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Layered *He and *He-*He mixture between two surfaces
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We examine the static, dynamic, and low-temperature thermodynamic properties of Yideicind the
low-concentration limit of*He-*He mixtures confined between two walls. A generalized variational Jastrow-
Feenberg ansatz with time-dependent correlations is used for describing the excited states; the present variant
accounts for up to three-phonon effects. We show that with decreasing wall separation the quantum liquid goes
though a sequence of confined layering transitions familiar from classical fluids. These transitions are due to
the geometry and have potentially observable effects in the roton excitations near wavekveztdk ~*. In
high-density liquid*He, 3He impurities assemble in the middle of the gap forming a nearly perfect two-
dimensional Fermi-liquid layer.
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[. INTRODUCTION ating and studying a practically two-dimensional high-
density quantum liquid.
We investigate in this work the physics of liquitHe Besides studies on confined quantum fluids, a wealth of
confined between two walls, as well as thatefe-*He mix-  information has been gathered about classical fluids between

tures in the low-concentration limit. Our model is character-two surfaces. If one moves the surfaces closer tog.e{mer
ized by the interaction of théHe atoms with the walls, the increases the number of trapped atgyrtise number of liquid
width of the gap between walls, and the amount of adsorbetpyers can change abruptly, i.e., layers are “squeezed out.”
helium. The effect of possible high-density solid layers at-The first direct observation of such layering transitions in

tached to the walls is included by an effective potential; thugluasi tW°4 dimensions was recently made by Mugele and
we concentrate on the translationally invariéiquid. Salmeroi*in 1-undecanol between mica surfaces, and a the-

Squeezed liquids, although conceptually simple, exhibit £retical model has been proposed by Persson and TGSt
rich variety of phase transitions, such as C(,lei”(,j“yLayenng transitions are of great practical interest in, for ex-
condensatiohand layering transitions in confinementn- a_mple, conflned Iubrlcanfg.The layer structure itself gives
jection of 3He or “He into aerogel or Vicor glass provides rise to oscillatory solvation forcefforces exerted on the

an opportuniy o sudy hefum fims adsorbed ina random i, %5 8 L5001 980 VLD emAS conde
!nterconnec.ted porous material. _Aerogels prqwdg a means tl‘?ysteresi%g’zo as a function of the gap width.

mtroduce. disorder intc’He, Ieadlng to modification of the To observe the layering transition in a confined liquid
phase d|ag£am of the superfluid phases. Hallock anggjiym, one needs a quasi-two-dimensional environment to
co-workers™® have demonstrated hysteresis, return-pointgnsyre that the number of liquid layers is sufficiently low so
memory, and avalanche effects in connection with capillarfthat the layer structure is sharp enough to have observable
condensation in Nuclepore, yet another porous material.  effects. A traditional two-wall quantum liquid confinement

The question of how confinement alters the elementaryonsists of helium injected in the space betwéga silicon
excitations in a liquid has been studied by inelastic neutronwafers Lipa et al?* and Gasparini and co-workéfs?®have
scattering. Recent measurements indicate that, apart fromeasured the'He specific heat near the transition. The
possible layer modes and a very different temperature depemvall separations used in Ref. 24 ranged from about 500 A
dence, the elementary excitation spectrum Hfle in  to 7000 A (one separation for each experimental kcelhe
aerogel~®and Wcor glassis similar to that of bulk helium.  thickness of oné'He layer is about 3 A; hence one can have
Earlier estimates of the lifetime of a confined roton rangedover 160 layers of solid or liquidHe in a gap of 500 A.
from about 5 ueV (Refs. 7 and 10up to 10 ueV (Ref. 11); Much smaller wall separations are therefore needed in order
a recent high-resolution experiment gives an upper limit ofto have a pronounced layer structure and potentially observ-
only 0.1 ueV.*? able effects arising from such local structures.

The confined liquid is distinguished from helium films  Liquid “He squeezed between two walls can also be con-
physisorbed to a one-sided substtatey an important as- sidered as a model of liquid helium in aerogel. Aerogel has a
pect: If the number ofHe particles adsorbed to a one-sidedtypical porosity between 85% and 99.5% and consists of
substrate is increased, helium atoms are promoted to cosilica strands of the order of 100 A apart; the interconnected
secutively higher layers and the film becomes thicker. Thepores making up the strands have sizes from a few to a few
lowest-lying excitations in this geometry are surface waveshundred A. The material is quite random, which makes clean
Such a layer promotion is suppressed in finite-width gapspredictions difficult. A material which might prove suitable
and the lowest-lying excitations are normally two- for layering studies in a more controlled environmentégs-
dimensional phonons. This provides the possibility of generiorite, which consists of regular quasi-two-dimensional
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smectite layers of about 9.6 A thickness, kept some 17—20 Avhere then-body correlation functions W(rq, ... r,) are
apart by randomly distributed pillars made of inorganic com-determined by functional minimization of the enerfy:
pounds. Wada and collaborattts*® were the first to exam-
ine liquid *He and “He in hectorite. They have measured, SEq
among other properties, the specific heat of phonons and Sun(r, ... I =0. 2.3
rotons inpartially filled hectorite gap$’

We concentrate in this work mostly on filled-gap systems, The optimized hypernetted-chain Euler-LagrarigC-
which show a very rich behavior. A direct comparison with EL) theory for inhomogeneous quantum liquidsfasmally
the experiments of Wada and co-workers is difficult, becaussgimilar to the one for the homogeneous ground stat®An
these apply, as we shall see, mostly to mixed phases contaiattractive feature of the HNC-EL optimization is that the
ing a partly capillary condensed liquid. Although neutron process does not give a result if the assumptions on the ge-
scattering data are not yet available, we hope that our invesmetry of the system are inconsistent with its true physical
tigations will encourage experimental studies on this intercondition. In particular, the optimization fails if some parts
esting system. A preliminary account of this work, togetherof the system are not in stable or metastabléquid state.
with calculations of the roton energy and the static response In its most basic form the energy functional one is aiming
function, was given in Ref. 2. One potentially observableto minimize contains not only the correlation functioms,
effect of confinement is a “dip” in the roton energy at the but also the full sequence ofbody densitiep,(rq, ... ry).
location of the layering transition; the reader is directed toOne usually defines dimensionlessn-body  dis-
that paper for details. Capillary condensation has beemibution functions g, via pp(ry, ... ) =p(ry)
discussedf** within a nonlocal density-functional theory. ... p;(r)gn(r1, - . . fy). This serves to isolate the contribu-

Our paper is organized as follows: In Sec. Il we give ations of the one-body densitigs, (the ordinary densitigs
brief account of the ground-state theory of inhomogeneousince theu,’s determine the wave function, they also deter-
quantum liquids and impurity atoms solvated therein. Dy-mine p’s andg,’s, so one needs to establish relations be-
namics is discussed in Sec. lll, and the extension of oufween these two representations, at leastferl, 2, and 3.
theory to finite temperatures is described in Sec. IV. Thes@nlike the distribution functions, the correlation functions
parts are meant as reminders to the reader of the basic idegage not observables. It is therefore desirable to eliminate
and to define the notation. Complete surveys of the grouncthese quantities and formulate the theory entirely in terms of
state theory may be found in Ref. 32 or Ref. 33; excitedphysically observable quantities. The process of eliminating
states have been thoroughly covered in Refs. 34 and 35. lihe u,'s is described in Ref. 41; it is based on the Born-
Sec. V we present results for various wall separations angreen-Yvon(BGY) equatioft? (first equation in a hierarchy
look at the details for a helium liquid of 14 A width, inspired of exact equations
by the hectorite environment.

Vipa(ra)
Il. INHOMOGENEOUS GROUND STATE 5
4 :pl(rl)vlul(rl)+J d°ropa(ry,ra)Vala(ry,ra)
A. Pure “He
The method of choice for studying the strongly interacting 1( 5

quantum liquid “He is the Jastrow-Feenberg theory. We +§ a1 a0 3p3(11,12,18) Vals(ry,ra,fa) + - -
present here an outline of the theory which is published in
full length in Ref. 32. It is based on the microscopic, empiri- (2.4
cal Hamiltonian and on the HNC equations for inhomogeneous systéms,

52 Oa(ry,r2) =expua(ry,ra) + N(ry,rp) +E(ry,ra)],
H=2 | =5 Vi+Usdr) [+ 2 V(ri-rD., 2.1
' = h(ry,ra)=gs(r1,r2)—1,

whereV(|ri—r||) is the He-He interaction. The theory will N(ry,r)=[F*X](ry,ry)
be applied only to the liquid state and therefore the “sub- 1z ek
strate” potentialUg,{r) is the net interaction due to the ac- X(r1,r2)=h(r1,r5)—N(ry,fp). (2.5

tual substratelus the layers of solid helium on top, if any.
The ground-state wave function is written Jastrow- We have above introduced the “tilde” notation for any func-
Feenbergform tion A(r,r’),

1 A(r,r)=\py (DA, )pa(r'), (2.6)
Wolry, ... JN):esz > Ul(ri)+i2j Ua(ri,rj)

i and the asterisk denotes the convolution product:

