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We calculate the dc Josephson curréptfor two types of superconductor-ferromagri&/F) Josephson
junctions. The junction of the first type is a S/F/S junction. On the basis of the Eilenberger equation, the
Josephson current is calculated for an arbitrary impurity concentrations#1, the expression for the
Josephson critical current is reduced to that which can be obtained from the Usadel equatias the
exchange energy, andis the momentum relaxation timeln the opposite limith7>1 the superconducting
condensate oscillates with period /h and penetrates into the F region over distances of the order of the mean
free pathl. For this kind of junctions we also calculaltg in the case when the F layer presents a nonhomo-
geneougspiral magnetic structure with the period72Q. It is shown that for not too low temperatures, the
state which occurs in the case of a homogeneous magnetiz&ie®) may disappear even at small values of
Q. In this nonhomogeneous case, the superconducting condensate has a nonzero triplet component and can
penetrate into the F layer over a long distance of the ordéref\yD/27T. The junction of the second type
consists of two S/F bilayers separated by a thin insulating film. It is shown that the critical Josephson current
I. depends on the relative orientation of the effective exchange fieddl the bilayers. In the case of an
antiparallel orientation|. increases with increasing. We establish also that in the F film deposited on a
superconductor, the Meissner current created by the internal magnetic field may be both diamagnetic or

paramagnetic.
DOI: 10.1103/PhysRevB.64.134506 PACS nunifer74.80.Dm, 74.50tr
I. INTRODUCTION observed in other experimentsee, for example, Ref.)6

Only recently, the experiment of Ref. 7 on the measurement

The interplay between ferromagnetism and superconduasf the current .(T) in the Nb/CyNi, _,/Nb Josephson junc-
tivity in layered structures has attracted a great interest in théon demonstrated unambiguously the transition from the 0 to
last years. In a rough approximation, these states are antagihe 7-phase difference between the superconductors.
nistic to each other and the ferromagnetism, being usually In all theoretical works;# calculations were performed
much stronger than superconductivity, is supposed to destragither in the diffusive limit, in which the Usadel equation
the latter. However, in many cases the coexistence of thesgas applicable, or in the pure ballistic limit, where the elastic
two phenomena is possible, even if the superconducting critiscattering by impurities was completely neglected. At the
cal temperaturdl; is by an order of magnitude lower than same time, very often the parameters characterizing the
the Curie temperature of the ferromagnet. Such is the cassamples in experiments, such as the sample size, the mean
when dealing with superconductor-ferromag(®tF) hybrid  free path, or the strength of the exchange field, do not corre-
structures. In these systems the mutual interaction of thesgpond to these limits. Therefore, there is a certain need to
two states may lead to significant changes of the thermodystudy the Josephson current in the S/F/S structures not only

namic and transport properties. in extreme limits but also in the intermediate region of the
In particular for S/F/S systems in equilibrium, one of the parameters.
most interesting effects is a phase shiftdypetween weakly In this work, we calculate the critical Josephson currents

coupled superconductors, the so caltedtate. The possibil- |, in a S/F/S junction for arbitrary impurity concentrations.
ity of the 7 state in S/F/S structures was first predicted bySince the approach based on the Usadel equfatidinty
Bulaevskii and co-workef¢ and studied in later limit) is valid only if the parametehr is small ( is the
works®* The transition to ther state manifests itself in a exchange field of the ferromagnet amds the momentum
nonmonotonic(and even oscillatodythickness dependence relaxation time, we use in an arbitrary case the more general
either of the superconducting critical temperatdiieor of  Eilenberger equatidrt® in which, generally speaking, the
the critical current ., and in the change of sign ¢f if the  elastic collision integral is not neglected. As mentioned
exchange fieldh exceeds a certain value in the S/F/Sabove, in real experiments the paramdtemay take differ-
junction~" Although some experiments on the thickness de-ent values depending on the sample and therefore our theory
pendence ofT. in S/F structures show that for a certain can serve as a good description of the experiments.
thickness of the F layer, the ground state of the system may Moreover, in all theoretical works mentioned previously,
correspond to ther-phase shift between the adjacent superdt was assumed that the magnetic ordering in the ferromag-
conductorgsee, e.g., Ref.)5this kind of coupling was not netic layers was homogeneous. However, ferromagnetic ma-
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terials exhibit generally more complex magnetic structures.
In strong ferromagnets, like Fe or Ni, the magnetic ground
state consists of homogeneously magnetized domains with
different relative orientations. Also “weak” ferromagnets, S F S
like some ternary compounds with a regular lattice of rare-
earth elements, turn out to be superconducting as the crystals
undergo a transition into a state with a nonhomogeneous
(helicoida) magnetic order(see Ref. 11 and references *
therein. A similar nonhomogeneous structure may arise in FIG. 1. The S/FIS system.
bilayered S/F structures. For example, an experiferid
two theoretical works"**suggested a possible existence of a
nonhomogeneous magnetic ordering in the ferromagneti
layer in a S/F system. Also, in experiments on giant magne
toresistanc GMR) in magnetic multilayers employing su-
perconducting contacts, nonhomogeneous magnetic stru

In the Appendix we present the derivation of the main
8quations used in this article. All our calculations are based
on the Eilenbergér® or on the Usadé&lequations, general-
ized to the case of a spin-dependent interaction varying in
. . gbace. Another approach based mainly on the
tures can be created _arnﬂual{yee, e.g., the review Ref. 15 Bogolyubov—de Gennes equations was widely used for the
and refgrences th_ere)ln . study of the spin injection from a ferromagnet into uncon-

In spite of the importance for the experiments, a theoretVentional superconductoKsee, e.g., Ref. 19 and references
&herein. In the present work, we restrict ourselves to the case

tization on the properties of S/F junctions is still lacking. of conventional superconductors wisiwave pairing
e

Therefore, the second goal of this paper is to investigate th
influence of nonhomogeneous magnetic configurations on

the supercurrent through different kinds of superconductor- 1. JOSEPHSON CURRENT IN A S/F/S STRUCTURE
ferromagnet Josephson junctions. ) . .

