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Layered 4He and 3He-4He mixture between two surfaces
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We examine the static, dynamic, and low-temperature thermodynamic properties of liquid4He and the
low-concentration limit of3He-4He mixtures confined between two walls. A generalized variational Jastrow-
Feenberg ansatz with time-dependent correlations is used for describing the excited states; the present variant
accounts for up to three-phonon effects. We show that with decreasing wall separation the quantum liquid goes
though a sequence of confined layering transitions familiar from classical fluids. These transitions are due to
the geometry and have potentially observable effects in the roton excitations near wave vectork;2 Å 21. In
high-density liquid 4He, 3He impurities assemble in the middle of the gap forming a nearly perfect two-
dimensional Fermi-liquid layer.
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I. INTRODUCTION

We investigate in this work the physics of liquid4He
confined between two walls, as well as that of3He-4He mix-
tures in the low-concentration limit. Our model is charact
ized by the interaction of the4He atoms with the walls, the
width of the gap between walls, and the amount of adsor
helium. The effect of possible high-density solid layers
tached to the walls is included by an effective potential; th
we concentrate on the translationally invariantliquid.

Squeezed liquids, although conceptually simple, exhib
rich variety of phase transitions, such as capilla
condensation1 and layering transitions in confinement.2 In-
jection of 3He or 4He into aerogel or Vycor glass provide
an opportunity to study helium films adsorbed in a random
interconnected porous material. Aerogels provide a mean
introduce disorder into3He, leading to modification of the
phase diagram of the superfluid phases. Hallock
co-workers3–5 have demonstrated hysteresis, return-po
memory, and avalanche effects in connection with capill
condensation in Nuclepore, yet another porous material.

The question of how confinement alters the element
excitations in a liquid has been studied by inelastic neut
scattering. Recent measurements indicate that, apart
possible layer modes and a very different temperature de
dence, the elementary excitation spectrum of4He in
aerogel6–8 and Vycor glass9 is similar to that of bulk helium.
Earlier estimates of the lifetime of a confined roton rang
from about 5 meV ~Refs. 7 and 10! up to 10 meV ~Ref. 11!;
a recent high-resolution experiment gives an upper limit
only 0.1 meV.12

The confined liquid is distinguished from helium film
physisorbed to a one-sided substrate13 by an important as-
pect: If the number of4He particles adsorbed to a one-sid
substrate is increased, helium atoms are promoted to
secutively higher layers and the film becomes thicker. T
lowest-lying excitations in this geometry are surface wav
Such a layer promotion is suppressed in finite-width ga
and the lowest-lying excitations are normally tw
dimensional phonons. This provides the possibility of gen
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ating and studying a practically two-dimensional hig
density quantum liquid.

Besides studies on confined quantum fluids, a wealth
information has been gathered about classical fluids betw
two surfaces. If one moves the surfaces closer together~or
increases the number of trapped atoms!, the number of liquid
layers can change abruptly, i.e., layers are ‘‘squeezed o
The first direct observation of such layering transitions
quasi two dimensions was recently made by Mugele a
Salmeron14 in 1-undecanol between mica surfaces, and a t
oretical model has been proposed by Persson and Tosatt15,16

Layering transitions are of great practical interest in, for e
ample, confined lubricants.17 The layer structure itself gives
rise to oscillatory solvation forces~forces exerted on the
walls! as a function of the gap width.18 In capillary conden-
sation these forces change discontinuously and sh
hysteresis19,20 as a function of the gap width.

To observe the layering transition in a confined liqu
helium, one needs a quasi-two-dimensional environmen
ensure that the number of liquid layers is sufficiently low
that the layer structure is sharp enough to have observ
effects. A traditional two-wall quantum liquid confineme
consists of helium injected in the space betweentwo silicon
wafers. Lipa et al.21 and Gasparini and co-workers22–25have
measured the4He specific heat near thel transition. The
wall separations used in Ref. 24 ranged from about 500
to 7000 Å ~one separation for each experimental cell!. The
thickness of one4He layer is about 3 Å; hence one can ha
over 160 layers of solid or liquid4He in a gap of 500 Å.
Much smaller wall separations are therefore needed in o
to have a pronounced layer structure and potentially obs
able effects arising from such local structures.

Liquid 4He squeezed between two walls can also be c
sidered as a model of liquid helium in aerogel. Aerogel ha
typical porosity between 85% and 99.5% and consists
silica strands of the order of 100 Å apart; the interconnec
pores making up the strands have sizes from a few to a
hundred Å. The material is quite random, which makes cle
predictions difficult. A material which might prove suitab
for layering studies in a more controlled environment ishec-
torite, which consists of regular quasi-two-dimension
©2001 The American Physical Society03-1
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smectite layers of about 9.6 Å thickness, kept some 17–2
apart by randomly distributed pillars made of inorganic co
pounds. Wada and collaborators26–29 were the first to exam-
ine liquid 3He and 4He in hectorite. They have measure
among other properties, the specific heat of phonons
rotons inpartially filled hectorite gaps.27

We concentrate in this work mostly on filled-gap system
which show a very rich behavior. A direct comparison w
the experiments of Wada and co-workers is difficult, beca
these apply, as we shall see, mostly to mixed phases con
ing a partly capillary condensed liquid. Although neutr
scattering data are not yet available, we hope that our in
tigations will encourage experimental studies on this int
esting system. A preliminary account of this work, togeth
with calculations of the roton energy and the static respo
function, was given in Ref. 2. One potentially observab
effect of confinement is a ‘‘dip’’ in the roton energy at th
location of the layering transition; the reader is directed
that paper for details. Capillary condensation has b
discussed30,31 within a nonlocal density-functional theory.

Our paper is organized as follows: In Sec. II we give
brief account of the ground-state theory of inhomogene
quantum liquids and impurity atoms solvated therein. D
namics is discussed in Sec. III, and the extension of
theory to finite temperatures is described in Sec. IV. Th
parts are meant as reminders to the reader of the basic
and to define the notation. Complete surveys of the grou
state theory may be found in Ref. 32 or Ref. 33; exci
states have been thoroughly covered in Refs. 34 and 35
Sec. V we present results for various wall separations
look at the details for a helium liquid of 14 Å width, inspire
by the hectorite environment.

II. INHOMOGENEOUS GROUND STATE

A. Pure 4He

The method of choice for studying the strongly interacti
quantum liquid 4He is the Jastrow-Feenberg theory. W
present here an outline of the theory which is published
full length in Ref. 32. It is based on the microscopic, emp
cal Hamiltonian

H5(
i

F2
\2

2m
¹ i

21Usub~r i !G1(
i , j

V~ ur i2r j u!, ~2.1!

whereV(ur i2r j u) is the He-He interaction. The theory wi
be applied only to the liquid state and therefore the ‘‘su
strate’’ potentialUsub(r ) is the net interaction due to the a
tual substrateplus the layers of solid helium on top, if any

The ground-state wave function is written inJastrow-
Feenbergform

C0~r1 , . . . ,rN!5exp
1

2 F(
i

u1~r i !1(
i , j

u2~r i ,r j !

1 (
i , j ,k

u3~r i ,r j ,r k!1•••G , ~2.2!
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where then-body correlation functions un(r1 , . . . ,rn) are
determined by functional minimization of the energy:36

dE0

dun~r , . . . ,r n!
50. ~2.3!

The optimized hypernetted-chain Euler-Lagrange~HNC-
EL! theory for inhomogeneous quantum liquids isformally
similar to the one for the homogeneous ground state.37–40An
attractive feature of the HNC-EL optimization is that th
process does not give a result if the assumptions on the
ometry of the system are inconsistent with its true physi
condition. In particular, the optimization fails if some par
of the system are not in astable or metastableliquid state.

In its most basic form the energy functional one is aimi
to minimize contains not only the correlation functionsun ,
but also the full sequence ofn-body densitiesrn(r1 , . . . ,rn).
One usually defines dimensionlessn-body dis-
tribution functions gn via rn(r1 , . . . ,rn)5r1(r1)
•••r1(rn)gn(r1 , . . . ,rn). This serves to isolate the contribu
tions of the one-body densitiesr1 ~the ordinary densities!.
Since theun’s determine the wave function, they also dete
mine rn’s and gn’s, so one needs to establish relations b
tween these two representations, at least forn51, 2, and 3.
Unlike the distribution functions, the correlation function
are not observables. It is therefore desirable to elimin
these quantities and formulate the theory entirely in terms
physically observable quantities. The process of eliminat
the un’s is described in Ref. 41; it is based on the Bor
Green-Yvon~BGY! equation42 ~first equation in a hierarchy
of exact equations!

¹1r1~r1!

5r1~r1!¹1u1~r1!1E d3r 2r2~r1 ,r2!¹1u2~r1 ,r2!

1
1

2E d3r 2d3r 3r3~r1 ,r2 ,r3!¹1u3~r1 ,r2 ,r3!1•••

~2.4!

and on the HNC equations for inhomogeneous systems,32

g2~r1 ,r2!5exp@u2~r1 ,r2!1N~r1 ,r2!1E~r1 ,r2!#,

h~r1 ,r2!5g2~r1 ,r2!21,

Ñ~r1 ,r2!5@ h̃* X̃#~r1 ,r2!,

X~r1 ,r2!5h~r1 ,r2!2N~r1 ,r2!. ~2.5!