+ Ekus(ri,rj,fk)*‘"' . (22 [K*E](rl,rz)zjd3r33(r1,r3)§(r3,r2). 2.7

i<j<
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E(ry.r,) is the sum of the so-called elementary diagramsfact, the Euler equation can be derived, from an approximate
With the BGY and HNC equations one can eliminatgr) summation of Feynman diagrams, without ever introducing
andu,(r,r'), respectively. the correlation function&~*® Second, the optimization
The optimal triplet correlations can be expressed in term&liminates any prejudice on the structure of the system we
of the one-body density,(r;) and the two-body distribution Might have. Third, the additional computational effort due to
functiongz(rl,rz) and f|na||y the ground_state energy can bethe Optimization is inSignificant relative to SOIVing the HNC

written in the fornf3 equations for a fixed trial function,(r,r’). To summarize,
there is no point in not optimizing,(r,r’).
Eo=Eo[p1,92]=T+ Vet E.. (2.9 The two-body Euler equation is best formulated in terms

Here, T is the kinetic energy of a noninteracting model sys—Of the (real-spacgstatic structure function

tem whose ground-state wave functionyig,(r,):

S(r,r")y=8(r—r")+h(r,r"), (2.19
h2
T= ﬁf d3r|Vpi(n)|2. (2.9  aone-body Hamiltonian
Vex IS the energy of the particles in the external potential: R 1 1
Hi(== 5 ——=Vp(NV—, (21§
pa(r) pa(r)

\Y; =fd3ru (1) pa(r). (2.10
e & and the so-callegarticle-hole interaction Y.(r,r’). The
The “correlation” energy E. can again be written e€xplicit form of this effective potential follows from the

as the functional op,(r) andg,(r,r’) (see the Appendix in HNC-EL equation; it will be given below. In aexacttheory,

Ref. 43. i.e., whenall diagrams are summed, aatl n-body correla-
The variation of the energy with respect to the one-bodytions are optimizedy(r,r') can equivalently be defined
density is done keeping the particle numbefixed: via
O(Eg— uN) 5°E V(1)
Spa(1) = (2.1) Vpr(r,r')= c —= -, (2.17
! opa(r)opa(r’)  opa(r’)

';li—cr)]r? ftz)p;tlpmg?tlon condition takes the form of a Hartree €AYy here the latter equality follows from Eq2.13. The solu-
1 3

tion of the Hartree equation corresponds to a locally stable

72 energy minimum only if the operator resulting from second-
- ﬁv% Uead 1) +Vy(r) [Vpi(r)=up1(r), order density variation is positive definite. Hence the eigen-
(212 values\ in the equation

2

where the self-consistent one-body potential is h
- %Vq Uex()+Vy(r) —u|dVpa(r)

Vy(r) = (213

—° .
opa(r)’
it has a more complicated analytic structure than the ordinary
Hartree potential appearing in theories of weakly interacting (2.18
systems. One may think of the HNC-EL theory as of a ver- -
sion of density-functional theory with a highly nonlocal should all be positive. . . .
correlation-energy functional, whose form is derived within The two-body Euler equation can be written in the form
the theory. Another important difference is that the HNC-EL -

density functionakxists only for physically realizable densi- ~ [S™™*H1*S™(r,r")=8(r—r")Hy(r)+2Vp(r,r').
ties Hence, there is no need for retrospective stability analy- (2.19

s_is. This is a valuable a_s;et, because inhomogeneity giV"a(ﬁne-body quantities such &$, are diagonal in this repre-
nsc:_rt]o rt]\q/\?n}k/) p(;]ase tra;?s';uronsd sentation, and the inverse of the static structure function is to
€ two-body equation reads be understood in the sense of the convolution prod2ay.
The explicit form for the particle-hole potential can be de-
(2.14  fived within the HNC formalism; the result’s*

+2f dr'Vor(r,r")8\pa(r) =N 8\pa(r)

=" o
8gp(r,r')  Sgyrr’)
Determining the pair correlations by optimization, as op-

Vot ) =go(r,r [V(r=r'[)+AV(r,r')]

posed to an “intelligent guess” for the pair correlation func- h2

tion u,(r,r'), has a number of significant advantages: First, + ﬁ[|V1\/gz(r,r’)|2+|V2\/gz(r,r’)|2]
the optimized theory is formulated entirely in terms of physi-

cal observables, e.g., the one- and two-body densities. In +go(r,r") = L Wing(r,r’). (2.20
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TheAV(r,r') in Eqg.(2.20 is a contribution arising from the to the background particles. The Hamiltonian of the (
inclusion of triplet correlations and elementary diagrafts,  + 1)-particle system consisting df “He atoms and one im-

andw,(r,r’) is the so-called “induced interaction”: purity is
Wing(F, 1) == 3 [Hy(r)+Hy(r)IN(r,r) N
~ ~ h?
+ FXHIXIrr). (22 Hyoa= = 5Vt Uadfo)+ 2 Vo= ri) +Hy.
The functionX(r,r’) is known as the direct correlation func- (2.26

tion or the sum of “non-nodal” Born-Mayer diagrams ap-
pearing in the HNC equation®.5).

In the geometry adopted here, all two-body quantities are The variational wave functio®.2) for an inhomogeneous
functions of the distancesz’ from the substrate and the N-particle Bose system with a single impurity atom is
distancer | of the particles parallel to the substrate. Momen-
tum in the parallel direction is a good quantum number, and

we can, in this direction, have ordinary sound with a linear 7! o1 S
dispersion relation. In the case of one-sided adsorbed films, ¥o(fo:T1, .- - In)=€Xp5 | Us(To)+ 2, Uz(Fo.ri)
this sound is normally thésubstrate potential drivérthird
sound or thesurface tension driverripplon. In the present |

P : ; + 2 Us(rg,ri,ri)+---
case, we expect mostly longitudinal density fluctuations. 1=y 2 0: 1l

In practice, the particle-hole potential given in Eg.20
is not the same as the one defined E2j17). As a conse- XWo(rg, ... Iy
guence, quantities such as the speed of sound that can be
calculated using either microscopic or macroscopic quanti-
ties will slightly disagree for all approximate theories. The  The impurity chemical potential iﬂIEEB—EO, whereE})

hydrodynamic sound velocity is given 1> is the energy of the system containing one impurity &hd
background atoms, ari, is the energy2.8) of the unper-
m nd_:“ (2.22 turbed background system.
dn’ ' The impurity chemical potentiat' has a structure similar

It is easy to see that Ed2.22) does not imply a surface to that of the background energy,

excitations by noticing that in Aomogeneousystem, Eq.
(2.22 reduces to the hydrodynamic relationship

p' =T+ Vit Edp1.p1.92.02], (229
dpP
mc=——, (2.23

dn where
which is avolumeexcitation. In strongly confined situations
the lowest-lying mode may indeed be a “two-dimensional” .
phonon. The precise physical nature of a specific excitation "t | 43 /—
is revealed by the transition density and current, which will T 2m d*rolV v (228

be discussed in the next section.
Differentiating Eq.(2.12) one obtain¥’

m&;l n Sub_f d®r U guf Fo) pi(ro) (2.29
2 {Ml[Hl<0+)+2V/p.h(0+>]‘l|JZ}’(Z y

- depend only on the impurity densig&(ro), and the correla-
where H,(0+) and V,,.((0+) are the operator$i;(z,k))  tion energy part i€.[p},p1,95,92].

and Vp_h(z,z’,k”) in the limit k—0+. In the bulk liquid The usual definitionS of the impurity densities and dis-
one can prove that tribution functions are used to derive the explicit expression
for the impurity correlation energy. One must take into ac-
mESZBmCi (2.25 count that all background quantities are changed by the pres-

ence of the impurity by terms of the order ofNt/these
changes give rise to quantitatively important rearrangement
effects. The details of the derivation are given in Refs. 55

and one may argdéthat this relation holds also in inhomo-
geneous liquids.

o . and 56.
B. Atomic impurities The impurity density is calculated by minimizing the
We adopt the convention that coordinatg refers to  chemical potentia{2.27) with respect toyp;(rg). This leads
the impurity particle and coordinates, with i=1,... N, to the usual Hartree equation
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#2 tions. The goal is to find an expression for the density-
- %Vévp'l(ro)wtngt(ro)+vh(r0) Vpi(ro) density response functiop(k,») and further the dynamic
! structure function