In Sec. IIl we consider a S/F/S system, with an nonuni- N this section we calculate the dc Josephson culrgint
form (spira) magnetic ordering. We derive an expression ford S/F/S structure. In order to make the consideration as gen-
the critical current .(Q) , whereQ is the wave vector of the ©ral as possible we use the Eilenberger equaiiociuding
spiral magnetic order. We show that, whereas@or 0 the the_elastlp coII|_S|0n term. Th|§ allows us to calculbjéor an
transition from the O-phase state to thephase state is pos- arbitrary |_mpur|ty concgntratlpn a_nd t_o f_ormulate condl_tlons
sible, even small nonzer@ values may restore the 0-phase under which the ballistic or diffusive limits can be obtained.
state. The reason for this is the existence of a triplet compon order to find the condensate Green's functfgnin the F
nent of the superconducting condensate in the ferromagnéggion in an analytical form, we assume that the proximity
due to the proximity effect and the nonhomogeneous mageffect is weak, i.e.lfw|<1, and linearize the collision term
netic structure. In the limih7<<1 this component does not in the Eilenberger equation. This assumption can be reason-
decay over the short distana/h, which corresponds to able for structures with a big mismatch between the Fermi
the length of decay of the usual singlet component, survivingurfaces in F and S, which leads to a small transmission
up to a much longer distance D/27T (D is the diffusion  coefficientT through the S/F interface. If the coefficiehis
coefficieny. The influence of this triplet component on the of the order of unity, we hope that our results are valid at
transport properties of the S/F mesoscopic structures wdsgast qualitatively.
studied in Ref. 16. We consider the S/F/S structure shown in Fig. 1 and as-

In Sec. IV, we analyze the dc Josephson current in a tunsume that the exchange enerigys homogeneous in the F
nel junction composed either of two S/F bilayers or of tworegion(the case of a nonhomogeneduwiill be analyzed in
magnetic superconductors. We derive an expression for thée next section Because of the small interface transpar-
critical currentl, as a function of the relative angle be-  ency, one can neglect the suppression of the order parameter
tween the magnetization of both F layers. The most imporA in the superconductor due to the proximity of the ferro-
tant and surprising result is that for an antiferromagnetic conmagnet. We assume also that there are no spin-flip processes
figuration, «= 7, the currentl. increases with increasing in the ferromagnetic region; i.e., the spin-relaxation length is
exchange fieldh. The calculated dependencelgfon various  larger than the thickness of the ferromagnet and there are
parameters allows us to make some conclusions not only ofO spin processes at the S/F interface. The linearized Eilen-
the magnetic order of the ferromagnetic materials used in S/berger equation in the Matsubara representation has the fol-
structures but also on nonhomogeneous superconductingwing form:
states predicted by Fulde and Fetfe(FF) Larkin and
Ovchinnikov® (Lo).

In Sec. V we show that a Meissner current is induced in
the F region due to the internal magnetic field of the ferro- R
magnet. The Meissner current density has a different sign atiere 73 is the Pauli matrixu = cosé, 6 is the angle between
different points, and the total current in the ferromagnet isthe momentum and theaxis,| =v g7 is the mean free path,
either diamagnetic or paramagnetic depending on the thickand w,,= 7T(2m+ 1) is the Matsubara frequency. The an-
nessd of the F film. gular brackets denote the average over angles::)

wl 730, +2(wm—ih) F=sgnw((F)—1). (1)
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=(1/2)ffld,u(- --). Equation(1) is complemented by the
boundary conditions at= *+d/2, which in the case of low B= - —
transparency take the foffh (1=, (M"")M

K

[yl =kl (uy(M™H) = (uyIM))],
9

a=—(712)[sgnos+ 5,95+ f]=— v sgno(Tsfo)x--ar, B )
2 F=> exdikd(2n+1)/2][i 7,coq ¢/2)
wherea ands are the antisymmetric and symmetfiith

respect tow) parts off, y=T(u)/4 is a parameter describ- +(=1D)"imsin(¢/2)] (10
ing the transmittance of the interfack(u) is the transmis- 5.4

sion coefficient, and); and . are the quasiclassical normal )
and anomalous Green’s functions of the superconductors. M= (ulk)?+ k. (11
The square brackets denote the commutator. When writin

the last equality, we neglect the term proportionaf tsince
|f|~y. The condensate functiofy in the superconductors

