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Josephson current in superconductor-ferromagnet structures with a nonhomogeneous
magnetization

F. S. Bergeret,1 A. F. Volkov,1,2 and K. B. Efetov1,3

1Theoretische Physik III, Ruhr-Universita¨t Bochum, D-44780 Bochum, Germany
2Institute of Radioengineering and Electronics of the Russian Academy of Sciences, 103907 Moscow, Russia

3L.D. Landau Institute for Theoretical Physics, 117940 Moscow, Russia
~Received 2 May 2001; published 4 September 2001!

We calculate the dc Josephson currentI J for two types of superconductor-ferromagnet~S/F! Josephson
junctions. The junction of the first type is a S/F/S junction. On the basis of the Eilenberger equation, the
Josephson current is calculated for an arbitrary impurity concentration. Ifht!1, the expression for the
Josephson critical currentI c is reduced to that which can be obtained from the Usadel equation (h is the
exchange energy, andt is the momentum relaxation time!. In the opposite limitht@1 the superconducting
condensate oscillates with periodvF /h and penetrates into the F region over distances of the order of the mean
free pathl. For this kind of junctions we also calculateI J in the case when the F layer presents a nonhomo-
geneous~spiral! magnetic structure with the period 2p/Q. It is shown that for not too low temperatures, thep
state which occurs in the case of a homogeneous magnetization (Q50) may disappear even at small values of
Q. In this nonhomogeneous case, the superconducting condensate has a nonzero triplet component and can
penetrate into the F layer over a long distance of the order ofjT5AD/2pT. The junction of the second type
consists of two S/F bilayers separated by a thin insulating film. It is shown that the critical Josephson current
I c depends on the relative orientation of the effective exchange fieldh of the bilayers. In the case of an
antiparallel orientation,I c increases with increasingh. We establish also that in the F film deposited on a
superconductor, the Meissner current created by the internal magnetic field may be both diamagnetic or
paramagnetic.

DOI: 10.1103/PhysRevB.64.134506 PACS number~s!: 74.80.Dm, 74.50.1r
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I. INTRODUCTION

The interplay between ferromagnetism and supercond
tivity in layered structures has attracted a great interest in
last years. In a rough approximation, these states are an
nistic to each other and the ferromagnetism, being usu
much stronger than superconductivity, is supposed to des
the latter. However, in many cases the coexistence of th
two phenomena is possible, even if the superconducting c
cal temperatureTc is by an order of magnitude lower tha
the Curie temperature of the ferromagnet. Such is the c
when dealing with superconductor-ferromagnet~S/F! hybrid
structures. In these systems the mutual interaction of th
two states may lead to significant changes of the thermo
namic and transport properties.

In particular for S/F/S systems in equilibrium, one of t
most interesting effects is a phase shift byp between weakly
coupled superconductors, the so calledp state. The possibil-
ity of the p state in S/F/S structures was first predicted
Bulaevskii and co-workers1,2 and studied in later
works.3,4.The transition to thep state manifests itself in a
nonmonotonic~and even oscillatory! thickness dependenc
either of the superconducting critical temperatureTc or of
the critical currentI c , and in the change of sign ofI c if the
exchange fieldh exceeds a certain value in the S/F
junction.1–7Although some experiments on the thickness
pendence ofTc in S/F structures show that for a certa
thickness of the F layer, the ground state of the system m
correspond to thep-phase shift between the adjacent sup
conductors~see, e.g., Ref. 5!, this kind of coupling was not
0163-1829/2001/64~13!/134506~11!/$20.00 64 1345
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observed in other experiments~see, for example, Ref. 6!.
Only recently, the experiment of Ref. 7 on the measurem
of the currentI c(T) in the Nb/CuxNi12x /Nb Josephson junc
tion demonstrated unambiguously the transition from the 0
the p-phase difference between the superconductors.

In all theoretical works,1–4 calculations were performed
either in the diffusive limit, in which the Usadel equatio
was applicable, or in the pure ballistic limit, where the elas
scattering by impurities was completely neglected. At t
same time, very often the parameters characterizing
samples in experiments, such as the sample size, the m
free path, or the strength of the exchange field, do not co
spond to these limits. Therefore, there is a certain need
study the Josephson current in the S/F/S structures not
in extreme limits but also in the intermediate region of t
parameters.

In this work, we calculate the critical Josephson curre
I c in a S/F/S junction for arbitrary impurity concentration
Since the approach based on the Usadel equation8 ~dirty
limit ! is valid only if the parameterht is small (h is the
exchange field of the ferromagnet andt is the momentum
relaxation time!, we use in an arbitrary case the more gene
Eilenberger equation9,10 in which, generally speaking, th
elastic collision integral is not neglected. As mention
above, in real experiments the parameterht may take differ-
ent values depending on the sample and therefore our th
can serve as a good description of the experiments.

Moreover, in all theoretical works mentioned previous
it was assumed that the magnetic ordering in the ferrom
netic layers was homogeneous. However, ferromagnetic
©2001 The American Physical Society06-1
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terials exhibit generally more complex magnetic structur
In strong ferromagnets, like Fe or Ni, the magnetic grou
state consists of homogeneously magnetized domains
different relative orientations. Also ‘‘weak’’ ferromagnet
like some ternary compounds with a regular lattice of ra
earth elements, turn out to be superconducting as the cry
undergo a transition into a state with a nonhomogene
~helicoidal! magnetic order~see Ref. 11 and reference
therein!. A similar nonhomogeneous structure may arise
bilayered S/F structures. For example, an experiment12 and
two theoretical works13,14suggested a possible existence o
nonhomogeneous magnetic ordering in the ferromagn
layer in a S/F system. Also, in experiments on giant mag
toresistance~GMR! in magnetic multilayers employing su
perconducting contacts, nonhomogeneous magnetic s
tures can be created artificially~see, e.g., the review Ref. 1
and references therein!.

