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Langevin simulation of thermally activated magnetization reversal in nanoscale pillars
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Numerical solutions of the Landau-Lifshitz-Gilbert micromagnetic model incorporating thermal fluctuations
and dipole-dipole interactions~calculated by the fast multipole method! are presented for systems composed of
nanoscale iron pillars of dimension 9 nm39 nm3150 nm. Hysteresis loops generated under sinusoidally
varying fields are obtained, while the coercive field is estimated to be 1979614 Oe using linear field sweeps
at T50 K. Thermal effects are essential to the relaxation of magnetization trapped in a metastable orientation,
such as happens after a rapid reversal of an external magnetic field less than the coercive value. The distribu-
tion of switching times is compared to a simple analytic theory that describes reversal with nucleation at the
ends of the nanomagnets. Results are also presented for arrays of nanomagnets oriented perpendicular to a flat
substrate. Even at a separation of 300 nm, where the field from neighboring pillars is only;1 Oe, the
interactions have a significant effect on the switching of the magnets.

DOI: 10.1103/PhysRevB.64.134422 PACS number~s!: 75.75.1a, 65.80.1n, 61.46.1w, 64.60.Qb
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I. INTRODUCTION

Several emerging technologies will incorporate fabrica
magnets that are small enough to contain only a single m
netic domain. These nanoscale magnets will be essentia
smaller components, lower power consumption, and co
pletely new applications in fields such as information st
age, integrated circuits, sensor technology, and microelec
mechanical systems. Successful implementation of th
technologies requires a fundamental understanding of the
namics of the internal magnetic structure of the nanosc
magnets on time scales ranging from the nanoseconds a
ciated with gigahertz applications to the years over wh
magnetic information storage must be stable.

An essential factor in many of these applications, es
cially in information storage, is the free-energy barrier th
separates two antiparallel orientations of the magnetizat
This free-energy barrier can be surmounted using ther
energy momentarily ‘‘borrowed’’ from the surroundings, an
often device engineers strive for barriers of at least 40kBT to
make this thermal bit-flipping a rare event. HereT is the
absolute temperature andkB is Boltzman’s constant. The pa
ticle can be magnetized in a specified direction by applyin
field strong enough to remove the free-energy barrier. T
smallest field sufficient to do this at zero temperature
called the coercive fieldHc . Fields smaller than the coerciv
field cannot change the magnetization orientation determ
istically, but they do cause lower free-energy barriers a
make thermal crossing more probable. In fact, hyb
recording1 uses lower-than-coercive fields and thermal b
rier crossing to write data in high-coercivity magnetic med

Two examples of particular thermally activated barr
crossings are shown in Fig. 1. Red is associated with
magnetization orientation antiparallel to the applied fie
which is metastable. Blue is associated with the para
magnetization, which is thermodynamically stable. Gre
and yellow are intermediate between the two orientatio
For times before those shown in the figure, the magnet s
in the metastable state with end caps of nonuniform mag
0163-1829/2001/64~13!/134422~14!/$20.00 64 1344
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tization induced by pole avoidance. Eventually thermal flu
tuations in the end caps carry the system over the free-en
barrier. After the barrier crossing, the entire magnet chan
quickly to the stable equilibrium orientation.

Often, nanoscale magnets are assumed to be unifor
magnetized bodies. For instance, Garcı`a-Palacios and
Lázaro2 considered the stochastic trajectories of isola
magnetic moments using the Landau-Lifshitz-Gilbert eq
tion subject only to applied fields and a uniaxial anisotro
which supplied the free-energy barrier. They measured
susceptibility of the magnetization in small sinusoidal pro
fields. Multiple crossing of the free-energy barrier, a fr
quently noted consequence of the gyromagnetic motion
single-spin models, was also observed for their unifor
magnetization model.

When at least one dimension of the nanomagnet is gre
than the exchange length of the material, nonuniform rev
sal modes become energetically possible. To consider s
nonuniform magnetization reversal we use micromagn
simulation with a large number of points inside the magn
Specifically, nanomagnets with an aspect ratio of appro
mately 17 are considered throughout this work and are
ferred to as pillars. The numerical approach is discusse
Sec. II, with further details found in the appendixes. Resu
for the estimation of the coercive field and the statistics
magnetization switching are discussed in Sec. III. A sim
model for nonuniform switching is discussed in Sec. IV. Se
tion V considers the effect of interactions between pillars
a one-dimensional array. A brief summary of the results
given in Sec. VI. Some preliminary results of this study we
presented in Refs. 3–5.

II. NUMERICAL DETAILS

The basic approach of micromagnetic modeling is to c
sider a system of coarse-grained magnetization vec
M̃ ( r̃ i), with r̃ i indicating the location in space of thei th spin.
The vectors are assumed to have a fixed magnitudeMs ,
corresponding to the bulk saturation magnetization densit
©2001 The American Physical Society22-1
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the material. This is a valid approximation for temperatu
well below the Curie temperature.6 The evolution of each
magnetization vector is governed by the damped pre
sional motion given by the Landau-Lifshitz-Gilbert~LLG!
equation7,8

dM̃ ~ r̃ i !

d t̃
5

g0

11a2
M̃ ~ r̃ i !3S H̃~ r̃ i !2

a

Ms
M̃ ~ r̃ i !3H̃~ r̃ i ! D ,

~1!

where the electron gyromagnetic ratio isg051.76
3107 Hz/Oe,8 and a is a phenomenological damping p
rameter. For the sign of the undamped-precession term
follow the convention of Brown.7 Here a tilde is used to
distinguish dimensional quantities from their dimensionle
counterparts, which will be introduced later.

The dynamics are controlled byH̃( r̃ i), the local field at
the i th position, which, in general, is different at each latti
site. The local field mediates all of the interactions in t
system with the contributions combined via linear super
sition,

H̃~ r̃ i !5H̃z~ r̃ i !1H̃e~ r̃ i !1H̃d~ r̃ i !1H̃a~ r̃ i !1H̃n~ r̃ i !, ~2!

whereH̃z( r̃ i) represents the externally applied field~Zeeman
term!, H̃e( r̃ i) is due to exchange effects,H̃d( r̃ i) is the dipole
field, H̃a( r̃ i) is due to crystalline anisotropy, andH̃n( r̃ i) is the
random field induced by thermal noise.9 The estimates use
for each of these fields are given below, except forH̃a( r̃ i),
which we have taken to be zero. In this article, a tilde e
phasizes that the symbol represents a quantity with units
corresponding dimensionless quantity is written without
tilde. Material parameters, such asMs , always have units
when appropriate.

