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Magnetization process of random quantum spin chains
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The magnetization process of spin chains with randomness is discussed. We emphasize a close analogy
between these systems and disordered particle systems and pay particular attentiofirtgstetglity of
spin-gapped phases against several types of randomness. Generically, spin-gafplatatass and Bose-
glass-like localized states compete and stable plateaus are possible only for special magnetizations determined
by spinS and the period of a pure system. When no external field is applied, the random-singlet state or the
Griffith’s phase is possible.

DOI: 10.1103/PhysRevB.64.134420 PACS nunider75.10.Jm, 75.60.Ej, 75.10.Nr

[. INTRODUCTION argument, the above selection ruleommensurability con-
dition) yields a relation satisfied by the period of the ground

In recent years, peculiar features of low-dimensionalstate Qg s) and the plateau magnetizatiom&at,3
guantum spin systems have attracted much attention. Exten-
sive studies have revealed an interesting aspect of quantum o
spins, which we might regard as a kind of “wave-particle Qe.s(S™ Mpia) € 2. @
duality” for quantum objects. That is, in some cases, a col-
lection of quantized spins behaves like that of continuous From the preceding argument, it is now clear that the
classical angular momenti@r vector spins and, in other periodicity of the underlying lattice plays a crucial role in the
cases, it looks like a system of discrete particles. For explateau formation; it determines the value of a plateau as
ample, the low-energy physics of an ordered antiferromagnewell as a magneti¢supeistructure realized in the plateau
is well described by the standard spin-wave theory, whiclphase. Although the situation becomes more complicated,
may be derived from thésemijclassical vector-spin picture. regular lattice structures and commensurability are essential
On the other hand, one of the most striking phenomena thab plateaus even in higher dimensidhs.
reflect the latter aspect as “particles” would be plateaus ap- On the other hand, there may be some imperfections or
pearing in high-field magnetization processes. defects in real materials used in experiments and disorder

From the theoretical point of view, the appearance ofcan also be introduced artificially by, say, random substitu-
magnetization plateaus is attributed to the formation of aion. In such cases, the regularity mentioned above no longer
kind of gapped insulating state in a system of “effective” exists. In other words, randomness competes with the peri-
particles. It seems difficult to explain plateaus occurring in aodicity crucial to the existence of plateaus. When the effect
sufficiently high magnetic field by the classical vector-spinof randomness overcomes that of commensurability, a
picture because in classical systems it will only cost verygapped plateau phase will be superseded by a certain random
small energy to increase magnetization infinitesimally. Byphase and the plateau may be smeared out.
now, there are several ways to understand how the gap is The effects of randomness on magnetization processes
formed in one dimension. One approach focuses on how and on plateaus would be interesting in its own right. As is
(smal) plateau appears in a smodite., gaplessportion of  clear in the weak-coupling argument described above, in
a magnetization curve. In one dimensi@iD), the gapless many cases magnetization plateaus can be viewed as spin
region of the magnetization curve can be trehfedithin the ~ analogs of band or Mott insulators in Fermi and Bose sys-
framework of the so-called Tomonaga-Luttinger model; thetems. Of course, magnetization translates into particle den-
low-temperature specific heat, the differential susceptibility,sity and a conducting state of interacting Bose liquids corre-
the NMR relaxation rate, etc., are described only by twosponds to a region of smooth magnetization curves. For
phenomenological parameters contained in the model. example, random potentials in particle systems are nothing

Since the system lives on a discrete lattice, there may bbut random fields in the spin language. Accordingly, there
some interactions allowed by a selection rule deribeth  may appear some randomness-dominated phédies the
from spatial symmetries of the model and from the value ofBose glass,the Anderson insulatofsetc) also in spin sys-
magnetization. This means that the system is potentially untems. The effects of disorder in gapped systems have been an
stable at commensurate values of magnetization. When tHatriguing problem in strongly correlated systefd?
magnetization curve is smooth, su@map-generatinginter- Furthermore, the problem of how quenched randomness
actions are irrelevant and do not appear in the low-energgffects ground states of quantum spin systems attracts much
physics. However, they may become relevant for some retheoretical interest. For example, striking extended states like
gion of parameters to open an excitation gap and therebthe random-singlet phase*with unusual scaling properties
form a (small) plateau at that value of magnetization. This and the gaplesébut localized Griffiths-McCoy phas® are
weak-coupling argument was successfully applied to the plaknown to appear in bond-random spin syst&iéand quan-
teau problems? Combined with the Lieb-Schultz-Mattis tum Ising spin glasse$.
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In the study of bond-random systems, it has been realizethere is at least one family of solvable models called the
that spin chains respond to randomness quite differentlyyBS model**® whose ground state is completely stable
some phases of pure systems are topologically stable whilegainst(bond randomness foall S. On the other hand, a
others are fragile against any weak randomness. Althougbpontaneously dimerized state of a cert@nl chain is ar-
there are many analytic4l'"1°~?!and numericaf~*studies  gued unstablé®
for the case with zero field an8=1/2 or 1, only a few More recently, a series of gapped ground states in a strong
works’®2” have been done for the magnetization process ofnagnetic field have been found both theoretically and ex-
free S=1/2 randomXY chains. Examining théin)stability =~ perimentally. Some of them have their origin in the limit of
of various types of gapped and gapless states of interactingusters composed of a few spins and others are attributed
(quasiy one-dimensional spin systems with or without a field essentially to many-body effects. Hence a natural question
would be interesting also in this respect. arises as to which kind of plateau is stable against random-

The plan of this paper is as follows. In the next section,ness and which is not.
we investigate whether plateau states are stable or not by the Before embarking on detailed analyses, we investigate the
strong-coupling expansidfi,which was proved powerful in problem of the stability of plateaus in a few extreme limits.
analyzing spin systems in a strong field. The result is differdn the following, we consider two different types of plateaus.
ent according to the type of plateau. The first one is known to occur in, e.g., the followirg)

Section Il is devoted to the derivation of the low-energy =3/2 model**’
effective action for the random spin systems. We use a phe-
nomenological argument based on the Tomonaga-Luttinger
(TL) model. This approach relies on a physically reasonable H'argeD:‘JJZl S SJ+1+D§J.: (SJZ)Z_ HEJ.: Siz' 2
assumption that spin chains in a strong enough fieldyare
nerically described by a single-component TL model. By aThe origin of the plateau ahZ=E,-SJ-Z/L=1/2 may be most
careful analysis, we determine the form of the random coueasily understood in the “atomic limitd=0. In this limit,
pling and then apply the replica trick. the problem reduces to the single-site on®;jumps atH