= u'py(ro). (2.30
1
The operator S(k,w)=— ;Im x(k, o)
2
Hi(ro)=— ~ ;Vopll(ro)vo; =— EJ d3rd3re® = im y(r,r'; ).
2m, \/Pll(ro) \/Pll(ro) ™
AR, | . (3.1
:_2_mvo+[usut(r0)+VH(rO)]_l’« (2.3) _ o
Our theory of the dynamic structure function is the gen-
defines through eralization of that of Jacks8hand Campbeif to inhomoge-
neous systems. We consider an infinitesimal, time-dependent
HY(ro) 7' (ro) =41 (1) (2.32  perturbation, which drives the liquid out of its ground state:

the spectrunz, and the set of stateg{®(r,) which may be

interpreted, in an approximation to be examined below, as e )

excitation energies of the impurity atom. OH(ry, ... Iy 't)_izl Uex(ris1).
The two-body Euler equation is deriv8d® by variation

of the impurity chemical potential with respect 10 ag g consequence, the wave function acquires time depen-
V9a(ro,ra). It can be formulated in terms of tiwrect cor-  dence. A logical extension of the Jastrow-Feenberg varia-
relation functionfor the impurityX'(rq,r), which is related  tional wave function to excited states is

to the impurity pair-distribution function through the
Ornstein-Zernike relation

N
(3.2

e iEot/figdU (t)/2| o)

lIf —
M O)= g o0 w g

h'(rg,r)=S"(ro,r)=[X"*S](rg,r) (2.33 @3

where ) ) o
where| W) is the ground-state wave functioBy is its en-

h'(re,r)=g5(re,r)—1, (2.3  ergy, and

[Hi(ro)+Hy(r)1X (rg,ry) —[X™* HyX](ro,rq)
SU(D) =2, duy(ri;t)+ X, duy(ri,ryt)+--- (3.4
i i<j

=—2Vp(ro.ry). (2.39
. . . I . .
The elffect|ve interactiolVy,(ro,r) and the induced interac- s the complexexcitation operatarThe time-dependent cor-
tion wiy4(ro,r) are structurally similar to the background ex- relation functionsdun(ry, ... fn;t) are determined by an
pressiong2.20 and(2.21): action principle®®-°

Vir(To.1)=05(ro.DIV(|ro—r[)+AV'(rg,r)]

h? h?
+ 2—m|Vr0\/9'z(fo,f)|2+ > Vega(ro.n)?

(2.35 Where the variations are tak¥i1-® treating the
Supy(rq, ... ry;t) as independent functions.
and We assume that the external perturbation is sufficiently
~ Lo ~ small to permit the linearization of the equations of motion
Wing(Fo,1) == 3 [Hy(ro) + Hy(r)IN'(ro.r) in terms of theduy(ry, ... f,;t). Then, dynamics can be
Lol S treated within linear response theory. By keeping terms of
— 2 [X"HX](ro,r). (2.37 leading order in the dynamical correlations, the resulting Eu-
ler equations can be cast in the form of couptegiations of
lll. DYNAMICS motion (EOM). The conjugate variable to the time is the
excitation energyiw. In general it is complex; the real part
In this section we will briefly review the key features of gives the dispersion and the imaginary part the inverse life-
the theory for excited states of inhomogeneous quantum ligime of the excitation.
uids. The dynamics of boson quantum films was described in Applying the action principle to the wave functid.3)
much detail in Refs. 35 and 34; the formalism applies to theyields the first two of the coupled equations of moticee
present case ofHe between two walls without modifica- the Appendix of Ref. 3

5S= 5f dt(W (t)|H+ 5H(t)—iﬁ%|\lf(t)>=0, (3.5

+h|(r01r)wilnd(r07r)
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ﬁZ
mvl'[pl(rl)vlﬁul(rl;t)‘l'J d3r5po(ry,r2)Viduy(ry,rost)+- - ]

= _iﬁbl(H;t)+2[P1(r1)Uext(r1it)+ f d3f2[P2(r1er)_Pl(rl)pl(rZ)]Uext(rZ;t)) (3.6

and
ﬁ2

ﬁvl'{Pz(rlyrz)vl[&ll(rl;t)*' 5U2(r2,r2;t)]+f d3rapa(ry,ra,ra)Voduy(ry,ra;t)+- - -

+same for (1+-2)

= _iﬁbz(rlrrz;t)+2p2(r11r2)[uext(r3;t)+Uext(rS;t)]+2J d3r3[pa(r1,r2,13) = pa(r1,12)p1(ra) Uex(r3;t).

(3.7

In the above equations the ellipsis indicates terms with fluc- A. Feynman approximation

tuations inus, Uy, etc. The EOM have the form of coupled  the truncation of the excitation operator in Eg.4) de-
continuity equations: The quantities in curly brackets on thgines the level of approximation in which we treat the exci-

left-hand sides are theansition currentsand the time de-  a4ions. The simplest approximation, which ignores all fluc-
rivatives are those of the correspondimgnsition densities tuating correlation functions except(r:t), is referred to,

They play a central role in identifying excitations becausenereafter, as th&eynman approximationin this case, the
they contain direct information of where in the liquid a SP€-resulting w is real. This is a reasonable approximation as

cific excitation is taking place and how particles move. |54 55the wavelength of the excitation is large compared to
The steps leading from the exact EQBIE) and(3.7) to a Ei[ae average particle spacing; in particular, it is exact in the

set of technically manageable equations have been outlin ng-wavelength limit. Already at the most basic level of the

in the Appendix of Ref. 35. There is no need for repetition; o\ nman theory theinalephonon—maxon—roton dispersion
we only sketch briefly what remains to be done. So far th Y y gep p

& in the bulk i laced by setof modes i tricted
EOM are in a mixed form, and the left-hand sides contai urve In the bulk 1S replaced by setol modes In restricte

eometries.
du, while the time derivatives of the-body densities are ng Assuming harmonic time dependencesu(r:t)

most naturally written in terms a¥p,,. Restricting ourselves _ suy(r)e'®, and abbreviating/(™ (r) = méu(ln)(r) the

%O o?e— alnd two-pody quantities, one can make use of th'éf;"tction principle(3.5 may be represented as the generalized
unctional expansions eigenvalue problem

op1(rq)
ouy(ryp)

5p1(rl;t)=Jd3r2 }5u1(r2;t) Hl(r)‘//(n)(r):ﬁwnj dr'S(r,r) ¢V (r’). (3.10

Sp(ry) Using Eq. (3.8 one can show that the density fluctuation
+f d3r2d3r3[—5u 10 Suy(ry,ra;t) 8p{"(r) associated with the dispersion brantis simply
2112513
(3.9 1 1
8p1"(r)= 5\pa(N (1) = s—pa(NH1(N) #7(r).
n
and (3.11
In the bulk limit the structure facta®(r,r’) can be Fourier
s - [ ¢ 09a(ra,ra) s t transformed td5(k) and one recovers the well-known Feyn-
92(11,r2it)= f3 S5p1(ra) pa(ra;0) man dispersion relatiofi w(k) =7%2k?/[2mSk)]; all modes
w, collapse in this case to one single mode.
+f 43r ad?r 692(r1,r2) Suy(raurat) The Feynman approximation corresponds here to the ran-
3 A SUy(rg,ry) 2 3 A dom phase approximatiofiRPA), and from the density fluc-
3.9 tuations we construct the density-density response function
The functional derivatives can be evaluated using the defini- xR 0) =2 8pP(N[GEMA w)
tion of the one-body density for a known wave function and st
the HNC equations. As a final result, the EOM in the ap- +GRA—w)18pP(r),  (3.12
proximation used in the present work have s
{6p1(rq;t),8u,(ry,ry;t)} as independent variables. where
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st the summations are over all Feynman states and the three-
P (3.13  phonon vertice®?), are determined by the second EGske
the Appendix of Ref. 3p In order to get the expression for
is the Green'’s function for a free Feynman phonon. Just likehe CBF density-density response function one only needs to
its bulk counterpart, the Feynman excitations in an inhomoadd the self-energy correction to the Green’s function in Eq.
geneous liquid satisfy the® (or zeroth momentsum rule;  (3.13,
in other words, the frequency integration

G @)=

GEF(w)=[h(w— wt+ie) s+ 25 (w)]71, (3.16

S(r,r')y=— ! fxd(hw);mXRPA(r,rf;w) and use it in an equation similar to E@.12.
Vpi(r)py(r')Jo 7 The self-energy correction given in E(.15 decreases
© (S0 with increasingw rapidly enough not to affect the zeroth-
- opy (r)opy’(r'") (3.14 and first-moment sum rules discussed in connection with the
= o1 (Npa(r) ' Feynman theory. However, this form of the self-energy re-

veals one deficit in the approximate solution of the EOM
gives exactly the ground-state static structure function. Thi$3.6) and (3.7): The energy denominator does not use the
is a necessaryalthough not sufficientcondition that the self-energy-corrected spectrum, but only their Feynman ap-
excited states and the ground state correspond to the sarpeoximations. It should be emphasized that this is not a prob-
Hamiltonian. A violation of self-consistency at this level lem of the EOM themselves, but rather a technicality to keep
would cause all subsequent calculations to be inconsistentthe numerical effort at a reasonable level. In bulk systems, a
more complete form of the self-energy has already been
B. Correlated basis functions applied®® However, it is considerably more complicated than
the present self-energy and is expected to lead only to quan-
titative improvements, but not to qualitatively new effects.
We use therefore the above simpler form and keep in mind
that the high-momentum excitations have somewhat too high
energies.

