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Magnetization process of random quantum spin chains

K. Totsuka
Department of Physics, Kyushu University, 6-10-1 Hakozaki, Fukuoka, 812-8581, Japan

~Received 29 July 2000; published 13 September 2001!

The magnetization process of spin chains with randomness is discussed. We emphasize a close analogy
between these systems and disordered particle systems and pay particular attention to the~in!stability of
spin-gapped phases against several types of randomness. Generically, spin-gap states~plateaus! and Bose-
glass-like localized states compete and stable plateaus are possible only for special magnetizations determined
by spinS and the period of a pure system. When no external field is applied, the random-singlet state or the
Griffith’s phase is possible.
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I. INTRODUCTION

In recent years, peculiar features of low-dimensio
quantum spin systems have attracted much attention. Ex
sive studies have revealed an interesting aspect of quan
spins, which we might regard as a kind of ‘‘wave-partic
duality’’ for quantum objects. That is, in some cases, a c
lection of quantized spins behaves like that of continuo
classical angular momenta~or vector spins! and, in other
cases, it looks like a system of discrete particles. For
ample, the low-energy physics of an ordered antiferromag
is well described by the standard spin-wave theory, wh
may be derived from the~semi!classical vector-spin picture
On the other hand, one of the most striking phenomena
reflect the latter aspect as ‘‘particles’’ would be plateaus
pearing in high-field magnetization processes.

From the theoretical point of view, the appearance
magnetization plateaus is attributed to the formation o
kind of gapped insulating state in a system of ‘‘effectiv
particles. It seems difficult to explain plateaus occurring i
sufficiently high magnetic field by the classical vector-sp
picture because in classical systems it will only cost v
small energy to increase magnetization infinitesimally.
now, there are several ways to understand how the ga
formed in one dimension. One approach focuses on ho
~small! plateau appears in a smooth~i.e., gapless! portion of
a magnetization curve. In one dimension~1D!, the gapless
region of the magnetization curve can be treated1,2 within the
framework of the so-called Tomonaga-Luttinger model;
low-temperature specific heat, the differential susceptibil
the NMR relaxation rate, etc., are described only by t
phenomenological parameters contained in the model.

Since the system lives on a discrete lattice, there may
some interactions allowed by a selection rule derivedboth
from spatial symmetries of the model and from the value
magnetization. This means that the system is potentially
stable at commensurate values of magnetization. When
magnetization curve is smooth, such~gap-generating! inter-
actions are irrelevant and do not appear in the low-ene
physics. However, they may become relevant for some
gion of parameters to open an excitation gap and ther
form a ~small! plateau at that value of magnetization. Th
weak-coupling argument was successfully applied to the
teau problems.3,4 Combined with the Lieb-Schultz-Matti
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argument,5 the above selection rule~commensurability con-
dition! yields a relation satisfied by the period of the grou
state (QG.S.) and the plateau magnetizationmplat

z ,3

QG.S.~S2mplat
z !PZ. ~1!

From the preceding argument, it is now clear that t
periodicity of the underlying lattice plays a crucial role in th
plateau formation; it determines the value of a plateau
well as a magnetic~super!structure realized in the platea
phase. Although the situation becomes more complica
regular lattice structures and commensurability are esse
to plateaus even in higher dimensions.6

On the other hand, there may be some imperfections
defects in real materials used in experiments and diso
can also be introduced artificially by, say, random subst
tion. In such cases, the regularity mentioned above no lon
exists. In other words, randomness competes with the p
odicity crucial to the existence of plateaus. When the eff
of randomness overcomes that of commensurability
gapped plateau phase will be superseded by a certain ran
phase and the plateau may be smeared out.

The effects of randomness on magnetization proces
and on plateaus would be interesting in its own right. As
clear in the weak-coupling argument described above
many cases magnetization plateaus can be viewed as
analogs of band or Mott insulators in Fermi and Bose s
tems. Of course, magnetization translates into particle d
sity and a conducting state of interacting Bose liquids cor
sponds to a region of smooth magnetization curves.
example, random potentials in particle systems are noth
but random fields in the spin language. Accordingly, the
may appear some randomness-dominated phases~like the
Bose glass,7 the Anderson insulators,8 etc.! also in spin sys-
tems. The effects of disorder in gapped systems have bee
intriguing problem in strongly correlated systems.9–12

Furthermore, the problem of how quenched randomn
affects ground states of quantum spin systems attracts m
theoretical interest. For example, striking extended states
the random-singlet phase13,14with unusual scaling propertie
and the gapless~but localized! Griffiths-McCoy phase15 are
known to appear in bond-random spin systems16,17and quan-
tum Ising spin glasses.18
©2001 The American Physical Society20-1
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K. TOTSUKA PHYSICAL REVIEW B 64 134420
In the study of bond-random systems, it has been real
that spin chains respond to randomness quite differen
some phases of pure systems are topologically stable w
others are fragile against any weak randomness. Altho
there are many analytical14,17,19–21and numerical22–25studies
for the case with zero field andS51/2 or 1, only a few
works26,27 have been done for the magnetization process
free S51/2 randomXY chains. Examining the~in!stability
of various types of gapped and gapless states of interac
~quasi-! one-dimensional spin systems with or without a fie
would be interesting also in this respect.