The renormalization-group argument is given in Sec. IV.=0 andH=2D and between these values it is locked at
There we will find that the renormalization-group flow is m?=1/2. The “plateau” is shown to persist down to a rela-
qualitatively different depending both on the types of ran-tively small value ofD/J3.37
domness and on the value of magnetizafitinbe more pre- The randomness in the external field is incorporated by
cise, on the value 08— m?). This point was overlooked in disturbingH locally,
previous analysé$?!in this field and leads to striking dif-
ference between the cases with and without an external field. Hi=H+A4A;. 3
Exploiting the known exact solutions, we determine strong- o
coupling phases and discuss the fate of plateau phases in th&e distribution ofA; may be taken as a box form:
presence of randomness. One of our main conclusions in this
section is that stable intermediate plateaus are possible only i if |A|l<W/2
for m* satisfying Quqan(S—m?) =integer Quam denotes the P(A)={ W (4)
period of the pure Hamiltonign 0

We summarize the main results in the final section. A
brief discussion about the effects of randomness on the fieldFhe steplike magnetization process obtained above is not
induced long-range ordéLRO) is presented as well. Some altered so much apart from that the curve in regions around
of the results presented here were reported briefly in Ref. 2944=0 andH=2D has a finite slope of W, that is, the
(longitudina) susceptibility x,, becomes finite due to
quenched randomness even in the local lidnit0. Further-
more, we can explicitly calculate the transverse susceptibility

Now we discuss thein)stability of the plateaus against x, (an analog of the superfluid susceptibility this limit; in
randomness. From the standard 18r& of the spinless fer- the region of finitey, (compressibility, in the language of
mion (which is equivalent to the&s=1/2 problems via the superfluid$, x, diverges logarithmically in the zero-
Jordan-Wigner transformatipnwe may speculate that pla- temperature limit, whereas it remains finite in the plateau
teaus in theS=1/2 systems are unstable. However, this con+egion. We may regard this phase as a spin analog of the
clusion is too hasty. Since the relevaeffective particle  Bose glass found in disordered Bose systéms.
and the dominant instability depend both on the interactions Then what happens to this plateau if we switch on the
and on the value of magnetization, a more careful analysis isouplingJ? A crude estimate may be obtained by low-order
needed. perturbations inJ (<D). Using the well-known spectral

In the pure cases, there are varieties of gapped groungroperty of random systeni§the lower and the upper edges
states. For example, the Haldane-gap pfasppears in the of the m?*=1/2 plateau is evaluated at the first order as
spin-1 Heisenberg chain and it was recently argued to bélqe=5J+W/2 andH ,pe=2D —2J—W/2; as long asV
robust against randomne€s>? Although the notion of topo-  is smaller than the critical valuel®—7J the plateau persists.
logical stability and string order does not séérto allow The above results may not be so surprising from a com-
straightforward extension to high&-Heisenberg chains, mon belief that a system having a spectral gap is robust

otherwise.

II. STRONG-COUPLING ARGUMENT
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against small perturbations. In this sense, the second ewriginal problem reduces to the one of the spin-XXZ
ample is less trivial. Let us consider tie=1/2 zigzag spin  model with both weak bond randomness andweak ran-

ladder dom field.
According to the well-known argument due to Imry and
41,42 : P .
o 1) (1) 2) «2) 1) 2 Ma,” " an ordered state like this is unstable against the
Magzag Z (oS- 57148759 + (14 98-S domain-wall formation and any small random field destroys

it in one dimension. Hence we may conclude that the half
_ 2) 1) 7_ Lal)z, (2)a2)2 (m*=1/4) plateau of thé&= 1/2 zigzag ladder vanishes upon
+(1 5)S§ $+1] Z (HST HE S, turning on the random field. A similar conclusion is obtained
for the bond-random case; the gap due to domain-wall for-
) mation collapses and the density of state§ &0 becomes

The spinsSY and S{?) coupled byJ, bonds constitutes  finite. For strong enough disorder, we may expect that the
=1/2 chains 1 and 2, respectively, which are coupled to eacB0ose-glass-like phase similar to the one occurring(iggeo
other by the zigzag interaction14. It is showrf®*°theo- ~ appears. _ _
retically that the magnetization curve #f,,.5has a single  Now the difference from the first example is clear. In the
intermediate plateau an?=1/4. Contrary to the example first exampl.e, the gapis purely local |n.|ts origin; if we create
discussed above, this plateau is attributed to a nontrivia® cluster with a sizé whereS* takes different values from
many-body effect and is accompanied by the spontaneou§e averag¢l/2 in the above examplethe energy cost is of
breaking of the translational symmeffyin considering the the orderl, while the energy gain due to the random field
effects of bond and field randomness, it is convenient to us&'ay be roughly estimated as corstl. Thus the formation
the strong-coupling expansion around the limit +&) of Iar_ge clusters is energetically suppressed and the system
>|1- §|,J,, which was successfully applied to the spin lad-remains u.n|form on the whole as is expected from the
der in a strong field in Ref. 28 and later extended to moretomic-limit argument.
complicated case¥.
Random components of the external field are introduced IIl. BOSONIZATION

as before:

In the previous section, we have seen that the stability of

HA=H+A® (a=1,2. (6)  plateaus against wedliagonal or off-diagonaldisorder de-

. . pends upon their types; in the first example, the plateau is
of course, the integea(=1,2) Iabels two cha|ns. The prob- ot against randomness while the second plateau is not. In
Iem is readily SOI(\S? for5=-1 to ylelc(ja)fqur eigenvalues, the following, we consider the effects of quenched disorder
which depend or\; . Provided thafA;®| is small enough i the framework of bosonization. We use a phenomenologi-
co_mpare_d with ¥ 6 andH,.the strong-coupling expansionis 5| approach based on the Tomonaga-Luttingeér) model
still applicable; we can pick up “vacancy” and “particle” gq that the argument may be independent of the details of
frolr? the four states and calculate the matrix elements ofpecific models. This approach relies on thiysically plau-

