ =0. The two other coefficients are found by matching with
¢ (A7) the inner expansions in the vicinity of zero. For this purpose,
we need the local expansions fodndg in the vicinity of 0
up to the orden?. Using Eqs.(82) and(86), we obtain
APPENDIX B: SECOND ORDER COMPUTATION IN THE
n—0 LIMIT AND SOME USEFUL FORMULAS . 5 )2
We first recall some useful asymptotic formulas for the f(r)=1+n{InZ+0O(rInr) |+ = ('nﬁ +O(r "”))
modified Bessel functions:
+0(n3). (B5)

Ko(r)= —In%— y+O(r?nr),
g(r)=—n@+0O(r?Inr))+n?

r2Inr 1—Inr
R R

+O(r2))
Ky(r)= 2|n2+4(27—1)+0(r2|nr), +0(nd). (B6)

2 Because the coefficient of in the local expansiofB6) of g
Ky(r)= —2+(9(r‘1). (B1)  tends to zero when vanishes, one must hagg— 0 when
r r—0 and thereforecC=0. To obtain the coefficienf, we
must determine the divergences bf given by Egq.(B3)
dKq d whenr—0: the termAKy(2«r) produces a singular term
dar —Ky(r) and E[rKl(r)]: —rKo(r), —AlInr whenr—0; from the expansions of the Bessel func-
tions (B1), we find the diverging part of the first integral in
di, d Eq. (B3) to be —[72uduKy(2«xu)K,(uy2)? which is
ar ~la(r) and [rla(r]=rlo(r). (B2)  equivalent tof3, [In(w2)+ y]du/u; thus the first integral
gives a singular term equal to
We now explain how the matching procedure is carried out
up to the second order in the case+0. The functionsf, (Inr)2
andg, solve the linear system: 5 +(—vy—Ink)Inr;

2
&jL 1df, — 2= Ak, + &+6K2fi, similarly the singular term due to the second integral in Eq.
drz  rdr (B3) is given by
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1
(Inr)z—lnr(—y—ln K+2f udu
0

X

1
lo(26u)Ky(UuN2)?=— | ).
2u?
Hence the total diverging part df is

(Inr)?
2

—Inr

A+2folu du( lo(2kU)K(uy2)2— %) )
(B7)

Identifying this expression with the singular part of thé
term in the expansiofB5) of f and using Eq(85) provides

PHYSICAL REVIEW B64 134512

From Egs.(B2) and (B9), we obtaindg; /dr=2rK o(/2r)
and

%=4r[ _|o(\/§r)Ji Ko(u) (Ky(w)?u du
Ver
J2r
+Ko<ﬁr>fo Ko(WK1 ()l (uu du.

(B12)
The coefficient ofn? in Eq. (B10) is therefore given by

Zder dg, dg,
o r \dr dr

the value ofA and leads to the second order terms in the

small n expansion of andg:
f2=AK0(2Kr)—I0(2Kr)eru duKy(2xu) (2K (uy2)2
+6x%Ko(2kU)?)
—Ko(zKr)ﬂu duly(2xu) (2K, (uv2)2

+6k%Ko(2KU)%),

1
with A=—y—|nx—2f udu
0

X (BY)

1
lo(2kU)K 1 (uy2)2— E);

9= —42r1 4 \/Er)fero(ZKU)(Kl( V2w)?u du

— 432rK ﬁr)f;K()(zKu)Kl(ﬁu)Il( J2u)u du

(B9)

We can now derive the smafl asymptotic behavior of
a(n). From the explicit relation99), we obtain, up to the

second order im,

_1f°°dr dg|® jwdr dg;\?
am=5), v lar) =)o v lar
=dr (dg, dgz)
2 (797 9Y9 U9 3
+2n fo ; (dr ar +0O(n®), (B10)

where the functiongy; are calculated at the dual poirt
=1/\/2. Recalling thatg;=—2rK ,(y/2r) [see Eq.(81)]
and using Eq(B2) we have

=dr (dg,|? ®
LT(%) =2f0 xK2(x)dx=1.

(B11)

- d
:4f drKO(ﬁr)&
0 dr

=—8fwdv vKo(v)Io(v)ijo(U)(Kl(U))ZU du
0

v

+8f:du qu(v)f:Ko(u)Kl(u)l1(u)u du.

(B13)
From Eq.(B2) we can verify that

2
v
f dv vK3(v)= 7(Kg— K%) and

2
J dv 0K o(0)lo(v) = %(Kolo+ Ky,  (B14)

Integrating Eq(B13) by parts leads to
—8J dv vKo(v)IO(v)f Ko(u)(K4(u))?u du
0 v

= —4f dv v3(Kol o+ Kql1)KoK?2,
0

Sdev vKS(v)vao(u)Kl(u)ll(u)u du
0 0

:—4f dv v3(KE—KH KKl 4. (B15)
0

Summing these two expressions and usikgl,+Kqlg

=1/v leads to
»dr(dg, dg o
Zfo T(d_rl d_rz) =—4f0 dv UZK(Z)(U)Kl(U)-
(B16)

This concludes the derivation of EGL09). The free energy
in the smalln limit up to ordern? (90) is derived by similar
calculations.
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