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Langevin simulation of thermally activated magnetization reversal in nanoscale pillars
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Numerical solutions of the Landau-Lifshitz-Gilbert micromagnetic model incorporating thermal fluctuations
and dipole-dipole interactiorisalculated by the fast multipole methaare presented for systems composed of
nanoscale iron pillars of dimension 9 i® nmx 150 nm. Hysteresis loops generated under sinusoidally
varying fields are obtained, while the coercive field is estimated to be19490e using linear field sweeps
atT=0 K. Thermal effects are essential to the relaxation of magnetization trapped in a metastable orientation,
such as happens after a rapid reversal of an external magnetic field less than the coercive value. The distribu-
tion of switching times is compared to a simple analytic theory that describes reversal with nucleation at the
ends of the nanomagnets. Results are also presented for arrays of nanomagnets oriented perpendicular to a flat
substrate. Even at a separation of 300 nm, where the field from neighboring pillars is-dnl@e, the
interactions have a significant effect on the switching of the magnets.
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[. INTRODUCTION tization induced by pole avoidance. Eventually thermal fluc-
tuations in the end caps carry the system over the free-energy
Several emerging technologies will incorporate fabricatedoarrier. After the barrier crossing, the entire magnet changes
magnets that are small enough to contain only a single maguickly to the stable equilibrium orientation.
netic domain. These nanoscale magnets will be essential for Often, nanoscale magnets are assumed to be uniformly
smaller components, lower power consumption, and commagnetized bodies. For instance, Ga#Palacios and
pletely new applications in fields such as information stor-Lazard considered the stochastic trajectories of isolated
age, integrated circuits, sensor technology, and microelectrgnagnetic moments using the Landau-Lifshitz-Gilbert equa-
mechanical systems. Successful implementation of theson subject only to applied fields and a uniaxial anisotropy,
technologies requires a fundamental understanding of the dyvhich supplied the free-energy barrier. They measured the
namics of the internal magnetic structure of the nanoscaléusceptibility of the magnetization in small sinusoidal probe
magnets on time scales ranging from the nanoseconds asdiglds. Multiple crossing of the free-energy barrier, a fre-
ciated with gigahertz applications to the years over whichduently noted consequence of the gyromagnetic motion in
magnetic information storage must be stable. single-spin models, was also observed for their uniform-
An essential factor in many of these applications, espemagnetization model.
cially in information storage, is the free-energy barrier that When at least one dimension of the nanomagnet is greater
separates two antiparallel orientations of the magnetizatiorthan the exchange length of the material, nonuniform rever-
This free-energy barrier can be surmounted using thermdi@ modes become energetically possible. To consider such
energy momentarily “borrowed” from the surroundings, and honuniform magnetization reversal we use micromagnetic
often device engineers strive for barriers of at leagtzZ0to ~ Simulation with a large number of points inside the magnet.
make this thermal bit-flipping a rare event. Hefeis the  Specifically, nanomagnets with an aspect ratio of approxi-
absolute temperature akg is Boltzman's constant. The par- Mately 17 are considered throughout this work and are re-
ticle can be magnetized in a specified direction by applying 4erred to as pillars. The numerical approach is discussed in
field strong enough to remove the free-energy barrier. Th&€c. II, with further details found in the appendixes. Results
smallest field sufficient to do this at zero temperature igor the estimation of the coercive field and the statistics of
called the coercive fielti.. Fields smaller than the coercive Magnetization switching are discussed in Sec. Ill. A simple
field cannot change the magnetization orientation determinodel for nonuniform switching is discussed in Sec. IV. Sec-
istically, but they do cause lower free-energy barriers andion V considers the effect of interactions between pillars in
make thermal crossing more probable. In fact, hybrid@ one-dimensional array. A brief summary of the results is
recording uses lower-than-coercive fields and thermal bargiven in Sec. VI. Some preliminary results of this study were
rier crossing to write data in high-coercivity magnetic media.Presented in Refs. 3-5.
Two examples of particular thermally activated barrier
crossings are shown in Fig. 1. Red is associated with the II. NUMERICAL DETAILS

magnetization orientation antiparallel to the applied field, . ) . o
which is metastable. Blue is associated with the parallel The basic approach of micromagnetic modeling is to con-

magnetization, which is thermodynamically stable. GreerSider a system of coarse-grained magnetization vectors
and yellow are intermediate between the two orientationsM(r;), with r; indicating the location in space of thth spin.
For times before those shown in the figure, the magnet staybhe vectors are assumed to have a fixed magnitde
in the metastable state with end caps of nonuniform magnezorresponding to the bulk saturation magnetization density of
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TABLE I. Parameters used in the micromagnetic simulations The magnetization was discretized on a cubic lattice with

described here. discretization length’Ar =1.5 nm chosen to give sufficient
resolution across the cross section of the pillar. The time

I 3.6 nm . L ~ .

I\;I 1700 emu/crh discretization ofAt=5x10"'* s was chosen to avoid nu-
2 merical instabilities in the integration. The details of the in-

AT 1.5 nm . . . .
" i tegration scheme are given below. The equation of motion

AT 5.0<10°° ns

. was cast into dimensionless quantities by considering the
Yo 1.76x10° Hz/Oe rescaled lengthr=T/l,, time t=yMt, field H=H/Mj,

¢ 01 and magnetization densityl=M/M;. This rescaling is fa-
cilitated in cgs unit$® where magnetic fields can be normal-

the material. This is a valid approximation for temperatureé.Zed by the magnetization density without the inclusion of
well below the Curie temperatufeThe evolution of each &Ny constants. .
magnetization vector is governed by the damped preces- In a continuum model, exchange represents local differ-

sional motion given by the Landau-Lifshitz-GilbefttLG) ences in the alignment of the magnetization. The contribu-
equatior}® tion to the local field from exchange interactions can be ap-

proximated byl 2V2M(T) 2 which has been implemented in
the simulations by

dM(r) o

= M () x| AT — o ME) <A |,

dt  1+a? s | )2
1) He("r'i)z(—i) (—6l\7l(?i)+ > M(r+d)
Ar [d|=AT

)

where the electron gyromagnetic ratio ig,=1.76
X 10" Hz/Oe? and « is a phenomenological damping pa- where the summation is over the six nearest neighbors.of
rameter. For the sign of the undamped-precession term Weere the exchange length is defined in terms of the exchange
follow the convention of Browr.Here a tilde is used to energy® E =—(I2/2)fdr|ﬁ .V2M. The dimensionless form
distinguish dimensional quantities from their dimensionlessy¢ o exc?langeecontribution to the local field is
counterparts, which will be introduced later.