In spite of the importance for the experiments, a theo
ical analysis of the influence of a nonhomogeneous mag
tization on the properties of S/F junctions is still lackin
Therefore, the second goal of this paper is to investigate
influence of nonhomogeneous magnetic configurations
the supercurrent through different kinds of superconduc
ferromagnet Josephson junctions.

In Sec. III we consider a S/F/S system, with an nonu
form ~spiral! magnetic ordering. We derive an expression
the critical currentI c(Q) , whereQ is the wave vector of the
spiral magnetic order. We show that, whereas forQ50 the
transition from the 0-phase state to thep-phase state is pos
sible, even small nonzeroQ values may restore the 0-pha
state. The reason for this is the existence of a triplet com
nent of the superconducting condensate in the ferroma
due to the proximity effect and the nonhomogeneous m
netic structure. In the limitht,1 this component does no
decay over the short distanceAD/h, which corresponds to
the length of decay of the usual singlet component, surviv
up to a much longer distance;AD/2pT (D is the diffusion
coefficient!. The influence of this triplet component on th
transport properties of the S/F mesoscopic structures
studied in Ref. 16.

In Sec. IV, we analyze the dc Josephson current in a
nel junction composed either of two S/F bilayers or of tw
magnetic superconductors. We derive an expression for
critical currentI c as a function of the relative anglea be-
tween the magnetization of both F layers. The most imp
tant and surprising result is that for an antiferromagnetic c
figuration, a5p, the currentI c increases with increasin
exchange fieldh. The calculated dependence ofI c on various
parameters allows us to make some conclusions not onl
the magnetic order of the ferromagnetic materials used in
structures but also on nonhomogeneous supercondu
states predicted by Fulde and Ferrel17 ~FF! Larkin and
Ovchinnikov18 ~Lo!.

In Sec. V we show that a Meissner current is induced
the F region due to the internal magnetic field of the fer
magnet. The Meissner current density has a different sig
different points, and the total current in the ferromagne
either diamagnetic or paramagnetic depending on the th
nessd of the F film.
13450
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In the Appendix we present the derivation of the ma
equations used in this article. All our calculations are ba
on the Eilenberger9,10 or on the Usadel8 equations, general
ized to the case of a spin-dependent interaction varying
space. Another approach based mainly on
Bogolyubov–de Gennes equations was widely used for
study of the spin injection from a ferromagnet into unco
ventional superconductors~see, e.g., Ref. 19 and referenc
therein!. In the present work, we restrict ourselves to the c
of conventional superconductors withs-wave pairing.

II. JOSEPHSON CURRENT IN A SÕFÕS STRUCTURE

In this section we calculate the dc Josephson currentI J in
a S/F/S structure. In order to make the consideration as g
eral as possible we use the Eilenberger equation9 including
the elastic collision term. This allows us to calculateI J for an
arbitrary impurity concentration and to formulate conditio
under which the ballistic or diffusive limits can be obtaine
In order to find the condensate Green’s functionf̂ v in the F
region in an analytical form, we assume that the proxim
effect is weak, i.e.,u f̂ vu!1, and linearize the collision term
in the Eilenberger equation. This assumption can be rea
able for structures with a big mismatch between the Fe
surfaces in F and S, which leads to a small transmiss
coefficientT through the S/F interface. If the coefficientT is
of the order of unity, we hope that our results are valid
least qualitatively.

We consider the S/F/S structure shown in Fig. 1 and
sume that the exchange energyh is homogeneous in the F
region~the case of a nonhomogeneoush will be analyzed in
the next section!. Because of the small interface transpa
ency, one can neglect the suppression of the order param
D in the superconductor due to the proximity of the ferr
magnet. We assume also that there are no spin-flip proce
in the ferromagnetic region; i.e., the spin-relaxation length
larger than the thicknessd of the ferromagnet and there ar
no spin processes at the S/F interface. The linearized Ei
berger equation in the Matsubara representation has the
lowing form:

m l t̂3]x f̂ 12~vm2 ih ! f̂ 5sgnv~^ f̂ &2 f̂ !. ~1!

Heret̂3 is the Pauli matrix,m5cosu, u is the angle between
the momentum and thex axis, l 5vFt is the mean free path
and vm5pT(2m11) is the Matsubara frequency. The a
gular brackets denote the average over angles:^•••&

FIG. 1. The S/F/S system.
6-2
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5(1/2)*21
1 dm(•••). Equation~1! is complemented by the

boundary conditions atx56d/2, which in the case of low
transparency take the form20

â52~g/2!@sgnvt̂31 ŝ,ĝs1 f̂ s#>2g sgnv~t̂3 f̂ s!x56d/2 ,
~2!

where â and ŝ are the antisymmetric and symmetric~with
respect tom) parts of f̂ , g5T(m)/4 is a parameter describ
ing the transmittance of the interface,T(m) is the transmis-
sion coefficient, andĝs and f̂ s are the quasiclassical norm
and anomalous Green’s functions of the superconduct
The square brackets denote the commutator. When wri
the last equality, we neglect the term proportional tof̂ , since
u f̂ u;g. The condensate functionf̂ s in the superconductor
can be written as

f̂ s~6d/2!5@ i t̂2cos~w/2!6 i t̂1sin~w/2!# f s , ~3!

where f s5D/AD21vm
2 and w is the phase difference be

tween the superconductors.
It is convenient to represent the solution of Eq.~1! as a

sum of the symmetric (ŝ) and the antisymmetric (â) parts,

f̂ 5 ŝ1â. ~4!

Substituting this expression into Eq.~1! and separating the
symmetric and antisymmetric terms, one obtains two eq
tions which determine the functionsâ and ŝ:

â52sgnv~m l /kv!t̂3]xŝ, ~5!

m2l 2]xx
2 ŝ2kv

2 ŝ52kv^ŝ&, ~6!

wherekv5(112uvmut)2sgnv2iht. Thus, the problem is
reduced to finding the solution for Eq.~6! in the interval
uxu,d/2 with the boundary conditions given by Eqs.~2! and
~5!. To this end it is convenient to extend formally the fun
tion ŝ over the wholex axis and to write Eq.~6! in the
following form:

m2l 2]xx
2 ŝ2kv

2 ŝ

52kvF ^ŝ&12m lg f s (
n52`

`

@ i t̂2cos~w/2!