Subsequent to the work of Feynm¥nFeynman and
Cohen®® Chang and Campbédif, and Jackson and
Feenber/:®® showed that, while the original Feynman
theory* is qualitatively correct, higher-order scattering pro-
cesseginvolving multiple Fourier componentsire essential
for a full understanding of the excitation spectrum. In the
short-wavelength regim@bove 1.0 A1) the Feynman ap-
proximation overestimates the excitation energy, and keeping The equations of motion for time-dependent impurity cor-
duy(ri,ry;t) leads to a significant lowering of the excitation relations are derived in exactly the same manner as in the
energyP!~669 background theory; the analysis will also clarify the interpre-

A full solution of the equations of motion for fluctuating tation of the eigenvalues, of Eq. (2.32. We write
pair correlations is, in a restricted geometry, numerically
very time consuming and approximations are necessary. The e—iEBt/ﬁef’U'(t)/2|\1f'o>
approximation that we will use is tantamount to keeping [w'(t) = [ A0UT(0) gl \ 1272
what is conventionally called “three-phonon scattering pro- [(¥ole Vo]
cesses.” We use the term “phonon” loosely; it may, for ex- \ynere
ample, stand for a layer phonon or a surface mode. While
excitations in the Feynman approximation have infinite life-
time, three-phonon processes allow the decay if energy and SU'(1)=8Uy(ro;t) + 2, SUp(ro,ri;t)+---. (3.18
momentum are conserved. As a part of the evaluation of '
ouy(ri,rj;t) from the second EOM, we obtain the three- The time-dependent components of the wave function are
phonon scattering matrix elements; i.e., the probability amagain determined by an action principle of the fo(f5)
plitudes for the decay of one “phonon” into two. The secondwith the only qualification that the perturbing Hamiltonian
effect—mode coupling via three-phonon processes—sH(t) act on the impurity atom alone. The equations of mo-
renormalizes the mode energies. The physical character @bn are also of the structure8.6) and (3.7); they may be
the various Feynman modes differs considerably; this playsound in Ref. 70. Again, the level of approximation is de-
an important role in determining the amount by which afined by the fluctuating multiparticle correlations retained in
particular mode is renormalized. sU'(1).

Three-phonon processes lead to a self-energy correction The simplest case i8u,(rq,r,;t)=0 for n=2. In fact,

o this case is trivial since it leads immediately to the interpre-
cor 1 YV SAVICA tation of then(®(r,) defined in Eq(2.32 as the wave func-
2q (‘”)25 % m (319 {ions and the energies, as an approximation for the impu-
rity excitation energies.
which was derived, in the bulk liquid, by Chang and Camp- However, much physics is missing in that case: In the
bell using Brillouin-Wigner(BW) perturbation theory with quasi-two-dimensional geometry, the state is characterized
correlated basis function(CBF’s); hence the abbreviation by the quantum numbea={«a,k|} where « is a discrete
CBF-BW is often used for this approximation. In E§.15  quantum number associated with the motionzidirection

C. Impurity dynamics

(3.17
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andk; is the linear wave number in they plane. The eigen- IV. THERMODYNAMICS
functions of Eq.(2.32) have the simple form There are various ways to generalize the variational
@(ry= g (2)eX" 319 theory to finite temperatures. The first successful step was
_ 71 _ 7a(2) 319 taken by Campbell and collaboratbrs® who generalized
and the associated energies are the Jastrow-Feenberg variational wave function to a varia-
212 tional density matrix and used the Gibbs-DéltktMoliere
e —e + I (3.20 principle for the Helmholtz free energy to derive practical
@ T 2m’ ' methods for calculating the free energy, the entropy, and re-

. . . L . lated thermodynamic quantities. The theory was generalized
in other words the_ motion of the impurity in they plane is to inhomogeneous geometries in Ref. 48.
that of a free particle.

. . . . It is, again, sufficient to display only the working formu-
When fluctuating pair correlations are included, the eqUa;, ot the theory and to point out the places where the basic
tion of motion(2.32 is supplemented by a nonlocal, energy-

dependent self-eneray term equations are modified by temperature effects. The two-body
P 9y equation(2.19 contains an explicit thermal term in addition

to the implicit temperature dependence throyglir) and
H'l(r)tlfw(r)+f B/ (r,r @), (1) =fop,(r). 9,(r1,r,); its finite-temperature version is
o2 S M H*S (1) = 8(r—r" )Hy(r) +2[Vp 1’
The self-energy® (r,r'; ») describes three-body processes; it [ 1S )= 8lr = () + 2L Vpr(rr)

has the form +®(r,r"], 4.7

St )= S, Wl Wona()

(3.22 where the temperature-dependent correctlgm,r’) is de-
am ho—tfo,—€,’

fined by

whereW,,,(r) is the three-body vertex function describing

the coupling between an incomiriie particle to an outgo- D(r,r')=—22 nplnm+ 1AM (r) g™ (r'),

ing 3He in the stater as well as an outgoing phonon in state m

m. The detailed form of these matrix elements follows from (4.2
the microscopic theory that has been described at length in. ; _ -1

Ref. 55; its detailed structure is irrelevant for the presen's;\l”th the boson occupation numbers=(ksT) ]
considerations.

The additional physics introduced by the self-energy are
“backflow” correlations at low energies, as well as potential
damping of the impurity motion by coupling to phonons and
rotons in the appropriate energy regime. We are here onlnd they{™(r) defined in the Feynman eigenvalue problem
interested in low-energy properties. In the limit-0*, the ~ (3.10.
impurity motion in the parallel direction can be characterized The induced interaction is formally the same as displayed
by an effective mass, i.e., the dispersion relation resultind? Ed. (2.21); the finite-temperature particle-hole interaction
from solving Eq.(3.21) in our geometry and for low energies Vp.r(r.r’) is obtained from Eq(2.20 by replacing
is characterized by an effective mass :

1

Np=——,
" efhem—q

4.3

- Wing(F, ") —=Wing(r,r’)+®(r,r’) (4.4
[

fi
ho(k)=pup'+ o (3.23  in the last term.
! Details on the execution of the theory and the discussion
Note the important fact that the impurityinding energyis  of low-temperature limits and surface broadening may be

not changed by the self-energy corrections. The effectivéound in Ref. 48. The entropy turns out to be that of non-

mass ratiom*/m, can be expressed in closed form®as interacting quasiparticles with the Feynman spectfum,:
m h? d? Xin(ap |2
=1 f o () — S=kgX, [(Ny+D)IN(Ny+1)—nginngl. (4.5
m; am “m ) (2m)° Vi wy(q)) +#A2gf/2m, m
(3.29

In closing this section we should mention that an exten-
sion of the theor{f allows for multiparticle correlations.
When such effects are included, the Feynman excitation en-
X:n(QM):f dzodzm?'(zo,z;qu)qsm(z,qu) ergiesfiw,, are replaced by the poles of the CBF Green’s

(325 function GSP(w) defined in Eq.(3.16. That way, a more
' realistic representation of the thermodynamic features above
and ¢, (z,q)) is the Feynman density fluctuation associatedtemperaturesfol K can be obtained. The theory has, how-
with the dispersion branci. ever, not been implemented in inhomogeneous geometries.

where the matrix eIemenbs'm(qH) are
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. . . . _15 1 1 1 1 1 1 1
FIG. 1. Density profiles ofHe in a 14-A-wide gap are shown as 0.0 0.1 0.2 0.3 0.4

function of areal density. The free spaces correspond to densities n (A2
where no stable liquid configurations exist.

FIG. 2. The energy per particle dfHe in a 14-A-wide gap
(solid lines and the chemical potentiétiashed linesare shown as
a function of areal densitg. The distinct regions correspond, from
A. Static properties left to right, to a monolayer, a symmetric double layer, and filling of
the gap.

V. RESULTS

We focus our main attention on a system with a wall
separation of .14 A _becﬁuse this IS In reasonable agreemefits \yidth of the free space available fajuid helium. If the
with the phys!cal S|tuat|on.found in the gaps of heCt.or'te'actual distance between the bare substrate surfaces is meant,
These are typically 20 A wide; a monolayer of sofile is

. . A _ . we will state it explicitly.
attached to each side. The interaction”efe particles with Let us first describe the scenario of filling a 14-A gap with
the walls can be described by the usual 3-9 potential ob

) . ol h quid “He. The evolution of the density profile is depicted in
tained from averaging Lennard-Jones potentials over a ha ig. 1. As a function of coverage one has the following

space: filling situations.
(i) N=0-0.032 A2 There is not enough helium to
4C§ 1 C4 form a translationally invariant liquid, patches of helium can
Uso(2)=| 5752 3~ = (5. form on either wall.