The dynamics are controlled Hy(r;), the local field at 12

theith position, which, in general, is different at each lattice e(ri)= Ar

site. The local field mediates all of the interactions in the

system with the contributions combined via linear superpo- The computationally most intensive part of determining

sition, the local field is finding the contribution from dipole-dipole

3 o interactionsHy(r). Efficient calculation, which uses the fast
H(r) =H,(r) +Her) +Hq(r) +Ha(r) +Hy(ri), (2 multipole method(FMM),'” is quite involved and is dis-

o cussed in Appendix A.
whereH,(r;) represents the externally applied fi¢keeman Thermal fluctuations are included in the LLG equation of
term), H(r;) is due to exchange effectdy(r;) is the dipole  motion by inclusion in the superposition of a random field

field, H4(r;) is due to crystalline anisotropy, aith(T;) isthe ~ H,(r) with Gaussian fluctuations whose first moments are
random field induced by thermal noi&he estimates used zero and whose second moments obey the fluctuation-

for each of these fields are given below, exceptifigfr;),  dissipation relation

which we have taken to be zero. In this article, a tilde em- 2 akaT

phasizes thgt thg symt_)ol represents a quantity W|th units; the <;|nﬂ(7i 'T)HHM’(?i, ,T’)): aKg 5({_?)% Wi

corresponding dimensionless quantity is written without the YoMV ’

tilde. Material parameters, such 8, always have units )

when appropriate. ~ . : ~
We r?gvepchosen material parameters to match those 3¥hereHnﬂ |Qd|cates one of the Cartesian components pf

Table 1. The saturation magnetization density és implementation and,, - is the Kronecker delta represent-

—1700 emu/ci® while the exchange length, the length ing the orthogonality of Cartesian coordinates. This result
1112 was derived for isolated particlésand interactions between

over whichM can change appreciably, 1§=3.6 nm. the discretization volumes can be import&dhfo make the

Th(_a damping parameter hgs pro.ved difficult to measure or simulations tractable, the effect of interactions on the thermal
estimate fromab initio considerations, and may even depend

on numeric detail$? Here we have chosem=0.1 to repre- N0ise has been neglected. Heft —t’) is the Dirac delta
sent the underdamped behavior usually assumed to exist flinction, and its dimensionss(t—t')]=1/s are important.
nanoscale magnets. In the other extreme, the overdampédter the transformation to dimensionless quantities, the
limit, the gyromagnetic motion intrinsic to the LLG equation fluctuation-dissipation result is

is suppressed, and the system can be more efficiently simu-

lated using Monte Carlo method*® (Hnu(ri OHp (rf 1)) =€8(t=t")6, 65, (6)

NG

—6M(ri)+|dg,m M(r;+d)
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a) b)

1.00ns 1.05 1.10 1.15 1.20 n= 090 ns 0,95 1.00 105 1.10n=s

FIG. 1. (Color) Magnetization reversal in the nanoscale magnet after a rapid reversal of the field. The magnets have a square cross
section, but are shown in a one-quarter cutaway view. Both reversals ake=fa@800 Oe andl=20 K. Here thez component of the
magnetization is shown, with red representing the metastable orientation and blue representing the equilibrium ori@naideation of
both end caps, but at different time$b) Nucleation of one single end cap that grows to reverse the entire magnet.

with the dimensionless strength of the stochastic field given dM(r))
by =

gt 15 g2 (X IHr) = aM(r)XH(r)]. (8

2aksT
=28 %)

M%V ' This dimensionless stochastic differential equation is used

for the numerical integration.
where the untransformed discretization volume and satura- Since the LLG equation conserves the magnitude of the
tion magnetization are both used in cgs units to yield themagnetization density, each integration step amounts to a
dimensionless result. The dimensionless form of the LLGrotation. The size of the tangential displacement at each in-

equation is tegration step is given by
a) b)

00 -2825 323 3800 -4000 00 -285 3235 2800 4000

FIG. 2. (Color Magnetization reversal during a hysteresis loop of 1 nB=a0 K. (a) Thez component of the magnetization with the
same color scale as in Fig. (h) The magnitude of the curC|, with the sign taken from the value &f,. Red represents positive curl, blue
negative curl, and green zero curl. The fields shown correspond to times 0.25, 0.375, 0.405, 0.45, and 0.5 ns, respectively.

134422-3



GREGORY BROWN, M. A. NOVOTNY, AND PER ARNE RIKVOLD PHYSICAL REVIEW B54 134422

M(ri ,t)X[(I(I’, ,t)—al\/l(l’i ,t)XI(ri ,t)],
€)

wherel is the “impulse” over the integration step defined
below. The magnetization after the integration step is given
by

R(r;,t) !
rot)=
' 1+

a2 ;
/ —— period=1ns
j i === period=2ns
—-—-- period =4 ns

05

0.0

M/M

M(r;,t)+R(r;,t) (10
VI+R3(r ) 05}
which ensures the conservation of unit magnitudeMorlf

only the deterministic dynamics were important, a high-order
integration method could be used, but to correctly include

M(r; t+At)=

-1.0

2000 4000

the thermal noise a lower-order method must be used. Using -4000 2000 H (‘69)
first-order Euler integration, the impulse including the fluc- z
tuating field is FIG. 3. Hysteresis loops for the individual rectangular pillars at

zero temperature and loop periods of 1, 2, and 4 ns. The change in
(ri ) =[H,(r;,t) +Hy(ri ,t) + H(ri 1) JAt+ VeAtg(r; 1), the shape of the loops as the frequency is lowered indicates that the
magnetization is not following the applied field in a quasistatic

whereg(r,t) is a random vector with each component cho-manner. The large tick marks on the upper horizontal axis indicate
sen inder;endently from a Gaussian distribution of zero meaﬁw times for the images of the magnetization and its curl, shown in
and unit variance. This result, including tRdt contribution 9

characteristic of integration of stochastic processes, is e)%ilong thez axis. Starting from its most positive extreme, the

plained in Appendix B. value is varied sinusoidally. For the simulation shown in Fig.
2 a period of 1 ns, a field amplitude of 4000 Oe, and a
IIl. ISOLATED NANOMAGNETS temperature D0 K were selected. The response of the ini-

The numerical micromagnetic simulation methods detially upward-directed magnetization after the applied field is

scribed in the previous section have been applied to modé{riented downward can be clearly seen. First, end caps asso-

nanoscale magnets inspired by those recently fabricated uSiated with pole avoidance form at both ends. These end caps
ing a combination of chemical vapor deposition and scan&'€ regions of high curl in the magnetization densiyr)

ning tunneling microscopy techniques by Wiret al1tt =V XM(r). The end caps are obvious in Figb? where

The technique has been used to produce arrays of nanosc&@1 Cz(r.1)1|C(r,t)| is shown on a linear color scale, so that

magnetic particles with diameters down to about 10 nm andight- (Ieft-) handed end caps are colored fetle). At zero
lengths from 50 to 250 nm. The reversal of pillars with di- {€mperature, the two end caps then grow symmetrically until
ameters more than twice the exchange length, such as thedg€Yy meet near the midpoint of the particle. While they grow,

has been found numerically to proceed by a mode where the area of large curl is concentrated at the interface between
magnetization is not constant across the diameter of thE€ volume where the magnetization has already aligned par-

pillar.2-22The model particles considered here are rectanguﬁ‘”el with the applied field and the volume where it remains
lar prisms 9 nmXx 9 nm X 150 nm, which require\ antiparallel to the field. Each interface is composed of two

— 4949 sites on the computational lattice. The long axis id€9ions with opposite component of the curl, with a curling
taken as thez axis, and the cross-sectional area is chosefYP€ Of singularity in the center of the pillar. These two re-
comparable to that for a 10-nm-diameter pillar. The externaPions are separated by a layer where zlewmponent of the
field is always applied along the axis—the easy axis in- curl is close to zero, and_ the magnetization vectors ixthe
duced by shape anisotropy. As mentioned in Sec. II, the m2Rlane have a negative divergence located at the center of the
terial parameters were chosen to match those of bulk irorPillar. Because the end caps have opposite curls, in the re-