S§ ’ )W|th I‘eSpeCt to them to derive an effective Hamiltonian S|b|e) assumption that the |ow_energy physics of quantum
for the particles by a perturbation expansion in{d) and  spin chains in a strong magnetic field is described by a single
J,. Up to the first order in\, the result is written down as  phase(or angulay variable, which corresponds to the azi-
1 muthal angle of a vector spff.
1 t t - Of course, we may start from the so-called composite-
[2J-(1 5)]2 (brbry 1 Hbr1b) + 7123, spin model'** and investigate how the renormalization-
1 group (RG) flow of 2S coupled spin-1/2 chains behaves for
_ T (1) L A(2) low energies. In the presence of disorder, however, such
i 5)]2 Mrfr+1™ 3 2 A+ AN (D) computations are cumbersome and it is difficult to extract the
) _ low-energy behavior of the desired spin sector out of many
In the above equation, we have tuned theiform) external  qther quxiliary degrees of freedom. Instead, we consider the
field to the particle-hole symmetric poift=Hpy=(1+0)  |imit of strong Hund(interchain coupling from the begin-
+7(2J,+1- ). The hardcore bosofor fermion operator  ning and incorporate randomness into the relevant spin sec-
bf (b;) createsS’=1 (0) state on the'th rung;n, =1 if the  tor described generically by the single-component TL model.
rth rung is occupied bys’=1 state and O otherwise. Of Our approach may be justified when randomness is much
course, we may rewrite this in terms 8f 1/2 pseudospins weaker than the Hund coupling.
using the Jordan-Wigner transformation; the plateau phase of In order to obtain the spin TL model relevant to our pur-
the original problem is translated into the antiferromagnetipose, we follow the method in Refs. 4 and 44. That is, we
cally ordered phase of the effective pseudogpinhard-core  prepare 3 copies ofS=1/2 spin chains and “fuse” them by
bosor) model. It is important to note that the random vari- a strong interchaiiHund) coupling. The desired low-energy
ablesA{® appear only in the symmetric formg,=A"  mode will be a symmetric combination of theS2boson
+A®) . The sumAg,, acts as a new random field in the fields.
effective pseudospin problem. The argument goes in a simi- For a singleS=1/2 chain, the low-energy expression of
lar fashion also for the case of weak bond randomness; thie Hamiltonian and spin operators are given in terms of TL

1

Heﬁ: 4
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TABLE |. Expectation values of the pinned field and soft-mode momagigfor generic and Ising-like
TL model. Note that expectation values which are not invariant ugdgr— — ¢4 are unlikely for ferro-

magnetic Hund coupling.

Phases Expec. value Soft mode
Generic TL (¢pi— ¢;)=0 (mod 27) Osoft=4S k== 27 (S—m?)
Ising-like TL (Zﬁi_(”pJ.)Eo (modm/+2) Osof= 2kg= (1 —m?/S)

boson fieldsp, (a=1,...,5) by*

vs| 7, 2 2
HT._=f dxz R—g:Ha:+RO:(an§a) ,
z z 1 - . PERE
Se~m-+ ;0X¢>a+ const:cop2kpx—2¢,]:, (8)
st~ ™ %acod (2ke— m)x— 2¢,]:
+const coémx):e' %a; . 9)

The Fermi wave number is given b= w(1—m?%S)/2
(0=m?<S). The dynamical variablesp, correspond to

(staggereflazimuthal angles of spins, while their duajg

defined byIl, ,= ax?q'bl,zlw are related to the translational
mode. The above operatogé ands™ are power-law corre-
lated with exponents determined only by a param&gr
which, together with the spin-wave velocibg, is exactly
calculable by the Bethe ansafzee, for example, Ref. 4 for
numerical plots ofR, as a function ofmn?).

In general, (B5— 1) bosongwe call themd) go higher
in energy in the limit of strong Hund coupling and the low-
energy physics is described only by a single boggy, (see
the Appendix for details In the strong-coupling regime,
there are at least two kinds of gapless phases according
how the ¢ fields are renormalized. Whepy;; are locked,
the dominant density wave is ofS-type and the low-

ax?q'ﬁsym, the main difference consists in the form of the char-
acteristic wave numbef4Sk-=2m7(S—m?) or 2kg=m(1
—m?S)]. Therefore it is convenient to introduce

m(S—m?)

|

to write the expressions in a unified manner. Of course, for
both cases the Hamiltonian is given by the TL form

for generic TL
z

1 m
S

K (12

™

> ) for Ising-like TL

150 + R (ypsym) % (13

H—fd Us 772

with renormalized parameterss and R (for example,R
= \/2_SF{§ in the first casg Since the correlation exponent
7.k Of the 2K-oscillating part is given byp,c=2R?, the

semiclassical (EXESym) contribution dominates in the long-
distance physics foR>1; the feature of discrete particles
manifests itself only for smaller values Bf

In what follows, we mainly consider the first caggneric
TL phase and suppress the suffix “sym” of the spin field
¢sym- The case of the Ising-like TL may be treated similarly.
e summarize the expectation values and the soft-mode mo-
menta in Table I.

It would be reasonable to expect that randomness couples

energy effective spin operators assume the following formsto the above low-energy modes£0,2) as long as the

SE~m?+ ia 1)+ const copASk-x— 2L
7 OxPsym syml

Siweiﬂ'xti¢g$2n+_“ _

(10

On the other hand, i is locked, then the R=density
wave analogous to that occurring in the so-called Luther
Emery liquid becomes dominant. The expectation valu
should be invariant under the exchangie- ¢; (see Table)l
and accordingly the spin operators are given by

, , 2S ~(2) ~(2)
2~ m?+ 7&x¢sym+ const cop2kgx — 2¢sym]’

(Si)zsweizswxiwgzn—k e (11

e

Hund coupling, which makes thg,+ sector gapped, is much
larger than randomness and the pinning potential. A similar
situation is known to occur in the problem of disordered
Hubbard ladderé®

We begin by the diagonal disorder. For concreteness, we
consider the random magnetic field applied along the sym-
metry axis as a typical example of this kind of randomness.
From the low-energy expressigh0) of S, it is easily seen
that the random field may be incorporated into the low-
energy effective action as

1 ~ -~ -
HR.F.:;J dxﬂ(x)ﬁx¢+J dX[f*(X)e_2'¢+§(X)e+2':5]_)
14

In the above equation, the time-independent slowly-varying
field #(x) and &(x) [£*(x)] denote q=0 and q

This type of low-energy theory was discussed in Ref. 44 for=2K(—2K) components of the quenched random field, re-
the zero-field case and is important in considering the sospectively. Since we are considering lattice systems, there are
called metamagnetic systems. Apart from a factor in front ofalways exceptional cases; for such special valuesnéf

13442
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asK=0 or 7 modulo 27 (or, S—m*=Z or Z+1/2), “ran-

dom backscatteringZ (x) is real and the above expression j dxdr:cog 2N4]:.
should be replaced with

(20

Although we have written the interaction using a single co-
1 ~ — ~ sine, it can be sine or a sum of sine and cosine according to
HR-F-:EJ dX”(X)aX¢+2f dxE(x)co§2¢]. (19 1o symmetry constraints such as the site parity. The integer
o . o . N, magnetizationm?, and the period of the Hamiltonian
For simplicity, we assume Gaussian distributions with zerqq,,.  satisfy the commensurability conditidn
mean for thes-correlated random variables am