We have chosen material parameters to match thos
bulk iron; a summary of all parameters used here is given
Table I. The saturation magnetization density isMs
51700 emu/cm3,10 while the exchange length, the leng
over which M̃ can change appreciably, isl e53.6 nm.11,12

The damping parametera has proved difficult to measure o
estimate fromab initio considerations, and may even depe
on numeric details.13 Here we have chosena50.1 to repre-
sent the underdamped behavior usually assumed to exi
nanoscale magnets. In the other extreme, the overdam
limit, the gyromagnetic motion intrinsic to the LLG equatio
is suppressed, and the system can be more efficiently s
lated using Monte Carlo methods.14,15

TABLE I. Parameters used in the micromagnetic simulatio
described here.

l e 3.6 nm
Ms 1700 emu/cm3

D r̃ 1.5 nm

D t̃ 5.031025 ns

g0 1.763107 Hz/Oe
a 0.1
13442
s

s-

e

s

-

-
he
e

of
in

in
ed

u-

The magnetization was discretized on a cubic lattice w
discretization lengthD r̃ 51.5 nm chosen to give sufficien
resolution across the cross section of the pillar. The ti
discretization ofD t̃ 55310214 s was chosen to avoid nu
merical instabilities in the integration. The details of the i
tegration scheme are given below. The equation of mot
was cast into dimensionless quantities by considering
rescaled lengthr5 r̃ / l e, time t5g0Mst̃ , field H5H̃/Ms ,
and magnetization densityM5M̃ /Ms . This rescaling is fa-
cilitated in cgs units,10 where magnetic fields can be norma
ized by the magnetization density without the inclusion
any constants.

In a continuum model, exchange represents local dif
ences in the alignment of the magnetization. The contri
tion to the local field from exchange interactions can be
proximated byl e

2¹2M̃ ( r̃ ),8 which has been implemented i
the simulations by

H̃e~ r̃ i !5S l e

D r̃
D 2S 26M̃ ~ r̃ i !1 (

ud̃u5D r̃

M̃ ~ r̃ i1d̃!D , ~3!

where the summation is over the six nearest neighbors ofr̃ i .
Here the exchange length is defined in terms of the excha
energy16 Ee52( l e

2/2)*drM̃ •“

2M̃ . The dimensionless form
of the exchange contribution to the local field is

He~r i !5S 1

Dr D
2S 26M ~r i !1 (

udu5Dr
M ~r i1d! D . ~4!

The computationally most intensive part of determini
the local field is finding the contribution from dipole-dipo
interactions,Hd(r ). Efficient calculation, which uses the fa
multipole method~FMM!,17 is quite involved and is dis-
cussed in Appendix A.

Thermal fluctuations are included in the LLG equation
motion by inclusion in the superposition of a random fie
H̃n( r̃ ) with Gaussian fluctuations whose first moments
zero and whose second moments obey the fluctuat
dissipation relation9

^H̃nm~ r̃ i , t̃ !H̃nm8~ r̃ i8 , t̃ 8!&5
2akBT

g0MsV
d~ t̃ 2 t̃ 8!dm,m8d i ,i 8 ,

~5!

whereH̃nm indicates one of the Cartesian components ofH̃n .
HereV5(D r̃ )3 is the discretization volume of the numeric
implementation anddm,m8 is the Kronecker delta represen
ing the orthogonality of Cartesian coordinates. This res
was derived for isolated particles,9 and interactions betwee
the discretization volumes can be important.18 To make the
simulations tractable, the effect of interactions on the therm
noise has been neglected. Hered( t̃ 2 t̃ 8) is the Dirac delta
function, and its dimensions@d( t̃ 2 t̃ 8)#51/s are important.
After the transformation to dimensionless quantities,
fluctuation-dissipation result is

^Hnm~r i ,t !Hnm8~r i8 ,t8!&5ed~ t2t8!dm,m8d i ,i 8 , ~6!

s
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FIG. 1. ~Color! Magnetization reversal in the nanoscale magnet after a rapid reversal of the field. The magnets have a squ
section, but are shown in a one-quarter cutaway view. Both reversals are forH51800 Oe andT520 K. Here thez component of the
magnetization is shown, with red representing the metastable orientation and blue representing the equilibrium orientation.~a! Nucleation of
both end caps, but at different times.~b! Nucleation of one single end cap that grows to reverse the entire magnet.
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by

e5
2akBT

MS
2V

, ~7!

where the untransformed discretization volume and sat
tion magnetization are both used in cgs units to yield
dimensionless result. The dimensionless form of the L
equation is
13442
n
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dM ~r i !

dt
5

1

11a2
M ~r i !3@H~r i !2aM ~r i !3H~r i !#. ~8!

This dimensionless stochastic differential equation is u
for the numerical integration.

Since the LLG equation conserves the magnitude of
magnetization density, each integration step amounts t
rotation. The size of the tangential displacement at each
tegration step is given by
e
e

FIG. 2. ~Color! Magnetization reversal during a hysteresis loop of 1 ns atT50 K. ~a! The z component of the magnetization with th
same color scale as in Fig. 1.~b! The magnitude of the curl,uCu, with the sign taken from the value ofCz . Red represents positive curl, blu
negative curl, and green zero curl. The fields shown correspond to times 0.25, 0.375, 0.405, 0.45, and 0.5 ns, respectively.
2-3
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R~r i ,t !5
1

11a2
M ~r i ,t !3@~ I ~r i ,t !2aM ~r i ,t !3I ~r i ,t !#,

~9!

where I is the ‘‘impulse’’ over the integration step define
below. The magnetization after the integration step is giv
by

M ~r i ,t1Dt !5
M ~r i ,t !1R~r i ,t !

A11R2~r i ,t !
, ~10!

which ensures the conservation of unit magnitude forM . If
only the deterministic dynamics were important, a high-or
integration method could be used, but to correctly inclu
the thermal noise a lower-order method must be used. U
first-order Euler integration, the impulse including the flu
tuating field is

I ~r i ,t !5@Hz~r i ,t !1Hd~r i ,t !1He~r i ,t !#Dt1AeDtg~r i ,t !,
~11!

whereg(r ,t) is a random vector with each component ch
sen independently from a Gaussian distribution of zero m
and unit variance. This result, including theADt contribution
characteristic of integration of stochastic processes, is
plained in Appendix B.