We have above introduced the ‘‘tilde’’ notation for any fun
tion A(r ,r 8),

Ã~r ,r 8![Ar1~r !A~r ,r 8!Ar1~r 8!, ~2.6!

and the asterisk denotes the convolution product:

@Ã* B̃#~r1 ,r2![E d3r 3Ã~r1 ,r3!B̃~r3 ,r2!. ~2.7!
3-2
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E(r1 ,r2) is the sum of the so-called elementary diagram
With the BGY and HNC equations one can eliminateu1(r )
andu2(r ,r 8), respectively.

The optimal triplet correlations can be expressed in te
of the one-body densityr1(r1) and the two-body distribution
functiong2(r1 ,r2) and finally the ground-state energy can
written in the form43

E05E0@r1 ,g2#5T1Vext1Ec . ~2.8!

Here,T is the kinetic energy of a noninteracting model sy
tem whose ground-state wave function isAr1(r1):

T5
\2

2mE d3r u¹Ar1~r !u2. ~2.9!

Vext is the energy of the particles in the external potentia

Vext5E d3rU ext~r !r1~r !. ~2.10!

The ‘‘correlation’’ energy Ec can again be written
as the functional ofr1(r ) andg2(r ,r 8) ~see the Appendix in
Ref. 43!.

The variation of the energy with respect to the one-bo
density is done keeping the particle numberN fixed:

d~E02mN!

dr1~r !
50. ~2.11!

The optimization condition takes the form of a Hartree eq
tion for r1(r ),

F2
\2

2m
¹21Uext~r !1VH~r !GAr1~r !5mAr1~r !,

~2.12!

where the self–consistent one-body potential is

VH~r !5
dEc

dr1~r !
; ~2.13!

it has a more complicated analytic structure than the ordin
Hartree potential appearing in theories of weakly interact
systems. One may think of the HNC-EL theory as of a v
sion of density-functional theory with a highly nonloc
correlation-energy functional, whose form is derived with
the theory. Another important difference is that the HNC-
density functionalexists only for physically realizable dens
ties. Hence, there is no need for retrospective stability ana
sis. This is a valuable asset, because inhomogeneity g
rise to many phase transitions.

The two-body equation reads

dE0

dg2~r ,r 8!
5

dEc

dg2~r ,r 8!
50. ~2.14!

Determining the pair correlations by optimization, as o
posed to an ‘‘intelligent guess’’ for the pair correlation fun
tion u2(r ,r 8), has a number of significant advantages: Fi
the optimized theory is formulated entirely in terms of phy
cal observables, e.g., the one- and two-body densities
13450
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fact, the Euler equation can be derived, from an approxim
summation of Feynman diagrams, without ever introduc
the correlation functions.44–46 Second, the optimization
eliminates any prejudice on the structure of the system
might have. Third, the additional computational effort due
the optimization is insignificant relative to solving the HN
equations for a fixed trial functionu2(r ,r 8). To summarize,
there is no point in not optimizingg2(r ,r 8).

The two-body Euler equation is best formulated in ter
of the ~real-space! static structure function

S~r ,r 8!5d~r2r 8!1h̃~r ,r 8!, ~2.15!

a one-body Hamiltonian

H1~r !52
\2

2m

1

Ar1~r !
¹r1~r !¹

1

Ar1~r !
, ~2.16!

and the so-calledparticle-hole interaction Vp-h(r ,r 8). The
explicit form of this effective potential follows from the
HNC-EL equation; it will be given below. In anexacttheory,
i.e., whenall diagrams are summed, andall n-body correla-
tions are optimized,Vp-h(r ,r 8) can equivalently be defined
via

Vp-h~r ,r 8![
d2Ec

dr1~r !dr1~r 8!
[

dVH~r !

dr1~r 8!
, ~2.17!

where the latter equality follows from Eq.~2.13!. The solu-
tion of the Hartree equation corresponds to a locally sta
energy minimum only if the operator resulting from secon
order density variation is positive definite. Hence the eig
valuesl in the equation

F2
\2

2m
¹21Uext~r !1VH~r !2mGdAr1~r !

12E dr 8Ṽp-h~r ,r 8!dAr1~r 8!5ldAr1~r !

~2.18!

should all be positive.
The two-body Euler equation can be written in the form

@S21* H1* S21#~r ,r 8!5d~r2r 8!H1~r !12Ṽp-h~r ,r 8!.
~2.19!

One-body quantities such asH1 are diagonal in this repre
sentation, and the inverse of the static structure function i
be understood in the sense of the convolution product~2.7!.
The explicit form for the particle-hole potential can be d
rived within the HNC formalism; the result is47,48

Vp-h~r ,r 8!5g2~r ,r 8!@V~ ur2r 8u!1DV~r ,r 8!#

1
\2

2m
@ u¹1Ag2~r ,r 8!u21u¹2Ag2~r ,r 8!u2#

1@g2~r ,r 8!21#wind~r ,r 8!. ~2.20!
3-3
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TheDV(r ,r 8) in Eq. ~2.20! is a contribution arising from the
inclusion of triplet correlations and elementary diagrams,39,32

andwI(r ,r 8) is the so-called ‘‘induced interaction’’:

w̃ind~r ,r 8!52 1
2 @H1~r !1H1~r 8!#Ñ~r ,r 8!

1 1
2 @X̃* H1* X̃#~r ,r 8!. ~2.21!

The functionX(r ,r 8) is known as the direct correlation func
tion or the sum of ‘‘non-nodal’’ Born-Mayer diagrams ap
pearing in the HNC equations~2.5!.

In the geometry adopted here, all two-body quantities
functions of the distancesz,z8 from the substrate and th
distancer i of the particles parallel to the substrate. Mome
tum in the parallel direction is a good quantum number, a
we can, in this direction, have ordinary sound with a line
dispersion relation. In the case of one-sided adsorbed fi
this sound is normally the~substrate potential driven! third
sound or the~surface tension driven! ripplon. In the present
case, we expect mostly longitudinal density fluctuations.

In practice, the particle-hole potential given in Eq.~2.20!
is not the same as the one defined Eq.~2.17!. As a conse-
quence, quantities such as the speed of sound that ca
calculated using either microscopic or macroscopic qua
ties will slightly disagree for all approximate theories. T
hydrodynamic sound velocity is given by49–51

mcs
25n

dm

dn
. ~2.22!

It is easy to see that Eq.~2.22! does not imply a surface
excitations by noticing that in ahomogeneoussystem, Eq.
~2.22! reduces to the hydrodynamic relationship

mcs
25

dP

dn
, ~2.23!

which is avolumeexcitation. In strongly confined situation
the lowest-lying mode may indeed be a ‘‘two-dimensiona
phonon. The precise physical nature of a specific excita
is revealed by the transition density and current, which w
be discussed in the next section.

Differentiating Eq.~2.12! one obtains52

mc̄s
25

1

2

n

$Ar1u@H1~01 !12Ṽp-h~01 !#21uAr1%
,

~2.24!

where H1(01) and Ṽp-h(01) are the operatorsH1(z,ki)
and Ṽp-h(z,z8,ki) in the limit ki→01. In the bulk liquid
one can prove that53

mc̄s
2>mcs

2 , ~2.25!

and one may argue54 that this relation holds also in inhomo
geneous liquids.

B. Atomic impurities

We adopt the convention that coordinater0 refers to
the impurity particle and coordinatesr i , with i 51, . . . ,N,
13450
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to the background particles. The Hamiltonian of the (N
11)-particle system consisting ofN 4He atoms and one im
purity is

HN11
I 52

\2

2mI
¹0

21Usub
I ~r0!1(

i 51

N

VI~ ur02r i u!1HN .

~2.26!

The variational wave function~2.2! for an inhomogeneous
N-particle Bose system with a single impurity atom is

C0
I ~r0 ,r1 , . . . ,rN!5exp

1

2 Fu1
I ~r0!1 (

1< i<N
u2

I ~r0 ,r i !

1 (
1< i , j <N

u3
I ~r0 ,r i ,r j !1•••G

3C0~r1 , . . . ,rN!.

The impurity chemical potential ism I[E0
I 2E0, whereE0

I

is the energy of the system containing one impurity andN
background atoms, andE0 is the energy~2.8! of the unper-
turbed background system.

The impurity chemical potentialm I has a structure simila
to that of the background energy,

m I5TI1Vsub
I 1Ec@r1

I ,r1 ,g2
I ,g2#, ~2.27!

where

TI5
\2

2mI
E d3r 0u¹Ar1

I ~r0!u2, ~2.28!