The plan of this paper is as follows. In the next sectio
we investigate whether plateau states are stable or not b
strong-coupling expansion,28 which was proved powerful in
analyzing spin systems in a strong field. The result is diff
ent according to the type of plateau.

Section III is devoted to the derivation of the low-ener
effective action for the random spin systems. We use a p
nomenological argument based on the Tomonaga-Luttin
~TL! model. This approach relies on a physically reasona
assumption that spin chains in a strong enough field arege-
nerically described by a single-component TL model. By
careful analysis, we determine the form of the random c
pling and then apply the replica trick.

The renormalization-group argument is given in Sec.
There we will find that the renormalization-group flow
qualitatively different depending both on the types of ra
domness and on the value of magnetization~to be more pre-
cise, on the value ofS2mz). This point was overlooked in
previous analyses19,21 in this field and leads to striking dif
ference between the cases with and without an external fi
Exploiting the known exact solutions, we determine stron
coupling phases and discuss the fate of plateau phases i
presence of randomness. One of our main conclusions in
section is that stable intermediate plateaus are possible
for mz satisfyingQHam(S2mz)5 integer (QHam denotes the
period of the pure Hamiltonian!.

We summarize the main results in the final section.
brief discussion about the effects of randomness on the fi
induced long-range order~LRO! is presented as well. Som
of the results presented here were reported briefly in Ref.

II. STRONG-COUPLING ARGUMENT

Now we discuss the~in!stability of the plateaus agains
randomness. From the standard lore19,30 of the spinless fer-
mion ~which is equivalent to theS51/2 problems via the
Jordan-Wigner transformation!, we may speculate that pla
teaus in theS51/2 systems are unstable. However, this co
clusion is too hasty. Since the relevant~effective! particle
and the dominant instability depend both on the interacti
and on the value of magnetization, a more careful analys
needed.

In the pure cases, there are varieties of gapped gro
states. For example, the Haldane-gap phase31 appears in the
spin-1 Heisenberg chain and it was recently argued to
robust against randomness.20,32 Although the notion of topo-
logical stability and string order does not seem33 to allow
straightforward extension to higher-S Heisenberg chains
13442
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there is at least one family of solvable models called
VBS model,34,35 whose ground state is completely stab
against~bond! randomness forall S. On the other hand, a
spontaneously dimerized state of a certainS51 chain is ar-
gued unstable.36

More recently, a series of gapped ground states in a str
magnetic field have been found both theoretically and
perimentally. Some of them have their origin in the limit
clusters composed of a few spins and others are attrib
essentially to many-body effects. Hence a natural ques
arises as to which kind of plateau is stable against rand
ness and which is not.

Before embarking on detailed analyses, we investigate
problem of the stability of plateaus in a few extreme limi
In the following, we consider two different types of plateau
The first one is known to occur in, e.g., the followingS
53/2 model:3,37

Hlarge-D5J(
j 51

Sj•Sj 111D(
j

~Sj
z!22H(

j
Sj

z . ~2!

The origin of the plateau atmz5( jSj
z/L51/2 may be most

easily understood in the ‘‘atomic limit’’J50. In this limit,
the problem reduces to the single-site one;mz jumps atH
50 and H52D and between these values it is locked
mz51/2. The ‘‘plateau’’ is shown to persist down to a rel
tively small value ofD/J.37

The randomness in the external field is incorporated
disturbingH locally,

H j5H1D j . ~3!

The distribution ofD j may be taken as a box form:

P~D!5H 1

W
if uDu<W/2

0 otherwise.

~4!

The steplike magnetization process obtained above is
altered so much apart from that the curve in regions aro
H50 and H52D has a finite slope of 1/W, that is, the
~longitudinal! susceptibility x // becomes finite due to
quenched randomness even in the local limitJ50. Further-
more, we can explicitly calculate the transverse susceptib
x' ~an analog of the superfluid susceptibility! in this limit; in
the region of finitex // ~compressibility, in the language o
superfluids!, x' diverges logarithmically in the zero
temperature limit, whereas it remains finite in the plate
region. We may regard this phase as a spin analog of
Bose glass found in disordered Bose systems.7

Then what happens to this plateau if we switch on
couplingJ? A crude estimate may be obtained by low-ord
perturbations inJ (!D). Using the well-known spectra
property of random systems,38 the lower and the upper edge
of the mz51/2 plateau is evaluated at the first order
H lower55J1W/2 andHupper52D22J2W/2; as long asW
is smaller than the critical value 2D27J the plateau persists