1~21!ni t̂1sin~w/2!#d„x2~d/2!~2n11!…G . ~7!

One can prove that the solution of Eq.~7! obeys the bound-
ary conditions.

Performing the Fourier transformation, we find the so
tion for the Fourier transform ofŝ,

ŝk52 f sBF̂, ~8!

where
13450
rs.
g
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kv

~12kv^M 21&!M
@gm l 2kvl ~mg^M 21&2^mg/M &!#,

~9!

F̂5(
2`

`

exp@ ikd~2n11!/2#@ i t̂2cos~w/2!

1~21!ni t̂1sin~w/2!# ~10!

and

M5~m lk !21kv
2 . ~11!

The functionŝ determines the dc Josephson current, as w
as the variation of the density of states~DOS! due to the
proximity effect. It is given by the inverse Fourier transfo
mation

ŝ~x!5E dk

2p
exp~2 ikx!ŝk . ~12!

The current is determined by the expression

I J5
1

8
GQN~2p i !~2T!Trt̂3(

vm

^avm& ~13!

5
1

8
GQN~2p i !~2T!Trt̂3(

vm

^~mg/2!@ ŝ~d/2!, f̂ s#&,

~14!

whereGQ5e2/\, N5kF
2S/p2 andS is the cross-section are

of the junction. In writing Eq.~13! we have used the bound
ary condition, Eq.~2!. The summation over Matsubara fre
quencies is carried out fromm52` to m51`. Substitut-
ing Eqs. ~6!–~12! into Eq. ~13!, we obtain finally the dc
Josephson current

I J5I csinw, ~15!

where

I c5GQNJc ~16!

and

Jc52pT Re (
v.0

`

(
n50

`

f s
2E dk

2p
^gmB&exp@ ikd~2n11!#.

~17!

Equation~17! determines the critical current and is valid fo
any impurity concentration. Its analytical evaluation is rath
complicated, since it includes summation over Matsub
frequencies, integration over the momentumk, and the aver-
aging over the angles. Here we will discuss two limitin
cases in which Eq.~17! can be simplified.

~a! ht!1 ~dirty case!. This limit corresponds to a ferro
magnet with a weak exchange fieldh or to an alloy like that
used in Ref. 7, for which the conditionh>Tc is satisfied. In
this case the conditionht!1 implies that the quantitiesDt
and Tt are also small. From Eq.~9! one can determine the
coefficient B; in this limit B>^mg& l /@( l 2/3)(k21k1

2 )#,
6-3
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wherek1
2 52(v2 ih)/D and D5vFl /3 is the diffusion co-

efficient. Using Eq.~17! we obtain for the normalized critica
currentJc

Jc5
3

4
^mg&2Re~2pT! (

v.0

1

k1l sinh~k1d!

D2

D21vm
2

.

~18!

This is the usual expression for the critical current o
tained from the Usadel equation in the case of a weak p
imity effect ~cf. Refs. 4, 7, and 21!. In Figs. 2 and 3 we plot
Jc as a function ofT andd. As has been shown in the pre
vious studies, the functionJc is a rapidly decaying withT
and d function which undergoes several oscillations. Th
oscillatory behavior of the critical current may explain t
change from a 0-phase state to ap-phase state observed
Ref. 7.

We consider now another interesting case.

FIG. 2. Dependence of the normalized critical currentJc /g2D0

on the thicknessd of the ferromagnet forD0t50.05 andT/D0

50.01. The curves forht50.1 andht50.5 are multiplied by a
factor 10 for clarity.

FIG. 3. Dependence of the normalized critical currentJc /g2D0

on the temperature forD0t50.03, ht50.06 andd/ l 5p.
13450
-
x-

~b! ht@1. This condition corresponds to most of the e
periments performed on S/F systems, in which F is
‘‘strong’’ ferromagnet like Ni or Fe. It does not necessari
mean that we are analyzing the clean case~i.e., Tct.1),
since the value of the exchange fieldh can be much larger
than Tc . For example, if the mean free pathl equals
;300 Å, thent21;300 K@Tc , whereasht>1 ~we take
vF523107 cm/s). Therefore in the limitht@1 we can
deal in principle with an arbitrary value oftTc ~although
realistic materials and samples correspond to the caseTct
!1). It is worth mentioning that in this case the use of t
Usadel equation is not justified.

The conditionht@1 implies thatkv@1, kv /M!1, and,
as one can see from Eq.~9!, B>kv(gm l )/M . Performing the
integration overk, we find forJc

Jc5
1

4
~2pT!Re (

v.0
f s

2K mg2

sinh~kvd/m l !L . ~19!

One can see from Eq.~19! that the critical current oscil-
lates with varyingd or h ~cf. Ref. 2 where the cased! l was
considered! and decays with increasingd over the mean free
pathl. In Figs. 4 and 5 we plot the dependence ofJc ond and
T calculated numerically from Eq.~19!. We see that in this
limit the critical current does not oscillate with the temper
ture if the exchange field is temperature independent~this
assumption is quite reasonable in the case of transition m
als as Fe or Ni!. It can change sign in a hypothetical ca
Tct.1. In the limit d/ l @1 the critical current is exponen
tially small and one can perform the angle averaging in E
~19!. Thus, we find in this limit

Jc5~pT! (
v.0

f s
2g2~1!

sin~2hd/vF!

~2hd/vF!
exp@2~d/ l !~112vt!#.

~20!

It follows from Eq. ~20! that the critical current oscillates a
a function of d or h and decays withd exponentially if d
. l and as (hd/vF)21 if d> l . This power law dependence o

FIG. 4. Dependence of the normalized critical currentJc /g2D0

on the thicknessd of the ferromagnet forD0t50.05 andT/D0

50.1.
6-4
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I c on h can be even weaker ifg depends onm (g has a
maximum atm51 and decays with decreasingm).