Vsub
I 5E d3r 0Usub

I ~r0!r1
I ~r0! ~2.29!

depend only on the impurity densityr1
I (r0), and the correla-

tion energy part isEc@r1
I ,r1 ,g2

I ,g2#.
The usual definitions55 of the impurity densities and dis

tribution functions are used to derive the explicit express
for the impurity correlation energy. One must take into a
count that all background quantities are changed by the p
ence of the impurity by terms of the order of 1/N; these
changes give rise to quantitatively important rearrangem
effects. The details of the derivation are given in Refs.
and 56.

The impurity density is calculated by minimizing th
chemical potential~2.27! with respect toAr1

I (r0). This leads
to the usual Hartree equation
3-4
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F2
\2

2mI
¹0

2Ar1
I ~r0!1Uext

I ~r0!1VH
I ~r0!GAr1

I ~r0!

5m IAr1
I ~r0!. ~2.30!

The operator

H1
I ~r0!52

\2

2mI

1

Ar1
I ~r0!

¹0r1
I ~r0!¹0

1

Ar1
I ~r0!

52
\2

2mI
¹0

21@Usub
I ~r0!1VH

I ~r0!#2m I ~2.31!

defines through

H1
I ~r0!h (a)~r0!5«ah (a)~r0! ~2.32!

the spectrum«a and the set of statesh (a)(r0) which may be
interpreted, in an approximation to be examined below,
excitation energies of the impurity atom.

The two-body Euler equation is derived56,55 by variation
of the impurity chemical potential with respect
Ag2

I (r0 ,r1). It can be formulated in terms of thedirect cor-

relation functionfor the impurityX̃I(r0 ,r1), which is related
to the impurity pair-distribution function through th
Ornstein-Zernike relation

h̃I~r0 ,r ![SI~r0 ,r !5@X̃I* S#~r0 ,r ! ~2.33!

where

hI~r0 ,r !5g2
I ~r0 ,r !21, ~2.34!

@H1
I ~r0!1H1~r1!#X̃I~r0 ,r1!2@X̃I* H1X̃#~r0 ,r1!

522Ṽp-h
I ~r0 ,r1!. ~2.35!

The effective interactionVp-h
I (r0 ,r ) and the induced interac

tion wind
I (r0 ,r ) are structurally similar to the background e

pressions~2.20! and ~2.21!:

Vp-h
I ~r0 ,r !5g2

I ~r0 ,r !@V~ ur02r u!1DVI~r0 ,r !#

1
\2

2mI
u¹ r0

Ag2
I ~r0 ,r !u21

\2

2m
u¹ rAg2

I ~r0 ,r !u2

1hI~r0 ,r !wind
I ~r0 ,r ! ~2.36!

and

w̃ind
I ~r0 ,r !52 1

2 @H1
I ~r0!1H1~r !#ÑI~r0 ,r !

2 1
2 @X̃I* H1X̃#~r0 ,r !. ~2.37!

III. DYNAMICS

In this section we will briefly review the key features
the theory for excited states of inhomogeneous quantum
uids. The dynamics of boson quantum films was describe
much detail in Refs. 35 and 34; the formalism applies to
present case of4He between two walls without modifica
13450
s

q-
in
e

tions. The goal is to find an expression for the densi
density response functionx(k,v) and further the dynamic
structure function

S~k,v!52
1

p
Im x~k,v!

52
1

pE d3rd3r 8eik•(r2r8)Im x~r ,r 8;v!.

~3.1!

Our theory of the dynamic structure function is the ge
eralization of that of Jackson57 and Campbell58 to inhomoge-
neous systems. We consider an infinitesimal, time-depen
perturbation, which drives the liquid out of its ground sta

dH~r1 , . . . ,rN ;t !5(
i 51

N

dUext~r i ;t !. ~3.2!

As a consequence, the wave function acquires time dep
dence. A logical extension of the Jastrow-Feenberg va
tional wave function to excited states is

uC~ t !&5
e2 iE0t/\edU(t)/2uC0&

@^C0uedU(t)uC0&#1/2
, ~3.3!

whereuC0& is the ground-state wave function,E0 is its en-
ergy, and

dU~ t !5(
i

du1~r i ;t !1(
i , j

du2~r i ,r j ;t !1••• ~3.4!

is the complexexcitation operator. The time-dependent cor
relation functionsdun(r1 , . . . ,rn ;t) are determined by an
action principle:59,60

dS5dE dt^C~ t !uH1dH~ t !2 i\
]

]t
uC~ t !&50, ~3.5!

where the variations are taken34,61–63 treating the
dun(r1 , . . . ,rn ;t) as independent functions.

We assume that the external perturbation is sufficien
small to permit the linearization of the equations of moti
in terms of thedun(r1 , . . . ,rn ;t). Then, dynamics can be
treated within linear response theory. By keeping terms
leading order in the dynamical correlations, the resulting E
ler equations can be cast in the form of coupledequations of
motion ~EOM!. The conjugate variable to the time is th
excitation energy\v. In general it is complex; the real pa
gives the dispersion and the imaginary part the inverse l
time of the excitation.

Applying the action principle to the wave function~3.3!
yields the first two of the coupled equations of motion~see
the Appendix of Ref. 35!:
3-5
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\2

2m
¹1• H r1~r1!¹1du1~r1 ;t !1E d3r 2r2~r1 ,r2!¹1du2~r1 ,r2 ;t !1•••J
52 i\ṙ1~r1 ;t !12H r1~r1!Uext~r1 ;t !1E d3r 2@r2~r1 ,r2!2r1~r1!r1~r2!#Uext~r2 ;t !J ~3.6!

and

\2

2m
¹1• H r2~r1 ,r2!¹1@du1~r1 ;t !1du2~r2 ,r2 ;t !#1E d3r 3r3~r1 ,r2 ,r3!¹1du2~r1 ,r3 ;t !1•••J 1same for ~1↔2!

52 i\ṙ2~r1 ,r2 ;t !12r2~r1 ,r2!@Uext~r3 ;t !1Uext~r3 ;t !#12E d3r 3@r3~r1 ,r2 ,r3!2r2~r1 ,r2!r1~r3!#Uext~r3 ;t !.

~3.7!
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In the above equations the ellipsis indicates terms with fl
tuations inu3 , u4, etc. The EOM have the form of couple
continuity equations: The quantities in curly brackets on
left-hand sides are thetransition currentsand the time de-
rivatives are those of the correspondingtransition densities.
They play a central role in identifying excitations becau
they contain direct information of where in the liquid a sp
cific excitation is taking place and how particles move.

The steps leading from the exact EOM~3.6! and~3.7! to a
set of technically manageable equations have been outl
in the Appendix of Ref. 35. There is no need for repetitio
we only sketch briefly what remains to be done. So far
EOM are in a mixed form, and the left-hand sides cont
dun while the time derivatives of then-body densities are
most naturally written in terms ofdrn . Restricting ourselves
to one- and two-body quantities, one can make use of
functional expansions

dr1~r1 ;t !5E d3r 2Fdr1~r1!

du1~r2!Gdu1~r2 ;t !

1E d3r 2d3r 3F dr1~r1!

du2~r2 ,r3!Gdu2~r2 ,r3 ;t !

~3.8!

and

dg2~r1 ,r2 ;t !5E d3r 3

dg2~r1 ,r2!

dr1~r3!
dr1~r3 ;t !

1E d3r 3d3r 4

dg2~r1 ,r2!

du2~r3 ,r4!
du2~r3 ,r4 ;t !.

~3.9!

The functional derivatives can be evaluated using the de
tion of the one-body density for a known wave function a
the HNC equations. As a final result, the EOM in the a
proximation used in the present work ha
$dr1(r1 ;t),du2(r1 ,r2 ;t)% as independent variables.
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A. Feynman approximation

The truncation of the excitation operator in Eq.~3.4! de-
fines the level of approximation in which we treat the ex
tations. The simplest approximation, which ignores all flu
tuating correlation functions exceptdu1(r ;t), is referred to,
hereafter, as theFeynman approximation. In this case, the
resulting v is real. This is a reasonable approximation
long as the wavelength of the excitation is large compare
the average particle spacing; in particular, it is exact in
long-wavelength limit. Already at the most basic level of t
Feynman theory thesingle-phonon–maxon–roton dispersio
curve in the bulk is replaced by asetof modes in restricted
geometries.

Assuming harmonic time dependence,du1(r ;t)
5du1(r )eivt, and abbreviatingc (n)(r )5Ar1(r )du1

(n)(r ) the
action principle~3.5! may be represented as the generaliz
eigenvalue problem

H1~r !c (n)~r !5\vnE d3r 8S~r ,r 8!c (n)~r 8!. ~3.10!

Using Eq. ~3.8! one can show that the density fluctuatio
dr1

(n)(r ) associated with the dispersion branchn is simply

dr1
~n!~r !5

1

2
Ar1~r !fn~r !5

1

2\vn
Ar1~r !H1~r !c (n)~r !.

~3.11!

In the bulk limit the structure factorS(r ,r 8) can be Fourier
transformed toS(k) and one recovers the well-known Fey
man dispersion relation\v(k)5\2k2/@2mS(k)#; all modes
vn collapse in this case to one single mode.