These are consistent with measurements on the experimeflon Where the end caps come into contact the curl changes
tally produced iron nanoparticlés2 abruptly from large positive to large negative values. Some

time is required for this defect to disappear. This reversal of
A Coercive field pillars by nucleation of reversed volgmes_ at the_ ends fQI-
' lowed by growth of the reversed regions is consistent with
Images of the component of the magnetizatio,,, for ~ minimization of the micromagnetic energy at zero
such a particle as described above are shown in F&.f@r  temperaturé??> and Monte Carlo simulations at finite
several fields during a hysteresis-loop simulatiotna one- temperaturé? both under quasistatic field-sweep conditions.
quarter cutaway viey The color is a linear scale dfl,, The hysteresis loop associated with this simulation is
shown in the legend of Fig. 1 with the most negative valueshown in Fig. 3, with the field values shown in Fig. 2 indi-
at the bottom and the most positive values at the top. Focated by large tick marks. Two periods are shown for the
hysteresis-loop simulations, the field is always orientedl-ns loop. Aside from differences due to the initial alignment
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~ FIG. 4. Energy density vs time for the single hysteresis-loop £, 5. Total energy density as a function of applied field for
simulation afT=0 K with period 4 ns from Fig. 3. Assuming that fie|gs swept linearly with rat® at zero temperature. The estimation
the energy is near its metastable minimum before the end caps stg§ the zero-rate coercive field . estimated from the energy maxi-

to propagate, the coercive field can be estimated from the locghym is shown in the inset. The estimated value clearly depends on
maximum in the total energy.

the rate of change of the applied field, but using linear fitting the
static coercive field is found to be 19794 Oe. The error bars are
of the magnetization and the presence of the defect after @timated using the second derivative at the maximum.
complete loop, the reproducibility at zero temperature is ex-
cellent. Hysteresis loops under the same conditions, but for

periods of 2 and 4 ns, are also shown. These simuIation%IOpe of the total energy correspond to fields for which the

show that the hysteresis loop becomes more square f&ystem is _trapped behind an energy barrier, .while portions
longer periods, indicating that the magnetization is not fol-With negative slope correspond to fields for which the system
lowing the applied field in a quasistatic fashion. This is quite’®SPonds  deterministically by finding a new energy-
reasonable given that the simulated loops correspond to milinimizing magnetization configuration. Fields for which
crowave frequencies, but it makes the infinite-period coerth€ energy has a maximum should then correspond to the
cive field difficult to measure. coercive field. Dynamic effects cause the field at which this
The average energy density, along with its contributionsMaximum occurs to depend on the frequency.
as functions of time appears in Fig. 4 for the 4-ns hysteresis 10 estimate the static coercive field we fikti(R) for
loop. The energy density for zero crystalline anisotropy isfields that vary linearly with timet (t)= — Rt for t>0, and
calculated as then extrapolate to thel.(R=0) value. The energy density
is presented as a function of the absolute value of the applied
1 N 1 field in Fig. 5 for rates ranging fronR=250 Oe/ns toR
E=—— > M(r)- —[He(ri)+Hd(ri)]+HZ(ri)), =10000 Oe/ns. The coercive fields estimated from the en-
Ni=1 2 12 ergy maximum are shown in the inset, where the error bars

are estimated from the second derivative near the energy
whereN is the number of lattice sites. As the applied field M@Ximum. The coercive field clearly decreases viRfEx-

begins to decrease and then become negative, it is the Ze apolation of a weighted Ieast-squares_ fit yields a coercive
man energy that changes the most while the exchange a t?"?' of Ho=197a* 14 Qe aR=0. This is a more accurate
dipole-dipole energies remain nearly constant. Near the cgestimate of the static coercive field than those taken directly

ercive field, the exchange energy rapidly increases as regiof®@™M Nysteresis-loop simulations.
of reversed magnetization, and the interfaces associated with

them, form at the ends of the pillar. Once these reversed B. Switching i tant field
regions become large enough, they grow spontaneously and - Switehing i constant fie

the Zeeman energy rapidly decreases, while the exchange At finite temperature the magnetization can reverse, even
energy from the interface between reversed and unreversathen the applied field is weaker than the coercive field. In
regions remains roughly constant. The growth of the rethis case, thermal fluctuations carry the magnetization past
versed regions does not take long, and the exchange enertfye free-energy barrier and on to the new equilibrium con-

quickly dissipates when the regions from the two ends mergéguration. Two examples of such thermally induced switch-
at the middle and the reversal is complete.

ing are shown in Fig. 1 for the conditiolf,=1800 Oe and
The information in Fig. 4 can be used for extracting theT=20 K. For small positive timegot shown the volumes

coercive field of the nanomagnet. For infinitely slow varia- associated with the end caps fluctuate due to the thermal
tions in the applied fieldd E/dt is proportional todE/dH,  noise. The reversal appears to proceed by a nucleation pro-
using the chain rule. Thus portions of the figure with positivecess, with the end caps serving as the seeds for heteroge-
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neous nucleation. The initiation of the switching from the 100 g
end caps is similar to results for reversal induced by applied L
fields greater thaii,, in experiment® and simulations with I
T=0 K where reversal begins at the end &&p8 or 075 |
corners’’ [] I

In classical droplet theory, in which boundaries such as -
the sides of the magnet are ignored, nucleation of the equi-£ ¢sp |
librium magnetization is governed by the competition be- 1
tween the favorable Zeeman energy due to alignment with 3
the applied field and the unfavorable exchange energy due tc
the interface with the majority volume of the misaligned ori-
entation. The exchange energy dominates for small droplets
which tend to shrink. Large droplets tend to grow because 0.00 . . . ‘ .
the Zeeman energy dominates. These two regimes are sepe 1750 1775 1800 1825 1850 1875 1900
rated by a critical droplet size, the saddle point associated H (Ce)
with the free-energy barrier, where the tendencies toward 100
growth and shrinkage are balanced. In nanoscale magnets th
situation is more complicated because the free energy canna b)
be easily separated into surface and volume contributions. 75 |
Nevertheless, the important aspect remains that a free-energ L] T
barrier exists that must be crossed for reversal to begin. The __ [
end caps fluctuate until a succession of highly unlikely fluc- £ 050 |
tuations carries the end-cap configuration past the freeq.#
energy barrier. After that, growth of the reversed region is
energetically favorable and occurs rapidly, on the order of
0.2-0.3 ns for the pillars.