III. S ÕFÕS JUNCTION WITH AN NONHOMOGENEOUS
MAGNETIZATION

In this section we consider a nonhomogeneous magn
zation in the magnetic region. This nonhomogeneity can
due to domain walls or, as in the case of experiments
GMR, due to an artificial layered magnetic structure. In pr
ciple, variation of the magnetic moment on the coordina
can be rather complicated, which makes explicit calculati
difficult. To simplify the consideration we restrict ourselv
with the cases of a magnetic spiral structure in the F reg
with a wave vectorQ and calculate the dependence of t
critical Josephson currentI c in a S/F/S junction on the wav
vectorQ.

Below we consider only the dirty case (ht,1) and as-
sume again a weak proximity effect. This means thatg must
be small enough:g!Aht. In the limit of smallht one can
use the Usadel equation for finding the condensate func
f̂ . However, in the case of a rotating magnetization~or
equivalently a rotating exchange fieldh) we need to gener
alize our approach because not only singlet correlators
^c↑c↓& are induced in the F region, but also correlators
the type^c↑c↑& become nonzero~triplet component!. In this
case we introduce new 434 matrices for the quasiclassic
Green’s functions~see the Appendix!. The 434 condensate
Green’s functionš ~to be more exact, its symmetrical par!
obeys the generalized Usadel equation in the Matsubara
resentation

2 iDǧ0]xx
2 š1@M̌h ,š#50, ~21!

where ǧ05 t̂3^ ŝ0 , D5vFl /3 is the diffusion coeffi-
cient, and M̌h5 t̂3^ (ŝ0i uvmu1ŝ3h sgnvmcosa)2t̂0

^ŝ2hsgnvnsina. Here a5Qx is the angle between thez

FIG. 5. Dependence of the normalized critical currentJc /g2D0

on the temperature ford/ l 51. The two upper curves correspond
the caseht55, and the the two lower curves to the caseht510.
For clarity, in the three lower curves, the values of the criti
current have been multiplied by a factor of 5.
13450
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axis and the direction ofh. As in the previous section, we
neglect corrections to the ‘‘normal’’ Green’s functionǧ0 due
to the proximity effect.

Equation~21! is a linear matrix differential equation with
space-dependent coefficients. This spatial dependence ca
excluded from the consideration by making a rotation in
Nambu spin space and by introducing a new matrixšn : š

5ǓšnǓ†, whereǓ5 t̂0^ ŝ0cos(a/2)1 i t̂3^ ŝ1sin(a/2). Af-
ter the rotation Eq.~21! acquires the form

]xx
2 šn2~Q2/2!~ šn2ǍšnǍ†!1Q~Ǎ]xšn1]xšnǍ†!

2@ t̂0^ ~ ŝ0uvmu2 ih sgnvmŝ3!,šn#150, ~22!

whereǍ5 i t̂3^ ŝ1 and the last term is an anticommutator.
Q50, Eq. ~22! coincides with Eq.~21! and can be easily
solved. The critical currentI c has been calculated in the pre
vious section, and its dependence onT andd is presented in
Figs. 3 and 2. It is seen that the critical currentI c changes the
sign at someh of the order of the Thouless energyed
5D/d2. The characteristic value ofh for the transition to the
p state increases with increasingT. This result is well known
for both types of Josephson~equilibrium and nonequilib-
rium! junctions in which the sign-reversal effect ofI c takes
place. Earlier than in S/F/S junctions, this effect was o
served in four-terminal S/N/S Josephson junctions wher
voltage V was applied between the normal reservoirs a
therefore an additional dissipative current flows between
N reservoirs22 were possible.

The critical current changes sign in these junctions due
a shift of the distribution function in the N electrode wit
respect to the distribution function in the superconductors
contrast to this case, the sign reversal effect in S/F/S ju
tions is realized at equilibrium conditions. However, there
a formal analogy between these two cases because the
mulas for the critical current can be reduced to each othe
shifting the energy scale and by replacingh → eV ~this
analogy was noted in Refs. 23 and 21!.

In the case of a finiteQ, the formulas forš become more
complicated. In order to make them more transparent,
assume that the overlap of the condensate functionsš in-
duced by the different superconductors is weak. This me
that max$h,T% should be greater thaned . Then, we represen
the solution of Eq.~22! for š as a sum of two functions

š~x!5Ǔ@Ššn~d/21x!Š†1Š†šn~d/22x!Š#Ǔ†. ~23!

The matrixŠ allows one to take into account the phase d
ference w between the superconductors:Š5@ t̂0cos(w/4)
1 i t̂3sin(w/4)# ^ ŝ0. The first and second terms in Eq.~23!
come from the superconductor atx52(d/2) and x

51(d/2) respectively. The functionšn(x) is a solution of
Eq. ~22! for an infinite S/F system with a vanishing pha
w50. The boundary condition for the new matrixšn has the
form

]xšn1~Q/2!@Ǎšn1 šnǍ†#52~ g̃/ l ! f̌ s . ~24!

l

6-5
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Here f̌ s5 i ť2^ š3f s and g̃53^gm&; f s andg have been de-
fined in the previous section. It is not difficult to see that t
function šn(x) has the following form:

šn~x!5 i t̂2^ @ŝ0S0~x!1ŝ3S3~x!#1 i t̂1^ ŝ1T~x!,
~25!

where the functionsS0(x), S3(x), andT(x) are the ampli-
tudes of the singlet and triplet components, respectively.
these functions may be represented as a sum of three e
nentials corresponding to the eigenvalues of Eq.~22!. For
example, the expression forS3(x) is

S3~x!5S31exp~2k1x!1S32exp~2k2x!1S3lexp~2k lx!.
~26!