(i) N=0.032-0.068 A ?: One of the two walls is cov-
ered with an atomic monolayer or both walls with patches of
“He. With gap width of 14 A this configuration is probably
metastabldgsee the energetics in Fig).2

Usuf2) =U3.9(2) +Uzo(L—2). (5.2 (i) n=0.068-0.122 A 2: Both walls are covered with

atomic monolayers, but due to interaction, it is more appro-

This assumes that the walls are smooth and, hahgg(r) is  priate to call it a symmetric double layer. As expected, this
a function of one coordinate only. This does not compromiseccurs for areal densities above at le@gite spinodal den-
the results of our calculations because most of the laterality of a single monolayer, which is about 0.032" A(Refs.
structure of the substrate will be smoothed out by the firsz6 and 77 at zero temperature. This value is also close to the
solid layer of helium atoms. The potential will be suited to areal density where a single atomic monolayer becomes un-
apply for hectorite. To determine the parameters of the 3-$table against the promotion of particles to a second layer.
potential(5.1), we have taken long-rangext ® tail from the (iv) n=0.122-0.22 A 2: No stable liquid phase could
silicon-helium interactiod? C;=2000 KA 3, and have be found. The interaction between the two sides is strong
adjusted the short-ranged ® repulsion such that the binding enough such that configurations where one of the walls is
energy of single*He atomé&’ is reproduced. This gives a covered by a double-layer would undergo capillary conden-
well depth ofD=128 K. The substrate attraction is weaker sation.
than that of graphite, but still strong enough to cause the first (vi) n=0.22-0.29 A 2. The gap is completely filled
atomic layer of “He to solidify. We have taken this into with four liquid layers.
account by adding, as described in Ref. 32, an inert solid (vii) n=0.29-0.41 A?: The gap is completely filled
monolayer of *He with a thickness of 3.3 A and surface with five liquid layers.
coverage of 0.07 A? to both walls. The picture is consis-  (vii) n above 0.41 A 2 No stable liquid phase; presum-
tent with the fact’ that superfluidity sets in at a filling of ably the layers next to the walls solidify or solid helium fills
1.33 layers: One layer is solid, and it takes a certain amourthe whole gap.
of “He to form a complete, low—density second layer. Since One of the most remarkable features is tumfined lay-
the distance between the hectorite walls is about 17—20 A, ering transitionat the coveraga~0.29 A 2: Near this den-
one has a liquid phase of 11-14 A width. From now on wesity the film changes abruptly from four to five layérs.
use the terms “gap width” or “wall separation” to designate  The structure of the system is determined by the energet-

The full external potential for a gap of widthis then
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FIG. 3. The speed of longitudinal sound as a function of areal FIG. 5. The equilibrium(upper curve and the spinodallower
densityn (solid lineg. Also shown is the speed of third sound on a curve areal densities divided by the gap width The layering
one-sided substrate with the same poteridakshed ling The left-  transitions occur at the local minima.
most branch corresponds to a single monolayer, for which the two

sound velocities are equal. from du/dn since the long-wavelength limit determines the
regime of existence of solutions of the HNC-EL equations.
ics, shown in Fig. 2. All three configurations discussedThe figure also showsc? for the case wheréHe is ad-
above—the monolayer, the symmetric double layer, and thgorbed on a one-sided substrate with the same potential. The
filed gap—have their own energy minimum; the slight mis- resylts are identical for a single monolayer filling, but start to
match between the chemical potential and the energy at itgeviate for the case of two layers: The physically interesting
minimum is due to numerics. Most notable is again the gagspect here is not that there is a difference between the two-
betweenn=0.12 A~? andn=0.22 A~? where no stable a| geometry and the one-sided substrate, but rather that the
systems exist that are translationally invariant in the direcyouple-layer configuration in the hectoriterist identical to
tion parallel to the walls. The configuration in this density that of two monolayers. This is evidently a first sign of in-
area is to be found by means of the usual Maxwell constructeraction between the monolayers on opposite walls. The
tion. speed of sound for configurations in the high-density regime,
Most directly affected by the confinement and by the in-where the lowest excitations are longitudinal phonons, is ex-
terplay between stable and unstable configurations is thgectedly very different from that in a multilayer adsorbed
speed of longitudinal sounds, or the longitudinal incom-  fjim where the lowest excitations are ripplons.
pressibilitymcZ. Figure 3 showsncZ as a function of cov- The confined layering transitions are worth examining in
erage; we have calculated this quantity from the longdetail. Insight into its mechanism might be found by consid-
wavelength limit of the excitation spectruf@.24 and not  ering the transition as a function of the gap width. Figure 4
shows the “phase diagram” of the transitions between gap

0.9 . . . . . widths 7 and 30 A. With a large gap in excess of 30 A the
08 | Confined Layering Transitions numerical solution of the inhomogeneous HNC-EL equations
07 b \ becomes more and more time consuming and also the den-
: sity profile is less interesting with a flat portion in the middle
0.6 1 2 of the gap. According to a simulation performed recently by
05t . x\e,\\&(\’ Heni and Lowerf® crystalline layers of hard spheres con-
= 04 b Wit layers %,o\‘a’ fined between two patterned substrates go through a se-
= Q quence of layering transitions resembling those found for
ua r \ . liquid helium in this work(see Fig. 3 in Ref. 78
02 3 X 1 The transitions from two to three layers up to the transi-
0.1 227 tion from 9 to 10 layers obey very accurately the rule
0 0 5 10 15 20 25 30 n.,=0.252-0.0578 + 0.075, (5.3

wherei is the number of layers in the fewer-layer phase and

FIG. 4. The sequence of confined layering transitions lnra  1€NGth is in units A. Thus the transitions form a set of evenly
plane, i.e., gap width vs areal density. The density is limited fromSPaced, parallel lines in tHen plane(marked with straight,
below by the spinodal linélower dashed lineand from above by ~ solid lines in Fig. 4. The layering transitions are due to the
the freezing line(upper dashed line The solid line crossing the geometry and the short-range repulsion of the He-He inter-
transition lines is the fixed- equilibrium; the fixedk equilibrium  action; they take place at a slightly higher areal density if the
lies above it(not shown. substrate potential is turned off.

134503-10



LAYERED “He AND 3He-*He MIXTURE BETWEEN. . .. PHYSICAL REVIEW B 64 134503

0 T . T T T 0.6

eddhesion energy

o
L

1
—
T

041

Energy density (KA?)
n

| AR

3 . : - : . 0.0 ‘ ‘ : .
0 5 10 15 20 25 30 5 10 15 20 25 30

L (A) L A)

Solvation pressure (KA3)

FIG. 6. Energy per unit area per wall as a function of the gap FIG. 7. The pressure exerted on the walls in the fikedgui-

width L. From the largd- limit (straight ling we deduce the adhe- librium. The vertical lines mark the locations of the layering tran-
sion energyE ,qv~=0.76—0.77 K A~? of the substrate. sitions.

The confined liquid has two equilibria corresponding toFrom what is known about classical liquids one expects to
different boundary conditiongi) minimum E(n) at fixedL  see oscillations in the force as a function of the gap width,
and(ii) minimumE(L) at fixedn. The former is the equilib- with the maxima matching the occurrence of well-formed
rium in a situation where the addition of helium does notlayers® Figure 7 shows that this is largely true also for
change the gap width appreciably, which probably is the casbelium, although the large zero-point motion of helium at-
in hectorite. The fixed areal density in the latter case camms allows them to move past each other more easily than
result from periodic boundary conditions or walls with very their classical counterparts.

weak substrate potential in theandy directions. Schemati- Although the locations of the transitions follow the same
cally, the gap could be varied in this case with a piston mov+ule, they are not quite the same. With increasingf the
ing in thez direction. number of layers changes from even to oddeav layer is

Many quantities scale with the gap widthin the L— o createdbetween the two midmost layers. The transition from
limit. Figure 5 shows how the spinodal and equilibrium den-odd to even number of layers occurs \adurcation of an
sities approach the scaling limit. The spinodal point is an
instability in the infinite-wavelength sound mode. As the gap
width increases, this mode changes from a two-dimensional
to a bulk phonon. It is difficult to carry out calculations close
to the spinodal instability points because all correlations be- ~ 0.06
come very long ranged. The present spinodal data extrapo—o'fg
late in the limitL— to ps;~ 0.018 A~3, which is slightly = 004
above the bulk value-0.0168 A~3. The equilibrium den- 2 6.0
sity extrapolates t@eqy~ 0.020 A3, which is below the <
known bulk value 0.02186 AZ. The freezing density can- 0.00,
not be found reliably using the methods used in this paper,
but the highest areal densities wherdnaetgstable liquid
solution is found gives an approximate upper limit to the
freezing line(see Fig. 4 The energy per particle at the fixed-

n equilibrium has the limiting valu&/N~ —7.13 K, which

is close to the bulk value-7.17 K. The energy per unit — 0.08

area, on the other hand, gives the interfacial adhesion energy,Z: 0.06

as depicted in Fig. 6. For the present substrate plus one layer = 0.04
. . . = R

of solid helium we obtained the valueE,y, =

~0.76-0.77 KA 2, o 0.02

If the liquid is at the fixeda equilibrium, it is off the
fixed-L equilibrium. This gives rise to the so-called solvation
pressurgor force, i.e., pressure exerted on the walls by the
liquid, given by

FIG. 8. Density profiles of'He in gaps of widths 8 Aupper
J(EIN) figure) and 11 A(lower figure as a function of areal density.
n( L ) (5.9 These are prototypes of transitions from even to odd and odd to
n,N even number of layers asincreases.