III. ISOLATED NANOMAGNETS

The numerical micromagnetic simulation methods d
scribed in the previous section have been applied to mo
nanoscale magnets inspired by those recently fabricated
ing a combination of chemical vapor deposition and sc
ning tunneling microscopy techniques by Wirthet al.11,19

The technique has been used to produce arrays of nano
magnetic particles with diameters down to about 10 nm
lengths from 50 to 250 nm. The reversal of pillars with d
ameters more than twice the exchange length, such as t
has been found numerically to proceed by a mode where
magnetization is not constant across the diameter of
pillar.20–22The model particles considered here are rectan
lar prisms 9 nm3 9 nm 3 150 nm, which requireN
54949 sites on the computational lattice. The long axis
taken as thez axis, and the cross-sectional area is cho
comparable to that for a 10-nm-diameter pillar. The exter
field is always applied along thez axis—the easy axis in
duced by shape anisotropy. As mentioned in Sec. II, the
terial parameters were chosen to match those of bulk i
These are consistent with measurements on the experim
tally produced iron nanoparticles.11,12

A. Coercive field

Images of thez component of the magnetization,Mz , for
such a particle as described above are shown in Fig. 2~a! for
several fields during a hysteresis-loop simulation~in a one-
quarter cutaway view!. The color is a linear scale ofMz ,
shown in the legend of Fig. 1 with the most negative valu
at the bottom and the most positive values at the top.
hysteresis-loop simulations, the field is always orien
13442
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along thez axis. Starting from its most positive extreme, th
value is varied sinusoidally. For the simulation shown in F
2 a period of 1 ns, a field amplitude of 4000 Oe, and
temperature of 0 K were selected. The response of the in
tially upward-directed magnetization after the applied field
oriented downward can be clearly seen. First, end caps a
ciated with pole avoidance form at both ends. These end c
are regions of high curl in the magnetization density,C(r )
5“3M (r ). The end caps are obvious in Fig. 2~b!, where
sgn@Cz(r ,t)#uC(r ,t)u is shown on a linear color scale, so th
right- ~left-! handed end caps are colored red~blue!. At zero
temperature, the two end caps then grow symmetrically u
they meet near the midpoint of the particle. While they gro
the area of large curl is concentrated at the interface betw
the volume where the magnetization has already aligned
allel with the applied field and the volume where it remai
antiparallel to the field. Each interface is composed of t
regions with oppositez component of the curl, with a curling
type of singularity in the center of the pillar. These two r
gions are separated by a layer where thez component of the
curl is close to zero, and the magnetization vectors in thexy
plane have a negative divergence located at the center o
pillar. Because the end caps have opposite curls, in the
gion where the end caps come into contact the curl chan
abruptly from large positive to large negative values. So
time is required for this defect to disappear. This reversa
pillars by nucleation of reversed volumes at the ends
lowed by growth of the reversed regions is consistent w
minimization of the micromagnetic energy at ze
temperature23,22 and Monte Carlo simulations at finit
temperature,24 both under quasistatic field-sweep condition

The hysteresis loop associated with this simulation
shown in Fig. 3, with the field values shown in Fig. 2 ind
cated by large tick marks. Two periods are shown for
1-ns loop. Aside from differences due to the initial alignme

FIG. 3. Hysteresis loops for the individual rectangular pillars
zero temperature and loop periods of 1, 2, and 4 ns. The chang
the shape of the loops as the frequency is lowered indicates tha
magnetization is not following the applied field in a quasista
manner. The large tick marks on the upper horizontal axis indic
the times for the images of the magnetization and its curl, show
Fig. 2
2-4
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LANGEVIN SIMULATION OF THERMALLY ACTIVATED . . . PHYSICAL REVIEW B 64 134422
of the magnetization and the presence of the defect aft
complete loop, the reproducibility at zero temperature is
cellent. Hysteresis loops under the same conditions, but
periods of 2 and 4 ns, are also shown. These simulat
show that the hysteresis loop becomes more square
longer periods, indicating that the magnetization is not f
lowing the applied field in a quasistatic fashion. This is qu
reasonable given that the simulated loops correspond to
crowave frequencies, but it makes the infinite-period co
cive field difficult to measure.

The average energy density, along with its contributio
as functions of time appears in Fig. 4 for the 4-ns hystere
loop. The energy density for zero crystalline anisotropy
calculated as

E52
1

N (
i 51

N

M ~r i !•S 1

2
@He~r i !1Hd~r i !#1Hz~r i ! D ,

~12!

whereN is the number of lattice sites. As the applied fie
begins to decrease and then become negative, it is the
man energy that changes the most while the exchange
dipole-dipole energies remain nearly constant. Near the
ercive field, the exchange energy rapidly increases as reg
of reversed magnetization, and the interfaces associated
them, form at the ends of the pillar. Once these rever
regions become large enough, they grow spontaneously
the Zeeman energy rapidly decreases, while the excha
energy from the interface between reversed and unreve
regions remains roughly constant. The growth of the
versed regions does not take long, and the exchange en
quickly dissipates when the regions from the two ends me
at the middle and the reversal is complete.

The information in Fig. 4 can be used for extracting t
coercive field of the nanomagnet. For infinitely slow var
tions in the applied field,dE/dt is proportional todE/dHz
using the chain rule. Thus portions of the figure with posit

FIG. 4. Energy density vs time for the single hysteresis-lo
simulation atT50 K with period 4 ns from Fig. 3. Assuming tha
the energy is near its metastable minimum before the end caps
to propagate, the coercive field can be estimated from the l
maximum in the total energy.
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slope of the total energy correspond to fields for which
system is trapped behind an energy barrier, while porti
with negative slope correspond to fields for which the syst
responds deterministically by finding a new energ
minimizing magnetization configuration. Fields for whic
the energy has a maximum should then correspond to
coercive field. Dynamic effects cause the field at which t
maximum occurs to depend on the frequency.

To estimate the static coercive field we findHc(R) for
fields that vary linearly with time,H(t)52Rt for t.0, and
then extrapolate to theHc(R50) value. The energy densit
is presented as a function of the absolute value of the app
field in Fig. 5 for rates ranging fromR5250 Oe/ns toR
510 000 Oe/ns. The coercive fields estimated from the
ergy maximum are shown in the inset, where the error b
are estimated from the second derivative near the ene
maximum. The coercive field clearly decreases withR. Ex-
trapolation of a weighted least-squares fit yields a coerc
field of Hc51979614 Oe atR50. This is a more accurate
estimate of the static coercive field than those taken dire
from hysteresis-loop simulations.

B. Switching in constant field

At finite temperature the magnetization can reverse, e
when the applied field is weaker than the coercive field.
this case, thermal fluctuations carry the magnetization p
the free-energy barrier and on to the new equilibrium co
figuration. Two examples of such thermally induced switc
ing are shown in Fig. 1 for the conditionsH051800 Oe and
T520 K. For small positive times~not shown! the volumes
associated with the end caps fluctuate due to the ther
noise. The reversal appears to proceed by a nucleation
cess, with the end caps serving as the seeds for heter

p

tart
al

FIG. 5. Total energy density as a function of applied field f
fields swept linearly with rateR at zero temperature. The estimatio
of the zero-rate coercive fieldHc estimated from the energy max
mum is shown in the inset. The estimated value clearly depend
the rate of change of the applied field, but using linear fitting
static coercive field is found to be 1979614 Oe. The error bars are
estimated using the second derivative at the maximum.
2-5
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neous nucleation. The initiation of the switching from t
end caps is similar to results for reversal induced by app
fields greater thanHc in experiments25 and simulations with
T50 K where reversal begins at the end caps22,26 or
corners.27

In classical droplet theory, in which boundaries such
the sides of the magnet are ignored, nucleation of the e
librium magnetization is governed by the competition b
tween the favorable Zeeman energy due to alignment w
the applied field and the unfavorable exchange energy du
the interface with the majority volume of the misaligned o
entation. The exchange energy dominates for small drop
which tend to shrink. Large droplets tend to grow beca
the Zeeman energy dominates. These two regimes are s
rated by a critical droplet size, the saddle point associa
with the free-energy barrier, where the tendencies tow
growth and shrinkage are balanced. In nanoscale magnet
situation is more complicated because the free energy ca
be easily separated into surface and volume contributio
Nevertheless, the important aspect remains that a free-en
barrier exists that must be crossed for reversal to begin.
end caps fluctuate until a succession of highly unlikely flu
tuations carries the end-cap configuration past the f
energy barrier. After that, growth of the reversed region
energetically favorable and occurs rapidly, on the order
0.2–0.3 ns for the pillars.