D NQpan( S—m?) € Z. (21)

X =m2D,8(x—y), & (x =—48(x—y),
)7 =T D, 8x=y).  EOLY) 2 x=y) Of course, this condition is replaced witNQy,,{2(1

—m?S) e Z for the Ising-like case. Remember tHat,,, is
(16) not always equal to the period of the ground s@tgs. To
eliminate the random variables, we use the standard replica
trick, that is, we firsin-plicate the action and then integrate
p(x)=0, €& (X)=£&(x)=0, E(x)=0, out the Gaussian random fields. Thus we arrive at the multi-
e%I(iecated nonrandomaction:

= —=—_ D=
:*(X):(y)=75(x—y),

where the bars denote quenched disorder averages. Th
may model the situation of high impurity concentration. n

Bond randomness can be treated similarly. Wigenm? S, :J dxer i 1
#Z or Z+1/2, the random part of the Hamiltonian is given " i=12m| yR2

by

(8,3(@)2+ gmx?b(“))z

1 N L +U | dxdrY, :cog§2Ngp®7:
HR'B':;I dX??(X)5X¢+f dx[ & (x)elKe2¢ Ta:1

+E(x)e Ket 24, (17) -D, f dxdrdr’ X, 9D ()P (7')

a,Bf=1
In the above expressions, we have dropped less relevant in-
teractions. Note thatigz g [Eq. (17)] is essentially the same
asHg e [EQ. (14)]. Therefore we may expect that the system
behaves similarly undevoth types of randomness when the
value of S—m? is generic. In the case wher&—m? , ~ () ~ By
=Z or Z+1/2, the relevant coupling to the random bond is _Dé’f dxdrdr azl coq2[¢*V(7)+ P (7')]}.
again real and{y g reads

n

—fo dxdrd7’ > cog2[ () - $E)(7)]}

a,f=1

n

(22)
1 ~
Hrp= f 7(X) dxp(X) The resulting low-energy action is similar to that used for the

7 boson localization problerhi®®in which only the case where
- N=1 and a region where the locking cos potentidl term)
2] dxE(x)sif2¢] for S—m*eZ+1/2 is irrelevantwas treated. Another important difference is the
+ existence of thd®,, interaction[the last term in Eq(22)]. It
zf dx=(x)cog2p] for S—mieZ. may seem strange because such an interaction is not gener-
ated by the Gaussian average of some random variables. As
(18) s easily verified, however, we have to taBe=D. =Dz or
) ) ) D,=—D, =Dz for real random backscatteririg(x). This
Equations(15) and (18) are derived for uniform systems. ioarm has not been taken into account in the previous

Extension of them to systems with longer periods is straightzygied®2! and the necessity of it is closely related to the

forvvzard; we have only to replac&—m* with Quan(S  particle-hole symmetry. The physical implication of it is dis-
—m?). For special cases whene=0 and there is no exter- -yssed below in conjunction with the RG flow.

nal (neither uniform nor randojfield, the exact “particle- Considering a statistical selection rule, we can easily see
hole symmetry” §*——S* andS-—S"), that an interaction like this is actually allowed. Although

~ ~ (typical) random systems do not possess any translational

$p—>—¢, ¢—>—¢+Sm, (19 symmetry, the averaged ones recover it and we may impose

forbid the first term in Eq(18) to exist in the action. We will  translational invariance on thaveragedaction Sep. As in
see in Sec. IV B that the RG flow has a special feature fofh€ pure cases, we replace the microscopic lattice translation

such cases. by a discrete shift of the boson fielé&s:
Of course, there is a relevant interaction which leads to 5 _
the plateau P =D —Q. K  (a=1,...n). (23
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If an interaction in the averaged action is invariant under thidects the low-energy physics. From the RG flow equations, it
operation, then it is alloweéh a statistical senseThe D,  follows that if the forward-scatterind ,, is zero initially,
interaction is always possible, wherelg: is allowed only  then it remains so in the RG process. That is, the random
for forward-scatteringD ,, is not generated radiatively whe8
, —m?=Z or Z+1/2 and the initial relatioD ;=D or D;
Quar(S—m*) eZ or Z+1/2. 249 = —Dg remains true at least in the weak-coupling regime
Actually, whenever theN=2 pinning potential, which is Where thes functions (25) are valid. From the RG view-
possible forQ,,(S—m?) e Z or Z+ 1/2, is present, RG gen- Point, only the inversion§+— — S symmetric case, that is,

eratesD ., radiatively. the case witfD!?=0 and @go))2=(D(§9))2, is special. Oth-
erwise, the RG process generates terms which do not exist
IV. RENORMALIZATION-GROUP ANALYSIS initially and neither D ;)?=(D)? norD, =0 holds in gen-

eral. This fact is important in treating the case of bond ran-
In this section, we treat the low-energy effective actiongomness whes—m?=2 or Z+1/2.
(22) by the renormalization-groufRG) method and investi- In order to consider the strong-coupling phases, it would
gate the effects of randomness on various gapped statg$e convenient to introduce th@ynamica) spin stiffness
However, a weak-coupling RG approach is known to bep . = which is a spin analog of the Drude or superfluid
hampered partly by the lack of the mean-field limit arou”dweight, and the (differentia) susceptibility x;,. In the

which the theory is:-expanded and also by the existence ofyomonaga-Luttinger language, they are written as
large strongly correlated rare regions. Hence we first use RG

equations to identify flow towards the strong-coupling vgR? R?
phases and then investigate these phases with the help of Dspin=——1 Xu=——- (27)
exact results obtained for some special cdSes. 7 s

We compute the beta function using the operator-producthe flow equations for these quantities read
expansion following Refs. 10 and 21. After taking the limit
n—0, we arrive at the final result: dDspin

_ 2112 2\2

) , Tl — — ("N?U?+8D)(R%)?,
dR a2 AT oo
— = —NA(R)U"=—(R)Dg,
dinL Us Us dX// ar

— = — —N?(R?%?2U%. (28)
dUS dinL Ug
=—4m(R)Dy, : . : -

dinL Note that the interactiot) between magnetic excitations re-

duces botlDg,, and x,, while the random backscatterif,

du .
=[(2—N2R?)—27%(R?)2N?D,JU — 28y ;D' decreases onlPsp,.

dinL If disorder couplingsD,,,D,) grow much faster that,
(25  the interactiorld eventually renormalizes to 0 and we expect
dD the strong-coupling theory to be characterizedZy;,=0

7 D +4g2%(R%)(D%—D?2 and y,,#0. On the other hand, when bokh, andU renor-
dinL D, +4g"(R%)(D; D, ) malize to infinity, the strong-coupling theory will have van-
ishing Dgpin and x;,. We may regard the first and second

dD; cases as spin analogs of the Bose dlamsd the Mott
dinL (3-2R*)D;~26y9(2R*)D U, insulators?’ respectively.