For long pillars, nucleation events at the two ends occur
approximately independently of each other. In addition, the

a)

025 | K X

025} &

growth of a supercritical region takes a significant amount of %% 0.05

011
time: enough time for the other end cap to have a reasonable 1T (K)
probability to nuclgate an_d begin.to grow. One _example of FIG. 6. Mean switching time as a function @) applied field at
bOt_h en_ds nucleating at d'ﬁe“?”t times is shown in Fig).1 T=20 K and(b) temperature atl=1850 Oe. The switching time
while Fig. 1Ib) shows nucleation of one end that grows t0,creases aga) the free-energy barrier separating the metastable
switch the magnetization of the entire pillar. For the presenbng stable orientations grows as the applied field is decreasiy or
applied field the latter situation is somewhat rare; from thehe thermal energy available for crossing the barrier decreases as
theory presented below it can be inferred that it occurs inemperature is lowered.

about 10% of simulated switches. From Figb)lit can also o o ) )
be seen that the nucleation of the two end caps is not conmdwitching statistics described next, where the dynamics are
nsistent with a biased walk in a shallow well.

pletely independent. As one reversed region grows along thg® - N o
pillar, the free-energy barrier at the other end cap decrease The statistics of magnetization switching are measured by

Eventually the free-energy barrier for the second end be-_nof(?’_the problabilifty of not s}yvitching befqreh time The
comes zero and it will also begin to grow. If a less negativeSimulation results forPp(t) for 200 switches atH,
=1800 Oe andT=20 K are presented in Fig.(&d. The

field is applied, the free-energy wells of the metastable states

will be deeper and the first reversed region will have to grow/€SUlt is clearly not exponential, the expected functional form
further along the pillar before this occurs. when the free-energy barrier is large. Experimental results

o L — . ) for single-domain magnets, in whi t) is not exponen-
The mean switching timey,,, defined here as the first or single-doma agnets, Pho((t) is ot expone

. : sws - ) tial, have been reported recentfy.
time whenM,=0, is shown in Fig. &) as a function of . .
applied field forT=20 K. The difference in the error bars A simple theory that assumes completely independent

e : . nucleation at the two ends of the pillar produces a reasonable
reflegts the amount of statlsﬂcal sampling at the dlfferentdescription of the simulation result. The theory fBfy(t)
conditions. The dependence tf, on temperature is shown requires two parameters. The first is the constant nucleation
in Fig. &b) for applied fields ofH,=1850 Oe; fields are rate 7 for the formation of a supercritical reversed region at
always applied along the pillar. While there is a clear depenpne isolated end of a pillar. The second is the rat# which
dence on field and temperature, we find no clear _functlonaé single growing region changes the normalized magnetiza-
form for the dependence. Notably, the exponential depenton of the pillar. Labeling the two independent nucleation
dence oftg,, on inverse temperature, expected when the bartimes at the top and bottotmpandt,, respectively, the posi-
rier is high, is not seen. This implies that the free-energytive values of the magnetization of the pillar can be de-
barrier is low. In fact, this picture is consistent with the scribed by
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06 - FIG. 8. Integration of weights to gé&t,.(t), Eq.(15). The solid
= lines separate regions where ofwe two) nucleation events occur
5 before switching, while the dashed curves are integration paths for
ool constant switching timetg,/to=3/2 and 3. See the text for a full

explanation.
02 stanttg,, ts,/to=3/2 and 3. The solid lines divide the plane
into regions with different switching histories. In the triangle
. ‘ . : near the origin(l), switching occurs for timegy<tg,<2t,,
%%.0 100 200 e ™ 400 s0  which can happen only if both ends nucleate. Between the

parallel solid lines(ll) switching occurs by double nucle-
FIG. 7. Probability of not switchingP,o(t), for (a) 200 ation, while ou_tsid_e ther_rﬁlll and IV) a single nucleation

switches of nanoscale magnetic pillars lt=1800 Oe andT ~ Causes the switching. Since each nucleation process has a

=20 K, and(b) 2000 switches in a simple one-dimensional model COnstant rate, the corresponding probability density function

nanopillar atH=1000 Oe andT=20 K. The theoretical forms, for the nucleation time is exponentialexp(-Zt). Integrat-

Egs. (15) and (16), were fitted by matching their first and second ing along curves of constartt,,, the probability of not

moments to those of the simulation data. switching before time is found to bé
1, t<ty, 1, t<to,
My(t)=9{ 1-v(t—ty), tyst<ty, (13 Poot) =1 € ZE0[1+27(t—ty)], to=t<2ty,
1-v(t—t)—v(t—ty), t,=<t, e 214 27t,], 2tp=t.

wheret;=min(t;,t,) andt,=max¢,t,). We define switch- (19

ing to occur atM(ts,) =0, when roughly one-half the vol- We will refer to this as the “two-exponential” decay model.
ume of the nanomagnet is oriented in the equilibrium direcqn the limit of infinitely fast growth,to=0, only regions Il
tion. The switching can occur either through one or bothand IV remain, and this becomes a simple exponential decay
ends nucleating, and the actual switching time for a particuassociated with thermally activated crossing of a free-energy

lar (t;,tp) is given by barrier. Forty>0, Po(t) is quadratic int—t, for t—tg ,
ot has a discontinuity in the slope &t 2t,, and is exponential
t=Min| 2to+1y,to+ —5—|, (14  fort>2t, ,
2 The fit of the two-exponential decay model of Ef5) to

the simulation results appears in Fig@7 as the dashed

wherety=1/(2v) is the earliest time at which the pillar can curve. The dotted curve is a fit to the error function

switch. For timeg<t, the probability of switching is zero,

even if both ends nucleate immediately after the reversal. 11

The situation in the-t; plane is shown in Fig. 8, where the P PR

dashed curves correspond to two different conditions of con- Perlt) 2 2Erf[I(t to)], (16
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which was chosen as an empirical form because it also hagherer; is the displacement vector from the center of cube
two adju§table parameters, (;hosen here to have a similar IR~ the center of cubg, and Fij is the corresponding unit
terpretation as the theory given above. The parameters for The f ¢ vol ~\ 3 its 1 . .
both theoretical forms were determined by matching the firs?©CtOr- The factor of volumeAr)* results from integrating

and second moments of the theoretical form to the moment&Ver the constant magnetization density in each cell. This

of the simulation data, and the parameters &xet.049, to factor can be combined witﬁﬁ , so that the denominator

~0.527 andl~4.176,t,~0.790. For these conditions, both depends only o; =r;; /(Ar), which is a vector of integers
forms, Eqgs.(15) and (16), seem to fit the simulation data denoting the difference in cell indices. It can readily be seen
about equally well. The disagreement with E&5) probably ~ that for a uniformly magnetized pillar the summation over
occurs because the condition that the free-energy barrier igdex integers leads to different valuestf(r) for different
much greater thakgT is not met. When the free-energy choices of discretization length along the long axis. This hap-
barrier is much less thakgT, the magnetization should be pens because self-contributions have been ignored and the
more like a biased random walk. In that case the most nofar-field result has been used for neighboring cells. However,
ticeable effect of thermal fluctuations would be a symmetricsince this model is being used to investigate only the statis-
smearing of the switching times arouhg,. tics of switching, and not for estimating physical values, the
The question of statistical sampling is also important.results should be qualitatively correct. Using the scaling to
Specifically, one expects to have undersampling of the popudimensionless units, the approximate dipole field is
lation because the finite-samplifi(t) goes to zero faster

than_ the infinite—sampling’n9t(t) with increasingt. In fac_:t, . , 3Fij[Fij'M(rj)]_M(rj)
for times less than the maximum observed switching time in Hd(ri)=2 3 (19
the long-time tail of the distribution, the error function un- 7 Xij