EIl‘he functions determines the dc Josephson current, as well
as the variation of the density of statd30S) due to the
proximity effect. It is given by the inverse Fourier transfor-

can be written as mation
fo(=di2)=[ir,coq ¢/2) *iTsin ¢/2)]fs, 3 . dk .
sl ) =[imoco8 ¢/2) £iTiSin(p/2) ]f 3 s(x)=fﬁexp(—ikx)sk. (12)
where fo=A/\/A?+ w2, and ¢ is the phase difference be-
tween the superconductors. The current is determined by the expression
It is convenient to represent the solution of Ef) as a
sum of the symmetrics) and the antisymmetrica) parts, IJ=%GQN(2wi)(2T)Tr}3E (a,u) (13)
f=s+a. (4) )
Substituting this expression into E€L) and separating the :gGQN(ZWi)(ZT)Tf}sE ((wyl2)[s(di2),14]),
symmetric and antisymmetric terms, one obtains two equa- “m (14)
tions which determine the functiomsands: ) _ _
whereG,=¢€?/#i, N=kiS/ 7 andS is the cross-section area
a=—sgno(ullK,) 750,8 (5) of the junction. In writing Eq(13) we have used the bound-

ary condition, Eq.(2). The summation over Matsubara fre-
2.0  on - guencies is carried out fromm= —c to m= + . Substitut-
W30S~ K,S= — Ku(S), ®)  ing Egs. (6)=(12) into Eq. (13), we obtain finally the dc

wherek,= (1+ 2|y 7) —sgnw2ih 7. Thus, the problem is Josephson current

reduced to finding the solution for E@6) in the interval l,=Isine (15)
|x| < d/2 with the boundary conditions given by Eqg) and e '
(5). To this end it is convenient to extend formally the func- where

tion s over the wholex axis and to write Eq(6) in the

following form: le=GoNJe (16)
and
w?l?9%,5— k25 o
, [ dk .
. J.=27TRe>, >, fsfz(y,uB)exp:lkd(Zn+l)].
~ A w>0 n=0
=—k, | (S)+2ulyfs >, [iT,c08 ¢/2) 17
n=—ow

Equation(17) determines the critical current and is valid for
any impurity concentration. Its analytical evaluation is rather
complicated, since it includes summation over Matsubara
frequencies, integration over the momentknand the aver-
One can prove that the solution of E@) obeys the bound- aging over the angles. Here we will discuss two limiting

+(=D)"i7sin(@/2)]8(x—(d/2)(2n+1))|.  (7)

ary conditions. cases in which Eq17) can be simplified.
Performing the Fourier transformation, we find the solu- (a) hr<1 (dirty case. This limit corresponds to a ferro-
tion for the Fourier transform of, magnet with a weak exchange fidicdor to an alloy like that
used in Ref. 7, for which the conditidm= T, is satisfied. In
s.=2fBF, (8) this case the conditiont<<1 implies that the quantit_ieAT
andTr are also small. From Ed9) one can determine the
where coefficient B; in this limit B=(uy)I/[(1%/3)(k*+k2)],
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FIG. 2. Dependence of the normalized critical currénty?A,
on the thicknesdl of the ferromagnet forA,7=0.05 andT/A,
=0.01. The curves fohr=0.1 andh7=0.5 are multiplied by a
factor 10 for clarity.

where Ki =2(w—1h)/D andD=uv¢l/3 is the diffusion co-
efficient. Using Eq(17) we obtain for the normalized critical
currentJ.

AZ
Sinf(, @) A%+ 2,
(18)

>

w>0 K+

Je

3 2
2{n)°Re(27T)

This is the usual expression for the critical current o

tained from the Usadel equation in the case of a weak prox=

imity effect (cf. Refs. 4, 7, and 211In Figs. 2 and 3 we plot

J. as a function ofT andd. As has been shown in the pre-

vious studies, the functiod, is a rapidly decaying withr

and d function which undergoes several oscillations. This
oscillatory behavior of the critical current may explain the
change from a 0-phase state targphase state observed in

Ref. 7.
We consider now another interesting case.
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FIG. 3. Dependence of the normalized critical currénty?A,
on the temperature fak,7=0.03, h7=0.06 andd/I = .
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FIG. 4. Dependence of the normalized critical currénty?A,

on the thicknesd of the ferromagnet forA,7=0.05 andT/A,
=0.1.

(b) h7>1. This condition corresponds to most of the ex-
periments performed on S/F systems, in which F is a
“strong” ferromagnet like Ni or Fe. It does not necessarily
mean that we are analyzing the clean cése, T.7>1),
since the value of the exchange fididcan be much larger
than T.. For example, if the mean free pathequals
~300 A, thent"1~300 K>T,, whereashr=1 (we take
vE=2X10" cm/s). Therefore in the limihr>1 we can
deal in principle with an arbitrary value ofT (although
realistic materials and samples correspond to the Gase

b-< 1). It is worth mentioning that in this case the use of the
Usadel equation is not justified.

The conditionh7>1 implies thatx ,>1, «,/M <1, and,

as one can see from E®), B=«,(yul)/M. Performing the
integration overk, we find forJ.

wy?

sinh(Kwd/Ml)>' (19

1
J.==(27T)Re >, f2
4 w>0

One can see from Eq19) that the critical current oscil-
lates with varyingd or h (cf. Ref. 2 where the casi<| was
consideregland decays with increasirdjover the mean free
pathl. In Figs. 4 and 5 we plot the dependencd gbnd and
T calculated numerically from Eq19). We see that in this
limit the critical current does not oscillate with the tempera-
ture if the exchange field is temperature independéns
assumption is quite reasonable in the case of transition met-
als as Fe or Ni It can change sign in a hypothetical case
T.1. In the limitd/I>1 the critical current is exponen-
tially small and one can perform the angle averaging in Eq.
(19). Thus, we find in this limit

sin(2hd/v;)

2hdioy) S (dDHA+207)].

(20)

Jo=(7T) 2, 137%(1)

It follows from Eq. (20) that the critical current oscillates as
a function ofd or h and decays withld exponentially ifd
>| and as hd/vg) ! if d=I. This power law dependence of
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0.04— - - - ‘ ‘ ‘ - axis and the direction ofi. As in the previous section, we

s T8=02 i neglect corrections to the “normal” Green’s functi@a due

................. A= 0,05 to the proximity effect.