Taking into account the weak-coupling RG behavior, we
dDg ) 5 have to consider the following three casgsthe incommen-
dinL ~ (37 2R)Dy—26y9(2R)D.U surate caseN Quan(S—m?) & Z for small integersN; (ii) the

inversion symmetric cas&y,(S—m?) eZ or Z+1/2 and
—87%(R%)?D,D, . no uniform/random field; andiii) the commensurate case:

N Quanr( S—m?) e Z for a not so large integé. The last case
includes situations whem®,,(S—m*) eZ or Z+1/2 and a
random field is present.

The effective coupling constarg(R?) is defined by the
integrat®

9(R?)= fwdtm, (26) A. Incommensurate cases

o 3 ) ) Now let us consider what the RB functions(25) imply
which is convergent only foR>1/2 to give @l'(R to the(in)stability of plateaus. We begin by the simplest case

—1/2)/T(R?) and diverges logarithmically :B—»_l/ﬁJrO. (i) where magnetizatiom? takes an incommensurate value.
When the valu&s—m*=2Z or Z+1/2, the action reduces | these cases, we can Sgt=0, D, =0 in the RG flow

to a special CaSD(gO)=D(§9)=D(EO) or D(go): —D29)=D(5°), equation and bond and field disorder have almost the same
respectively, as is seen in Eq4.5 and (18). In this case, effects as mentioned in the previous sectisee Eqs(14)
whether the forward-scatteririg,, exists or not crucially af- and(17)]. Then the couplingy(x) (q=0 component, or ran-
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dom forward scatteringcan be eliminated formalf) by  is increased the classical limit of the Heisenberg model is

shifting the dual fieldg. There are only three couplings, feached rather quickly except in the vicinitymf=0 andS
R, vs, andDy, left and the behavior of this system is well Another interesting example is the two-leg spin ladders

known?-348for R< \/3/2 the system is unstable to an infini- which have been extensively studied in several contexts.

tesimal perturbatio®, and becomes the Bose glass. On theAmong them, a strong-coupling laddexi.e., the coupling

. on rungs is much larger than that in the leg directid
other hand, for larger values & the system remains to be directly relevant to materials CuHpGRef. 59 and BPCB

the TL liquid as far as the randomndss is 'not'very strpng. (Ref. 57. The strong-coupling argument presented in Sec. Il
In the sense that there is no gap-generating interaction in tl‘\g useful also in the incommensurate phase. The region above
absence of disorder, the situation is similar in the SO-Ca”e(dbebV\b m?=1/2 corresponds to a positieegative exter-
gapless spin-fluid region appearing in the absence of an Xy, field in the effectiveX XZ model(7). The exact solutiof?
ternal field. For example, it is sugggs‘{%mat the ferromag- g5 ys thaR is always smaller thag3/2 and this fact, when
netic region of the spirs XXZchain is described by the TL g mpined with the RG argumeht® implies that the ground
model with R? given simply byR?=#S/(m—cos *4) (A state is the Bose glass for any smaibnd or field random-
<0 denotes the Ising anisotropgnd the TL phase survives ness at least for the repulsive cask 2 (1— 8§)>0. Recent
the weak(bond/field randomness whe8=1. Although the  magnetization measuremetitsarried out for Br-substituted
Hamiltonian takes the form of the TL model, the ground- CuHpCI[ Cu,(CsH;.N,),(Cl;,_,Br,),] show rather different
state correlation functions get modified substantially anchehavior from the pure cases<0 andx=1) and we expect
only theg=0 component remains in the long-distance as-hat this is related to the Bose glass formation.
ymptotics of(S*(x) S*(0)).

We apply the above results to three examples. In conjunc- B. No external field
tion with the magnetization process, the behavior in the vi-
cinity of the onset of magnetizatigie., near the edges of a
plateay would be interesting. For a plateau characterized b
the order of commensurabiliti, the parameteR takes an
asymptotic value N(=<1) near the edg® Hence when ran-

domnesdfield or bond is present, any plateau region, if it e—qb, J>Sm—3). In random systems without any kind of

exists, is surrounded not by the TL phase but by the Boss atial symmetry, internal symmetries are expected to pla
glass phase. Near the edge, localization takes place for iy y Y y P play

S . . important roles in classifying the universality classes. As is
finitesimally small randomnes#n this sense, Bose glass ap- b fying y

ditionally Of th ist f h ol expected from the RG flow in Sec. IV, the situation in the
pears unconditionally Of course, the existence of such pla- inversion-symmetric case is strikingly different from those in

teaus in the random system is highly nontrivial and we defefer cases and should be treated separately. Inversion sym-

the problem to the following subsections. metry enforcesD,=0 and eitherD,+D, =0 (for SeZ
Whether a region away from the edge belongs to the Bosg 1/2) orD;~ D=0 (for Se Z) holds.

glass or not is model dependent. For example, we consider a g, clarity of argument, we take th®=1/2 spin chains
spin chain close to the saturation; it is known that the systenyith hond randomness, whe@,+D, =0 holds. In this

is described asymptotically big=1/N=1 theory near satu- case, several interactions which lead to gapped ground states
ration (i.e., m*—S—0) and magnetization approaches the(j.e., plateausare possible. Among them, we consider two
saturated value in a singular manner for clean systemsypes:

Analysis of the two-particle scatterings tells us that the spin-

S Heisenberg antiferromagnetic chain near the edge is as- -

ymptotically described by the nonlinear Sctireger modet* UJ’ dxsiM2¢(x)] (N=1) (29

with the coupling constart=2/(S— 1) .52 We solved the Be-

the ansatz integral equations numerically and found that thand

region of the above unconditional localizatioR< \/3/2) is

confined only in the vicinity of saturatiom?=S for S ~

>3/25% A similar argument applies also to the close vicinity UJ dxcog4o(x)] (N=2). (30

of the lower critical field of the integer-spin Heisenberg

model. For sufficiently larg&, we can use the exact solution The first interaction corresponds to bond alternation and the
of the O3) nonlinear sigma mod& and similar results are second one leads either to the SDW (@pontaneous)y
obtained;R rapidly increases away from the lower critical dimerized phaseé$ according to the sign o). Cases with
field and the Bose glass phase is confined only to a narro8=1 may be treated similarly; for exampl&=1 bond-
region around the critical field. alternating chains correspond*tdhe caseN=1.