derestimates the population, while the two-exponential
theory overestimates it. To this extent, it is possible that datjVe have verified that our implementation of the model
with better sampling may shift towards better agreemengigrees with that of Boerner and Bertram by reproducing the
with Eq. (15). Indeed, experimental switching probabilifiés observed coercive field for the nickel pillars discussed in
in single-domain magnets have been observed to have expBef. 29. Because of the different approximations, the coer-
nential tails, which is inconsistent with E€1L6). cive field for the present iron pillars is about 1500 Oe.
Better statistics and a higher free-energy barrier are The probability of not switching for 2000 switches for
needed to validate the theoretid®j.(t) given in Eq.(15).  this model of iron pillars is shown in Fig.(), along with
For the present model, better statistics would be prohibitivethe two theoretical forms, Eq¢15) and (16), which have
the 200 switches considered here took approximately 2been fit using the same procedure as in Sec. Ill. The kink in
weeks to generate using 4 processors on an Origin 2000. e two-exponential theoretical form aty2is quite notice-
less realistic but numerically faster simulation, in which theable, but cannot be seen in the simulation data. The kink has
pillars are modeled as one-dimensional stacks of cubes, i& origin in the complete suppression of nucleation for nega-
presented in the next section. The advantage of this simpltives times, and the absence of the kink in the simulation
fied model is that it allows many more switching events to bedata may stem from the finite chance of nucleation at nega-
observed in a reasonable amount of Computer time, eve?i]ve times due to the way the field is reoriented, as described
with much h|gher free_energy barriers. This improves the|n Sec. Il A. Another pOSS|b|||ty |Sthat the intel’actions be'
statistics for the very rare events Wm\l>2t0 andtsw_)to, tween the ends _SmOOth out the dlf‘fel’en_ce betW-een the one-
which are important to distinguish between alternative theo2nd two-nucleation decay modes. Despite the kink, the the-
retical forms forP,o(t). oretical form, Eq.(15), does a good job of describing both
the exponential tail and the rounding at early times of
Phof(t). It is clearly superior to the error-function form, as
IV. SIMPLE MODEL well as to a displaced, single exponentiabt shown.

In order to generate a sufficiently large sample of switch-
ing events in nanoscale magnets, we consider a simpler V. ARRAYS OF NANOMAGNETS

model in which the pillar consists of a one-dimensional stack The | 4 dipole-divole i . h ib
of cubic cells, which is the model introduced by Boerner and e long-ranged dipole-dipole interactions that contribute

. L~ to the shape anisotropy of nanoscale magnets also cause in-
29 =
Be”f?m- The cube_s have a linear SIZ =2l¢, here 5.2 teractions between nanomagnets. This is especially true in
nm, since the material parameters for iron are useaf. 29

d ters for nickelTo k th  ratio of th most potential applications, where miniaturization will drive
used parameters tor hiche 0 keep the aspect ratio of € o\ icag to high densities. In addition, the interactions be-
nanopillars as close as possible to those considered above

; ; Lo nfeen nanomagnets in arrays could be the basis of device
pillar composed of 17 cubes is used. For this simple model g y

. . . . . applications, prototypes of which have already been
the local field due to the dipole interactions is calculateéd as investigated®3! Regular arrays of nanomagnets have al-

ready been used experimentally to provide magnetic signals
37, [F - M(F)1-R(T)) strong enough to be measuted in the experiments our

ﬁ[j(?i)z(A?PZ,i = (17  nanomagnets are modeled after. Our simulations show that

ij even for very wide spacings the magnetic interactions be-
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d switching pillar withl,=L/2 is H?-e,~0.4 Oe. This is a
rough estimate of the maximum interaction through the
quadrupole moment, and the sign indicates a tendency for
neighboring pillars in the array to switch at opposite ends.
As a simple initial investigation, we consider a linear ar-
ray of four of the rectangular nanomagnets described in Sec.
I, with the nanomagnets oriented perpendicular to the sub-
strate. Since dipole-dipole interactions within each nanomag-
net are calculated using the fast multipole method described
in Appendix A, the multipole moments for each nanomagnet
are readily available. These moments can be used to quickly
calculate the interactions between nanomagnets in the array,
under the constraint that the far-field description is appropri-
ate. To ensure this we have considered only a spacing be-
tween pillars of two pillar lengths, 300 nm. Note that this
situation is quite different from fast fourier transform ap-
proaches, in which the calculation must be carried out on a
lattice that also fills the spadzetweerthe nanomagnet.To
do that practically, the space between the magnets must be
FIG. 9. Schematic of two pillars, one with a growing region of k€pt small. o
magnetization in the equilibrium orientation at each end. The dis- 10 Study arrays of nanomagnets, systems consisting of
tance between pillars ig, their height isL, and the length of the four 9 nmx9 nmx 150 nm parallel pillars arranged in a line
reversed regions along the long axis frandl,, respectively. perpendicular to their long axes and spaced 300 nm apart
were simulated using the fast multipole method truncated at
tween nanomagnets have significant effects on the switching=3. Hysteresis loops with periods on the order of a few
properties. nanoseconds for the individual pillars in the array look simi-
To allow for analytic treatment, we consider only the two lar to those for isolated pillars in Fig. 3, with no observable
leading contributions to the local dipole figitj(r) from the difference between pillars on the outside and those on the
dipole and quadrupole moments of the source magnet. Thiaside of the array. The symmetry equivalence for the two
former contributes uniformly throughout the observation vol-pillars on the inside, and for the two pillars on the outside,
ume, while the latter changes linearly in each Cartesian diwill be used throughout to double the statistical sampling.
rection. Specifying the distance between pillarglasd con- The probability of not switching foH=1800 Oe andr
sidering the dipolar and quadrupolar moments of the source=20 K is shown for 40 array switches in Fig. (& for
magnet,M} and M9, respectively, the leading contributions pillars on the inside and outside of the array, as well as
to the observed demagnetizing field arblgl)(r)= isolatedhpillﬁrs. No signilf_ilcant diffe[]ence c?n bg seen b(ra]-
I VITRE @)y — _ A UA A0 5 tween the three curves. However, the coupling between the
eMafd” and HG(r) = —9(2ze,~xe,~ye) M/ (40", gillars can be seen in the difference betweenPhg(t) for
inside pillars with one or both nearest-neighbor pillars

—_— = ——\ =

—_— e = >

_— = = —— -
—_= = =

v

N\

respectively. Simple expressions for the multipole moment
can be calculated in the following way. Assume a pillar with switched, shown in Fig. 18). Here.t is the time difference

regions of uniform magnetization oriented in thee direc-  penyeent,, and the last time a neighboring pillar switched.

tion in the middle and in the-e direction at the ends, as From these data it can be seen that of pillars with two neigh-
shown in Fig. 9. With the total pillar length, the top-region  bors, those with only one neighbor switched tend to switch
lengthl;, and the bottom-region length all measured along earlier than those with both pillars switched. The effect is
the long axis of the pillar, the dipole moment for a reversingeven more pronounced in simulations of the simple model at

pillar is H=1000 O¢>
M2=MA(L— 21— 2lp) (19
and the quadrupole moment is VI. SUMMARY
MI=2MGA[12—12—L(I,—Ip)], (20) Numerical simulation of the Landau-Lifshitz-Gilbert mi-

) ) ) ) cromagnetic model has been used to investigate spatially
whereA is the cross-sectional area of the pillar. The dimen-nonuniform magnetization switching in nanoscale magnets at
sionless form is achieved by settiids to unity and using  the nanosecond time scale. We have focused on iron pillars
dimensionless lengths. 9 nmx9 nmx150 nm because such pillars and arrays