Identical formulas may be written for the functionsS0(x)
and T(x) with the factors in front of the exponentials d
noted asS06 , S0l , and T6 ,Tl correspondingly. Analytical
expressions for the coefficients and eigenvalues can be
tained in the limits of small and largeQ, i.e., DQ2!h or
DQ2@h. In the limit of smallQ, we find after some algebr

k6
2 52~ uvmu7sgnv ih !/D, k l

252uvmu/D1Q2 ~27!

and

S3657S065g̃ f s/2~k6l !,

Tl5
1

2
~ g̃ f s!

~k22k1!Q

l ~k1k2!k l
,

S3l5~ g̃ f s!
~k12k2!Q2

l ~k1k2!kh
2

sgnv, ~28!

wherekh
2522ih/D.

We note some new important features that appear at fi
Q. If Q is zero, only the first two terms in Eq.~26! are
nonzero and the decay is characterized by a short lengtjF

5AD/h ~in case of large enoughh). If Q is finite, an addi-
tional term~the last term! appears in the formula forS3(x)
which, at low temperatures, decays over a much larger len
of the orderAD/2pT. Alongside with the last term, the trip
let component becomes nonzero. The triplet component c
tains also a long-range termTlexp(2klx) which increases
with increasingQ. Due to the last term in Eq.~26!, the de-
pendence of the critical current onh ~or T) is drastically
modified even at smallQ.

In order to calculate the currentI J , we can use the genera
expression, Eq.~13!. In the dirty limit it can be written as
follows:

I J5~S/16r!~2p i !~2T!Tr~ t̂3ŝ0!(
v

š]xš

5~S/16r!~2p i !~2T!Tr~ t̂3ŝ0!~ g̃/ l !(
v

šf̌ sux5d/2 .

~29!
13450
ll
po-

b-
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n-

One can show that this expression does not change its f
under theǓ transformation andš in Eq. ~29! may be re-
placed byšn(d/2). Performing simple operations, we obta
for the current an expression with the same form as Eq.~15!
with

I c5~S/r l !g̃2 (
v.0

f s
2Fexp~2k1d!

k1l
1

~Ql !2

2~3ht!3/2
exp~2k ld!G .

~30!

The first term in the brackets corresponds to the te
@2(k1l )(sinhk1d)#21 in Eq. ~17! in the limit of a large ex-
ponent. It decays with increasingd over the short character
istic lengthjF5AD/h. The second term in Eq.~30! is caused
by the rotation ofh along thex axis. It decays withd over the
characteristic lengthk l

21 , which can be much longer tha
jF . Therefore this term leads to a drastic change of the c
cal current. We calculated numerically the critical currentI c
and presented its temperature dependence forht50.06 in
Fig. 6. One can see that for this choice ofh the critical
current is negative atQ50 (p junction!. However, it be-
comes positive at some finiteQl smaller thanht. With in-
creasingQ the long-range term in Eq.~26! and the triplet
component increase, reach a maximum, and then decr
again to zero at large enoughQ.

In the limit of largeQ, the coefficientsS36 , S06 and the
triplet components are small. The coefficientS3l5g̃ f s /(kl)
has the same form as in the absence ofh. For the eigenvalues
we obtain

k656 iQ1A2vm /D, k l5A2~vm /D !14h2/~DQ!2.

We see that in the limit of largeQ the solution forf̌ has the
same form as in a S/N/S structure~no exchange field!; i.e.,
the term (s fS /u)exp(2klx) dominates. The first two terms in
the singlet componentS3(x) which contribute to the Joseph
son current@see Eq.~26!# are small. They oscillate rapidly in
space and decay over a large distance of the order ojT

5AD/2pT ~in the limit DQ2,h). In the main approxima-
tion in the parameter (h/DQ2) the temperature dependenc
of the critical currentI c is the same as for a S/N/S junctio
and we do not present this dependence here.

FIG. 6. The dependence of the critical current onT for ht
50.06, D0t50.03, d/ l 5p, and different values ofQl.
6-6
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IV. SÕF-I-F ÕS SYSTEM

In this section we consider a layered system consisting
two F/S bilayers separated by an insulating layer~see Fig. 1!.
In this case the Josephson critical current is determined
the transparency of the insulating layer and depends on
relative orientation of magnetization in the F layers.

We assume that the F and the S layersdF,S are thin
enough:dF,S,jF,S , wherejF5AD/h andjS5AD/D. First,
we analyze the case of a high S/F interface transparency,
RS/F,rF /jF . Under these conditions all the Green’s fun
tions are nearly constant in space and continuous acros
S/F interface.

In order to find the Green’s functionsǧR(A), we multiply
the components~1,1! and~2,2! of the matrix equation~A11!
~the Usadel equations! by the density of statesnF,S in the F
and S layers, respectively, and integrate over the thicknes
the bilayers. Neglecting the influence of one bilayer on
other @this means that (ǧ]xǧ)50 at the F/I interface#, we
obtain the following equation:

sgnv@M̌h ,ǧ#1@D̂S^ ŝ3 ,ǧ#50, ~31!

Here the matrixM̌h has the same structure as in Eq.~21!, but
h has been replaced byhF5h(nFdF)/(nFdF1nSdS), and
D̂S5D̂(nSdS)/(nSdS1nFdF). We assume that the vectorh in
the left layer is oriented along the z axis and has the com
nentsh(0,sina,cosa) in the right electrode. One can sim
plify Eq. ~31! in the right bilayer with the help of the trans
formation~A14!. In this case one obtains for the both laye
the same equation

@ t̂3^ ~eŝ01hFŝ3!,ǧ#1@D̂S^ ŝ3 ,ǧ#50. ~32!

We can solve Eq.~32! by making the ansatz

ǧ5 t̂3^ ~a0ŝ01a3ŝ3!1D̂S^ ~b0ŝ01b3ŝ3!. ~33!

From Eq. ~32! and the normalization condition~A12! one
can obtain the coefficientsa’s andb’s. In the left bilayerǧ is
given by the expression~33! while in the right bilayer it is

given by ǧ(r )5Ǔ1 g̃̌(r )Ǔ, i.e.,

ǧ(r )5 t̂3^ ~a0ŝ01a3cosuŝ3!2 t̂0^ a3sinuŝ21D̂S

^ ~b0cosuŝ01b3ŝ3!2 t̂3D̂S^ ib0sinuŝ1 .