0.02 Tl 1 Equation(21) is a linear matrix differential equation with
........ space-dependent coefficients. This spatial dependence can be

**”””*””***++++++++++++++++++ ] excluded from the consideration by making a rotation in the

Nambu spin space and by introducing a new masjx s
It =Us,UT, whereU = 7,® gqcos@/2) +i 73® o1sin(e/2) . Af-
LA ter the rotation Eq(21) acquires the form

2
JeI1Ng
o
|
;
;
;
]
;
i
:
M
:
ﬂ

-0.02 ettt - 1 . . L. s
e e | 92,80 — (Q%2)(Sy— AS,AT) + Q(Ad,S, + 9,S,AT)

-0.04 0-2 <<<< 0-4 L 0‘6 L 0‘8 1 1 _[7'0®(0'0|wm|_|h SgnmeB)!Sn]+:O! (22)

7T, whereA=i /’;'3® Erl and the last term is an anticommutator. If

FIG. 5. Dependence of the normalized critical currénty?A, Q=0, Eq. (22)_ _Co'nc'des with Eq.(21) and can be easily
on the temperature fat/l = 1. The two upper curves correspond to SOlved. The critical currerit; has been calculated in the pre-
the casehr=5, and the the two lower curves to the case=10.  Vious section, and its dependencedandd is presented in
For clarity, in the three lower curves, the values of the critical Figs. 3 and 2. It is seen that the critical currenthanges the
current have been multiplied by a factor of 5. sign at someh of the order of the Thouless energy

=D/d?. The characteristic value dffor the transition to the

I. on h can be even weaker i depends onu (y has a 7 state increases with increasiligThis result is well known
maximum atx=1 and decays with decreasing. for both types of Josephsofequilibrium and nonequilib-
rium) junctions in which the sign-reversal effect kpf takes
place. Earlier than in S/F/S junctions, this effect was ob-
served in four-terminal S/N/S Josephson junctions where a
voltage V was applied between the normal reservoirs and

In this section we consider a nonhomogeneous magnettherefore an additional dissipative current flows between the
zation in the magnetic region. This nonhomogeneity can b&l reservoiré® were possible.
due to domain walls or, as in the case of experiments on The critical current changes sign in these junctions due to
GMR, due to an artificial layered magnetic structure. In prin-a shift of the distribution function in the N electrode with
ciple, variation of the magnetic moment on the coordinatesespect to the distribution function in the superconductors. In
can be rather complicated, which makes explicit calculationgontrast to this case, the sign reversal effect in S/F/S junc-
difficult. To simplify the consideration we restrict ourselves tions is realized at equilibrium conditions. However, there is
with the cases of a magnetic spiral structure in the F regiom formal analogy between these two cases because the for-
with a wave vectorQ and calculate the dependence of themulas for the critical current can be reduced to each other by
critical Josephson currehf in a S/F/S junction on the wave shifting the energy scale and by replacihg— eV (this
vector Q. analogy was noted in Refs. 23 and)21

Below we consider only the dirty caséi{<1) and as- In the case of a finit®, the formulas fors become more
sume again a weak proximity effect. This means thatust  complicated. In order to make them more transparent, we
be small enoughy< ‘/m In the limit of smallh7 one can  555ume that the overlap of the condensate functioirs
use the Usadel equation for finding the condensate functiogyceqd by the different superconductors is weak. This means
f. However, in the case of a rotating magnetizati@r  that maxh,T} should be greater thas),. Then, we represent

equivalently a rotating exchange fielij we need to gener- o sojution of Eq(22) for $ as a sum of two functions
alize our approach because not only singlet correlators as

(¢ ) are induced in the F region, but also correlators of S0 = U85 (d/2+ 08 + 85 (d2—x) 810t 23
the type(y, ¢;) become nonzerriplet component In this SO0 =ULSsn( X) Snl XISVt (29
case we introduce new>44 matrices for the quasiclassical The matrix$ allows one to take into account the phase dif-
Green'’s functiongsee the Appendix The 4X4 condensate = n

ference ¢ between the superconductorS=[ r,cos(/4)

Green’s functions (to be more exact, its symmetrical part | .~ . ~ ' .
obeys the generalized Usadel equation in the Matsubara reé—E)lmT?ésmff’(g/I’i)](tghgoé-:g:rgg?’: d%r;ijo?e(;ct)r:\d_t((eér/g\;, mar%q)‘sz

resentation . T . )
= +(d/2) respectively. The functios,(x) is a solution of
—iDgod%,5+[My,s]=0, (21  Eq. (22 for an infinite S/F system with a vanishing phase

. A - ) o ~ ¢=0. The boundary condition for the new matEi,a(has the
where go=T13®0o, D=vgl/3 is the diffusion coeffi- form

cient, and M,=73®(0yi|wm + o3h Sgnw,Cosa)— 7
®ahsgnw,sina. Here a=Qx is the angle between the 3,8+ (QI2)[As,+s,AT]=— (¥ fs. (24)

IIl. S/F/S JUNCTION WITH AN NONHOMOGENEOUS
MAGNETIZATION

134506-5



F.S. BERGERET, A.F. VOLKOV, AND K.B. EFETOV PHYSICAL REVIEW B4 134506

Heref,=im,®c3fs andy=3(yu); fs andy have been de-
fined in the previous section. It is not difficult to see that the
function s,(x) has the following form:

Sn(X) =i 72®[ 076Sp(X) + 03S3(X) | +i 7.® 0, T(X),
(25)

where the function$y(x), S;(x), and T(x) are the ampli-
tudes of the singlet and triplet components, respectively. All
these functions may be represented as a sum of three expo-
nentials corresponding to the eigenvalues of E9). For
example, the expression f&(x) is

S3(X) =S5, exp(— k., X) + Sz_exp( — k_X) + Sy exp( — k)X). FIG. 6. The dependence of the critical current ©rfor hr
! ’ ! |(26) =0.06,Aq7=0.03, d/I = 7, and different values oQI.