For long pillars, nucleation events at the two ends oc
approximately independently of each other. In addition,
growth of a supercritical region takes a significant amoun
time: enough time for the other end cap to have a reason
probability to nucleate and begin to grow. One example
both ends nucleating at different times is shown in Fig. 1~a!,
while Fig. 1~b! shows nucleation of one end that grows
switch the magnetization of the entire pillar. For the pres
applied field the latter situation is somewhat rare; from
theory presented below it can be inferred that it occurs
about 10% of simulated switches. From Fig. 1~b! it can also
be seen that the nucleation of the two end caps is not c
pletely independent. As one reversed region grows along
pillar, the free-energy barrier at the other end cap decrea
Eventually the free-energy barrier for the second end
comes zero and it will also begin to grow. If a less negat
field is applied, the free-energy wells of the metastable st
will be deeper and the first reversed region will have to gr
further along the pillar before this occurs.

The mean switching timet̄ sw, defined here as the firs
time whenMz50, is shown in Fig. 6~a! as a function of
applied field forT520 K. The difference in the error bar
reflects the amount of statistical sampling at the differ
conditions. The dependence oft̄ sw on temperature is show
in Fig. 6~b! for applied fields ofH051850 Oe; fields are
always applied along the pillar. While there is a clear dep
dence on field and temperature, we find no clear functio
form for the dependence. Notably, the exponential dep
dence oft̄ sw on inverse temperature, expected when the b
rier is high, is not seen. This implies that the free-ene
barrier is low. In fact, this picture is consistent with th
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switching statistics described next, where the dynamics
consistent with a biased walk in a shallow well.

The statistics of magnetization switching are measured
Pnot(t), the probability of not switching before timet. The
simulation results forPnot(t) for 200 switches atH0
51800 Oe andT520 K are presented in Fig. 7~a!. The
result is clearly not exponential, the expected functional fo
when the free-energy barrier is large. Experimental res
for single-domain magnets, in whichPnot(t) is not exponen-
tial, have been reported recently.28

A simple theory that assumes completely independ
nucleation at the two ends of the pillar produces a reason
description of the simulation result. The theory forPnot(t)
requires two parameters. The first is the constant nuclea
rateI for the formation of a supercritical reversed region
one isolated end of a pillar. The second is the ratev at which
a single growing region changes the normalized magnet
tion of the pillar. Labeling the two independent nucleati
times at the top and bottomt t and tb , respectively, the posi-
tive values of the magnetization of the pillar can be d
scribed by

FIG. 6. Mean switching time as a function of~a! applied field at
T520 K and~b! temperature atH51850 Oe. The switching time
increases as~a! the free-energy barrier separating the metasta
and stable orientations grows as the applied field is decreased o~b!
the thermal energy available for crossing the barrier decrease
temperature is lowered.
2-6
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Mz~ t !5H 1, t,t1 ,

12v~ t2t1!, t1<t,t2,

12v~ t2t1!2v~ t2t2!, t2<t,

~13!

where t15min(tt ,tb) and t25max(tt ,tb). We define switch-
ing to occur atMz(tsw)50, when roughly one-half the vol
ume of the nanomagnet is oriented in the equilibrium dir
tion. The switching can occur either through one or bo
ends nucleating, and the actual switching time for a parti
lar (t t ,tb) is given by

tsw5minS 2t01t1 ,t01
t11t2

2 D , ~14!

wheret051/(2v) is the earliest time at which the pillar ca
switch. For timest,t0 the probability of switching is zero
even if both ends nucleate immediately after the rever
The situation in thetb-t t plane is shown in Fig. 8, where th
dashed curves correspond to two different conditions of c

FIG. 7. Probability of not switching,Pnot(t), for ~a! 200
switches of nanoscale magnetic pillars atH51800 Oe andT
520 K, and~b! 2000 switches in a simple one-dimensional mod
nanopillar atH51000 Oe andT520 K. The theoretical forms
Eqs. ~15! and ~16!, were fitted by matching their first and secon
moments to those of the simulation data.
13442
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stanttsw, tsw/t053/2 and 3. The solid lines divide the plan
into regions with different switching histories. In the triang
near the origin~I!, switching occurs for timest0,tsw,2t0,
which can happen only if both ends nucleate. Between
parallel solid lines~II ! switching occurs by double nucle
ation, while outside them~III and IV! a single nucleation
causes the switching. Since each nucleation process h
constant rate, the corresponding probability density funct
for the nucleation time is exponential,I exp(2It). Integrat-
ing along curves of constanttsw, the probability of not
switching before timet is found to be3

Pnot~ t !5H 1, t,t0 ,

e22I(t2t0)@112I~ t2t0!#, t0<t,2t0,

e22I(t2t0)@112It0#, 2t0<t.
~15!

We will refer to this as the ‘‘two-exponential’’ decay mode
In the limit of infinitely fast growth,t050, only regions III
and IV remain, and this becomes a simple exponential de
associated with thermally activated crossing of a free-ene
barrier. Fort0.0, Pnot(t) is quadratic int2t0 for t→t0

1 ,
has a discontinuity in the slope att52t0, and is exponential
for t.2t0.

The fit of the two-exponential decay model of Eq.~15! to
the simulation results appears in Fig. 7~a! as the dashed
curve. The dotted curve is a fit to the error function

Perf~ t !5
1

2
2

1

2
Erf@ Ĩ~ t2 t̃ 0!#, ~16!

l

FIG. 8. Integration of weights to getPnot(t), Eq. ~15!. The solid
lines separate regions where one~or two! nucleation events occu
before switching, while the dashed curves are integration paths
constant switching time,tsw/t053/2 and 3. See the text for a ful
explanation.
2-7
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which was chosen as an empirical form because it also
two adjustable parameters, chosen here to have a simila
terpretation as the theory given above. The parameters
both theoretical forms were determined by matching the fi
and second moments of the theoretical form to the mom
of the simulation data, and the parameters areI'4.049, t0

'0.527 andĨ'4.176, t̃ 0'0.790. For these conditions, bot
forms, Eqs.~15! and ~16!, seem to fit the simulation dat
about equally well. The disagreement with Eq.~15! probably
occurs because the condition that the free-energy barrie
much greater thankBT is not met. When the free-energ
barrier is much less thankBT, the magnetization should b
more like a biased random walk. In that case the most
ticeable effect of thermal fluctuations would be a symme
smearing of the switching times aroundt̄sw.