The above results may not be so surprising from a co
mon belief that a system having a spectral gap is rob
0-2
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MAGNETIZATION PROCESS OF RANDOM QUANTUM . . . PHYSICAL REVIEW B64 134420
against small perturbations. In this sense, the second
ample is less trivial. Let us consider theS51/2 zigzag spin
ladder

Hzigzag5(
r

@J2~Sr
(1)
•Sr 11

(1) 1Sr
(2)
•Sr 11

(2) !1~11d!Sr
(1)
•Sr

(2)

1~12d!Sr
(2)
•Sr 11

(1) #2(
r

~Hr
(1)Sr

(1),z1Hr
(2)Sr

(2),z!.

~5!

The spinsSr
(1) and Sr

(2) coupled byJ2 bonds constituteS
51/2 chains 1 and 2, respectively, which are coupled to e
other by the zigzag interaction 16d. It is shown28,39 theo-
retically that the magnetization curve ofHzigzag has a single
intermediate plateau atmz51/4. Contrary to the example
discussed above, this plateau is attributed to a nontri
many-body effect and is accompanied by the spontane
breaking of the translational symmetry.28 In considering the
effects of bond and field randomness, it is convenient to
the strong-coupling expansion around the limit (11d)
@u12du,J2, which was successfully applied to the spin la
der in a strong field in Ref. 28 and later extended to m
complicated cases.40

Random components of the external field are introdu
as before:

Hr
(a)5H1D r

(a) ~a51,2!. ~6!

Of course, the integera(51,2) labels two chains. The prob
lem is readily solved ford51 to yield four eigenvalues
which depend onD r

(1,2) . Provided thatuD r
(a)u is small enough

compared with 11d andH, the strong-coupling expansion
still applicable; we can pick up ‘‘vacancy’’ and ‘‘particle
from the four states and calculate the matrix elements
Sr

(1,2) with respect to them to derive an effective Hamiltoni
for the particles by a perturbation expansion in (12d) and
J2. Up to the first order inD, the result is written down as

Heff5
1

4
@2J22~12d!#(

r
~br

†br 111br 11
† br !1

1

4
@2J2

1~12d!#(
r

nrnr 112
1

2 (
r

~D r
(1)1D r

(2)!nr . ~7!

In the above equation, we have tuned the~uniform! external
field to the particle-hole symmetric pointH5HPH5(11d)
1 1

4 (2J2112d). The hardcore boson~or fermion! operator
br

† (br) createsSz51 ~0! state on ther th rung;nr51 if the
r th rung is occupied bySz51 state and 0 otherwise. O
course, we may rewrite this in terms ofS51/2 pseudospins
using the Jordan-Wigner transformation; the plateau phas
the original problem is translated into the antiferromagn
cally ordered phase of the effective pseudospin~or hard-core
boson! model. It is important to note that the random va
ablesD r

(a) appear only in the symmetric formDsym5D r
(1)

1D r
(2) . The sumDsym acts as a new random field in th

effective pseudospin problem. The argument goes in a s
lar fashion also for the case of weak bond randomness;
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original problem reduces to the one of the spin-1/2XXZ
model with both weak bond randomness and a~weak! ran-
dom field.

According to the well-known argument due to Imry an
Ma,41,42 an ordered state like this is unstable against
domain-wall formation and any small random field destro
it in one dimension. Hence we may conclude that the h
(mz51/4) plateau of theS51/2 zigzag ladder vanishes upo
turning on the random field. A similar conclusion is obtain
for the bond-random case; the gap due to domain-wall
mation collapses and the density of states atE50 becomes
finite. For strong enough disorder, we may expect that
Bose-glass-like phase similar to the one occurring toHlarge-D
appears.

Now the difference from the first example is clear. In t
first example, the gap is purely local in its origin; if we crea
a cluster with a sizel whereSz takes different values from
the average~1/2 in the above example!, the energy cost is of
the orderl, while the energy gain due to the random fie
may be roughly estimated as const3Al . Thus the formation
of large clusters is energetically suppressed and the sys
remains uniform on the whole as is expected from
atomic-limit argument.

III. BOSONIZATION

In the previous section, we have seen that the stability
plateaus against weak~diagonal or off-diagonal! disorder de-
pends upon their types; in the first example, the platea
robust against randomness while the second plateau is no
the following, we consider the effects of quenched disor
in the framework of bosonization. We use a phenomenolo
cal approach based on the Tomonaga-Luttinger~TL! model
so that the argument may be independent of the detail
specific models. This approach relies on the~physically plau-
sible! assumption that the low-energy physics of quant
spin chains in a strong magnetic field is described by a sin
phase~or angular! variable, which corresponds to the az
muthal angle of a vector spin.43

Of course, we may start from the so-called compos
spin model21,44 and investigate how the renormalizatio
group ~RG! flow of 2S coupled spin-1/2 chains behaves f
low energies. In the presence of disorder, however, s
computations are cumbersome and it is difficult to extract
low-energy behavior of the desired spin sector out of ma
other auxiliary degrees of freedom. Instead, we consider
limit of strong Hund~interchain! coupling from the begin-
ning and incorporate randomness into the relevant spin
tor described generically by the single-component TL mod
Our approach may be justified when randomness is m
weaker than the Hund coupling.