Identical formulas may be written for the functioSs(X)  One can show that this expression does not change its form
and T(x) with the factors in front of the exponentials de- under theU transformation ands in Eq. (29 may be re-

noted asSy+, Sy, and T, T, correspondingly. Analytical - _ . . .
expressions for the coefficients and eigenvalues can be o laced bysy(d/2). Perform.mg S|.mple operations, we obtain
or the current an expression with the same form as(Es).

tained in the limits of small and larg®, i.e., DQ?<h or ith
DQ?>h. In the limit of smallQ, we find after some algebra wi

k2 =2(|oy Fsgnewih)/D, k?=2|w,|/D+Q? (27) (SIS 12 exp — k. d) (QI):,zexp(—md) |
and =0 r<il 2(3h7)
(30)
Sz =+ Spx = ¥f/2 k1), The first term in the brackets corresponds to the term
[2(x.1)(sinhk.d)]*in Eq. (17) in the limit of a large ex-
1. (k_—ky)Q ponent. It decays with increasirjover the short character-
Ti :E(st) (ks k)i istic length&g = \/D/h. The second term in EG30) is caused
by the rotation oh along thex axis. It decays withd over the
- (ky—K)Q? characteristic Iengthq‘l, which can be much longer than
Sz =(yfs) > Sghw, (28)  &r. Therefore this term leads to a drastic change of the criti-
Ik ko) iy cal current. We calculated numerically the critical current

and presented its temperature dependencenfer0.06 in
Fig. 6. One can see that for this choice tofthe critical
Eurrent is negative aQ=0 (= junction. However, it be-
comes positive at some finit@®@l smaller thanhr. With in-
creasingQ the long-range term in Eq26) and the triplet

wherex2=—2ih/D.

We note some new important features that appear at finit
Q. If Q is zero, only the first two terms in Eq26) are
nonzero and the decay is characterized by a short lefigth

= yD/h (in case of large enough). If Q is finite, an addi- ., mnonent increase, reach a maximum, and then decrease
tional term(the last term appears in the formula fdB;(x) again to zero at large enoug

which, at low temperatures, decays over a much larger length™ |, e limit of largeQ, the coefficientsS,.. , Sy. and the

of the orderyD/2#T. Alongside with the last term, the trip- triplet components are small. The coefficiey = 7f./(kl)

let component becomes nonzero. The triplet component con: . .
. C as the same form as in the absench.dfor the eigenvalues
tains also a long-range terexp(—«x) which increases we obtain

with increasingQ. Due to the last term in Eq26), the de-
pendence of the critical current dm (or T) is drastically L
modified even at smalD. Ke=2iQ+2wn/D,

In order to calculate the curreht, we can use the general hat in the limit of | h lution forf has th
expression, Eq(13). In the dirty limit it can be written as Ve S€€ that in the limit of larg the solution forf has the
follows: same form as in a S/N/S structupeo exchange field i.e.,

the term €fg/ 0)exp(—«x) dominates. The first two terms in

L oL the singlet componer&;(x) which contribute to the Joseph-

3= (S/16p) (271 ) (2T) Tr(7300) >, SdyS son currenfsee Eq(26)] are small. They oscillate rapidly in
¢ space and decay over a large distance of the ordef;of

o . =D/2%T (in the limit DQ?<h). In the main approxima-
= (S/16p)(271)(2T) Tr(7300) (Y1) 2 Stelxqrz- tion in the parametern/DQ?) the temperature dependence
¢ of the critical current ; is the same as for a S/N/S junction

(29 and we do not present this dependence here.

K1=\2(wy/D)+4h% (DQ)>.
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IV. S/F-I-F/S SYSTEM

In this section we consider a layered system consisting of
two F/S bilayers separated by an insulating laigee Fig. 1
In this case the Josephson critical current is determined by S F 11| F S
the transparency of the insulating layer and depends on the
relative orientation of magnetization in the F layers.

We assume that the F and the S layeégss are thin

enoughdg s<é&r s, Wwhereée=D/h andés= D/A. First, FIG. 7. SF/IISF system.
we analyze the case of a high S/F interface transparency, i.e.,

Ryr<pe/ér. Under these conditions all the Green’s func- 1 1
tions are nearly constant in space and continuous across the ey (q)=el R,=27TAA, 2, Re( _) Re( _)
SIF interface. Mm=0 Em/, \ém/,

In order to find the Green’s functiorgs®, we multiply
the componentsl,1) and(2,2) of the matrix equatiofA1l)
(the Usadel equationdy the density of states g in the F

— ol (i)l (i> 34
cos m§m|m§mr]’ (34)

and S layers, respectively, and integrate over the thickness of
the bilayers. Neglecting the influence of one bilayer on theyhere¢,= \(w,+ihg)%+ ASZ andR, is the tunnel resistance

other [this means thatgd,g)=0 at the F/I interfack we
obtain the following equation:

sgnw[My,,g]+[As® 073,9]=0, (31)