The question of statistical sampling is also importa
Specifically, one expects to have undersampling of the po
lation because the finite-samplingPnot(t) goes to zero faste
than the infinite-samplingPnot(t) with increasingt. In fact,
for times less than the maximum observed switching time
the long-time tail of the distribution, the error function u
derestimates the population, while the two-exponen
theory overestimates it. To this extent, it is possible that d
with better sampling may shift towards better agreem
with Eq. ~15!. Indeed, experimental switching probabilities28

in single-domain magnets have been observed to have e
nential tails, which is inconsistent with Eq.~16!.

Better statistics and a higher free-energy barrier
needed to validate the theoreticalPnot(t) given in Eq.~15!.
For the present model, better statistics would be prohibit
the 200 switches considered here took approximately
weeks to generate using 4 processors on an Origin 200
less realistic but numerically faster simulation, in which t
pillars are modeled as one-dimensional stacks of cube
presented in the next section. The advantage of this sim
fied model is that it allows many more switching events to
observed in a reasonable amount of computer time, e
with much higher free-energy barriers. This improves
statistics for the very rare events withtsw@2t0 and tsw→t0,
which are important to distinguish between alternative th
retical forms forPnot(t).

IV. SIMPLE MODEL

In order to generate a sufficiently large sample of swit
ing events in nanoscale magnets, we consider a sim
model in which the pillar consists of a one-dimensional sta
of cubic cells, which is the model introduced by Boerner a
Bertram.29 The cubes have a linear sizeD r̃ 52l e, here 5.2
nm, since the material parameters for iron are used~Ref. 29
used parameters for nickel!. To keep the aspect ratio of th
nanopillars as close as possible to those considered abo
pillar composed of 17 cubes is used. For this simple mo
the local field due to the dipole interactions is calculated a29

H̃d8~ r̃ i !5~D r̃ !3(
j Þ i

3r̂ i j @ r̂ i j •M̃ ~ r̃ j !#2M̃ ~ r̃ j !

r̃ i j
3

, ~17!
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wherer̃ i j is the displacement vector from the center of cu
i to the center of cubej, and r̂ i j is the corresponding uni
vector. The factor of volume (D r̃ )3 results from integrating
over the constant magnetization density in each cell. T
factor can be combined withr̃ i j

3 , so that the denominato

depends only onxi j 5 r̃ i j /(D r̃ ), which is a vector of integers
denoting the difference in cell indices. It can readily be se
that for a uniformly magnetized pillar the summation ov
index integers leads to different values ofHd8(r ) for different
choices of discretization length along the long axis. This h
pens because self-contributions have been ignored and
far-field result has been used for neighboring cells. Howe
since this model is being used to investigate only the sta
tics of switching, and not for estimating physical values, t
results should be qualitatively correct. Using the scaling
dimensionless units, the approximate dipole field is

Hd8~r i !5(
j Þ i

3r̂ i j @ r̂ i j •M ~r j !#2M ~r j !

xi j
3

. ~18!

We have verified that our implementation of the mod
agrees with that of Boerner and Bertram by reproducing
observed coercive field for the nickel pillars discussed
Ref. 29. Because of the different approximations, the co
cive field for the present iron pillars is about 1500 Oe.

The probability of not switching for 2000 switches fo
this model of iron pillars is shown in Fig. 7~b!, along with
the two theoretical forms, Eqs.~15! and ~16!, which have
been fit using the same procedure as in Sec. III. The kink
the two-exponential theoretical form at 2t0 is quite notice-
able, but cannot be seen in the simulation data. The kink
its origin in the complete suppression of nucleation for ne
tives times, and the absence of the kink in the simulat
data may stem from the finite chance of nucleation at ne
tive times due to the way the field is reoriented, as descri
in Sec. III A. Another possibility is that the interactions b
tween the ends smooth out the difference between the
and two-nucleation decay modes. Despite the kink, the
oretical form, Eq.~15!, does a good job of describing bot
the exponential tail and the rounding at early times
Pnot(t). It is clearly superior to the error-function form, a
well as to a displaced, single exponential~not shown!.

V. ARRAYS OF NANOMAGNETS

The long-ranged dipole-dipole interactions that contrib
to the shape anisotropy of nanoscale magnets also caus
teractions between nanomagnets. This is especially tru
most potential applications, where miniaturization will driv
devices to high densities. In addition, the interactions
tween nanomagnets in arrays could be the basis of de
applications, prototypes of which have already be
investigated.30,31 Regular arrays of nanomagnets have
ready been used experimentally to provide magnetic sig
strong enough to be measured11,19 in the experiments our
nanomagnets are modeled after. Our simulations show
even for very wide spacings the magnetic interactions
2-8



hin

o

T
ol
d

rc
s

n
ith

s

ng

n

in
ar

to

he
for

s.
r-
ec.

ub-
ag-
bed
net
ckly
rray,
pri-
be-
is
p-
n a

t be

of
e
part

at
w
i-
le
the

wo
e,
.

as
be-
the

rs

d.
gh-
tch
is
l at

i-
ially
s at
llars
ys

nu-

hen
of

of
dis

LANGEVIN SIMULATION OF THERMALLY ACTIVATED . . . PHYSICAL REVIEW B 64 134422
tween nanomagnets have significant effects on the switc
properties.

To allow for analytic treatment, we consider only the tw
leading contributions to the local dipole fieldHd(r ) from the
dipole and quadrupole moments of the source magnet.
former contributes uniformly throughout the observation v
ume, while the latter changes linearly in each Cartesian
rection. Specifying the distance between pillars asd and con-
sidering the dipolar and quadrupolar moments of the sou
magnet,M1

0 and M2
0, respectively, the leading contribution

to the observed demagnetizing field areHd
(1)(r )5

2êzM1
0/d3 and Hd

(2)(r )529(2zêz2xêx2yêy)M2
0/(4d5),

respectively. Simple expressions for the multipole mome
can be calculated in the following way. Assume a pillar w
regions of uniform magnetization oriented in the1ê direc-
tion in the middle and in the2ê direction at the ends, a
shown in Fig. 9. With the total pillar lengthL, the top-region
lengthl t , and the bottom-region lengthl b all measured along
the long axis of the pillar, the dipole moment for a reversi
pillar is

M1
05MSA~L22l t22l b! ~19!

and the quadrupole moment is

M2
052MSA@ l t

22 l b
22L~ l t2 l b!#, ~20!

whereA is the cross-sectional area of the pillar. The dime
sionless form is achieved by settingMS to unity and using
dimensionless lengths.