Pn(L)=
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0.10 — - - - - - local density variations; therefore we expect to see that the
low-density region is limited by the 3D spinodal point at
008 I about 0.016 A 3. Indeed, this is very close to the lowest
e & 2D freezing density. = average 3D density given by left edge of the gray-shaded
5 006 & G area in Fig. 9 at about 0.0162 &,
% 0.04 g :gf Although theaverage3D density always stays above the
S VR 2D spivodal de ) & bulk spinodal point in the filled-gap configuration, theal
] 2 & density between the layers goes well below it. For example,
0.02 4layers 5 layers I in the 14-A gap system the lowest value is only 0.010" 3
5o L . ‘ . . o This m_ight give a change to gxperimenta_lly ver@fy the cri_tical
0,016 0.018 0.020 0.022 0.024 0.026 0.028 behavior of the spinodal point of two-dimensional helium,

which is not characterized by a critical exponent, but rather

Average 3D density (A™) by the fornf®

FIG. 9. The density ofHe layers compared with the 2D and 3D
critical densities. The gray-shaded area between the solid lines pre-
sents the range of densities found in a 14-A-wide gap for the fouras discussed in Ref. 76. a further complication is that at
and five-layer configurations. We plot the 2D density of thin Slicesfinite temperatures the So,ftening of the phonon energy leads
taken parallel to the surfacésame ag(z) for a fixedz] against the to an avalanche of low-energy phonons and suppression of
average 3D. densitghere equgl to Covgr.age/l"’"&rhe vertical lines superfluidity near the spinodal point. Apart from giving the
ﬁre. the Sp'.nOdal and freezing densities of bulk 3Be, and the low-density limit of a filled-gap configuration, the spinodal

orizontal lines are those of 2fHe. . .
points serves as a valuable consistency check of both the

o ) ) ~analytical and numerical implementation of the theory of in-
existing middle layerAn example of both types is shown in° homogeneous quantum liquids.

Fig. 8. In some cases the closeness of the freezing density
forces the transition to take place in a narrow areal density
range. As a result, the fingerprints of the layering transitions
in quantities such as the roton parameters are not the same The study of*He impurities in*He filmsper sehas led to
for all transitions. much exciting physics and deeper understanding of the
Some light can be shed on the stability limits of the liquid physical mechanisms governing the behavior of confined
emerging from the present calculation by comparing thenfiuantum fluids;’ we shall see that the behavior is even
with the known two-dimensiondRD) and 3D critical points. ~ ficher in the situation under investigation here.
In Fig. 9 the gray-shaded area covers local liquid densities The behavior of single’He impurities in *He surfaces
found in the filled gap of 14 A width, but the result applies to and within the bulk liquid in both two and three dimensions
all other gap widths as well. We have left out the low-densitycan be quite accurately described by manifestly microscopic
regions between the surfaces and the first layer, and concetfeoretical method¥>*%*%%The first questions to ask are, of
trate on regions where the substrate potential is less govergourse, the solvation energy and spatial distribution of the
ing. Thex axis of the graph in Fig. 9 represents the averagéndividual components of the low-concentration mixture.
3D density, that is, the coverage divided by the gap width. Before we discuss our results, it is worth recalling the
They axis plots the 2D densities(z) parallel to the sur- mechanism of*He mixing in *He films and in both three-
faces. This quantity would describe the system if it consiste@nd two-dimensionaf'He. In a quantum film,°He atoms
of noninteracting 2D systems stacked between the walls andill first populate Andree states in the surface; the binding
one could treat each slice as an individual 2D system. Agnergy of these states is about $'KThat way, a quasi-two-
high coverages, the liquid solution was found only up todimensional Fermi liquid ofHe is formed in the surface.
aboutn=0.41 A~2, which corresponds to the average 3D Only when the chemical potential of these surface states be-
density 0.029 A %). The highest 2D density is found in comes high enough wilPHe atoms penetrate into the bulk
layers nearest to the walls, 0.075 "A. We emphasize that liquid. In three-dimensional bulkHe, the chemical potential
these limits are the points where the optimal liquid structuredf single 3He atoms is—2.2 K% but it increases rapidly
ceases to exist, and they are always higher than the rewlith pressure and becomes zero slightly above a density of
freezing densities, the overshoot being about 20% in bulk 3.023 A~3. The 3He impurity is, on the other hand, un-
liquid and about 6% in 2D helium. Taking this into account bound in two-dimensionatHe.
we conclude that the high-coverage stability limit of the lig-  In the systems under consideration here, we have in prin-
uid found in the present calculation can be attributed tcciple no free surface. Nevertheless, in cases with low areal
freezing. Technically, if one assumes that the high-coveraggensity, we have a rather dilutde liquid in the middle of
limit is due to freezing of the layers nearest to the walls, therthe gap. Hence, at low areal density, one expects thattiee
one should — at least in principle — be able to go on withatoms will populate states close to the center of the gap, but
the liquid calculation by takingwo solid layers of helium on  attached ta*He areas that resemble a free surface. The bind-
both walls instead of just one. ing energies of such impurity states should be about twice
The spinodal point is an instability againdong-  the binding energy of an Andreestate because thtHe im-
wavelengtidensity oscillations and is therefore insensitive topurity “sees” two “He surfaces.

p—psxcinc as c—0+. (5.5

B. Low concentration mixtures
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FIG. 10. The figure shows the binding ener@plid line, left FIG. 12. 'I_'he figure sh_ows a compariso_n between“lh_e bacl_<-
scalg and the effective mas&lashed line, right scalef 3He im- ground .de.nS|t|e.$dashed Ilne)§and the location of théHe impuri--
purities within “He filling a 14-A-wide gap as function of areal ties(solid lineg inthe 14-A-wide gap for the two extreme densities
densityn. n=0.23 A~2 (no markersandn=0.38 A~2 (lines marked with

crosses

As the *He areal density is increased, any resemblance of . . ' I
. show a comparison of the density profiles for thée liquid
the center area to a free surface disappears, and the syst%rﬁld the3He impurity for a verv low and a verv hiah back-
becomes essentially a two-dimensional liquid. The impurity round densit pAt tKe o den)é' — 023 A2 ){[heg‘]‘He is
is affected by this in two ways: First, the larger zero—pointg u SIty- W i ity=0. L !
motion of the 3He atom causes the impurities to stay awaymOdIy Iocghzed at the Walls,.the Ioca] density there reachgs
from the walls, and second, the chemical potential shoul&lmOSt twice the bulk saturation density, whereas the density

become positive. |?r’1 the center is well below the bulk saturation density. The

Both of these effects are seen clearly in the energetics cﬁ::nevlvshzféﬁf‘g ?r:J;s()tVs(etL)trTel |n8(()alzr:§s;:\/tvr?elﬁ?/er:s dgai?te on
the impurity and its location within théHe host liquid. The the other hand. théHe img )l/.ll’it ovérla S ragc]:ticall 0¥1’I
energetics of>He atoms in our confinedHe liquids is with the innerm’osl“He Iay(fr y PSP y only
shown in Fig. 10 and the density profiles in Fig. 11. At low o . o
“He density, the’He atoms occupy "Andreelike” states in We mention in passing that in contrast, the nonlocal den-

the center of the film. We see indeed that the binding energs’Ity functional theory,” which has also been used in the two-

L . - Walled geometry studied hef®,predicts mixing near the
atlow areal densities is about twice the binding energy of thg alls8* The reason is that the density functional associates a

Andreer state, but it increases rapidly and goes through zer ; . X

at about the two-dimensional density where the transition Ogensny-d_ependent effective mass \.N'th the ground state of the
a four-layer to a five-layer system occurs. At the same areal.He particle, whgreas a proper microscopic treatment asso-
density, the®He state turns from a rather broad feature to amatgs an Srgffectwe mass only with the level density of
very narrowly peaked wave function in the center of theexcz\tlatlon "th the bindi how in Fia. 10 al
films, as seen in Fig. 11: As the density is increased >tte h (:fng wi € '? r'%% er_lergy,_wef,? show N 'Ig.h also
atoms are repelled by the highde density at the walls, and the effective mass of theHe impurity for motion in thex-y

become strongly localized in the center of the gap, forming

25

an almost perfect two-dimensional Fermi gas. ' '
A close-up of the situation is shown in Fig. 12. There, we 20 E
o5t
3
10t
8 n=0.300 A
L=14A
0 1 1 1 1
0 0.5 1.0 1.5 2.0 2.5

k, A1

FIG. 13. The excitation spectrum in the Feynman approximation
FIG. 11. Locations ofHe impurities within*He filling a 14-A-  in a 14-A-wide gap at the areal density=0.300 A2, In this
wide gap are shown as functions of areal densitpetweenn approximations modes are not decaying and we plot here only the
=0.23 A"2andn=0.38 A2 positions of thes-function peaks irS(k;, ).