Here the matrixVl;, has the same structure as in E2{1), but
h has been replaced byz=h(vedg)/(vede+vsds), and
Ag=A(vsds)/ (vsds+ vedg). We assume that the vectoin
the left layer is oriented along the z axis and has the comp
nentsh(0,sina,cosa) in the right electrode. One can sim-
plify Eq. (31) in the right bilayer with the help of the trans-

formation(A14). In this case one obtains for the both layers

the same equation

[73® (e0o+hpo3),9]+[As®03,0]=0. (32

We can solve Eq(32) by making the ansatz

é:;3®(a0&0+ a3(}3)+AS®(b0&0+ b3(}3)- (33)

From Eq.(32) and the normalization conditiofA12) one

can obtain the coefficientss andb’s. In the left bilayeré is
given by the expressiof83) while in the right bilayer it is

given byg"=0"g"U, ie.,
é(r) = }3@ (ao(}o+ a3005¢91}3) - ;'0@ a3Sin 0(}2+ AS
®(boCOSOTy+bsaz) — T3As®ibgsinda .

According to Eq.(A16) only the coefficientd, andbs will
enter in the expression for the Josephson current, and th
are given by

_l 1 1 _1( 1 1)
(bB)I,r_E(a'I'g_ L (bo)|,r—§ LT o

where £, = /e —|Ag?, and e. =iwy=h. By writing Ag
=|Aglexple) on the right side one obtains the following
expression for the critical current:

of the | layer. Formulg34) coincides with the formula pre-
sented in Ref’. In the latter work the authors considered a
Josephson junction consisting of two magnetic supercon-
ductors with an oscillating magnetic order. Thus, we have
shown that the system of Fig. 7 and that of Ref. 24 are
equivalent. However the authors of Ref. 24 did not consider
some interesting properties of such structures. We note that
the same structure was also analyzed in Ref. 25, where the
critical current was calculated for different S/F interface

%ransparencies. The authors have found the conditions under

which the system undergoes a transition to thstate; how-
ever, they analyzed only the case of parallel magnetization.
Here we consider two limiting case®) a parallel relative
orientation of the magnetizations, i.e=0, and(b) an an-
tiparallel orientation.a= 7.
In the casex= 0 according to Eq(34), the critical current
is given by the expression

vV | Ry=47TA2 ont A5 hE

eV =e = > :

TSR (W2 ARhE) 7 dwzh
(35

In writing Eg. (35) we assumed that: and |[Ag are the
same in both bilayerssymmetric structure The dependence
of the critical current on the exchange fidld was presented
in Ref. 26. AtT=0 the current. is constant up to the value
he= A, where it drops to zerd\ is the effective energy gap
Ag at zero temperature and zero exchange field. This is a
consequence of the fact that the order paramatés also
constant. We do not consider here a possible transition to the
FF phase predicted by Larkin and OvchinnikthvO)2
nd Fulde and FerrelFF)!’ for the region 0.758g,<hg.
We argue that since the homogeneous superconducting state
in this region is a metastable state, its realization is possible.
Nevertheless, our result is definitely valid for the region of
smallhg, and a possible transition to the LOFF phase would
manifest itself in a drop of the the critical current.
More interesting is the case when the relative orientation
of the magnetizations is antiparallel, i.ex= 7. Then, the
critical current is given by the expression
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1
V(@2 +A2—h2)%+4wih?’ S F
(36)

In this case the dependencelgfon hg is completely differ-
ent from that given by Eq(35). The critical current deter- d

mined by Eq.(36) increases with increasingg (i.e., with

increasing eitheh or di) and even diverges at zero tempera- FIG. 8. SIF bilayer.

ture whenh— Ag. Of course, there is no real divergence of

|, since, for example, finite temperatures smear out this disuppression due to Meissner currefusbital effects. In or-
vergency. The dependencee¥./A, on h was presented in der to understand why this approximation can be justified we
Ref. 26. The critical current has a maximum at some value o¢stimate now the magnitude of these effects.

he close toA,. With decreasing the maximum value of, In the dirty limit the depairing rate due to Meissner cur-
increases and its position is shifted towatds For arbitrary ~ rent is determined by the ener@p?, whereps=A(d)/ ¢o
relative orientations of magnetizations the expression fois the condensate momentus(x) =Bx is the vector poten-

=4wTA§§

V(@) can be presented in the form tial, and ¢ is the magnetic flux quantum. The depairing
_ factor can be neglected in the Usadel equation provided the
Ve(a)=V¢; €08 (al2)+ Ve, sif(al2). (37 condition

Therefore, the singular part is always present and its contri- Dp2<h 39)
bution reaches 100% at= . All the conclusions given Ps

above remain valid also for two magnetic superconductorgs satisfied. For example, foB=1 kG, d=100 A, v
with uniformly oriented magnetizations in each layer. We =2 10 cm/s, and ~d we obtainDp2~50 mK. If the con-
note that in contrast to the case of the spiral structure UL Eq. (38) is met, the condensate functiax) (to be

Iyzed.m Ref. 24, nom state appears in our model for any more exact, its Fourier transfojnm the ferromagnet is given
effective exchange fieldg<A, (at largerhg the supercon- by Egs.(8)—(11)

ductivity is destroyefl As in the previous case of parallel Due to the condensate penetration and the intrinsic mag-

?hneegtr?ttiloar\];lIter}eofit:;?a\fr\i/l)ﬂgpguiotcr)nlt%gt se lg;r;?]ccf;agllcet;c;ri netic field of the ferromagnet, the Meissner currents arise in
h P LOFF state. H th PP lar behavi LPe F region. In order to analyze this issue in more detail, we
omogeneous state. However, the singular behavior Qf <. icr the S/E system of Fig. 8.