Using the simplified expression for the dipole moment inpaye been constructed and measured experimehtafifhe
Eq.(19), the contribution from one upward-magnetized pillar zero-temperature static coercive field has been estimated nu-
at the nearest-neighbor position in the arrayH§’-e,~  merically to beH.=1979+14 Oe by finding the field of
—1 Oe. The quadrupole contribution from E@QO) at the  maximum energy for fields swept at constant rate and then
end of one nanomagnet that is the nearest neighbor to extrapolating to find the zero-rate estimate. Simulations of
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FIG. 11. Schematic of the relationship between the lattice and
the dual lattices, projected along thexis. The magnetization den-
8 1 12 sity M(r;) and the local magnetic fielti(r;) are known at the
lattice sites of the simple cubic latti¢eolid circleg, the magnetic
1 . charge density), is known at the dual lattice sitg®pen circleg
which are located at the body center positions, and the magnetic
h b) surface charge density is known at the centers of squares defined by
08 - (i 1 the surface lattice site®@pen triangles

0.8 -

— Isolated
----- — Inside

0.6

——~ Outside

Proi(t)

0.4

02

5 —— 1 neighbor . . . . .
| -—-- 2 neighbors make it feasible to simulate nanomagnets in widely spaced

arrays. Even though the interactions between the magnets are
quite weak for the specific linear array considered here, there
are significant effects on the statistics of the magnetization
switching. Specifically, there is a dependencégf(t) for a
given pillar on the orientation of the magnetization of its
nearest neighbors in the array. The nature of the cooperative
reversal mode observed here is a topic for future research.
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magnetic pillars in a four-pillar array at=1800 Oe andT

=20 K. The two pillars on the O.Uts'de an(.j the two on the inside utations Research Institui®).S. DOE Contract No. DE-
are equivalent by symmetry. The isolated pillar data are the same

in Fig. 7. (b) Interactions between pillars as seen in the difference C.OS'SSERdZSIO?D anq theT FShU ISChooé of Cgmputatlonal
betweenP,o(t) for inside pillars with one and both neighboring Science and Information Technology. Extensive supercom-
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most recent switch of a neighboring pillar. and Network Services and by the U.S. Department of Energy
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thermally activated magnetization switching are possible aPu“ng Center.

fields well below the coercive value. For the pillars studied

here, reversal occurs through nucleation at the ends of the APPENDIX A

pillars. The probability of not switchind?,(t), is not well

described by a delayed exponential, and a theoretical form, Calculating the dipole-dipole interactions is the most in-
Eq. (15), based on independent nucleation at the ends of thiensive part of the numerical calculation. The magnetic po-
magnet is developed here. The agreement with results fdgntial approach used here involves defining a magnetic
intensive, fully three-dimensional simulations with an ap-charge densityy(r)=—V-M(r). (We present this only in
plied field near the coercive value is reasonable, buagin terms of the dimensionless quantitieShis charge was
hoc error function gives similar agreement. The agreemengvaluated on a cubic lattice dual to thatMf(r;) (see Fig.
with Eq. (15) is much better when the field is well below the 11) using equally weighted two-point differences, specifi-
coercive value and the statistics are better, which currentigally,

we have only studied with less-intensive simulations that dis-

cretize the nanomagnet only along its long axis. 3 1

The fully three-dimensional micromagnetics program has, (r j—— > i sgr(h-&,)M(rg+h)-e,|,
been developed for massively parallel computers and imple- =1\ AT |n=Rarr
mented using the fast multipole method. These two features (A1)
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wherer g is a position on the dual lattice};, is the sum over N\

the corresponding corners of the cube from the direct lattice, i e \\
andéM are the Cartesian unit vectors. If we were to apply Eq. . BN
(A1) with r 4 just outside the magnetic material, it would give SEN LY

a nonzero charge there. To avoid this unphysical result, we It

have moved this charge to the surface by defining a surface
magnetic charge densityy(r)=5(r)-M(r), wheres is the

unit vector directed out of the surface. We have considered
surface charges only on the surface of the model magnet, and
we evaluate them at the centers of the squares defined by
adjacent points on the surface of the direct lattice. The four
corners are equally weighted so that \ |

1 R FIG. 12. Schematic of the hierarchical decomposition of space
UM(rd’):Z 2 s M(rg+h), (A2) chosen for our implementation of the fast multipole method. This
In|=2Ar/2 eightfold decomposition at each level is quite efficient given the

. underlying cubic lattice.
where =y, runs over the four corners. The numerical ap- ying

proach of Eqs(Al) and (A2) ensures that there is no net .
magnetic charge on the system as a whole. - E 2
The magnetic potentiatpy(r) is found by integrating ¢M(r'0"P)_i:O

i ]
=i
over both the volume and surface charges,

Lir'+ —

r|+1

Yi(6,0), (Ad)

where theL! terms can be used to represent the potential
pm(r’) A om(r’) close to the lattice point, and tHd! terms can be used to

qSM(r):der T jgsds— (A3)  represent the potential far from it, but not both simulta-
neously. In this context, neay means being closer tg than
Cany other lattice point, and far means distances more than
fwice the largest distance from the center of ¢eth any of
its boundary points. Following Greengardwe define the
gpherical harmonics

[r—r’'] lr—r'|
Numerically, such an operation can be quite expensive sin
unsophisticated algorithms will requir®@(N?) operations,

where N is the number of lattice sites. An algorithm that
remains reasonable for large systems is the fast multipol

method!’ =
We have chosen to calculate the magnetic potential using i = ! il e
the fast multipole methoFMM) because it has several ad- Yi(6.9)= (i+]j)! Pii(cos6)e’™, (AS)

vantages over the more traditional fast Fourier transform

(FFT) approach. The biggest difference between the twawith Pl(x) the associated Legendre polynomial, ahd
methods is that the FMM makes no assumptions about the /=7 Actually implementing this approach requires a
underlying lattice, while the FFT method assumes a cubigyncation of the expansion inat orderp. We have found
lattice with periodic boundary conditions. One consequencenat the demagnetizing field fqgv=3 is within 1% of the

of this assumption is that numerical models of systems withayact value for our simulations.

out periodic boundary conditions require empty space around qr implementation of the FMM algorithm starts by par-
the magnet so that the boundary conditions do not affect thﬁtioning the model space into a system of cubes; an example
calculation. The FFT method also requires the lattice to conig shown in Fig. 12. The length of the side of the smallest
tinue into regions of empty space that lie between elementspes, which are separated by dotted lines, is the same as the
of an array of magnets. By contrast, a FMM implementationgiscretization length. For our lattice system we have found
only needs to consider volumes occupied by magnetic matgnat the most efficient choice is to use cubes centered on the
rial. It does not need any padding. In addition to these adgjrect lattice. For each cube, the multipole expansion coeffi-
vantages, the FMM is more efficient for large numbers ofients of the far-field potential are calculated for the specific

lattice sites. configuration of magnetic charges, and o,
The popularity of the FFT approach stems from the fact

that it takesO(N In N) calculations to evaluate EGA3). The

FMM has a larger overhead, but requires o@I{N) opera- M{':f dr{pu+omle'Y(6,¢), (AB)

tions to calculate the same potentialThis means that a FFT v

approach to Eq(A3) makes sense for small, cubic lattices,

but that the FFM approach will be more efficient for large, with the coordinates centered on the lattice site. Note here