134503-13



V. APAJA AND E. KROTSCHECK PHYSICAL REVIEW B64 134503

30

n=0.230 A% k=050 A" hew=6.0K

25 ¢

20

15 ¢

o (K)

10

ko (A

FIG. 14. Left figure: the dynamic structure functi®@k|;w) parallel to the symmetry plane for areal density 0.23, Alose to the
spinodal instability of the filled-gap configuration. The magnitud&(d ; ) is indicated by the gray scale. Right figure: the particle current
at the same areal density of the phonorkat0.5 A ~!. The gray-shaded area depicts the background density, the solid line the transition
density corresponding to the excitation, and the superimposed vector field is the particle current flow.

plane. Expectedly, we see a rapid increase of the effectivaumbers perpendicular to the symmetry plane. In particular,
mass as a function of areal density; a small “kink” is seen atthe kj— 0 limit is just a discrete set of states at fixed ener-
the location of the layering transition. Considering the rathemgies. This could give rise tdispersionless modegservable
drastic change of both théHe environment and théHe in perpendicular scattering. In Refs. 86 and 87 it was argued
wave function, this signature of the layering transition is ac-that, in the case of one-sided films, one can see a pattern of
tually surprisingly weak. dispersionless modes within the continuum; this provides an
The effective mass was calculated by the relatively simplénterpretation of such modes seen in neutron scattering ex-
formula (3.24); it should, therefore, be considered as quali-periments off helium adsorbed on graphite powtietere,
tative at high areal densities. More accurate evaluations dhe situation is even clearer, the discreteness of the spectrum
the *He effective mass have been carried out in tfré%and  in the kj—0 limit is specific to the geometry and will be
two® dimensions, but these methods have not yet beethere also in spectra calculated with more accurate imple-
implemented for the inhomogeneous geometries consideradentations of CBF theory than the one used here.
in this paper. We are now ready to go beyond the Feynman approxima-
tion and turn to the treatment of excitations within the CBF
C. Dynamic properties theory. One of the new physical features coming in at that
) i level of treatment is that excitations cdecay.The left part
_ Let us now turn to the dynamical properties of the con-o¢ Fig 14 shows the CBF dynamic structure function
fined liquid helium. Again we use the system with gap Wldths k|,) calculated from Eqg(3.1) and (3.16) with the self-
14 A as an example and reference system, although sever, ergy(3.15 near the spinodal point &t=0.23 A~2. The

of the systematic trends can be revealed only by looking alynd velocity is about to go to zero as expected. The nature

some of the quantities as a function of the gap width. Afterof the phonon mode can be visualized by looking at the

briefly describing the Feynman spectra we reassess the spin-

odal instability and then move on to discuss the behavior of n=0290 A? k=050 A" Ho=9.0K
the roton excitations and the angular dependence of the dy- 0.06 : : : : : : 20
namic structure function. — RAPRERS SRR RS HRRES M
. . L . . 0.04 +
Figure 13 shows the collective excitation energies in < - T

Feynman approximation defined by the generalized eigen-
value problem(3.10 at the coveraga=0.300 A2 for the

gap width of 14 A. These modes propagate at frequencies in
close proximity to one anotheimode crossings are quite
common and can be categorized as being surface m¢ates
low areal density layer phonons, and bulklike modes. No- 1 . ‘ ‘ .
t!ce the absencg ofa contmuum in the_spectrum: I.n one-sided 0 2 4 6 3 10 12 14
films the excitations spectrum is continuous provided that

z(A)
2
Fo>— ﬁzkn 56 FIG. 15. The transition density and current for the lowest—
R N T (5.6 energy phonon at=0.290 A2, right below the confined layering

_ _ transition. Notice how the density profile has four layers, but the
but now atoms cannot be moved to arbitrary distance off theransition density shows that low-momentum excitations already
liquid; henceall modesare described by discrete quantum use five layers.
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FIG. 16. The transition density and current for the lowest-energy roton at areal densitte850, 0.300, 0.350, and 0.380 A.

transition density and current at low-momentum transferthe parallel momenturk, . We plot one period of the current,
These are shown in the right part of Fig. 14. The particleO<rk <2#. The transition density is now spread over all
current depends on tlecoordinate and it is periodic in the layers; hence the spinodal instability corresponds to a van-
direction parallel to the walls; the period is determined byishing sound velocity of a two—dimensional phonon. The

30

25

fio (K)
fio (K)

FIG. 17. The dynamic struc-
ture functions S(kj;w) at the
same areal densities as Fig. 16.

fio (K)
fio (K)

51 n=0380 A2
L=144
0 05 1 L5 2 25
k, (A
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30

25 |
20 |
g 2
2 2
10 f
5 L
0 : : FIG. 18. The dynamic struc-
9 05 1k . Lo 2 23 ture functionS(k;w) at the areal
G density 0.300 A2 The angle
30 between k and the symmetry
plane is(a) 0°, (b) 30°, (c) 60°,
By and (d) 90°.
20 }
% %
2 g "
10 f
5 L

0 0.5 1 15 2 2.5
k, (A

particle currents show that the excitation is basically longi-and a systematic difference between transitions from odd to
tudinal. even and even to odd number of layers cannot be verified. In
Figure 15 shows the transition density and current at thenost cases the roton energy decreases with increasing areal
areal densityn=0.290 A~2. This is below the four- to a  density but in the four-layer configuration the roton energy
five-layer transition, and although there is no sign of a fifthstays nearly constant.
layer in the density profilédepicted by the gray-shaded area  The transition densities and currents corresponding to the
in the figure, the transition density already anticipates that alowest-energy roton are depicted in Fig. (€&e also Fig.
fifth layer is about to emerge. 17). The figure shows that at low areal densities the roton is
It is suggestive to look for a signature of confined layeringpropagating symmetrically in the two high-density layers
in the excitation spectra. The transition from four to five close to the walls. At higher areal densities the excitation
layers was discussed in Ref. 2. There, we showed that for thepreads out and is basically in resonance with the density
gap width of 14 A the roton energy drops rapidly above theprofile throughout the film; in other words, we can identify it
transition. We have now conducted a systematic study of thisith a longitudinal “volume” excitation.
effect as a function of the gap width. Surprisingly, the roton The angle dependence of the dynamic structure function
energy seems to be sensitive to the layering transition fronis shown in Fig. 18 for the areal density=0.300 A2,
two to three and four to five layers, but not from three to fourScattering not parallel to the symmetry plane contributes, for
layers. For more than five layers the effect is smeared ougxample, in experiments done on powder samples with ran-

30 n=0.120 A% k=050 A he=3.7K
25 | 0.06
T 004 .

20 <
~ N 0.02 t
% % 0.0
g 15¢F 0.00
=

10 f

5 F

0

ky (A

FIG. 19. Left figure shows the dynamic structure functiik,;w) at the areal density 0.120 #2. The low-energy excitation is a
ripplon. The right figure plots the transition density and curreri¢ at0.5 AL
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FIG. 20. The specific heat of the two-wall systéthick solid FIG. 21. The figure shows the tanggMaxwell) construction

lines) compared with the hectorite experimental data given in Refbetween a filled-gap and a symmetric double-lagi) structure
27 (open circles connected by a thin linat T=0.2 and 0.6 K for two gap widths indicated in the picture &=0. For L
(upper curves The specific heat was calculated using Eg8). =12 A the double-layer solution is on the verge of becoming un-
Solid black dots indicate phase transitions obtained using the tarstable.
gent construction shown in Fig. 21.

and the pillars, which hold the silicate layers apart, may act
domly oriented grains. In this case the observed excitationas additional attractors. Present knowledge of hectorite is
spectrum is angle averaged, and one may recognize featurekearly inadequate for quantitative theoretical studies, and
characteristic to perpendicular scattering: If the momentunthe two-wall model does not account for the finite porosity
transfer is perpendicular to the walls, the spectrum is madand connections between hectorite grains. With these provi-
of dispersionless stripes. The underlying spectral densitgions, we carry out a comparison between the specific heat of
consists of maxima which follow the shape of the phonon-our model system and the experimental results of helium in
roton spectrum of bulk helium. The roton energy in the per-hectorite reported in Ref. 27.
pendicular direction is, however, slightly higher than the cor- The results are plotted in Fig. 20 at temperatufes0.2
responding energy in the parallel direction. Theand 0.6 K. To facilitate the comparison we have converted
perpendicular scattering measures the density of states at the areal densityr to the adsorbed amount,y,. Using the
—0, whose maximum is above the energy of the paralleadsorption ared=592 n?/g of the sample used in Ref. 27,
roton. This is already apparent in the Feynman approximathe relation reads
tion: In thek — 0 limit in the spectrum in Fig. 13 the states
are closely packed around 20 K, whereas the roton is at about Nags= (49.15:1+10.8 mmol/g. (5.7
15 K. The decay of the modes added by the CBF self-energ
renormalizes these values, but the result remains qualit
tively unchanged.

As long as the liquid has a free surface it can sustain
ripplon excitation. In the left part of Fig. 19 we plot the
dynamic structure function parallel to the walls at
=0.120 A3, which corresponds to a monolayer on each
wall. The ripplon is clearly the lowest mode betwekp
~0.3 and 1.0 A% The right part of Fig. 18 shows the
transition density and current at the ripplon excitation. The
transition density shows clearly how the excitation propa-
gates on the surface of the liquid, and the transition current
has the circulation pattern specific to ripplofisthe transi-
tion density shows how the liquid attempts to spread to the
space between the existing layers, just like it could foresee
the appearance of the fifth layer in a four-layer liquste
Fig. 15.

Heren is given in units of A2, The above formula takes
Into account that about 10.8 mmol/g is needed to fill the solid
(leayer” and that the areal density gives the amount of helium
per two walls.