Using the simplified expression for the dipole moment
Eq. ~19!, the contribution from one upward-magnetized pill
at the nearest-neighbor position in the array isHd

(1)
•êz'

21 Oe. The quadrupole contribution from Eq.~20! at the
end of one nanomagnet that is the nearest neighbor

FIG. 9. Schematic of two pillars, one with a growing region
magnetization in the equilibrium orientation at each end. The
tance between pillars isd, their height isL, and the length of the
reversed regions along the long axis arel t and l b , respectively.
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switching pillar with l t5L/2 is Hd
(2)
•êz'0.4 Oe. This is a

rough estimate of the maximum interaction through t
quadrupole moment, and the sign indicates a tendency
neighboring pillars in the array to switch at opposite end

As a simple initial investigation, we consider a linear a
ray of four of the rectangular nanomagnets described in S
III, with the nanomagnets oriented perpendicular to the s
strate. Since dipole-dipole interactions within each nanom
net are calculated using the fast multipole method descri
in Appendix A, the multipole moments for each nanomag
are readily available. These moments can be used to qui
calculate the interactions between nanomagnets in the a
under the constraint that the far-field description is appro
ate. To ensure this we have considered only a spacing
tween pillars of two pillar lengths, 300 nm. Note that th
situation is quite different from fast fourier transform a
proaches, in which the calculation must be carried out o
lattice that also fills the spacebetweenthe nanomagnets.32 To
do that practically, the space between the magnets mus
kept small.

To study arrays of nanomagnets, systems consisting
four 9 nm39 nm3150 nm parallel pillars arranged in a lin
perpendicular to their long axes and spaced 300 nm a
were simulated using the fast multipole method truncated
p53. Hysteresis loops with periods on the order of a fe
nanoseconds for the individual pillars in the array look sim
lar to those for isolated pillars in Fig. 3, with no observab
difference between pillars on the outside and those on
inside of the array. The symmetry equivalence for the t
pillars on the inside, and for the two pillars on the outsid
will be used throughout to double the statistical sampling

The probability of not switching forH51800 Oe andT
520 K is shown for 40 array switches in Fig. 10~a! for
pillars on the inside and outside of the array, as well
isolated pillars. No significant difference can be seen
tween the three curves. However, the coupling between
pillars can be seen in the difference between thePnot(t) for
inside pillars with one or both nearest-neighbor pilla
switched, shown in Fig. 10~b!. Here,t is the time difference
betweentsw and the last time a neighboring pillar switche
From these data it can be seen that of pillars with two nei
bors, those with only one neighbor switched tend to swi
earlier than those with both pillars switched. The effect
even more pronounced in simulations of the simple mode
H51000 Oe.5

VI. SUMMARY

Numerical simulation of the Landau-Lifshitz-Gilbert m
cromagnetic model has been used to investigate spat
nonuniform magnetization switching in nanoscale magnet
the nanosecond time scale. We have focused on iron pi
9 nm39 nm3150 nm because such pillars and arra
have been constructed and measured experimentally.11,19The
zero-temperature static coercive field has been estimated
merically to beHc51979614 Oe by finding the field of
maximum energy for fields swept at constant rate and t
extrapolating to find the zero-rate estimate. Simulations

-

2-9
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GREGORY BROWN, M. A. NOVOTNY, AND PER ARNE RIKVOLD PHYSICAL REVIEW B64 134422
thermally activated magnetization switching are possible
fields well below the coercive value. For the pillars studi
here, reversal occurs through nucleation at the ends of
pillars. The probability of not switching,Pnot(t), is not well
described by a delayed exponential, and a theoretical fo
Eq. ~15!, based on independent nucleation at the ends of
magnet is developed here. The agreement with results
intensive, fully three-dimensional simulations with an a
plied field near the coercive value is reasonable, but anad
hoc error function gives similar agreement. The agreem
with Eq. ~15! is much better when the field is well below th
coercive value and the statistics are better, which curre
we have only studied with less-intensive simulations that d
cretize the nanomagnet only along its long axis.

The fully three-dimensional micromagnetics program h
been developed for massively parallel computers and im
mented using the fast multipole method. These two featu

FIG. 10. ~a! Probability of not switching,Pnot(t), for nanoscale
magnetic pillars in a four-pillar array atH51800 Oe andT
520 K. The two pillars on the outside and the two on the ins
are equivalent by symmetry. The isolated pillar data are the sam
in Fig. 7. ~b! Interactions between pillars as seen in the differen
betweenPnot(t) for inside pillars with one and both neighborin
pillars already switched. Heret50 corresponds to the time of th
most recent switch of a neighboring pillar.
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make it feasible to simulate nanomagnets in widely spa
arrays. Even though the interactions between the magnet
quite weak for the specific linear array considered here, th
are significant effects on the statistics of the magnetiza
switching. Specifically, there is a dependence ofPnot(t) for a
given pillar on the orientation of the magnetization of
nearest neighbors in the array. The nature of the coopera
reversal mode observed here is a topic for future researc
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APPENDIX A

Calculating the dipole-dipole interactions is the most
tensive part of the numerical calculation. The magnetic
tential approach used here involves defining a magn
charge densityrM(r )52“•M (r ). ~We present this only in
terms of the dimensionless quantities.! This charge was
evaluated on a cubic lattice dual to that ofM (r i) ~see Fig.
11! using equally weighted two-point differences, spec
cally,

rM~rd!52 (
m51

3 S 1

4Dr (
uhu5A3Dr /2

sgn~h•êm!M ~rd1h!•êmD ,

~A1!

as
e

FIG. 11. Schematic of the relationship between the lattice
the dual lattices, projected along thez axis. The magnetization den
sity M (r i) and the local magnetic fieldH(r i) are known at the
lattice sites of the simple cubic lattice~solid circles!, the magnetic
charge densityrM is known at the dual lattice sites~open circles!
which are located at the body center positions, and the magn
surface charge density is known at the centers of squares define
the surface lattice sites~open triangles!.
2-10



ic
q
e
w

fa

re
a

d
ou

p
et

in

at
o

sin
d-
rm
w
th
b
nc
ith
un
th
on
n

io
at
ad
o

ac

s,
e

o

tial

a-

han

a

r-
ple

est
s the
nd
the

ffi-
ific

ere
the
e is

ace
his
the

LANGEVIN SIMULATION OF THERMALLY ACTIVATED . . . PHYSICAL REVIEW B 64 134422
whererd is a position on the dual lattice,(h is the sum over
the corresponding corners of the cube from the direct latt
andêm are the Cartesian unit vectors. If we were to apply E
~A1! with rd just outside the magnetic material, it would giv
a nonzero charge there. To avoid this unphysical result,
have moved this charge to the surface by defining a sur
magnetic charge densitysM(r )5 ŝ(r )•M (r ), whereŝ is the
unit vector directed out of the surface. We have conside
surface charges only on the surface of the model magnet,
we evaluate them at the centers of the squares define
adjacent points on the surface of the direct lattice. The f
corners are equally weighted so that

sM~rd8!5
1

4 (
uhu5A2Dr /2

ŝ•M ~rd81h!, ~A2!

where (h runs over the four corners. The numerical a
proach of Eqs.~A1! and ~A2! ensures that there is no n
magnetic charge on the system as a whole.