:C can be reﬁl';ﬁ:d.ai s;naller ng;Jesrofn ? sttrr]ycture Wt';h If we consider the diffusive regime, the condensate func-
arge enoug Interface resistarkgy. . In this case the tion can be found as was done in Sec. Il or directly from the

bulk properties of the S film are not changed by the proxim- : i limith(r<1) i
ity of the F film [to be more precise the conditidRyy Usadel equation. In this limith(7<<1) it has the form

> (vede lvgdg) peér must be satisfiedyg is the specific re- coshk, (d—x)
sistance of the F filfh Then, as one can readily shélva sw(x)zs(uy)fsﬁ. (39
subgap es=(Dp)r/(Ryrdg) arises in the F layer. The (re+D)sinh(x..d)
Green’s functions in the F layer have the same form as in Edrhe current density is expressed in termsspf) as
(33) with Ag replaced byesy. The singularity inl ;(hg) oc-
curs athg equal toesy, and the LOFF state does not arise ) )
because the subgaps, is not determined by the self- J(X):_‘T(BX/%)(ZWT)RG;O Su(X)- (40)
consistency equation.
For completeness we note that the effect of the relative |, Fig. 9 we plot the spatial dependence of the current

orientation of magnetization in the F films on the critical density j(x) which is spontaneously induced in the ferro-
temperaturel . of the superconductor was analyzed in Refs-magnetic film. We can see thitx) changes sign with vary-

28 and 29 for a F/S/F structure. ing x. According to the results of Sec. II, in the case>1,
the current density changes sign many times on the mean
V. ORBITAL EFFECTS free path.

In the preceding sections we have presented the formulas Integrating the curreng de_nsih(x) given by Eq.(40), we
A v . find the total current = [odxj(x):
for the condensate functios (or s) in the ferromagnetic

regions induced by the proximity effect. The amplitudesof I=—1(3(uy))20(Bd? )
is determined by the interface transparency, i.e., by the pa-

rametery, and the penetration length depends essentially on f2 sintf(k_.d)
the parametehr. The internal magnetic fiel8 of the ferro- X(ZWT)ReZ«O (k D2sint(rk, )| (K, d)2
magnet induces screening currents and leads to some sup- o Kx *

pression of the condensate function. We have neglected this (41)
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5 .
ot
-
-50
0 05 1
x/d
FIG. 9. Spatial dependence of the current density. Here 0 ' ' ’ ' 0'_05 ' ' ' ' 0.1

=(jly?Aqo) ¢o/Bl, d/1=10, T/A;=0.1, andA ,7=0.05. For clar- h‘c )

ity, the values of the current density forr=0.1 have been multi-

plied by a factor of 5. FIG. 11. Dependence of the total current on the paranteter

for Ay7=0.05 andT/A,=0.1. Herel = (1/y?Aq0) ¢ /BI2. At hr
In Figs. 10 and 11 we presented the total curreréts a  —q 7(0)=—34,—25—18 ford/|=1,5,10 respectively.
function of d and h7, respectively. It is seen that the total
current also changes sign; i.e., in the ferromagnetic film ei-

ther a diamagnetic or paramagnetic current is induced de2Sadel equatiofi***In this limit, the change of sign of the

pending on the relation betweehand &, . critical currentl . occurs if the thickness of the F layeis of
In the analysis presented here it was assumed that tHge order of¢g=D/h. The condensate function in the F
exchange fielch is homogeneous. In a multidomain ferro- layer decays exponentially over the lengthand undergoes

magnet one expects a more complicated spatial distributiofscillations with the same period. In the opposite lintit-(
of the Meissner current. >1) the condensate function oscillates in space with the

periodvg/h (as in the pure ballistic case considered in Ref.
2) and decays exponentially on the mean free gathhe
critical currentl . decreases with as a power-law function
We analyzed specific features of a supercurrent irand is not exponentially small d~1.
superconductor-ferromagnet structures. In Sec. Il we have We have also studied the influence of different inhomoge-
calculated the Josephson currégtin a S/F/S junction. It neous magnetic structures on the critical current through S/F
turns out that the produttr of the splitting energy and the ~ structures. In Sec. lll we considered a S/F/S sandwich with
momentum relaxation timer is an important parameter, an inhomogeneous magnetic order in the F layer described
which determines the approach to be used in the problem. IRy & vectorQ. In the cas&®=0 we obtained the well-known

the dirty limit, i.e., wherh7<1, | ; can be obtained from the transition from the 0-phase state to thephase state. We
have also shown that even for small valueQoénd not too

low temperatures this transition may not take pléeig. 6).
The reason for a qualitative change of théhg) is a long-
range term in the singlet component of the condensate func-

tion . This term arises together with the triplet component if
Q differs from zero. The long-range part bidecays in the F
film on a length of the ordex/D/27 T, which can be much
longer than the characteristic lengtk (/D/h) of the decay

of fina homogeneous F layeQ=0).

Our results may be applied to ferromagnets containing
domain walls and magnetic multilayers with nonhomoge-
neous magnetic structures. We used the quasiclassical
Green’s function approach to describe such structures in a
quantitative way. In Sec. 1V it was shown that for an antifer-

1 5 10 romagnetic configuration in the S/F-I-S/F junction, the de-
an pendencd .(h) shows an anomalous behavior: the critical
current increases with increasitgor dr . This means that

FIG. 10. Dependence of the total current on the thickmkes  the Josephson critical current in a junction formed by two
the ferromagnet film forA,r=0.05 and T/A,=0.1. HereT  ferromagnet-superconductor bilayers may be even larger
=(1/y?Aq0) ¢y /BI2, than the critical current in a similar Josephson junction S/I/S.