The Feynman approximation corresponds here to the
dom phase approximation~RPA!, and from the density fluc-
tuations we construct the density-density response funct

xRPA~r ,r 8,v!5(
s,t

dr1
(s)~r !@Gst

RPA~v!

1Gst
RPA~2v!#dr1

(t)~r 8!, ~3.12!

where
3-6
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Gst
RPA~v!5

dst

\~v2vs1 i e!
~3.13!

is the Green’s function for a free Feynman phonon. Just
its bulk counterpart, the Feynman excitations in an inhom
geneous liquid satisfy thev0 ~or zeroth moment! sum rule;
in other words, the frequency integration

S~r ,r 8!52
1

Ar1~r !r1~r 8!
E

0

`d~\v!

p
Im xRPA~r ,r 8;v!

5(
s

dr1
(s)~r !dr1

(s)~r 8!

Ar1~r !r1~r 8!
~3.14!

gives exactly the ground-state static structure function. T
is a necessary~although not sufficient! condition that the
excited states and the ground state correspond to the s
Hamiltonian. A violation of self-consistency at this lev
would cause all subsequent calculations to be inconsiste

B. Correlated basis functions

Subsequent to the work of Feynman,64 Feynman and
Cohen,65 Chang and Campbell,66 and Jackson and
Feenberg67,68 showed that, while the original Feynma
theory64 is qualitatively correct, higher-order scattering pr
cesses~involving multiple Fourier components! are essentia
for a full understanding of the excitation spectrum. In t
short-wavelength regime~above 1.0 Å21) the Feynman ap-
proximation overestimates the excitation energy, and keep
du2(r i ,r j ;t) leads to a significant lowering of the excitatio
energy.61–63,69

A full solution of the equations of motion for fluctuatin
pair correlations is, in a restricted geometry, numerica
very time consuming and approximations are necessary.
approximation that we will use is tantamount to keepi
what is conventionally called ‘‘three-phonon scattering p
cesses.’’ We use the term ‘‘phonon’’ loosely; it may, for e
ample, stand for a layer phonon or a surface mode. W
excitations in the Feynman approximation have infinite li
time, three-phonon processes allow the decay if energy
momentum are conserved. As a part of the evaluation
du2(r i ,r j ;t) from the second EOM, we obtain the thre
phonon scattering matrix elements; i.e., the probability a
plitudes for the decay of one ‘‘phonon’’ into two. The seco
effect—mode coupling via three-phonon processe
renormalizes the mode energies. The physical characte
the various Feynman modes differs considerably; this pl
an important role in determining the amount by which
particular mode is renormalized.

Three-phonon processes lead to a self-energy correct

Sst
CBF~v!5

1

2 (
mn

Ṽmn
(s) Ṽmn

(t)

\~vm1vn2v!
, ~3.15!

which was derived, in the bulk liquid, by Chang and Cam
bell using Brillouin-Wigner~BW! perturbation theory with
correlated basis functions~CBF’s!; hence the abbreviation
CBF-BW is often used for this approximation. In Eq.~3.15!
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the summations are over all Feynman states and the th
phonon verticesVmn

(s) are determined by the second EOM~see
the Appendix of Ref. 35!. In order to get the expression fo
the CBF density-density response function one only need
add the self-energy correction to the Green’s function in E
~3.13!,

Gst
CBF~v!5@\~v2v t1 i e!dst1Sst

CBF~v!#21, ~3.16!

and use it in an equation similar to Eq.~3.12!.
The self-energy correction given in Eq.~3.15! decreases

with increasingv rapidly enough not to affect the zeroth
and first-moment sum rules discussed in connection with
Feynman theory. However, this form of the self-energy
veals one deficit in the approximate solution of the EO
~3.6! and ~3.7!: The energy denominator does not use t
self-energy-corrected spectrum, but only their Feynman
proximations. It should be emphasized that this is not a pr
lem of the EOM themselves, but rather a technicality to ke
the numerical effort at a reasonable level. In bulk system
more complete form of the self-energy has already b
applied.69 However, it is considerably more complicated th
the present self-energy and is expected to lead only to qu
titative improvements, but not to qualitatively new effec
We use therefore the above simpler form and keep in m
that the high-momentum excitations have somewhat too h
energies.

C. Impurity dynamics

The equations of motion for time-dependent impurity co
relations are derived in exactly the same manner as in
background theory; the analysis will also clarify the interp
tation of the eigenvalues«a of Eq. ~2.32!. We write

uC I~ t !&5
e2 iE0

I t/\edUI (t)/2uC0
I &

@^C0
I uedUI (t)uC0

I &#1/2
, ~3.17!

where

dUI~ t !5du1~r0 ;t !1(
i

du2~r0 ,r i ;t !1•••. ~3.18!

The time-dependent components of the wave function
again determined by an action principle of the form~3.5!
with the only qualification that the perturbing Hamiltonia
dH(t) act on the impurity atom alone. The equations of m
tion are also of the structure~3.6! and ~3.7!; they may be
found in Ref. 70. Again, the level of approximation is d
fined by the fluctuating multiparticle correlations retained
dUI(t).

The simplest case isdun(r0 ,rn ;t)50 for n>2. In fact,
this case is trivial since it leads immediately to the interp
tation of theh (a)(r0) defined in Eq.~2.32! as the wave func-
tions and the energies«a as an approximation for the impu
rity excitation energies.

However, much physics is missing in that case: In t
quasi-two-dimensional geometry, the state is character
by the quantum numbera5$a,ki% where a is a discrete
quantum number associated with the motion inz direction
3-7
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andki is the linear wave number in thex-y plane. The eigen-
functions of Eq.~2.32! have the simple form

h (a)~r !5ha~z!eiki•r i ~3.19!

and the associated energies are

«a5ea1
\2ki

2

2mI
; ~3.20!

in other words the motion of the impurity in thex-y plane is
that of a free particle.

When fluctuating pair correlations are included, the eq
tion of motion~2.32! is supplemented by a nonlocal, energ
dependent self-energy term

H1
I ~r !cv~r !1E d3r 8S~r ,r 8;v!cv~r 8!5\vcv~r !.

~3.21!

The self-energyS(r ,r 8;v) describes three-body processes
has the form

S~r ,r 8,v!5(
am

Wma~r !Wma~r 8!

\v2\vm2ea
, ~3.22!

whereWma(r ) is the three-body vertex function describin
the coupling between an incoming3He particle to an outgo-
ing 3He in the statea as well as an outgoing phonon in sta
m. The detailed form of these matrix elements follows fro
the microscopic theory that has been described at lengt
Ref. 55; its detailed structure is irrelevant for the pres
considerations.

The additional physics introduced by the self-energy
‘‘backflow’’ correlations at low energies, as well as potent
damping of the impurity motion by coupling to phonons a
rotons in the appropriate energy regime. We are here o
interested in low-energy properties. In the limitv→01, the
impurity motion in the parallel direction can be characteriz
by an effective mass, i.e., the dispersion relation resul
from solving Eq.~3.21! in our geometry and for low energie
is characterized by an effective massmI* :

\v~ki!5m I1
\2ki

2

2mI*
. ~3.23!

Note the important fact that the impuritybinding energyis
not changed by the self-energy corrections. The effec
mass ratiomI* /mI can be expressed in closed form as55

mI

mI*
512

\2

4mI
(
m

E d2qi

~2p!2 qi
2

uXm
I ~qi!u2

\vm~qi!1\2qi
2/2mI

,

~3.24!

where the matrix elementsXm
I (qi) are

Xm
I ~qi!5E dz0dzAr I~z0!X̃I~z0 ,z;qi!fm~z,qi!

~3.25!

andfm(z,qi) is the Feynman density fluctuation associa
with the dispersion branchm.
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IV. THERMODYNAMICS

There are various ways to generalize the variatio
theory to finite temperatures. The first successful step
taken by Campbell and collaborators71–73 who generalized
the Jastrow-Feenberg variational wave function to a va
tional density matrix and used the Gibbs-Delbru¨ck-Moliére
principle for the Helmholtz free energy to derive practic
methods for calculating the free energy, the entropy, and
lated thermodynamic quantities. The theory was generali
to inhomogeneous geometries in Ref. 48.

It is, again, sufficient to display only the working formu
las of the theory and to point out the places where the b
equations are modified by temperature effects. The two-b
equation~2.19! contains an explicit thermal term in additio
to the implicit temperature dependence throughr1(r ) and
g2(r1 ,r2); its finite-temperature version is

@S21* H1* S21#~r ,r 8!5d~r2r 8!H1~r !12@Ṽp-h~r ,r 8!

1F̃~r ,r 8!#, ~4.1!

where the temperature-dependent correctionF(r ,r 8) is de-
fined by

F̃~r ,r 8![22(
m

nm@nm11#\vm* c (m)~r !c (m)~r 8!,

~4.2!

with the boson occupation numbers@b5(kBT)21#

nm5
1

eb\vm21
, ~4.3!

and thec (m)(r ) defined in the Feynman eigenvalue proble
~3.10!.