The magnetic potentialfM(r ) is found by integrating
over both the volume and surface charges,33

fM~r !5E
V
dr 8

rM~r 8!

ur2r 8u
1 R

S
dŝ8

sM~r 8!

ur2r 8u
. ~A3!

Numerically, such an operation can be quite expensive s
unsophisticated algorithms will requireO(N2) operations,
where N is the number of lattice sites. An algorithm th
remains reasonable for large systems is the fast multip
method.17

We have chosen to calculate the magnetic potential u
the fast multipole method~FMM! because it has several a
vantages over the more traditional fast Fourier transfo
~FFT! approach. The biggest difference between the t
methods is that the FMM makes no assumptions about
underlying lattice, while the FFT method assumes a cu
lattice with periodic boundary conditions. One conseque
of this assumption is that numerical models of systems w
out periodic boundary conditions require empty space aro
the magnet so that the boundary conditions do not affect
calculation. The FFT method also requires the lattice to c
tinue into regions of empty space that lie between eleme
of an array of magnets. By contrast, a FMM implementat
only needs to consider volumes occupied by magnetic m
rial. It does not need any padding. In addition to these
vantages, the FMM is more efficient for large numbers
lattice sites.

The popularity of the FFT approach stems from the f
that it takesO(N ln N) calculations to evaluate Eq.~A3!. The
FMM has a larger overhead, but requires onlyO(N) opera-
tions to calculate the same potential.17 This means that a FFT
approach to Eq.~A3! makes sense for small, cubic lattice
but that the FFM approach will be more efficient for larg
irregular, or incomplete lattices.

The FMM algorithm exploits the fact thatfM at each
lattice point can be expanded in terms of spherical harm
ics,
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fM~r ,u,w!5(
i 50

`

(
j 52 i

i S Li
j r i1

Mi
j

r i 11D Yi
j~u,w!, ~A4!

where theLi
j terms can be used to represent the poten

close to the lattice point, and theMi
j terms can be used to

represent the potential far from it, but not both simult
neously. In this context, nearr i means being closer tor i than
any other lattice point, and far means distances more t
twice the largest distance from the center of cellj to any of
its boundary points. Following Greengard,17 we define the
spherical harmonics

Yi
j~u,w!5A~ i 2u j u!!

~ i 1u j u!!
Pi

u j u~cosu!eI j w, ~A5!

with Pi
j (x) the associated Legendre polynomial, andI

5A21. Actually implementing this approach requires
truncation of the expansion ini at orderp. We have found
that the demagnetizing field forp53 is within 1% of the
exact value for our simulations.

Our implementation of the FMM algorithm starts by pa
titioning the model space into a system of cubes; an exam
is shown in Fig. 12. The length of the side of the small
cubes, which are separated by dotted lines, is the same a
discretization length. For our lattice system we have fou
that the most efficient choice is to use cubes centered on
direct lattice. For each cube, the multipole expansion coe
cients of the far-field potential are calculated for the spec
configuration of magnetic chargesrM andsM ,

Mi
j5E

V
dr @rM1sM#% iYi

j~u,w!, ~A6!

with the coordinates centered on the lattice site. Note h
that% i is the distance from the center of the cell raised to
i th power. For our cubic lattice, each quadrant of the cub
contributed by a different region of constantrM from the
dual lattice ~similarly for sM). With the geometry of the

FIG. 12. Schematic of the hierarchical decomposition of sp
chosen for our implementation of the fast multipole method. T
eightfold decomposition at each level is quite efficient given
underlying cubic lattice.
2-11
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lattice fixed, the multipole expansion coefficients are ea
calculated and summed to yield the total expansion coe
cients for the lattice site.

Each level of the hierarchy involves grouping cells in
successively larger cubes that completely contain cube
the lower level. The obvious hierarchy with each larger cu
containing eight of the smaller cubes apparently works b
In Fig. 12, cubes of the second level are separated by da
lines and those of the third level by solid lines. Since t
number of nodes in any direction along the simulation latt
is not restricted to a power of two, cubes do not alwa
contain eight smaller cubes. TheMi

j for the larger cube can
be rapidly evaluated from those of the smaller cubes us
the rule for translation of a multipole expansion,17

Mi
j5 (

k50

i

(
l 52k

k

Oi 2k
j 2 l

Jl
j 2 lAk

l Ai 2k
j 2 l

Ai
j

%kYk
2 l~u,w!, ~A7!

whereOi
j are the expansion coefficients for the smaller cu

and the spherical coordinates (%,u,w) here are for the vecto
from the origin of the large cube to that of the small cub
The relations for the new factors are17

Ai
j5

~21! j

A~ i 2 j !! ~ i 1 j !!
~A8!

and

Ji
j5H ~21!min(u i u,u j u) if i j ,0,

1 otherwise.
~A9!

The construction of the hierarchy terminates when the en
system is enclosed by a single cube. The partitioning can
generalized to noncubic rectangular prisms, but the res
tion that the multipole expansion is only valid at distanc
larger than twice the diagonal of the rectangle will comp
cate the algorithm.

A downward pass through the hierarchy involving thr
types of operations is required to constructfM as repre-
sented by the local expansion coefficientsLi

j for each cube.
The first operation is the translation of the local expans
for the encompassing bigger cube~if one exists! that includes
all the contributions from its far field, i.e., those cubes on
level that are not its neighbors. This translation is acco
plished by the rule17

Li
j5(

k5 i

p

(
l 52k

k

Ok,l

J̄k2 i ,l 2 j
l Ak2 i

l 2 j Ai
j

Ak
l

%k2 iYk21
l 2 j ~u,w!,

~A10!

whereOi
j are the local expansion coefficients of the larg

cube, and the spherical coordinates (%,u,w) here are for the
vector from the origin of the smaller cube to that of the larg
cube.Ai

j is defined in Eq.~A8!, while17

J̄i , j
k 5H ~21! i~21! j if jk,0,

~21! i~21!k2 j if jk.0 and uku,u j u,

~21! i otherwise.
~A11!
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The next operation incorporates the contributions from ar
in the near region of the larger cube, but in the far region
the smaller cube. This is accomplished by transforming
multipole expansion of the source into a local expansion
the smaller cube using17

Li
j5 (

k50

p

(
l 52k

k

Ok
l
J̃k

j ,lAk
l Ai

j

Ai 1k
l 2 j

Yi 1k
l 2 j ~u,w!

% i 1k11
, ~A12!

where the spherical coordinates are for the vector from
origin of the smaller cube to that of the larger cube and17

J̃i
j ,k5H ~21! i~21!min(u j u,uku) if jk.0,

~21! i otherwise.
~A13!

The third type of operation is used for termination of t
algorithm at the lowest level, where the near-region con
butions for the smallest cubes must be evaluated exa
Since a regular lattice is used, the pointr i wherefM is being
calculated always lies at the corner of the neighboring c
of constantrM , and the contribution is simply

~Dr !2

8 F6 sinh21S 1

A2
D 2

p

2 GrM~rd!, ~A14!

because only one quadrant of the region of constantrM
needs to be considered in this exact manner. The contribu
for squares of surface charge that touchr i is

Dr sinh21~1!sM~rd!. ~A15!