irregular, or incomplete lattices. thatp' is the distance from the center of the cell raised to the
The FMM algorithm exploits the fact thap,, at each ith power. For our cubic lattice, each quadrant of the cube is

lattice point can be expanded in terms of spherical harmoneontributed by a different region of constapy, from the

ics, dual lattice (similarly for o). With the geometry of the
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lattice fixed, the multipole expansion coefficients are easilyThe next operation incorporates the contributions from areas

calculated and summed to yield the total expansion coeffiin the near region of the larger cube, but in the far region of

cients for the lattice site. the smaller cube. This is accomplished by transforming the
Each level of the hierarchy involves grouping cells into multipole expansion of the source into a local expansion of

successively larger cubes that completely contain cubes #te smaller cube usifg

the lower level. The obvious hierarchy with each larger cube

containing eight of the smaller cubes apparently works best. LA

In Fig. 12, cubes of the second level are separated by dashed Li= 2 Z Ok I~

lines and those of the third level by solid lines. Since the k=0 1=k Airk @

number of nodes in any direction along the simulation lattice, o re the spherical coordinates are for the vector from the

is not restricted to a power of two, cubes do not alwaysyigin of the smaller cube to that of the larger cube &nd

contain eight smaller cubes. Tié! for the larger cube can

be rapidly evaluated from those of the smaller cubes using (—1)i(—21)mindilIk) jf jk>0
~ k_ b

AL YiEk(0.0)

i+k+1 "’

(A12)

the rule for translation of a multipole expansith, 1= . ) (A13)
(—=1)" otherwise.
ik RTINS _ o o
Mi=> > oi-! LTk '_kaY['(ﬁ,go), (A7) The third type of operation is used for termination of the
= JET Al algorithm at the lowest level, where the near-region contri-

butions for the smallest cubes must be evaluated exactly.

whereO; are the expansion coefficients for the smaller cubegj,ce 4 regular lattice is used, the paiptvhereg,, is being

and the spherical coordinateg, @, ¢) here are for the vector  cqicyjated always lies at the corner of the neighboring cube
from the origin of the large cube to that of the small cube. ¢ constantpy,, and the contribution is simply

The relations for the new factors afe

A= (A8) 3 6 sinh E ) pm(ra), (Al14)
VA=Pra+j!
and because only one quadrant of the region of consggpt
miniLiD i o needs to be considered in this exact manner. The contribution
=D ’ if ij<O0, for squares of surface charge that touglis
= : (A9)
1 otherwise.
Ar sinhm (1) oy(ry). (A15)

The construction of the hierarchy terminates when the entire

system is enclosed by a single cube. The partitioning can b8imilar expressions can be calculated for general rectangular

generalized to noncubic rectangular prisms, but the restriggrisms.

tion that the multipole expansion is only valid at distances The FMM is an efficient way of determining the magnetic

larger than twice the diagonal of the rectangle will compli- potentialéy(r;) associated with a particular configuration of

cate the algorithm. a dipole field. The local observed magnetic field due to the
A downward pass through the hierarchy involving threeother dipoles is obtained using

types of operations is required to construgf, as repre-

sented by the local expansion coefficiehtsfor each cube. Hy(ri)=—Vaou(r) (A16)

The first operation is the translation of the local expansion

for the encompassing bigger cutione exists that includes from potgntial theory. Numerically, this gradient Was_esti-
all the contributions from its far field, i.e., those cubes on itsmated with a centered difference of the nearest-neighbor

level that are not its neighbors. This translation is accomSIt€S: except on the boundaries, where forward or backward
plished by the rui differencing was used. Note that thg discretizations of all
operators have been chosen for consistency between surface
jfkii I*jAL:ji { o and volume charges such that the model magnet can be pad-
, — e* Y L (6,0), ded by volumes of lattice sites witid =0 without changing
—k Ax the results.
(A10) The FMM was implemented using-€+ and named Hi-

WhereOij are the local expansion coefficients of the |argererarchy.h. Fundamental to the implementation is the class

; : 2
cube, and the spherical coordinates ¢,¢) here are for the Sh_€xpansion whose instances arepa ()" array of com-
vector from the origin of the smaller cube to that of the largerP!€X numbers representing either local or multipole expan-

cube.A{ is defined in Eq(A8), while'? sion co_efficients.. The cle}ss includes me_thods for indexing
expansion coefficients within an expansion, evaluating the
(—1)i(-1)1 if jk<o, expansion at a specified point, and transforming an expan-

sion using Eqs(A7), (A10), and(A12). In addition, the class

encapsulates the precomputation of quantities that do not de-
(—1)" otherwise. pend on the displacement vector, and it can return a pointer
(A1l) to a table of precomputations that do depend on a fixed dis-

J=1 (=D'(=D*T if jk>0 and |k|<lj],
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placement. For instance, for efficient evaluation of the trans- The partitioning of space is accomplished through the
lation of multipole expansions, EGA7), the class contains class hbox. Instances of this class contain geometric infor-
the (p+1)* values mation about the decomposition cell and expansions for both
_ _ the potential and charges within the cell, as well as links to
JTAAITL other cells. These links point to the encompassing cell, the
T (A17) encompassed cells, a list of same-level cells in the far field
: (the “interacting cells”), and a list of nearest-neighbor cells.
and an indirect-indexing array that specifies the sequence dthe hbox’s for each level of the decomposition hierarchy are
Oy, after the loops have been unrolled. In addition, a pointeheld in a container class hlevel, and the entire hierarchy is
to the (p+1)? precomputed values af“Y, '(6,¢) can also maintained as a linked list. Our implementation of hlevel is
be returned. Thus the transformation can be evaluated effparticular to the cubic-lattice decomposition of space, and
ciently and with minimal overhead from loop-control vari- irregular geometries have to be padded with empty space.
ables. (This is also true for our implementation of the classes Vec-
The computer memory requirements to store the precomtorField and ScalarField from VectorField.h used throughout
putations that depend on spatial relationships can be greatur numerical integration of the LLG equation.
reduced for implementations that assume a regular lattice for
spatial decomposition. For each level of the hierarchy, there APPENDIX B
will be a fixed number of displacements between the cells in
that level and with cells on the parent level and the child A useful way to represent the thermal Landau-Lifshitz-
level. The class sh_expansion encapsulates this efficiency &ilbert equation is in a form with the deterministic and sto-
each request for a precomputation by searching a linked listhastic parts separated
of previous results and creating a new result only when no

Cly=

previous result exists. A similar scheme is also necessary for dM(r; ,t)=B[M(r; ,t)[Hge(r; ,t)dt
the compilation of multipole expansion coefficients for the
lowest level of the hierarchy, EGA6). Since the precompu- +VeB[M(r;,t) JdW(r; 1), (B1)

tations represent a significant amount of the memory require-

ments of the overall simulation, these memory savings cawhereHq.(r; ,t) is the deterministic part of the local field at
greatly increase the number of lattice points used to represent and H(r;) = JedW(r; ,t) is the stochastic part. The ma-
the model magnet. trix B is given by

a(Mi+M2)  —M,—aM,My,  My—aM,M,

M,—aMM,  a(M{+M2) —M,—aM,M, B2)
5 ,

e\ —My—aMM, M—aM,M,  a(MZ+M2)