The induced interaction is formally the same as display
in Eq. ~2.21!; the finite-temperature particle-hole interactio
Vp-h(r ,r 8) is obtained from Eq.~2.20! by replacing

wind~r ,r 8!→wind~r ,r 8!1F~r ,r 8! ~4.4!

in the last term.
Details on the execution of the theory and the discuss

of low-temperature limits and surface broadening may
found in Ref. 48. The entropy turns out to be that of no
interacting quasiparticles with the Feynman spectrum\vm :

S5kB(
m

@~nm11!ln~nm11!2nmln nm#. ~4.5!

In closing this section we should mention that an exte
sion of the theory74 allows for multiparticle correlations
When such effects are included, the Feynman excitation
ergies\vm are replaced by the poles of the CBF Gree
function Gst

CBF(v) defined in Eq.~3.16!. That way, a more
realistic representation of the thermodynamic features ab
temperatures of 1 K can be obtained. The theory has, how
ever, not been implemented in inhomogeneous geometri
3-8
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V. RESULTS

A. Static properties

We focus our main attention on a system with a w
separation of 14 Å because this is in reasonable agreem
with the physical situation found in the gaps of hectori
These are typically 20 Å wide; a monolayer of solid4He is
attached to each side. The interaction of4He particles with
the walls can be described by the usual 3-9 potential
tained from averaging Lennard-Jones potentials over a
space:

U3-9~z!5F 4C3
3

27D2G 1

z92
C3

z3 . ~5.1!

The full external potential for a gap of widthL is then

Usub~z!5U3-9~z!1U3-9~L2z!. ~5.2!

This assumes that the walls are smooth and, hence,Usub(r ) is
a function of one coordinate only. This does not comprom
the results of our calculations because most of the lat
structure of the substrate will be smoothed out by the fi
solid layer of helium atoms. The potential will be suited
apply for hectorite. To determine the parameters of the
potential~5.1!, we have taken long-rangedz23 tail from the
silicon-helium interaction,75 C352000 K Å 23, and have
adjusted the short-rangedz29 repulsion such that the bindin
energy of single4He atoms27 is reproduced. This gives
well depth ofD5128 K. The substrate attraction is weak
than that of graphite, but still strong enough to cause the
atomic layer of 4He to solidify. We have taken this into
account by adding, as described in Ref. 32, an inert s
monolayer of 4He with a thickness of 3.3 Å and surfac
coverage of 0.07 Å22 to both walls. The picture is consis
tent with the fact27 that superfluidity sets in at a filling o
1.33 layers: One layer is solid, and it takes a certain amo
of 4He to form a complete, low–density second layer. Sin
the distance between the hectorite walls is about 17–2027

one has a liquid phase of 11–14 Å width. From now on
use the terms ‘‘gap width’’ or ‘‘wall separation’’ to designa

FIG. 1. Density profiles of4He in a 14-Å-wide gap are shown a
function of areal densityn. The free spaces correspond to densit
where no stable liquid configurations exist.
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the width of the free space available forliquid helium. If the
actual distance between the bare substrate surfaces is m
we will state it explicitly.

Let us first describe the scenario of filling a 14-Å gap w
liquid 4He. The evolution of the density profile is depicted
Fig. 1. As a function of coveragen one has the following
filling situations.

~i! n50 –0.032 Å22: There is not enough helium to
form a translationally invariant liquid, patches of helium c
form on either wall.

~ii ! n50.032–0.068 Å22: One of the two walls is cov-
ered with an atomic monolayer or both walls with patches
4He. With gap width of 14 Å this configuration is probab
metastable~see the energetics in Fig. 2!.

~iii ! n50.068–0.122 Å22: Both walls are covered with
atomic monolayers, but due to interaction, it is more app
priate to call it a symmetric double layer. As expected, t
occurs for areal densities above at leasttwice spinodal den-
sity of a single monolayer, which is about 0.032 Å22 ~Refs.
76 and 77! at zero temperature. This value is also close to
areal density where a single atomic monolayer becomes
stable against the promotion of particles to a second lay

~iv! n50.122–0.22 Å22: No stable liquid phase could
be found. The interaction between the two sides is stro
enough such that configurations where one of the walls
covered by a double-layer would undergo capillary cond
sation.

~vi! n50.22–0.29 Å22: The gap is completely filled
with four liquid layers.

~vii ! n50.29–0.41 Å22: The gap is completely filled
with five liquid layers.

~vii ! n above 0.41 Å22: No stable liquid phase; presum
ably the layers next to the walls solidify or solid helium fil
the whole gap.

One of the most remarkable features is theconfined lay-
ering transitionat the coveragen'0.29 Å22: Near this den-
sity the film changes abruptly from four to five layers.2

The structure of the system is determined by the ener

s

FIG. 2. The energy per particle of4He in a 14-Å-wide gap
~solid lines! and the chemical potential~dashed lines! are shown as
a function of areal densityn. The distinct regions correspond, from
left to right, to a monolayer, a symmetric double layer, and filling
the gap.
3-9
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ics, shown in Fig. 2. All three configurations discuss
above—the monolayer, the symmetric double layer, and
filled gap—have their own energy minimum; the slight m
match between the chemical potential and the energy a
minimum is due to numerics. Most notable is again the g
betweenn50.12 Å22 and n50.22 Å22 where no stable
systems exist that are translationally invariant in the dir
tion parallel to the walls. The configuration in this dens
area is to be found by means of the usual Maxwell constr
tion.

Most directly affected by the confinement and by the
terplay between stable and unstable configurations is
speed of longitudinal sound,cs , or the longitudinal incom-
pressibilitymcs

2 . Figure 3 showsmcs
2 as a function of cov-

erage; we have calculated this quantity from the lon
wavelength limit of the excitation spectrum~2.24! and not

FIG. 3. The speed of longitudinal sound as a function of ar
densityn ~solid lines!. Also shown is the speed of third sound on
one-sided substrate with the same potential~dashed line!. The left-
most branch corresponds to a single monolayer, for which the
sound velocities are equal.

FIG. 4. The sequence of confined layering transitions in aL-n
plane, i.e., gap width vs areal density. The density is limited fr
below by the spinodal line~lower dashed line! and from above by
the freezing line~upper dashed line!. The solid line crossing the
transition lines is the fixed-n equilibrium; the fixed-L equilibrium
lies above it~not shown!.
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from dm/dn since the long-wavelength limit determines th
regime of existence of solutions of the HNC-EL equation
The figure also showsmcs

2 for the case where4He is ad-
sorbed on a one-sided substrate with the same potential.
results are identical for a single monolayer filling, but start
deviate for the case of two layers: The physically interest
aspect here is not that there is a difference between the
wall geometry and the one-sided substrate, but rather tha
double-layer configuration in the hectorite isnot identical to
that of two monolayers. This is evidently a first sign of i
teraction between the monolayers on opposite walls. T
speed of sound for configurations in the high-density regim
where the lowest excitations are longitudinal phonons, is
pectedly very different from that in a multilayer adsorb
film where the lowest excitations are ripplons.

The confined layering transitions are worth examining
detail. Insight into its mechanism might be found by cons
ering the transition as a function of the gap width. Figure
shows the ‘‘phase diagram’’ of the transitions between g
widths 7 and 30 Å. With a large gap in excess of 30 Å t
numerical solution of the inhomogeneous HNC-EL equatio
becomes more and more time consuming and also the
sity profile is less interesting with a flat portion in the midd
of the gap. According to a simulation performed recently
Heni and Lowen,78 crystalline layers of hard spheres con
fined between two patterned substrates go through a
quence of layering transitions resembling those found
liquid helium in this work~see Fig. 3 in Ref. 78!.

The transitions from two to three layers up to the tran
tion from 9 to 10 layers obey very accurately the rule

ncr50.252i 20.0578L10.075, ~5.3!

wherei is the number of layers in the fewer-layer phase a
length is in units Å. Thus the transitions form a set of even
spaced, parallel lines in theL-n plane~marked with straight,
solid lines in Fig. 4!. The layering transitions are due to th
geometry and the short-range repulsion of the He-He in
action; they take place at a slightly higher areal density if
substrate potential is turned off.

l

o

FIG. 5. The equilibrium~upper curve! and the spinodal~lower
curve! areal densities divided by the gap widthL. The layering
transitions occur at the local minima.
3-10
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The confined liquid has two equilibria corresponding
different boundary conditions:~i! minimum E(n) at fixedL
and~ii ! minimumE(L) at fixedn. The former is the equilib-
rium in a situation where the addition of helium does n
change the gap width appreciably, which probably is the c
in hectorite. The fixed areal density in the latter case
result from periodic boundary conditions or walls with ve
weak substrate potential in thex andy directions. Schemati-
cally, the gap could be varied in this case with a piston m
ing in thez direction.