This is natural in view of the classical limit of antiferro-  In the first case wittN=1, bothU and DDz=D;— D
magnetic spin chains; th€=0 classical antiferromagnetic grow under renormalization and the space-time anisotropy
XXZ chain always has a staggered order in #heplane develops. It is difficult to obtain the correct low-energy be-
regardless of antiferromagnetic bond disorder or a randorhavior from the low-order RG analysis. Fortunately, exact
field in thez direction. Our finding means that as the sfin results are availabf&for this case. That is, if we assume that

Before discussing the fate of plateaus in the presence of
randomness, we pause to investigate the special case where
Mo external field H=0 andm?=0) is applied and only the
bond randomness exists. That is, we consider systems invari-
ant under a simultaneous spin inversi@¥>—S; (or, ¢—
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the precise value oR is irrelevant in the low-energy fixed

point, this problem can be fermionized to the so-called
random-mass Dirac fermion,

—igloc +ivlows,

HrmpF= f dx

(WLt ) (31)

+ 1U+~
> =(x)

discussed in many contexi$:®? Note that inclusion of
forward-scatteringD ,, corresponds to adding an imaginary
part to= (x). The (averagedidensity of state$DOS) p(E) is
computed exactf? and it shows that the gap collapses as

PHYSICAL REVIEW B 64 134420

magnetization

Field
2

FIG. 1. Magnetization curve obtained fof=1 andU=2 by
using Hgmpe- Solid line: D,=0.2, Dz=0.08; dashed lineD,,

soon as the randomness is turned on although a region afp 2 p-—0.8. The origin corresponds to the center of a plateau

very small DOS survives it is larger tharD =z . The special
point is that the(averageiDOS behaves algebraically like

p(E)~EY ~1 (32

around the band cent&=0 and the state is localized with a
finite localization length 2. As a consequence, the longitu-
dinal susceptibility y,, has a low-temperature asymptotic

form x,~ (LMY which diverges forz’>1. The dy-
namical exponentz’ depends on the strength of disorder
Dz, the value of the gap)/2, and so on. In our simple case,
itis given byz’ =Dz /(2U). Namely, the system exhibits the
so-called Griffiths-McCoy singularity for low tempera-
tures. This behavior was found also by the real-space dec
mation method’ and was confirmed numericalfy.

and magnetization is measured from the plateau magnetization.
Also shown is the magnetization curve for the pure dqdisie bro-

ken ling. For the valueR=1 used here, the system is compressible
Bose glasgsee bold lines

instead the algebraic behavior at the band center, which leads
to the so-called Griffiths-McCoy singularity, sets in.

In the second case, the order of commensurability is given
by N=2 and the pure system has two degenerate ground
states, both of which break the translational symmetry. For
example, in theS=1/2 XXZ-like model with next-nearest-
neighbor interactior? positive (negativé U corresponds to
the dimer[Neel or spin-density wavéSDW)] phase. In gen-
Eral, the sign ofU determines whether the site paritye.,
reflection with respect to a given sjtss spontaneously bro-

It would be interesting to consider how the magnetization o or not.

increases in this phase. For a weak magnetic field, magneti-

zation per site is proportional to the integrated average de
sity of statesN(E), which is also computed exactly®s

D=
7?32, (2EIDz)+ Y2, (2E/Dz)]

N(E)=

D:’ E 1/z'
~— | — E~0).
F2(1/(22’))(DE) ( )

In the above equation],, Y,, andI" denote the Bessel
function of the first kind, that of the second kind, and the
function, respectively. Hence the ground statemagnetic
and magnetization increases algebraically fidm 0 as

(33

mA~H (34)

A similar result has been obtained for the random transverse-

field Ising spin chairt®%*We show the magnetization curve
for a few values oDz in Fig. 1. In the limit of a uniform
chainU—0, z'=Dxz/(2U) diverges and the so-called ran-
dom singlet phasé is realized where an extended state ex-
ists only atE=0 and a logarithmic singularity appears. Note

We treat the cas&)>0 (“dimer” phase) first. Note that

"Himerization in this case ispontaneouslgenerated. Both/

and 55 grows first and accordingly the value Bfgets re-
duced[see Eq.(25)]. Then the effective coupling constant

g(2R?) takes a large value to increaﬁg further. Finally,
du/dInL turns to negative antll converges to zero. In a
sense, this is similar to the field-theoretical interpretafion
the Imry-Ma effect. In the vicinity oR=1, the low-energy
physics will be determined by Eq31) with U=0 and we
may expect that the random-singlet pH4sekes over the
dimer phase.

This is not restricted to th8=1/2 case. Fo6=1, spon-
taneous dimerization is known to occur for a certain family
of spin-S chains®®

HBBK:_; Jiit1Po(S,S 1), (39

where P, denotes the projection operator onto the singlet
subspace spanned ByandS;;; andJ; ;. is assumed posi-
tive. The situation for the pure chain is simfiato the case
U>0 described above and we can conclude that the dimer-

that contrary to the noninteracting case, the above expressid#ed ground state is fragile and the random-singlet phase ap-

(34) will hold only in a narrow region arounth*=0.

pears upon introducing randomness idfg, ;. Actually, the

It should be stressed that our effective field-theory apmethod of real-space decimatfdnis well-defined for the

proach predicts thaall half-odd-integer spin chains with

Hamiltonian(35) and leads to the same conclusii§®

bond alternation behave similarly under bond randomness; On the other hand, folU<O0, the divergingly large

the gap in the DOS due to bond alternation collapses an

d(2R?) implies the contrary; it switcheﬁg from increasing
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to decreasingnote thatU enters the flow equation @, in  random forward-scattering(x) to Hgwpr [Eq. (31)].2"%°

the form +29(2R2)5§U]. The result is that the gap- Only a smooth crossover from the Anderson localidfette
generating interactiot is diverging. That is, the N& (or  DOS atE=0 but localized to the Mott localizedvanishing
SDW) phase igobustagainst weak bond randomness. NoteDOS at E=0 and localizefl behavior occurs around
that the difference in the sign &f leads the system to com- ~D= (see Fig. 1in our continuum model. We expect that

pletely different phases. this is an artifact by using an unbounded distribution and that
there occurs generically @irst-ordep transition in between
C. Case of plateaus as seen in Sec. Il