VI. CONCLUSION
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In the last section we have considered a S/F bilayer structurevhere the summation is performed over all momenta,
The Meissner currents which are spontaneously excited dugambu, and spin indices. The matfi is given by
to the internal field of the ferromagnetic film have been cal-

culated. The current density oscillates along xhaxis and 1 . U P I
the total Meissner current in the F film may be either dia- = 2{L(Epdpp + V) + Uimpl Ts® 00+ A 05
magnetic or paramagnetic depending on the thickdessd —h[(7o® o3)cOSa+ (T3® 07p)sina]}. (A5)
on the exchange field. All the effects analyzed in our work R .
can be verified experimentally. The matricesr; and o; are the Pauli matrices in the Nambu
and spin space, respectively: 0,1,2,3, wherer, ando are
ACKNOWLEDGMENT the corresponding unit matrices. We have assumed that the
) ) exchange fieldh has the components=h(0,sina,cosa);
We thank SFB 49Magnetische Heterostruktureor fi- i is the case we consider in the next sections. The matrix

nancial support. N -
order parameter equals=7;ReA —7,ImA. Now we can

define the matrix Green’s functiongn the Nambw spin

space in the Keldysh representation in a standard way:
In this part we present some general formulas for super-

conductivity in the presence of an exchange field. We con- Gt b)) = .E(TC[C (t-)cT, ()] (AB)

sider structures in which the superconducting pairing and the PR NS s kA

exchange interaction of electrons with ordered, IocalizeqNhere the temporal indices take the values 1 and 2, which

magnetic moments taKe plage. The Hamiltonian describin%orrespond to the upper and lower branches of the co@pur
the system under consideration has the form running from—o to +9 and back to—. The quasiclassi-

cal Green’s functiong(t; ,t;) are defined as usidf

APPENDIX:

H={DES} @A (£pBpp +V) +Uimpl 55— (h- o) }ag

_(aatal +co)) a1 é(pF,r)=';<%3®&o>depé<ti tepn. (A7)
Lal,, +cc)).

Here the summation is carried out over all momergg() we ‘_"“S(? mtlroduce, as .'tv was dong by Larkin vand
and spins §,s), §p=p2/2m—eF is the kinetic energy Ovchinnikov®! a hyvpermatnxg . Trle matrix elements of
counted from the Fermi energy, V is a smoothly varying are the retardedg®, advancedg”, and the Keldysh
electric potentialU;,,=U(p—p’) is a potential describing g“component. Thugy has the form

the interaction of electrons with nonmagnetic impurities, and

h is an effective “magnetic field” caused by the exchange . |9 (;K

interaction of spins of the free electrons with spins of the g= 0 g . (A8)

localized magnetic moments. The notat®rp means inver-

sion of both spin and momentum. The order paraméter The functionSéR(A) andtj" can be expressed in terms of the
must be determined self-consistently. In order to define the . 1ored Green's functiorgg(t; ,t,) as follows:
Green'’s function in a customary way we introduce new op- ok '

AR

eratorscls and c,s, which are related to the creation and “R(A) _ % n_x /
o ’ : 9™V =9(ty,t) —9(ty2), o), (A9)
anhilation operatorsa;r and a by the relation(we drop the b 12):72()
index p related to the momentum QK—é(tl t27)+§(t2 t) (A10)
- ) 1/
_ as, n=1, The equation for the hypermatrgxcan be easily derived in
Cns™ 1 4t n=2. the same way as it was done for the case of a superconductor

s’ with spin-independent interactiofWe are interested in the

The indexn operates in the particle-holdNamby space, diffusive limit. The symmetric component of the matrix
while the indexs operates in the spin space. The operatorsyith respect to the momentum directipp satisfies the equa-

Cnhs Obey the commutation relations tion

CneChrgr+CheiCns= Gy Fss + (A2) —IDV(GVG) +i(73® 0.0+ dp 0. 730 0rg) + V(D)

CnsCrrs + Cnrs/Cns= Sy dsg - (A3) —geV(t') +[A®a3,g]+[Mp,g]=0. (A1)
In terms of thec,, operators the Hamiltonian can be written Here D=vl/3 is the diffusion coefficient, Mp=h(7s
in the form ® 03C0Sa+ TR ,Sina), and

0 A
~ . T ~ X A
H _{p,En,s} CnsH(nn')(ss’)Cn’s’ ) (A4) A= _A7'3: ( —A* 0) .
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Equation(All) is supplemented by the normalization condi-

tion
g-g=1 (A12)
and by the self-consistency equation
N oo . .
A= 1—6Tr(7'1—|7'2)®0'3f degk. (A13)

If the magnetization and, hence, the exchange figid con-
stant in the ferromagnetic layers, the anglén Eq. (A11)

PHYSICAL REVIEW B 64 134506

Eqg. (A11) at the interface between the conductoes and “
b” (Ref. 20:

v v Pa v o~
ga(gxga_ ZRa/b [ga -gb]u (A]-S)

where p, is the specific resistivity of the conductarand
Rap is the interface resistance per unit area. We assumed that
there are no spin-flip processes at the interface. In the pres-

can be excluded with the help of the following unitary trans-€Nce of spin processes at the boundary the condifdrs)

formation:

9=U"g-0, (A14)

where U =7,® gqcos@/2) +isin(a/2) 3@ 0. We consider

F/S structures, therefore we need the boundary conditions for

can be generalizetf. The current density is determined by
the usual expression

1. . e e e
|J=@Tr(7'3®a'0) f de(gRa,g%+gXa,9%). (A16)
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