Many quantities scale with the gap widthL in the L→`
limit. Figure 5 shows how the spinodal and equilibrium de
sities approach the scaling limit. The spinodal point is
instability in the infinite-wavelength sound mode. As the g
width increases, this mode changes from a two-dimensio
to a bulk phonon. It is difficult to carry out calculations clo
to the spinodal instability points because all correlations
come very long ranged. The present spinodal data extra
late in the limitL→` to rsp' 0.018 Å23, which is slightly
above the bulk value;0.0168 Å23. The equilibrium den-
sity extrapolates torequil' 0.020 Å23, which is below the
known bulk value 0.021 86 Å23. The freezing density can
not be found reliably using the methods used in this pa
but the highest areal densities where a~meta!stable liquid
solution is found gives an approximate upper limit to t
freezing line~see Fig. 4!. The energy per particle at the fixed
n equilibrium has the limiting valueE/N'27.13 K, which
is close to the bulk value27.17 K. The energy per uni
area, on the other hand, gives the interfacial adhesion en
as depicted in Fig. 6. For the present substrate plus one l
of solid helium we obtained the value Eadh
'0.76–0.77 K Å22.

If the liquid is at the fixed-n equilibrium, it is off the
fixed-L equilibrium. This gives rise to the so-called solvatio
pressure~or force!, i.e., pressure exerted on the walls by t
liquid, given by

Pn~L !52nS ]~E/N!

]L D
n,N

. ~5.4!

FIG. 6. Energy per unit area per wall as a function of the g
width L. From the large-L limit ~straight line! we deduce the adhe
sion energyEadh'0.76–0.77 K Å22 of the substrate.
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From what is known about classical liquids one expects
see oscillations in the force as a function of the gap wid
with the maxima matching the occurrence of well-form
layers.18 Figure 7 shows that this is largely true also f
helium, although the large zero-point motion of helium a
oms allows them to move past each other more easily t
their classical counterparts.

Although the locations of the transitions follow the sam
rule, they are not quite the same. With increasingL, if the
number of layers changes from even to odd, anew layer is
createdbetween the two midmost layers. The transition fro
odd to even number of layers occurs viabifurcation of an

p FIG. 7. The pressure exerted on the walls in the fixed-L equi-
librium. The vertical lines mark the locations of the layering tra
sitions.

FIG. 8. Density profiles of4He in gaps of widths 8 Å~upper
figure! and 11 Å ~lower figure! as a function of areal densityn.
These are prototypes of transitions from even to odd and od
even number of layers asn increases.
3-11
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existing middle layer. An example of both types is shown i
Fig. 8. In some cases the closeness of the freezing de
forces the transition to take place in a narrow areal den
range. As a result, the fingerprints of the layering transitio
in quantities such as the roton parameters are not the s
for all transitions.

Some light can be shed on the stability limits of the liqu
emerging from the present calculation by comparing th
with the known two-dimensional~2D! and 3D critical points.
In Fig. 9 the gray-shaded area covers local liquid densi
found in the filled gap of 14 Å width, but the result applies
all other gap widths as well. We have left out the low-dens
regions between the surfaces and the first layer, and con
trate on regions where the substrate potential is less gov
ing. Thex axis of the graph in Fig. 9 represents the avera
3D density, that is, the coverage divided by the gap wid
The y axis plots the 2D densitiesr(z) parallel to the sur-
faces. This quantity would describe the system if it consis
of noninteracting 2D systems stacked between the walls
one could treat each slice as an individual 2D system.
high coverages, the liquid solution was found only up
aboutn50.41 Å22, which corresponds to the average 3
density 0.029 Å23). The highest 2D density is found i
layers nearest to the walls, 0.075 Å22. We emphasize tha
these limits are the points where the optimal liquid struct
ceases to exist, and they are always higher than the
freezing densities, the overshoot being about 20% in bulk
liquid and about 6% in 2D helium. Taking this into accou
we conclude that the high-coverage stability limit of the li
uid found in the present calculation can be attributed
freezing. Technically, if one assumes that the high-cover
limit is due to freezing of the layers nearest to the walls, th
one should — at least in principle — be able to go on w
the liquid calculation by takingtwo solid layers of helium on
both walls instead of just one.

The spinodal point is an instability againstlong-
wavelengthdensity oscillations and is therefore insensitive

FIG. 9. The density of4He layers compared with the 2D and 3
critical densities. The gray-shaded area between the solid lines
sents the range of densities found in a 14-Å-wide gap for the fo
and five-layer configurations. We plot the 2D density of thin slic
taken parallel to the surfaces@same asr(z) for a fixedz] against the
average 3D density~here equal to coverage/14 Å!. The vertical lines
are the spinodal and freezing densities of bulk 3D4He, and the
horizontal lines are those of 2D4He.
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local density variations; therefore we expect to see that
low-density region is limited by the 3D spinodal point
about 0.016 Å23. Indeed, this is very close to the lowe
average 3D density given by left edge of the gray-sha
area in Fig. 9 at about 0.0162 Å23.

Although theaverage3D density always stays above th
bulk spinodal point in the filled-gap configuration, thelocal
density between the layers goes well below it. For exam
in the 14-Å gap system the lowest value is only 0.010 Å23.
This might give a change to experimentally verify the critic
behavior of the spinodal point of two-dimensional helium
which is not characterized by a critical exponent, but rat
by the form76

r2rs}c4ln c as c→01. ~5.5!

As discussed in Ref. 76, a further complication is that
finite temperatures the softening of the phonon energy le
to an avalanche of low-energy phonons and suppressio
superfluidity near the spinodal point. Apart from giving th
low-density limit of a filled-gap configuration, the spinod
points serves as a valuable consistency check of both
analytical and numerical implementation of the theory of
homogeneous quantum liquids.

B. Low concentration mixtures

The study of3He impurities in4He filmsper sehas led to
much exciting physics and deeper understanding of
physical mechanisms governing the behavior of confin
quantum fluids;79 we shall see that the behavior is eve
richer in the situation under investigation here.

The behavior of single3He impurities in 4He surfaces
and within the bulk liquid in both two and three dimensio
can be quite accurately described by manifestly microsco
theoretical methods.55,40,70,80The first questions to ask are, o
course, the solvation energy and spatial distribution of
individual components of the low-concentration mixture.

Before we discuss our results, it is worth recalling t
mechanism of3He mixing in 4He films and in both three-
and two-dimensional4He. In a quantum film,3He atoms
will first populate Andree´v states in the surface; the bindin
energy of these states is about 5 K.81 That way, a quasi-two-
dimensional Fermi liquid of3He is formed in the surface
Only when the chemical potential of these surface states
comes high enough will3He atoms penetrate into the bu
liquid. In three-dimensional bulk4He, the chemical potentia
of single 3He atoms is22.2 K,82 but it increases rapidly
with pressure and becomes zero slightly above a densit
0.023 Å23. The 3He impurity is, on the other hand, un
bound in two-dimensional4He.

In the systems under consideration here, we have in p
ciple no free surface. Nevertheless, in cases with low a
density, we have a rather dilute4He liquid in the middle of
the gap. Hence, at low areal density, one expects that the3He
atoms will populate states close to the center of the gap,
attached to4He areas that resemble a free surface. The bi
ing energies of such impurity states should be about tw
the binding energy of an Andree´v state because the3He im-
purity ‘‘sees’’ two 4He surfaces.

re-
r-
s
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As the 4He areal density is increased, any resemblanc
the center area to a free surface disappears, and the sy
becomes essentially a two-dimensional liquid. The impu
is affected by this in two ways: First, the larger zero-po
motion of the 3He atom causes the impurities to stay aw
from the walls, and second, the chemical potential sho
become positive.

Both of these effects are seen clearly in the energetic
the impurity and its location within the4He host liquid. The
energetics of 3He atoms in our confined4He liquids is
shown in Fig. 10 and the density profiles in Fig. 11. At lo
4He density, the3He atoms occupy ‘‘Andree´v-like’’ states in
the center of the film. We see indeed that the binding ene
at low areal densities is about twice the binding energy of
Andreév state, but it increases rapidly and goes through z
at about the two-dimensional density where the transition
a four-layer to a five-layer system occurs. At the same a
density, the3He state turns from a rather broad feature to
very narrowly peaked wave function in the center of t
films, as seen in Fig. 11: As the density is increased, the3He
atoms are repelled by the high4He density at the walls, and
become strongly localized in the center of the gap, form
an almost perfect two-dimensional Fermi gas.

A close-up of the situation is shown in Fig. 12. There, w

FIG. 10. The figure shows the binding energy~solid line, left
scale! and the effective mass~dashed line, right scale! of 3He im-
purities within 4He filling a 14-Å-wide gap as function of area
densityn.

FIG. 11. Locations of3He impurities within4He filling a 14-Å-
wide gap are shown as functions of areal densityn betweenn
50.23 Å22 andn50.38 Å22.
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show a comparison of the density profiles for the4He liquid
and the3He impurity for a very low and a very high back
ground density. At the low densityn50.23 Å22, the 4He is
modly localized at the walls; the local density there reac
almost twice the bulk saturation density, whereas the den
in the center is well below the bulk saturation density. T
3He is spread out over the innermost two layers of the4He
film where it is most strongly bound. At the high density, o
the other hand, the3He impurity overlaps practically only
with the innermost4He layer.