Similar expressions can be calculated for general rectang
prisms.

The FMM is an efficient way of determining the magne
potentialfM(r i) associated with a particular configuration
a dipole field. The local observed magnetic field due to
other dipoles is obtained using

Hd~r i !52¹fM~r i ! ~A16!

from potential theory. Numerically, this gradient was es
mated with a centered difference of the nearest-neigh
sites, except on the boundaries, where forward or backw
differencing was used. Note that the discretizations of
operators have been chosen for consistency between su
and volume charges such that the model magnet can be
ded by volumes of lattice sites withM50 without changing
the results.

The FMM was implemented using C11 and named Hi-
erarchy.h. Fundamental to the implementation is the c
sh_expansion whose instances are a (p11)2 array of com-
plex numbers representing either local or multipole exp
sion coefficients. The class includes methods for index
expansion coefficients within an expansion, evaluating
expansion at a specified point, and transforming an exp
sion using Eqs.~A7!, ~A10!, and~A12!. In addition, the class
encapsulates the precomputation of quantities that do no
pend on the displacement vector, and it can return a poi
to a table of precomputations that do depend on a fixed
2-12
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placement. For instance, for efficient evaluation of the tra
lation of multipole expansions, Eq.~A7!, the class contains
the (p11)4 values

Ci ,k
j ,l 5

Jl
j 2 lAk

l Ai 2k
j 2 l

Ai
j

~A17!

and an indirect-indexing array that specifies the sequenc
Ok,l after the loops have been unrolled. In addition, a poin
to the (p11)2 precomputed values of%kYk

2 l(u,w) can also
be returned. Thus the transformation can be evaluated
ciently and with minimal overhead from loop-control var
ables.

The computer memory requirements to store the prec
putations that depend on spatial relationships can be gre
reduced for implementations that assume a regular lattice
spatial decomposition. For each level of the hierarchy, th
will be a fixed number of displacements between the cell
that level and with cells on the parent level and the ch
level. The class sh_expansion encapsulates this efficienc
each request for a precomputation by searching a linked
of previous results and creating a new result only when
previous result exists. A similar scheme is also necessary
the compilation of multipole expansion coefficients for t
lowest level of the hierarchy, Eq.~A6!. Since the precompu
tations represent a significant amount of the memory requ
ments of the overall simulation, these memory savings
greatly increase the number of lattice points used to repre
the model magnet.
th
r
h

-
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The partitioning of space is accomplished through
class hbox. Instances of this class contain geometric in
mation about the decomposition cell and expansions for b
the potential and charges within the cell, as well as links
other cells. These links point to the encompassing cell,
encompassed cells, a list of same-level cells in the far fi
~the ‘‘interacting cells’’!, and a list of nearest-neighbor cell
The hbox’s for each level of the decomposition hierarchy
held in a container class hlevel, and the entire hierarch
maintained as a linked list. Our implementation of hlevel
particular to the cubic-lattice decomposition of space, a
irregular geometries have to be padded with empty spa
~This is also true for our implementation of the classes V
torField and ScalarField from VectorField.h used through
our numerical integration of the LLG equation.!

APPENDIX B

A useful way to represent the thermal Landau-Lifshi
Gilbert equation is in a form with the deterministic and st
chastic parts separated

dM ~r i ,t !5B@M ~r i ,t !#Hdet~r i ,t !dt

1Ae B@M ~r i ,t !#dW~r i ,t !, ~B1!

whereHdet(r i ,t) is the deterministic part of the local field a
r i and Hn(r i)5AedW(r i ,t) is the stochastic part. The ma
trix B is given by
B@M ~r i ,t !#5
1

11a2S a~M y
21Mz

2! 2Mz2aMxM y M y2aMxMz

Mz2aMxM y a~Mx
21Mz

2! 2Mx2aM yMz

2M y2aMxMz Mx2aM yMz a~Mx
21M y

2!
D , ~B2!
the
ul-

tion
-

the

or-
hed
wherex, y, andz represent the Cartesian coordinates and
space and time dependences of theMm have been omitted fo
clarity. The stochastic nature of the field results from t
Wiener34–36 processW(r i ,t) which has the properties

^Wm~r i ,t !&50,

^Wm~r i ,t !Wm8~r i8 ,t8!&5~ t2t8!dm,m8d i ,i 8 . ~B3!

The stochastic differential equation~B1! can be treated nu
merically using first-order Euler integration. For smallDt,
the deterministic integral is

Idet~r i ,t !5B@M ~r i ,t !#Hdet~r i ,t !Dt. ~B4!

The integral of the stochastic part,

I sto~r i ,t !5AeE
t

t1Dt

B@M ~r i ,t8!#dW~r i ,t8!, ~B5!
e

e

takes more consideration since it involves the product of
magnetization with the Wiener process. In such cases of m
tiplicative noise, different methods for evaluating Eq.~B5!
correspond to different Fokker-Planck equations.34–37 There
are an infinite number of ways to interpret Eq.~B5!, but
usually only the two extreme cases, the Itoˆ and Stratonovich
interpretations, are considered. The Fokker-Planck equa
considered by Brown9 only has the proper equilibrium prop
erties when interpreted in the Stratonovich sense.2 This is
complicated by the fact that numerical implementation of
stochastic integral is particularly convenient in the Itoˆ inter-
pretation. Then the discretized integral is38

I sto~r i ,t !5Ae Dt B@M ~r i ,t !#g~r i ,t !, ~B6!

where each component ofg is a random number from a
Gaussian distribution with zero mean and unit variance. F
tunately, changing interpretations can be accomplis
through a correction discussed below. Then, Eq.~B6! can be
2-13
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combined with Eq.~B4!, and the result rearranged, to giv
the ‘‘impulse’’ during the integration step, Eq.~11!. ! Chang-
ing from the Stratonovich interpretation of the stochastic
tegral to that of Itoˆ requires the addition of a determinist
term. Specifically, a Stratonovich interpretation of
multivariate-Langevin equation of the form

dx5a~x,t !dt1b~x,t !dW ~B7!

is equivalent to the Langevin equation34

dx5@a~x,t !1c~x,t !#dt1b~x,t !dW ~B8!

in the Itô interpretation34,36where the components of the ne
drift term are
re

w

ett

n

r-

13442
-
cm5

1

2 (
n,n8

bn8,n

]bm,n

]n8
. ~B9!

For the present system, the additional drift term is read
found to be

c~r i ,t !5
e

~11a2!
M ~r i ,t !, ~B10!

which is equivalent to the result given in Ref. 2. This dr
term is always directed along the local magnetization d
sity. The process of normalizing the magnitude of the sp
during each integration step, Eq.~10!, is also directed along
the magnetization and, essentially, takes the correction
account.
s.
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