B[M(ri,t)]=

wherex, y, andz represent the Cartesian coordinates and théakes more consideration since it involves the product of the
space and time dependences ofthe have been omitted for magnetization with the Wiener process. In such cases of mul-
clarity. The stochastic nature of the field results from thetiplicative noise, different methods for evaluating E§5)

WieneP*~2¢ processw(r; ,t) which has the properties correspond to different Fokker-Planck equatidhs’ There
are an infinite number of ways to interpret E@®5), but
(W, (r;,1))=0, usually only the two extreme cases, the dtod Stratonovich
interpretations, are considered. The Fokker-Planck equation
(W, (i OW,, (r{ 1)) =(t=t")8, 8. (BI) considered by Browhonly has the proper equilibrium prop-

erties when interpreted in the Stratonovich seén3is is
The stochastic differential equatidB1) can be treated nu- complicated by the fact that numerical implementation of the
merically using first-order Euler integration. For smal, stochastic integral is particularly convenient in the iliter-

the deterministic integral is pretation. Then the discretized integrai®is
laedTi,t) =B[M(r; ,t) JHge(r; ;1) At. (B4) L Fi t) = e At B[M(r;,t)]g(r; 1), (B6)
The integral of the stochastic part, where each component a@f is a random number from a

Gaussian distribution with zero mean and unit variance. For-

t+At . . . .
Lo ) = \/;f B[M(r, t')]dW(r; ,t'), (B5) tunately, changmg interpretations  can be accomplished
t through a correction discussed below. Then, @B§) can be

134422-13



GREGORY BROWN, M. A. NOVOTNY, AND PER ARNE RIKVOLD PHYSICAL REVIEW B34 134422

combined with Eq(B4), and the result rearranged, to give 1 b
the “impulse” during the integration step, E¢L1). ) Chang- C.=5 > b, —". (B9)
ing from the Stratonovich interpretation of the stochastic in- v, v

tegral to that of Iforequires the addition of a deterministic For the present system, the additional drift term is readily
term. Specifically, a Stratonovich interpretation of afound to be
multivariate-Langevin equation of the form

€
dx=a(x,t)dt+ b(x,t)dW (87) b= M (B19)
is equivalent to the Langevin equatin which is equivalent to the result given in Ref. 2. This drift
term is always directed along the local magnetization den-
dx=[a(x,t) +c(x,t)]dt+b(x,t)dW (B8)  sity. The process of normalizing the magnitude of the spins

) during each integration step, E@.0), is also directed along
in the Itointerpretatiod™**where the components of the new the magnetization and, essentially, takes the correction into
drift term are account.

13.3.Mm. Ruigrok, R. Coehoorn, S.R. Cumpson, and H.W. Kesterent?S. Wirth, M. Field, D.D. Awschalom, and S. von Momnd. Appl.

J. Appl. Phys87, 5398(2000.

2J.L. Garéa-Palacios and F.J. kzaro, Phys. Rev. B8, 14 937
(1998.

3G. Brown, M.A. Novotny, and P.A. Rikvold, J. Appl. Phy&7,
4792(2000.

4G. Brown, M. A. Novotny, and P.A. Rikvold, iMagnetic Storage
Systems Beyond 200&dited by G. Hadjipanayi&luwer, Dor-
drecht, in press

5G. Brown, M.A. Novotny, and P.A. Rikvold, J. Appl. Phy&9,
7588 (2002).

6D.A. Garanin, Phys. Rev. B5, 3050(1997.

"W.F. Brown, MicromagneticsWiley, New York, 1963.

8A. Aharoni, Introduction to the Theory of Ferromagnetigi@lar-
endon, Oxford, 1996

SW.F. Brown, Phys. Rev130, 1677 (1963.

0B D. cullity, Introduction to Magnetic Materials(Addison-
Wesley, Reading, MA, 1972

s, Wirth, M. Field, D.D. Awschalom, and S. von Moin&hys.
Rev. B57, R14 028(1998.

2The value of the exchange length uség=3.6 nm, here has

Phys.85, 5249(1999.

20D, Hinzke and U. Nowak, Comput. Phys. Commu22, 334
(1999.

21U. Nowak and D. Hinzke, J. Appl. Phy85, 4337(1999.

22H.N. Bertram and C. Seberino, J. Magn. Magn. Mat&3 388
(1999.

23Y.D. Yan and E. Della Torre, J. Appl. Phy86, 320(1989.

243 .T. Chui and D.-C. Tian, J. Appl. Phy®8, 3965(1995.

25K J. Kirk, J.N. Chapman, and C.D.W. Wilkinson, Appl. Phys.
Lett. 71, 539(1997).

26T -N. Fang and J.-G. Zhu, J. Appl. Phy&¥, 7061(2000.

2/N. Dao, S.R. Homer, and S.L. Whittenburg, J. Appl. PH88.
3262(1999.

28R.H. Koch, G. Grinstein, G.A. Keefe, Y. Lu, P.L. Trouilloud, W.J.
Gallagher, and S.S.P. Parkin, Phys. Rev. L&4.5419(2000.

29E.D. Boerner and H.N. Bertram, IEEE Trans. MaghAG-33,
3052(1997.

%0R.E. Dunin-Borkowski, M.R. McCartney, B. Kardynal, D.J.
Smith, and M.R. Scheinfein, Appl. Phys. Lef5, 2641(1999.

been adjusted to account for a multiplicative factor of 2 that we>'R.P. Cowburn and M.E. Welland, Scien287, 1466(2000.

initially believed should appear in EQQ); see Ref. 29. A more

common value for iron id,=2.6 nm(see Refs. 10 and 11
which is approximately /2 times the value used here.
13x.B. Feng and P.B. Visscher, J. Appl. Ph{8, 6988(2001).

32K, Ramstek, T. Leibl, and A. Hubert, J. Magn. Magn. Mater.
135, 97 (1999.

333.D. Jackson(Classical Electrodynami¢s2nd ed. (Wiley, New
York, 1979, Eq. (5.100.

1. Nowak, R.W. Chantrell, and E.C. Kennedy, Phys. Rev. Lett.®*C.W. Gardiner, Handbook of Stochastic Methqd2nd ed.

84, 163(2000.
15y. Nowak, inAnnual Reviews of Computational Physics &«-
ited by D. StauffefWorld Scientific, Singapore, 2001p. 105.

18A.S. Arrot, B. Heinrich, and D.S. Bloomberg, IEEE Trans. Magn.

MAG-10, 950(1974.

17 F. GreengardThe Rapid Evaluation of Potential Fields in Par-

ticle System$MIT Press, Cambridge, 1988
18y L. safanov and T. Suzuki, IEEE Trans. MagviAG-34, 1860
(1998.

(Springer, Berlin, 1985

35N.G. van Kampen, J. Stat. Phy24, 175 (1981).

36N.G. van KampenStochastic Processes in Physics and Chemis-
try (Elsevier, Amsterdam, 1992

37M. San Miguel and R. Toral, itnstabilities and Nonequilibrium
Structures V edited by E. Tirapegui and W. ZellgKluwer,
Dordrecht, 1999

38J R. Klauder and W.P. Petersen, SIABoc. Ind. Appl. Math. J.
Numer. Anal.22, 1153(1985.

134422-14