We mention in passing that in contrast, the nonlocal d
sity functional theory,83 which has also been used in the tw
walled geometry studied here,30 predicts mixing near the
walls.84 The reason is that the density functional associate
density-dependent effective mass with the ground state of
3He particle, whereas a proper microscopic treatment a
ciates an effective mass only with the level density
excitations.55

Along with the binding energy, we show in Fig. 10 als
the effective mass of the3He impurity for motion in thex-y

FIG. 12. The figure shows a comparison between the4He back-
ground densities~dashed lines! and the location of the3He impuri-
ties ~solid lines! in the 14-Å-wide gap for the two extreme densitie
n50.23 Å22 ~no markers! andn50.38 Å22 ~lines marked with
crosses!.

FIG. 13. The excitation spectrum in the Feynman approximat
in a 14-Å-wide gap at the areal densityn50.300 Å22. In this
approximations modes are not decaying and we plot here only
positions of thed-function peaks inS(ki ,v).
3-13
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FIG. 14. Left figure: the dynamic structure functionS(ki ;v) parallel to the symmetry plane for areal density 0.23 Å2, close to the
spinodal instability of the filled-gap configuration. The magnitude ofS(ki ;v) is indicated by the gray scale. Right figure: the particle curr
at the same areal density of the phonon atk50.5 Å 21. The gray-shaded area depicts the background density, the solid line the tran
density corresponding to the excitation, and the superimposed vector field is the particle current flow.
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plane. Expectedly, we see a rapid increase of the effec
mass as a function of areal density; a small ‘‘kink’’ is seen
the location of the layering transition. Considering the rat
drastic change of both the4He environment and the3He
wave function, this signature of the layering transition is a
tually surprisingly weak.

The effective mass was calculated by the relatively sim
formula ~3.24!; it should, therefore, be considered as qua
tative at high areal densities. More accurate evaluation
the 3He effective mass have been carried out in three85,70and
two80 dimensions, but these methods have not yet b
implemented for the inhomogeneous geometries consid
in this paper.

C. Dynamic properties

Let us now turn to the dynamical properties of the co
fined liquid helium. Again we use the system with gap wid
14 Å as an example and reference system, although se
of the systematic trends can be revealed only by looking
some of the quantities as a function of the gap width. Af
briefly describing the Feynman spectra we reassess the
odal instability and then move on to discuss the behavio
the roton excitations and the angular dependence of the
namic structure function.

Figure 13 shows the collective excitation energies
Feynman approximation defined by the generalized eig
value problem~3.10! at the coveragen50.300 Å22 for the
gap width of 14 Å. These modes propagate at frequencie
close proximity to one another~mode crossings are quit
common! and can be categorized as being surface mode~at
low areal density!, layer phonons, and bulklike modes. N
tice the absence of a continuum in the spectrum: In one-s
films the excitations spectrum is continuous provided tha

\v.2m1
\2ki

2

2m
, ~5.6!

but now atoms cannot be moved to arbitrary distance off
liquid; henceall modesare described by discrete quantu
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numbers perpendicular to the symmetry plane. In particu
the ki→0 limit is just a discrete set of states at fixed en
gies. This could give rise todispersionless modesobservable
in perpendicular scattering. In Refs. 86 and 87 it was arg
that, in the case of one-sided films, one can see a patter
dispersionless modes within the continuum; this provides
interpretation of such modes seen in neutron scattering
periments off helium adsorbed on graphite powder.88 Here,
the situation is even clearer, the discreteness of the spec
in the ki→0 limit is specific to the geometry and will b
there also in spectra calculated with more accurate im
mentations of CBF theory than the one used here.

We are now ready to go beyond the Feynman approxim
tion and turn to the treatment of excitations within the CB
theory. One of the new physical features coming in at t
level of treatment is that excitations candecay.The left part
of Fig. 14 shows the CBF dynamic structure functio
S(ki ,v) calculated from Eqs.~3.1! and~3.16! with the self-
energy~3.15! near the spinodal point atn50.23 Å22. The
sound velocity is about to go to zero as expected. The na
of the phonon mode can be visualized by looking at

FIG. 15. The transition density and current for the lowes
energy phonon atn50.290 Å22, right below the confined layering
transition. Notice how the density profile has four layers, but
transition density shows that low-momentum excitations alre
use five layers.
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FIG. 16. The transition density and current for the lowest-energy roton at areal densitiesn50.250, 0.300, 0.350, and 0.380 Å22.
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he
transition density and current at low-momentum trans
These are shown in the right part of Fig. 14. The parti
current depends on thez coordinate and it is periodic in th
direction parallel to the walls; the period is determined
13450
r.
e
the parallel momentumki . We plot one period of the curren
0<rk i<2p. The transition density is now spread over a
layers; hence the spinodal instability corresponds to a v
ishing sound velocity of a two–dimensional phonon. T
FIG. 17. The dynamic struc-
ture functions S(ki ;v) at the
same areal densities as Fig. 16.
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FIG. 18. The dynamic struc-
ture functionS(k;v) at the areal
density 0.300 Å22. The angle
between k and the symmetry
plane is~a! 0°, ~b! 30°, ~c! 60°,
and ~d! 90°.
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particle currents show that the excitation is basically lon
tudinal.

Figure 15 shows the transition density and current at
areal densityn50.290 Å22. This is below the four- to a
five-layer transition, and although there is no sign of a fi
layer in the density profile~depicted by the gray-shaded ar
in the figure!, the transition density already anticipates tha
fifth layer is about to emerge.

It is suggestive to look for a signature of confined layeri
in the excitation spectra. The transition from four to fi
layers was discussed in Ref. 2. There, we showed that fo
gap width of 14 Å the roton energy drops rapidly above
transition. We have now conducted a systematic study of
effect as a function of the gap width. Surprisingly, the rot
energy seems to be sensitive to the layering transition f
two to three and four to five layers, but not from three to fo
layers. For more than five layers the effect is smeared
13450
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and a systematic difference between transitions from od
even and even to odd number of layers cannot be verified
most cases the roton energy decreases with increasing
density but in the four-layer configuration the roton ener
stays nearly constant.

The transition densities and currents corresponding to
lowest-energy roton are depicted in Fig. 16~see also Fig.
17!. The figure shows that at low areal densities the roton
propagating symmetrically in the two high-density laye
close to the walls. At higher areal densities the excitat
spreads out and is basically in resonance with the den
profile throughout the film; in other words, we can identify
with a longitudinal ‘‘volume’’ excitation.

The angle dependence of the dynamic structure func
is shown in Fig. 18 for the areal densityn50.300 Å22.
Scattering not parallel to the symmetry plane contributes,
example, in experiments done on powder samples with r
FIG. 19. Left figure shows the dynamic structure functionS(ki ;v) at the areal density 0.120 Å22. The low-energy excitation is a
ripplon. The right figure plots the transition density and current atki50.5 Å 21.
3-16
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domly oriented grains. In this case the observed excitati
spectrum is angle averaged, and one may recognize fea
characteristic to perpendicular scattering: If the moment
transfer is perpendicular to the walls, the spectrum is m
of dispersionless stripes. The underlying spectral den
consists of maxima which follow the shape of the phono
roton spectrum of bulk helium. The roton energy in the p
pendicular direction is, however, slightly higher than the c
responding energy in the parallel direction. T
perpendicular scattering measures the density of stateski
→0, whose maximum is above the energy of the para
roton. This is already apparent in the Feynman approxim
tion: In theki→0 limit in the spectrum in Fig. 13 the state
are closely packed around 20 K, whereas the roton is at a
15 K. The decay of the modes added by the CBF self-ene
renormalizes these values, but the result remains qua
tively unchanged.

As long as the liquid has a free surface it can sustai
ripplon excitation. In the left part of Fig. 19 we plot th
dynamic structure function parallel to the walls atn
50.120 Å23, which corresponds to a monolayer on ea
wall. The ripplon is clearly the lowest mode betweenki
;0.3 and 1.0 Å21. The right part of Fig. 18 shows th
transition density and current at the ripplon excitation. T
transition density shows clearly how the excitation prop
gates on the surface of the liquid, and the transition curr
has the circulation pattern specific to ripplons.34 The transi-
tion density shows how the liquid attempts to spread to
space between the existing layers, just like it could fore
the appearance of the fifth layer in a four-layer liquid~see
Fig. 15!.

D. Thermodynamics

As mentioned in the Introduction, the specific heat data
helium in the hectorite environment reported in Ref.
cover two-phase regions where the present theory is not
plicable, but does not reach our primary interest, the fill
gap region. The substrate potential in hectorite is unkno

FIG. 20. The specific heat of the two-wall system~thick solid
lines! compared with the hectorite experimental data given in R
27 ~open circles connected by a thin line! at T50.2 and 0.6 K
~upper curves!. The specific heat was calculated using Eq.~5.8!.
Solid black dots indicate phase transitions obtained using the
gent construction shown in Fig. 21.
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and the pillars, which hold the silicate layers apart, may
as additional attractors. Present knowledge of hectorite
clearly inadequate for quantitative theoretical studies, a
the two-wall model does not account for the finite poros
and connections between hectorite grains. With these pr
sions, we carry out a comparison between the specific he
our model system and the experimental results of helium
hectorite reported in Ref. 27.