To summarize the above argumerity strictly one-

Finally, we discuss stability of plateaus appearing in theginensional systemstable plateaus are possible only for
presence of a strong field. Here we mean by plateaus gapp‘?ﬁagnetizatiormz satisfying

states occurring in a finite field. Throughout this subsection,
the integerN appearing in Eq(21) plays an important role. Quanf S—M?) =integer (36)
Note that there is no apparent inversion symmetry in these Ha '
cases and that the special symmey,|=|D[.D,=0is  Note that the period appearing in the above equation is that
no longer preserved in the RG process. In fact, we can exyf Hamiltonian. For example, plateaus in Refs. 67 and 68
plicitly verify that nonzero expectation valy&’) = m? intro- (S=1m*=1/2Qu.r=2) and Ref. 37 $=3/2m°
duces_ the random forward-scatteripgx) through theS’S? =1/2Quam=1) are stable against weak randomness in the
coupling. above sense. The results obtained here are consistent with
For generic cases whe@y,(S—m’) equals neither an  those of strong-coupling expansions.
integer nor a half-odd integer, the effective low-energy ac- A remark is in order here about the difference between the
tion is given by Eq(22) with D=0 regardless of whether Bose glass and the TL liquid. In the Bose glass phase, the
randomness is concerning the external field or exchange cogyrrelation isspatially short ranged and hence the system has
plings, and the problem reduces to that of the effects of rang yanishing stiffnes®g,,, while it has long-ranged correla-
dom field at incommensurate magnetization. In these caseggn in the (imaginary temporal directior(thus having non-
only plateaus witiN=3 are allowed in pure systems. As was zgrg compressibilityy,,). Because the gap in the DOS van-
pointed out in Ref. 10, wheilN=2, the divergingly large jshes, magnetization increases smootihgadyin the local
g(R?) prevents the gap caused byfrom surviving the dis-  |imit. As has been shown in Sec. IV A, the vicinity of the
order. Therefore small randomness smears out plateaus @dges of a plateau always belongs to the Bose B
the Imry-Ma effect wherQy,(S—m?*) #Z or Z+1/2. phase; magnetization-onset transitions occurring there is the
When Qpan(S—m?) € Z+1/2, the lowest possible value Bose condensation in theal space(not in the momentum
of N allowed by Eq.(21) is 2. As in the above case, plateaus spacg.
are fragile in the presence of disorder like Hence three- On the other hand, the TL liquid has a gapless ground
dimensional effects are necessary to maintain the plateaus efate as a consequence of many-body effects. Accordingly,
this class. In all the above cases, plateau regions in the putge ground state is extended and has a finite stiffness. In both
cases are replaced by localizédut gapless Bose glass cases, the DOS is always finite and the ground state is mag-
phases. netic (or compressible, in the particle languagé other
Now we discuss the only remaining cas@y,{S—m?)  words, the TL liquid can hardly be distinguished from the
€ Z, where the lowest possible commensurability is given byBose glass only by the magnetization process.
N=1. For example, then*=1/2 plateau of the&s=1 bond-

alternating Heisenberg ch&if® and m?=1/2 plateau ofS
=3/2 Heisenberg chain with tern?’ fall into this category.
An N=1 plateau is in a sense robust against randonfis  In this paper, we investigated magnetization processes of
because it is not always subject to the Imry-Ma effects. Th@andom quantum spin chains. Strong-coupling arguments
robustness of this kind of plateau is anticipated also from thguggest thatin)stability of various gapped state of 1D quan-
strong-coupling argument in Sec. Il. As was pointed out bytum spin systems depends on the type of randomness, the
Fujimoto and Kawakami? the low-energy behavior is deter- existence or nonexistence of spontaneously broken symme-
mined by the competition betweahandD,; for largeD,  try, and so on. Guided by these findings, we formulated a

V. SUMMARY AND DISCUSSION

compared withU, the random forward-scatterin,, col-  phenomenological approach to the problem of random spin
lapses a gap and then the resulting gapless system becongsains.
localized(Bose glaspby the “random backscatteringD . We started by mapping a single spin chain without ran-

On the contrary, whel is sufficiently large, the gap persists domness onto a perturbed Tomonaga-Luttinger model. There
and the system behaves as a Mott insulatbg,t=0,x/ are many analytical and numerical evidences to support our
=0). mapping. Then, we assumed weak randomness and handled
Therefore the DOS around the band center is expected 0 by the so-called replica trick to obtain the renormalization-
be zero for weak enough randomness and the(gep pla-  group (RG) equations. The RG analyses showed us that the
teay is not smeared out. Strictly speaking, however, this willweak-coupling RG behavior is qualitatively different accord-
be valid for suchboundedrandomness as the box distribu- ing to whether the random forward scattering is present or
tion. Again, a special poinR=1 can be treated by adding not. This led us to divide the situations into three categories:

134420-9



K. TOTSUKA PHYSICAL REVIEW B 64 134420

(i) incommensurate cas€§, inversion &« —S’) symmet-  lished as in the above cases. Strong-coupling arguments
ric casegwith no uniform or random external fieldand(iii ) (Sec. I) and RG analyses indicate that plateau gaps are ro-
commensurate casgsvithout inversion symmetlywhere bust and transitions into BG phases do occur at finite
magnetization plateaus appear. strength of disorder. Quite recently, the possibility of a new

Case (i) In the first case, there is no relevant interactionintervening phase(incompressible but conductingwas
competing with randomness and the system is described byginted ouf® in the context of a spinless fermion with disor-
gapless spinfluid when disorder is absent; the weak-couplinger. The bosonized action used there is similar to oiits (
_RG gives the reliable_answer that the system is in the local— 1) and there might be analogous phases also in spin sys-
ized Bose-glasBG)-like phase unconditionally when the o e postpone this interesting problem to future works.
(fully renormalized phenomenological parameteR is Finally, we briefly discuss the effect of disorder on the
smaller than\/S_lz and finite amount of randomness is Necesyig |y induced LRO occurring generically for incommensurate
sary to localize the system f&>/3/2. In the BGphase, magnetization,

longitudinal - susceptibility y;,=R?/(mvs) remains finite Recently, examples of long-range 3D ordering in a strong
while the dynamical spin stiffnesBy;, vanishes. A typical magnetic field have been reporfed® for various spin-

example qf th_e incommensurate region is a sm_ooth pf)rtiO%apped systems. In the particle language, this LRO in the
of magnetization processes. In the strong-coupling region jjrection perpendicular to the external field can be viewed as
the two-leg spin laddefsee Sec. )| the conditionR</3/2 superfluid LRO and the problem is a spin analog of
is satisfied all the way from the lower critical field to the superfluid-insulator transitions driven by disorder.