For the theoretical specific heat we used the formula
given in Ref. 48,

it Foll ——
Quasip. approx, ——-——-

—_
W
T

C, (mJ/K/m?)

e
n

o L=
D. Thermodynamics 005 0.1 015 02 025 03 035 04 045

22
As mentioned in the Introduction, the specific heat data of n(@A5

helium in the hectorite environment reported in Ref. 27 F|G. 22. The theoretical specific heatB+0.5,1.0...,5.0 K
cover two-phase regions where the present theory is not aps a function of areal density. The quasiparticle approximation is
plicable, but does not reach our primary interest, the filledcalculated using the zero-temperature spectrum, whereas the full
gap region. The substrate potential in hectorite is unknowmalculation is the result with spectrum at each temperature.
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FIG. 23. The figure shows the longitudinal incompressibility for ~ FIG. 25. Temperature dependence of the equilibrium areal den-

temperature§ =0,0.5 . . .,3 K. The lowesturve corresponds to Sity (solid line, left scalgand free energydashed line, right scale
T=0. The width of the gap is 14 A. No free energy minimum was found above 1.5d¢e also Fig. 26

A 42k theoretical model predicts a translationally invariant liquid
D j l [H (k) 12N (k) [Npr(K) + 1] configuration, a symmetric double layer marked as DL in
kgT? “m (2m)? Al LAt ’ Fig. 20. The spinodal point of gap filling corresponds to
(5.8  ngpee22.1 mmol/g, while the tangent construction shown in
Fig. 21 gives as the point of phase transitiog,e23.7
mmol/g. These are close to the experimental gap filling in
ﬁectorite, which, according to Wadst al,, probably corre-
sponds ton 423 mmol/g. The filling of the gap is accom-
anied by appearance of a sound mode, so it is expected to
how up as a peak in the low-temperature specific heat: A
rounded peak was indeed observedat1.7 K2’
The main conclusion that can be drawn based on the the-

CV:

whereA is the area. We ignore the small contribution coming
from the explicit temperature dependence of the excitation
energiesi wm(k)) (m is the branch index

The magnitudes of the specific heat results are roughly th
same as the experimental data. The specific heat given by E
(5.9 is infinite at spinodal points, but since they lie outside
the stable limits determined from a Maxwell construction

(solid circles in Fig. 20} the experimentally observable spe- oretical results is that the stability of the low-coverage liquid

C|f|<|\:/|2;e:tcz}’r110\l;ves I?ataTn%Sdt ?g;afi?rﬁxérﬁgén of the densit structures is very sensitive to the gap width. A tangent con-
o P . : Ystruction given in Fig. 21 shows that the symmetric double-
scales of helium in the two-wall system and in hectorite. InI fi . b ble for A buti
Fig. 20 we have indicated three regions, as they appear in thayer con |gurat|qn seems to ne st_a € 14 A, butis
thebretical results: The symmetric double-la er and filled- fearly unstable if the gap width is reduced by only 2 A.
ab reqions are S'e arate)c/i by 2 mixed- haseyre ion left blanCl:(onsidering that the space available for liquid is not well
gap regions P oy X P g ; Known, it is not clear whether the double layer is stable or
because it is not a translationally invariant configuration. In

i . : not in the real hectorite environment. Furthermore, stability
this coverage area, one has most likely coexistence betwee

a qas and a canillarv-condensed liquid. A monolaver. if itorf' the double-layer configuration depends not only on the
9 piiary-c quid. yer, width of the gap, but also on how attractive the substrate
were stable, would reside aroumgys~13.3 mmol/g, near

the minimum in the observed specific heat. The sample usepolmem'aI 'S

) - N For completeness, Fig. 22 plots the theoretical specific
in Ref. 27 showed superflquy aboveygs-14.4 ’T‘m°"9 heat between 0.5 and 5.0 K. We compare the specific heat
(total of 1.33 layers, one solid layer, and a partially filled

liquid layen. This is close to the lowest value where the 10 . . : :
10 T " " /
15 F 1
8 i 1 o~
S
_ 6 - 4 _2 |
g 2 %
=l =d
g 4
g2 2t B
&
0 -30 . . . .
2t 0.15 0.20 0.25 0.30 0.35 0.40
: : : : n (A%
0.2 0.22 0.24 0.26 0.28 0.3
T (K) FIG. 26. Free energy as a function of areal density for tempera-
tures 0,0.5...,5 K. Lowercurves correspond to higher tempera-

FIG. 24. Same as Fig. 23 but for the pressure. ture.
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calculated from the fully self-consistent calculation, where(3.22. In fact, when the Feynman spectrum in these expres-
all distribution functions and effective interactions are tem-sions is replaced by a spectrum that resembles essentially the
perature dependent, with a “quasiparticle approximation.”phonon-roton curve, the discrepancy between theory and ex-
This approximation is obtained by taking the excitation specperiment is reduced to a few percent. A proper refinement of
tra of azero-temperaturealculation in Eq.(5.8) instead of  the theory to that level is, of course, much more complicated;
the temperature-dependent spectrum. The steep rises in the shall postpone such efforts until systematic experiments
quasiparticle approximation for the specific heat are not visgp, the systems examined here are performed.

ible in the fuII.resuIt, because the spinodal instability causing The most prominent effects that appeared in our studies
these steep rises moves away from the calculated areal defire the |ayering transitions. We have studied systematically
sity regime at elevated temperatures. the observable signatures of such transitions; the most prom-

The temperature dependence of the longitudinal incomr_. . -
- . . 2 Ising is the predicted drop of the energy of the lowest roton.
pressibility of a filled 14-A gap is shown in Fig. 23, where The layering transitions also give rise to oscillations in the

we plotme® as a function of areal density for temperaturespressure exerted on the walls and, as we discussed in Ref. 2,

T=0,0.5...,3 K.Figure 24 plots the corresponding pres- : . . . .
. : . : the perpendicular, high-momentum static density-density re-
for fixed dth. and particl beN, b . . .
sure for fixed gap wi and particie num given by sponse functionX, (k,w=0) changes discontinuously. Of
course, the layering transitions should show up in any quan-
ﬂ(E—TS)) tity which is sensitive to structural changes on the scale of
L,N

> (5.9  few angstroms. Just what to expect in an experiment on hec-
n

torite is very difficult to assess: there are three important
length scales stemming from the gap width, the substrate

Figure 25 shows how the equilibrium density and free energypotential, and the short-range He-He repulsion, but only the

decrease with increasing temperatftiee small rise im(T)  last one is well known.

at low T can be attributed to numerical inaccuracyhe net A point worth mentioning, but which has not been ad-

effect is that the sound velocity decreases with temperaturdlressed in this work, is the interaction betwette impuri-

just like in bulk *He. AboveT=1.5 K the theoretical free ties. We have shown earlfthat *He impurities form, in

energy has no minimum. As the high-temperature curves itwo dimensions,dimers at low 3He concentration. This

Fig. 26 show, the free energy can be decreased arbitrarilgimerization has been predicted by Basfikion very gen-

upon reduction of the areal density, which tells us that atomeral grounds. The binding energy 8He dimers in purely

are evaporating to the surrounding vacuum. This two-phasgvo-dimensional *He is of the order of microkelvins; in

region cannot be described by the present theory, so resulggher words, the effect would be quite hard to detect experi-

for T>1.5 K should be considered as tentative. mentally, especially since the systems that come closest to
two-dimensional*He are atomic monolayers on strong sub-
strates. These substrates must be strong enough to prevent

VI. CONCLUSIONS the promotion of the®He impurities to Andree states. The

downside of such strong substrates is the possible corruga-

We have applied in this paper a state-of-the-art microtjon effects, which make the formation and observation of
scopic many-body theory to calculate the structure, dynamyery loosely bound dimers difficult.
ics, and thermodynamics éHe and*He-*He mixtures con- We expect that the dimerization effect is more pronounced
fined between two attractive walls. The systems examine¢h the geometry studied here because the dimerization is ba-
here should, above all, be considered as models for hectoritgjcally due to the exchange of phonons. At low areal density,
but are, in a broader sense, also applicable for the more gethese phonons are relatively soft modes which are, therefore,
eral problem of helium in other confined geometries likemore attractive than two-dimensional phonons. At areal den-
Aerogels, Vycor, or solid matrices. We hope that the effectssity above the layering transition, th#He subsystem looks
discussed in our work will stimulate experimental interest invery much like a proper 2D system; we expect the bmdmg
these systems, most prominently on hectorite because of itshergy therefore to be comparable to the one found in Ref.
regular structure. 89. We have refrained from calculating tfkle dimer bind-

Our ground-state theory has been tested in various geong energy in this work since the resulting Satlirger equa-
etries such as the bulk liquids in two and three dimensionson is a truly three-dimensional eigenvalue problem which
in f”mS, and in drOpletS of helium. In all cases where exaCtrequireS |arge-sca|e Computationa| techniques for its solu-
simulation results or experiments are available, it has been afon. This is feasible today; hence there is little justification

excellent accuracy. There is no reason to assume that thig approximate treatments. But the effort is beyond the scope
would not be the case in the systems considered here; W& this work, results will be reported elsewhere.

expect therefore that the largest uncertainty of our structural
results stems from the external field.
More approximations have been made for the calculation ACKNOWLEDGMENT
of excited states and thermodynamic properties. In their es-
sence, these approximations amount to the use of the Feyn- This work was supported by the Austrian Science Fund
man spectrum in the energy denominators of E§<45 and  (FWF) under Project No. P12832-TPH.
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