According to Eq.~A16! only the coefficientsb0 andb3 will
enter in the expression for the Josephson current, and
are given by

~b3! l ,r5
1

2 S 1

j1
1

1

j2
D

l ,r

, ~b0! l ,r5
1

2 S 1

j1
2

1

j2
D

l ,r

,

where j65Ae6
2 2uDSu2, and e65 ivm6h. By writing DS

5uDSuexp(iw) on the right side one obtains the followin
expression for the critical current:
13450
of

y
he

e.,

the

of
e

o-

ey

eVc~a![eIcRb52pTD lD r (
m.0

H ReS 1

jm
D

l

ReS 1

jm
D

r

2cosu ImS 1

jm
D

l

ImS 1

jm
D

r
J , ~34!

wherejn5A(vm1 ihF)21DS
2 andRb is the tunnel resistance

of the I layer. Formula~34! coincides with the formula pre
sented in Ref.24. In the latter work the authors considered
Josephson junction consisting of two magnetic superc
ductors with an oscillating magnetic order. Thus, we ha
shown that the system of Fig. 7 and that of Ref. 24
equivalent. However the authors of Ref. 24 did not consi
some interesting properties of such structures. We note
the same structure was also analyzed in Ref. 25, where
critical current was calculated for different S/F interfa
transparencies. The authors have found the conditions u
which the system undergoes a transition to thep state; how-
ever, they analyzed only the case of parallel magnetizati

Here we consider two limiting cases:~a! a parallel relative
orientation of the magnetizations, i.e.,a50, and~b! an an-
tiparallel orientation:a5p.

In the casea50 according to Eq.~34!, the critical current
is given by the expression

eVc↑↑[eIc↑↑Rb54pTDS
2(

m

vm
2 1DS

22hF
2

~vm
2 1DS

22hF
2 !214vm

2 hF
2

.

~35!

In writing Eq. ~35! we assumed thathF and uDSu are the
same in both bilayers~symmetric structure!. The dependence
of the critical current on the exchange fieldhF was presented
in Ref. 26. AtT50 the currentI c is constant up to the value
hF5D0 where it drops to zero;D0 is the effective energy gap
DS at zero temperature and zero exchange field. This
consequence of the fact that the order parameterD is also
constant. We do not consider here a possible transition to
LOFF phase predicted by Larkin and Ovchinnikov~LO!18

and Fulde and Ferrell~FF!17 for the region 0.755DS0,hF .
We argue that since the homogeneous superconducting
in this region is a metastable state, its realization is possi
Nevertheless, our result is definitely valid for the region
smallhF , and a possible transition to the LOFF phase wo
manifest itself in a drop of the the critical current.

More interesting is the case when the relative orientat
of the magnetizations is antiparallel, i.e.,a5p. Then, the
critical current is given by the expression

FIG. 7. SF/I/SF system.
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eVc↑↓~p![eIc↑↓Rb

54pTDS
2(

m

1

A~vm
2 1DS

22hF
2 !214vm

2 hF
2

.

~36!

In this case the dependence ofI c on hF is completely differ-
ent from that given by Eq.~35!. The critical current deter-
mined by Eq.~36! increases with increasinghF ~i.e., with
increasing eitherh or dF) and even diverges at zero temper
ture whenhF→DS . Of course, there is no real divergence
I c since, for example, finite temperatures smear out this
vergency. The dependence ofeVc /D0 on h was presented in
Ref. 26. The critical current has a maximum at some value
hF close toD0. With decreasingT the maximum value ofI c
increases and its position is shifted towardsD0. For arbitrary
relative orientations of magnetizations the expression
Vc(a) can be presented in the form

Vc~a!5Vc↑↑cos2~a/2!1Vc↑↓sin2~a/2!. ~37!

Therefore, the singular part is always present and its con
bution reaches 100% ata5p. All the conclusions given
above remain valid also for two magnetic superconduc
with uniformly oriented magnetizations in each layer. W
note that in contrast to the case of the spiral structure a
lyzed in Ref. 24, nop state appears in our model for an
effective exchange fieldhF<D0 ~at largerhF the supercon-
ductivity is destroyed!. As in the previous case of paralle
orientations, the state withhF5D0 might be unreachable fo
the antiparallel orientation due to the appearance of the
homogeneous LOFF state. However, the singular behavio
I c can be realized at smaller values ofh in a structure with
large enough S/F interface resistanceRS/F . In this case the
bulk properties of the S film are not changed by the prox
ity of the F film @to be more precise the conditionRS/F
.(nFdF /nSdS)rFjF must be satisfied;rF is the specific re-
sistance of the F film#. Then, as one can readily show,27 a
subgap esg5(Dr)F /(RS/FdF) arises in the F layer. The
Green’s functions in the F layer have the same form as in
~33! with DS replaced byesg . The singularity inI c(hF) oc-
curs athF equal toesg , and the LOFF state does not ari
because the subgapesg is not determined by the self
consistency equation.

For completeness we note that the effect of the rela
orientation of magnetization in the F films on the critic
temperatureTc of the superconductor was analyzed in Re
28 and 29 for a F/S/F structure.

V. ORBITAL EFFECTS

In the preceding sections we have presented the form
for the condensate functionŝ ~or š) in the ferromagnetic
regions induced by the proximity effect. The amplitude oŝ
is determined by the interface transparency, i.e., by the
rameterg, and the penetration length depends essentially
the parameterht. The internal magnetic fieldB of the ferro-
magnet induces screening currents and leads to some
pression of the condensate function. We have neglected
13450
-

i-

f

r

ri-

rs
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n-
of
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q.

e

.
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a-
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up-
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suppression due to Meissner currents~orbital effects!. In or-
der to understand why this approximation can be justified
estimate now the magnitude of these effects.