saturation field and a single isolated ladder always localizes. gy example, if anS=1/2 zigzag spin ladder system
The spin§ XXZchain (5>3/2), on the other hand, doest  cyHpCl or BPCB s treated as a strictly one-dimensional
localize in almost the whole portion of the finitely magne- pogel, strong-coupling argument predicts that any weak dis-

tized region. o _ order localizes the incommensurate phase betwe&n0
~ The effect of random forward-scatterifly, is most high-  5nqdm?=1/2 as has been mentioned in Sec. IV A. The three-
lighted in the second and third cases. dimensional coupling weakens the effect of disorder and fa-

. Case (i)} WhenD, =0 and no uniform field is applied yqors the 3D LRO. Since the forward scatteringx) makes
initially, the RG flow goes to the strong-coupling regime . ¢ component o(SZ(x)—SZ(O» decay exponentially, we

preserving the propert ,=0. Although our weak-coupling 46 only to take into account the superfluid LRO. We car-
RG itself is no longer reliable for such strong couplings, Weyje oyt 3 mean-field analysis similar to that in Ref. 74 for

can obtain some insights by mapping the problem to a solVg,e \a1ueR=0.9 (which is appropriate for the midfield re-
able fermionic model—the random-mass Dirac fermion. A

o ) ion of CuHpC) and Jiyerchair/ Jehair= 1/10 to find that the
combination of the exact solution and the RG analyses led u§ﬂean—field transition temperaturd (D )/ T((D=0) rap-

to the following conclusion: when the pure system has a ga Uy decreases to zero at arouBy~0.2 (beyond which no
and no transational symmetry (spontaneoushbroken, the LRO occurs for all temperaturesTherefore for samples

system is in the so-galled_ quantum Gr_iffiths phase and a 93k sufficiently weak disorder, we may expect a 3D order-
less ground state with a finite localization length proportlonaling transition to occur as temp;erature is varied

to the inverse of the gap. I the translational Sy_”.‘me”y is After completion of this work, we became aware of a
brokenspontaneouslythe situation is more subtle; in some aper investigating a magnetization process of a random
gases the pL(er_et _gapr;ejd gtrr?und stateF|s collapsled by tr?e rﬁ‘—’merizedSz 1/2 spin chair” They found a plateau at an
Omness and It1S not in other Cases. -or example, SUCN SPOlz.iona| value of magnetization; the appearance of it is
taneously dimerized phases as occuttgsy [Eq. (35)] is possible only when disorder in exchange couplings exists

easily destroyed by bond randomness while eNike : S
charge-density waviCDW) states are robust. In the former, and completely different from those treated in this paper.

we may expect that the extended random-singlet phase takes
over.
Case (iii). In this case, the system is finitely magnetized ACKNOWLEDGMENTS

and the inversion symmetry which was quite important in  The author is grateful to S. Fujimoto, H. Deguchi, K.
case(ii) is already broken. The cases with’=0 andD,  Hida, and S. Todo for discussions. This work has been sup-

#0 also fall into this category. Then, the treatment of Secported in part by the Special Researchers’ Basic Science Pro-
Il shows that diagonal disordefrandom field and off-  gram from RIKEN.

diagonal disordefrandom bonglcan be treated in the same

manner. We may naively speculate that the gapped systems

(plateau systemsare insensitive to disorder. However, at APPENDIX

least in one dimension, the stability of the gapped states de-

pends strongly on the type of plateaus, or the degree of com- In this appendix, we briefly describe the derivation of the

mensurabilityN. As is well known as the Imry-Ma mecha- low-energy effective model used in Sec. Ill. In Sec. lll, we

nism, the gapped states wilh=2 is fragile to the diagonal started from & coupled Tomonaga-Luttinger models and ar-

disorder like a random field; the gap collapses and the syggued that only one of them is relevant to low-energy physics.

tem is localized. On general grounds, we may expect that it is given by a
The case withN=1 is, in this sense, not so well estab- symmetric combination
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1 2 independent operators likg; — ¢; .
Dsym="T—= 2 b; . (A1) Note that only the first interaction; contains thekg (or
V2s /=1 magnetizatioppdependent factor. The remaining two are

magnetization independent and drive thg; sector massive

Considering thatps,, is directly related to totat*, we can el
regardless of the value of magnetization. Hence we may ex-

easily see that it describes the “spin” sector of the spin- - ° ,
model. pect that in the strong-coupling region only tig,,, boson

For the sake of clarity, we consider t18=1 (i.e., two remains gapless for generic values of magnetization and the

chain case to demonstrate how the spin sector is singled ofyStém is described by a single-component TL model.
in the limit of a strong Hund coupling. By using these con- Here we have to comment on another important case with

tinuum expressions, we can write the relevant part of theseveral gap!ess degrees_of freedom._lt is known that there are
interchain interactiorf< as model<® which are described by multicomponent TL models
in a field. The preceding argument is not applicable straight-

N2 CO$(G—akp)X+2(hi+ P, (A2) forwardly to these models and we focused only on the
single-component case in the té&t.
Ny: co$2(di—d)]: (A3) As we mentioned in Sec. lll, at least two kinds of gapless
2 e phases are possible according to how #hg; field is renor-
Ns: cod(pi— )] (A4)  malized. Wheng gy is locked and(cos(/2gi))=0, the

2kg-oscillating terms vanish and a highek4density wave
becomes dominant. Therefore the low-energy effective spin
X1=X2=2R§, Xg= 1/(2R§)2. (A5) operators take the following forms:

The scaling dimensions of these operators are

In the above equations, the quantit$ denotes the 1

reciprocal-lattice vectoG=2w/a, and the parameteR, is SP~m?+ — 3, 1) + const copakex— 2 (L)
computed using the exact solutithAs was described in T rsm sy
Sec. lll, kg is uniquely determined by magnetization:

a st—emeEiel (A7)
k,:zE(l— m?/S).
We included the expliciB dependence in Eq10).
On the other hand, @ is locked, then cog2 i has a
finite expectation value and the&k2density wave analogous
1 1 to that occurring in the so-called Luther-Emery liquid be-
bsym=—=(d1t d2),  dar=—=(¢P1—¢,) (A6)  comes dominant. Since the Hund coupling is ferromagnetic,
V2 V2 the resulting low-energy theory should be invariant under the
in place of¢, and ¢,. For S=3/2, the decomposition is not interchange ¢, ¢,. This implies that (¢gix)
unique and it is convenient to considppgis} as a set of =0 (modw/+/2) and we arrive at expressiofikl).

It would be convenient to introduce the two fieldspin”
and “charge” in the language of electron systems
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