The results are plotted in Fig. 20 at temperaturesT50.2
and 0.6 K. To facilitate the comparison we have conver
the areal densityn to the adsorbed amountnads. Using the
adsorption areaA5592 m2/g of the sample used in Ref. 27
the relation reads

nads5~49.15n110.8! mmol/g. ~5.7!

Here n is given in units of Å22. The above formula takes
into account that about 10.8 mmol/g is needed to fill the so
layer27 and that the areal density gives the amount of heli
per two walls.

For the theoretical specific heat we used the form
given in Ref. 48,

f.

n-

FIG. 21. The figure shows the tangent~Maxwell! construction
between a filled-gap and a symmetric double-layer~DL! structure
for two gap widths indicated in the picture atT50. For L
512 Å the double-layer solution is on the verge of becoming u
stable.

FIG. 22. The theoretical specific heat atT50.5,1.0, . . . ,5.0 K
as a function of areal density. The quasiparticle approximation
calculated using the zero-temperature spectrum, whereas the
calculation is the result with spectrum at each temperature.
3-17
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CV5
A

kBT2 (
m

E d2ki

~2p!2
@\vm~ki!#

2nm~ki!@nm~ki!11#,

~5.8!

whereA is the area. We ignore the small contribution comi
from the explicit temperature dependence of the excitati
energies\vm(ki) (m is the branch index!.

The magnitudes of the specific heat results are roughly
same as the experimental data. The specific heat given by
~5.8! is infinite at spinodal points, but since they lie outsi
the stable limits determined from a Maxwell constructi
~solid circles in Fig. 20!, the experimentally observable sp
cific heat shows at most smeared maxima.

More can be learned from a comparison of the den
scales of helium in the two-wall system and in hectorite.
Fig. 20 we have indicated three regions, as they appear in
theoretical results: The symmetric double-layer and fille
gap regions are separated by a mixed-phase region left b
because it is not a translationally invariant configuration.
this coverage area, one has most likely coexistence betw
a gas and a capillary-condensed liquid. A monolayer, i
were stable, would reside aroundnads;13.3 mmol/g, near
the minimum in the observed specific heat. The sample u
in Ref. 27 showed superfluidity abovenads;14.4 mmol/g
~total of 1.33 layers, one solid layer, and a partially fille
liquid layer!. This is close to the lowest value where th

FIG. 23. The figure shows the longitudinal incompressibility f
temperaturesT50,0.5, . . . ,3 K. The lowestcurve corresponds to
T50. The width of the gap is 14 Å.

FIG. 24. Same as Fig. 23 but for the pressure.
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theoretical model predicts a translationally invariant liqu
configuration, a symmetric double layer marked as DL
Fig. 20. The spinodal point of gap filling corresponds
nabs'22.1 mmol/g, while the tangent construction shown
Fig. 21 gives as the point of phase transitionnabs'23.7
mmol/g. These are close to the experimental gap filling
hectorite, which, according to Wadaet al., probably corre-
sponds tonads;23 mmol/g. The filling of the gap is accom
panied by appearance of a sound mode, so it is expecte
show up as a peak in the low-temperature specific hea
rounded peak was indeed observed atT51.7 K.27

The main conclusion that can be drawn based on the
oretical results is that the stability of the low-coverage liqu
structures is very sensitive to the gap width. A tangent c
struction given in Fig. 21 shows that the symmetric doub
layer configuration seems to be stable forL514 Å , but is
nearly unstable if the gap width is reduced by only 2
Considering that the space available for liquid is not w
known, it is not clear whether the double layer is stable
not in the real hectorite environment. Furthermore, stabi
of the double-layer configuration depends not only on
width of the gap, but also on how attractive the substr
potential is.

For completeness, Fig. 22 plots the theoretical spec
heat between 0.5 and 5.0 K. We compare the specific h

FIG. 25. Temperature dependence of the equilibrium areal d
sity ~solid line, left scale! and free energy~dashed line, right scale!.
No free energy minimum was found above 1.5 K~see also Fig. 26!.

FIG. 26. Free energy as a function of areal density for tempe
tures 0,0.5, . . . ,5 K. Lowercurves correspond to higher temper
ture.
3-18
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calculated from the fully self-consistent calculation, whe
all distribution functions and effective interactions are te
perature dependent, with a ‘‘quasiparticle approximatio
This approximation is obtained by taking the excitation sp
tra of a zero-temperaturecalculation in Eq.~5.8! instead of
the temperature-dependent spectrum. The steep rises i
quasiparticle approximation for the specific heat are not
ible in the full result, because the spinodal instability caus
these steep rises moves away from the calculated areal
sity regime at elevated temperatures.

The temperature dependence of the longitudinal inco
pressibility of a filled 14-Å gap is shown in Fig. 23, whe
we plot mc2 as a function of areal density for temperatur
T50,0.5, . . . ,3 K. Figure 24 plots the corresponding pre
sure for fixed gap widthL and particle numberN, given by

PL~n,T!5
n2

L S ]~E2TS!

]n D
L,N

. ~5.9!

Figure 25 shows how the equilibrium density and free ene
decrease with increasing temperature@the small rise inn(T)
at low T can be attributed to numerical inaccuracy#. The net
effect is that the sound velocity decreases with temperat
just like in bulk 4He. AboveT51.5 K the theoretical free
energy has no minimum. As the high-temperature curve
Fig. 26 show, the free energy can be decreased arbitr
upon reduction of the areal density, which tells us that ato
are evaporating to the surrounding vacuum. This two-ph
region cannot be described by the present theory, so re
for T.1.5 K should be considered as tentative.

VI. CONCLUSIONS

We have applied in this paper a state-of-the-art mic
scopic many-body theory to calculate the structure, dyna
ics, and thermodynamics of4He and3He-4He mixtures con-
fined between two attractive walls. The systems exami
here should, above all, be considered as models for hecto
but are, in a broader sense, also applicable for the more
eral problem of helium in other confined geometries li
Aerogels, Vycor, or solid matrices. We hope that the effe
discussed in our work will stimulate experimental interest
these systems, most prominently on hectorite because o
regular structure.

Our ground-state theory has been tested in various ge
etries such as the bulk liquids in two and three dimensio
in films, and in droplets of helium. In all cases where ex
simulation results or experiments are available, it has bee
excellent accuracy. There is no reason to assume that
would not be the case in the systems considered here
expect therefore that the largest uncertainty of our struct
results stems from the external field.

More approximations have been made for the calcula
of excited states and thermodynamic properties. In their
sence, these approximations amount to the use of the F
man spectrum in the energy denominators of Eqs.~3.15! and
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~3.22!. In fact, when the Feynman spectrum in these expr
sions is replaced by a spectrum that resembles essentiall
phonon-roton curve, the discrepancy between theory and
periment is reduced to a few percent. A proper refinemen
the theory to that level is, of course, much more complicat
we shall postpone such efforts until systematic experime
on the systems examined here are performed.

The most prominent effects that appeared in our stud
are the layering transitions. We have studied systematic
the observable signatures of such transitions; the most pr
ising is the predicted drop of the energy of the lowest rot
The layering transitions also give rise to oscillations in t
pressure exerted on the walls and, as we discussed in Re
the perpendicular, high-momentum static density-density
sponse functionX'(k,v50) changes discontinuously. O
course, the layering transitions should show up in any qu
tity which is sensitive to structural changes on the scale
few angstroms. Just what to expect in an experiment on h
torite is very difficult to assess: there are three import
length scales stemming from the gap width, the subst
potential, and the short-range He-He repulsion, but only
last one is well known.

A point worth mentioning, but which has not been a
dressed in this work, is the interaction between3He impuri-
ties. We have shown earlier80,89 that 3He impurities form, in
two dimensions,dimers at low 3He concentration. This
dimerization has been predicted by Bashkin90 on very gen-
eral grounds. The binding energy of3He dimers in purely
two-dimensional 4He is of the order of microkelvins; in
other words, the effect would be quite hard to detect exp
mentally, especially since the systems that come closes
two-dimensional4He are atomic monolayers on strong su
strates. These substrates must be strong enough to pre
the promotion of the3He impurities to Andree´v states. The
downside of such strong substrates is the possible corr
tion effects, which make the formation and observation
very loosely bound dimers difficult.

We expect that the dimerization effect is more pronounc
in the geometry studied here because the dimerization is
sically due to the exchange of phonons. At low areal dens
these phonons are relatively soft modes which are, theref
more attractive than two-dimensional phonons. At areal d
sity above the layering transition, the3He subsystem looks
very much like a proper 2D system; we expect the bind
energy therefore to be comparable to the one found in R
89. We have refrained from calculating the3He dimer bind-
ing energy in this work since the resulting Schro¨dinger equa-
tion is a truly three-dimensional eigenvalue problem wh
requires large-scale computational techniques for its s
tion. This is feasible today; hence there is little justificati
in approximate treatments. But the effort is beyond the sc
of this work, results will be reported elsewhere.
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