In the dirty limit the depairing rate due to Meissner cu
rent is determined by the energyDps

2 , whereps5A(d)/f0

is the condensate momentum,A(x)5Bx is the vector poten-
tial, and f0 is the magnetic flux quantum. The depairin
factor can be neglected in the Usadel equation provided
condition

Dps
2!h ~38!

is satisfied. For example, forB51 kG, d5100 Å, vF

52.107 cm/s, andl;d we obtainDps
2;50 mK. If the con-

dition Eq. ~38! is met, the condensate functionŝ(x) ~to be
more exact, its Fourier transform! in the ferromagnet is given
by Eqs.~8!–~11!.

Due to the condensate penetration and the intrinsic m
netic field of the ferromagnet, the Meissner currents arise
the F region. In order to analyze this issue in more detail,
consider the S/F system of Fig. 8.

If we consider the diffusive regime, the condensate fu
tion can be found as was done in Sec. II or directly from t
Usadel equation. In this limit (ht!1) it has the form

sv~x!53^mg& f s

coshk1~d2x!

~k1l !sinh~k1d!
. ~39!

The current density is expressed in terms ofs(x) as

j ~x!52s~Bx/f0!~2pT!Re (
v.0

sv
2 ~x!. ~40!

In Fig. 9 we plot the spatial dependence of the curr
density j (x) which is spontaneously induced in the ferr
magnetic film. We can see thatj (x) changes sign with vary-
ing x. According to the results of Sec. II, in the caseht.1,
the current density changes sign many times on the m
free path.

Integrating the current densityj (x) given by Eq.~40!, we
find the total currentI 5*0

ddx j(x):

I 52 1
4 ~3^mg&!2s~Bd2/f0!

3~2pT!Re (
v.0

f s
2

~k1l !2sinh2~kxl !
Fsinh2~k1d!

~k1d!2
11G .

~41!

FIG. 8. S/F bilayer.
6-8



al
e
d

t
-

tio

i
av

r,
.

F

the
ef.

ge-
S/F
ith

ibed

nc-
t if

ing
e-

sical
in a
r-
e-
al

wo
rger
/S.

JOSEPHSON CURRENT IN SUPERCONDUCTOR- . . . PHYSICAL REVIEW B 64 134506
In Figs. 10 and 11 we presented the total currentI as a
function of d and ht, respectively. It is seen that the tot
current also changes sign; i.e., in the ferromagnetic film
ther a diamagnetic or paramagnetic current is induced
pending on the relation betweend andjh .

In the analysis presented here it was assumed that
exchange fieldh is homogeneous. In a multidomain ferro
magnet one expects a more complicated spatial distribu
of the Meissner current.

VI. CONCLUSION

We analyzed specific features of a supercurrent
superconductor-ferromagnet structures. In Sec. II we h
calculated the Josephson currentI J in a S/F/S junction. It
turns out that the productht of the splitting energyh and the
momentum relaxation timet is an important paramete
which determines the approach to be used in the problem
the dirty limit, i.e., whenht!1, I J can be obtained from the

FIG. 9. Spatial dependence of the current density. HereJ̃
5( j /g2D0s)f0 /Bl, d/ l 510, T/D050.1, andD0t50.05. For clar-
ity, the values of the current density forht50.1 have been multi-
plied by a factor of 5.

FIG. 10. Dependence of the total current on the thicknessd of

the ferromagnet film forD0t50.05 and T/D050.1. Here Ĩ
5(I /g2D0s)f0 /Bl2.
13450
i-
e-

he
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Usadel equation.7,30,21In this limit, the change of sign of the
critical currentI c occurs if the thickness of the F layerd is of
the order ofjF5AD/h. The condensate function in the
layer decays exponentially over the lengthjF and undergoes
oscillations with the same period. In the opposite limit (ht
@1) the condensate function oscillates in space with
periodvF /h ~as in the pure ballistic case considered in R
2! and decays exponentially on the mean free pathl. The
critical currentI c decreases withh as a power-law function
and is not exponentially small ifd; l .

We have also studied the influence of different inhomo
neous magnetic structures on the critical current through
structures. In Sec. III we considered a S/F/S sandwich w
an inhomogeneous magnetic order in the F layer descr
by a vectorQ. In the caseQ50 we obtained the well-known
transition from the 0-phase state to thep-phase state. We
have also shown that even for small values ofQ and not too
low temperatures this transition may not take place~Fig. 6!.
The reason for a qualitative change of theI c(hF) is a long-
range term in the singlet component of the condensate fu
tion f̌ . This term arises together with the triplet componen
Q differs from zero. The long-range part off̌ decays in the F
film on a length of the orderAD/2pT, which can be much
longer than the characteristic length (;AD/h) of the decay
of f̌ in a homogeneous F layer (Q50).

Our results may be applied to ferromagnets contain
domain walls and magnetic multilayers with nonhomog
neous magnetic structures. We used the quasiclas
Green’s function approach to describe such structures
quantitative way. In Sec. IV it was shown that for an antife
romagnetic configuration in the S/F-I-S/F junction, the d
pendenceI c(h) shows an anomalous behavior: the critic
current increases with increasingh or dF . This means that
the Josephson critical current in a junction formed by t
ferromagnet-superconductor bilayers may be even la
than the critical current in a similar Josephson junction S/I

FIG. 11. Dependence of the total current on the parameterht

for D0t50.05 andT/D050.1. HereĨ 5(I /g2D0s)f0 /Bl2. At ht

50, Ĩ (0)5234,225,218 for d/ l 51,5,10 respectively.
6-9



u
d
al

ia

e
on
th
e
in

n
ge
he

r
th
p
d

or

n

ta,

u

the

trix

ich
r

nd

e

ctor

-
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In the last section we have considered a S/F bilayer struct
The Meissner currents which are spontaneously excited
to the internal field of the ferromagnetic film have been c
culated. The current density oscillates along thex axis and
the total Meissner current in the F film may be either d
magnetic or paramagnetic depending on the thicknessd and
on the exchange fieldh. All the effects analyzed in our work
can be verified experimentally.
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APPENDIX:

In this part we present some general formulas for sup
conductivity in the presence of an exchange field. We c
sider structures in which the superconducting pairing and
exchange interaction of electrons with ordered, localiz
magnetic moments take place. The Hamiltonian describ
the system under consideration has the form

Ĥ5 (
$p,s%

„asp
† $@~jpdpp81eV!1Uimp#dss82~h•s!%as8p8

2~Dasp̄
†

as8p8
†

1c.c.!…. ~A1!

Here the summation is carried out over all momenta (p,p8)
and spins (s,s8), jp5p2/2m2eF is the kinetic energy
counted from the Fermi energyeF , V is a smoothly varying
electric potential,Uimp5U(p2p8) is a potential describing
the interaction of electrons with nonmagnetic impurities, a
h is an effective ‘‘magnetic field’’ caused by the exchan
interaction of spins of the free electrons with spins of t
localized magnetic moments. The notations̄, p̄ means inver-
sion of both spin and momentum. The order parameteD
must be determined self-consistently. In order to define
Green’s function in a customary way we introduce new o
eratorscns

† and cns , which are related to the creation an
anhilation operatorsas

† and as by the relation~we drop the
index p related to the momentum!

cns5H as , n51,

as̄
† , n52.

The index n operates in the particle-hole~Nambu! space,
while the indexs operates in the spin space. The operat
cns obey the commutation relations

cnscn8s8
†

1cn8s8
† cns5dnn8dss8 , ~A2!

cnscn8s81cn8s8cns5dnn̄8dss̄8 . ~A3!

In terms of thecns operators the Hamiltonian can be writte
in the form

Ĥ5 (
$p,n,s%

cns
† H(nn8)(ss8)cn8s8 , ~A4!
13450
re.
ue
-

-

r-
-
e
d
g

d

e
-

s

where the summation is performed over all momen
Nambu, and spin indices. The matrixȞ is given by

Ȟ5 1
2 $@~jpdpp81eV!1Uimp#t̂3^ ŝ01 D̃̂ ^ ŝ3

2h@~ t̂0^ ŝ3!cosa1~ t̂3^ ŝ2!sina#%. ~A5!

The matricest̂ i and ŝ i are the Pauli matrices in the Namb
and spin space, respectively;i 50,1,2,3, wheret̂0 ands0 are
the corresponding unit matrices. We have assumed that
exchange fieldh has the componentsh5h(0,sina,cosa);
this is the case we consider in the next sections. The ma

order parameter equalsD̃̂5 t̂1ReD2 t̂2Im D. Now we can
define the matrix Green’s functions~in the Nambû spin
space! in the Keldysh representation in a standard way:

Ǧ~ t i ,tk8!5
1

i
^TC@cns~ t i !cn8s8

†
~ tk8!#&, ~A6!

where the temporal indices take the values 1 and 2, wh
correspond to the upper and lower branches of the contouC,
running from2` to 1` and back to2`. The quasiclassi-
cal Green’s functionsǧ(t i ,tk8) are defined as usual9,10

ǧ~pF ,r !5
i

p
~t̂3^ ŝ0!E djpǦ~ t i ,tk8 ;p,r !. ~A7!

We also introduce, as it was done by Larkin a
Ovchinnikov,31 a hypermatrixǧ . The matrix elements ofǧ
are the retardedǧR, advanced ǧA, and the Keldysh
ǧKcomponent. Thus,ǧ has the form

ǧ5S ǧR ǧK

0 ǧAD . ~A8!

The functionsǧR(A) andǧK can be expressed in terms of th
time-ordered Green’s functionsǧ(t i ,tk) as follows:

ǧR(A)5ǧ~ t1 ,t18!2ǧ~ t1(2) ,t2(1)8 !, ~A9!

ǧK5ǧ~ t1 ,t28̌!1ǧ~ t2 ,t18!. ~A10!

The equation for the hypermatrixǧ can be easily derived in
the same way as it was done for the case of a supercondu
with spin-independent interactions.31 We are interested in the
diffusive limit. The symmetric component of the matrixǧ
with respect to the momentum directionpF satisfies the equa
tion

2 iD¹~ ǧ¹ǧ!1 i ~ t̂3^ ŝ0 .] tǧ1] t8ǧ.t̂3^ ŝ0!1eV~ t !ǧ

2ǧeV~ t8!1@D̂ ^ ŝ3 ,ǧ#1@M̌h ,ǧ#50. ~A11!

Here D5v l /3 is the diffusion coefficient, M̌h5h( t̂3

^ ŝ3cosa1t̂0^ŝ2sina), and

D̂52 D̃̂ t̂35S 0 D

2D* 0 D .
6-10
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Equation~A11! is supplemented by the normalization cond
tion

ǧ•ǧ51̌ ~A12!

and by the self-consistency equation

D5
l

16
Tr~ t̂12 i t̂2! ^ ŝ3E deǧK. ~A13!

If the magnetization and, hence, the exchange fieldh, is con-
stant in the ferromagnetic layers, the anglea in Eq. ~A11!
can be excluded with the help of the following unitary tran
formation:

g̃̌5Ǔ†ǧ•Ǔ, ~A14!

where Ǔ5 t̂0^ ŝ0cos(a/2)1 isin(a/2)t̂3^ ŝ1. We consider
F/S structures, therefore we need the boundary condition
.

P

v.

v.

v,

,

i-

13450
-

or

Eq. ~A11! at the interface between the conductors ‘‘a’’ and ‘‘
b’’ ~Ref. 20!:

ǧa]xǧa5
ra

2Ra/b
@ ǧa ,ǧb#, ~A15!

where ra is the specific resistivity of the conductora and
Ra/b is the interface resistance per unit area. We assumed
there are no spin-flip processes at the interface. In the p
ence of spin processes at the boundary the condition~A15!
can be generalized.32 The current density is determined b
the usual expression

I J5
1

16r
Tr~ t̂3^ ŝ0!E de~ ǧR]xǧ

K1ǧK]xǧ
A!. ~A16!
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