In order to obtain the spin TL model relevant to our pu
pose, we follow the method in Refs. 4 and 44. That is,
prepare 2S copies ofS51/2 spin chains and ‘‘fuse’’ them by
a strong interchain~Hund! coupling. The desired low-energ
mode will be a symmetric combination of the 2S boson
fields.

For a singleS51/2 chain, the low-energy expression
the Hamiltonian and spin operators are given in terms of
0-3
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TABLE I. Expectation values of the pinned field and soft-mode momentaqsoft for generic and Ising-like
TL model. Note that expectation values which are not invariant underfdiff°2fdiff are unlikely for ferro-
magnetic Hund coupling.

Phases Expec. value Soft mode

Generic TL ^f i2f j&[0 (mod 2p) qsoft54SkF52p(S2mz)
Ising-like TL ^f̃ i2f̃ j&[0 (modp/A2) qsoft52kF5p(12mz/S)
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boson fieldsfa (a51, . . . ,2S) by45

HTL5E dx
vS

2p Fp2

R0
2

:Pa
2 :1R0

2 :~]xfa!2:G ,

sa
z;mz1

1

p
]xf̃a1const:cos@2kFx22f̃a#:, ~8!

sa
1;:eipx1 ifa cos@~2kF2p!x22f̃a#:

1const cos~px!:eifa:. ~9!

The Fermi wave number is given bykF5p(12mz/S)/2
(0<mz<S). The dynamical variablesfa correspond to
~staggered! azimuthal angles of spins, while their dualsf̃a

defined byP1,25]xf̃1,2/p are related to the translationa
mode. The above operatorssz ands6 are power-law corre-
lated with exponents determined only by a parameterR0,
which, together with the spin-wave velocityvS, is exactly
calculable by the Bethe ansatz~see, for example, Ref. 4 fo
numerical plots ofR0 as a function ofmz).

In general, (2S21) bosons~we call themfdiff) go higher
in energy in the limit of strong Hund coupling and the low
energy physics is described only by a single bosonfsym ~see
the Appendix for details!. In the strong-coupling regime
there are at least two kinds of gapless phases accordin
how thefdiff fields are renormalized. Whenfdiff are locked,
the dominant density wave is of 4SkF-type and the low-
energy effective spin operators assume the following form

sz;mz1
1

p
]xf̃sym

(1) 1const cos@4SkFx22f̃sym
(1) #,

s6;eipx6 ifsym
(1)

1¯ . ~10!

On the other hand, iff̃diff is locked, then the 2kF-density
wave analogous to that occurring in the so-called Luth
Emery liquid becomes dominant. The expectation va
should be invariant under the exchangef i↔f j ~see Table I!
and accordingly the spin operators are given by

sz;mz1
2S

p
]xf̃sym

(2) 1const cos@2kFx22f̃sym
(2) #,

~s6!2S;ei2Spx6 ifsym
(2)

1 . . . . ~11!

This type of low-energy theory was discussed in Ref. 44
the zero-field case and is important in considering the
called metamagnetic systems. Apart from a factor in fron
13442
to

s:
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]xf̃sym, the main difference consists in the form of the ch
acteristic wave number@4SkF52p(S2mz) or 2kF5p(1
2mz/S)#. Therefore it is convenient to introduce

K5H p~S2mz! for generic TL

p

2 S 12
mz

S D for Ising-like TL
~12!

to write the expressions in a unified manner. Of course,
both cases the Hamiltonian is given by the TL form

H5E dx
vS

2p Fp2

R2
:Psym

2 :1R2:~]xfsym!2:G ~13!

with renormalized parametersvS and R ~for example,R
5A2SR0* in the first case!. Since the correlation exponen
h2K of the 2K-oscillating part is given byh2K52R2, the
semiclassical (]xf̃sym) contribution dominates in the long
distance physics forR.1; the feature of discrete particle
manifests itself only for smaller values ofR.

In what follows, we mainly consider the first case~generic
TL phase! and suppress the suffix ‘‘sym’’ of the spin fiel
fsym. The case of the Ising-like TL may be treated similar
We summarize the expectation values and the soft-mode
menta in Table I.

It would be reasonable to expect that randomness cou
to the above low-energy modes (q50,2K) as long as the
Hund coupling, which makes thefdiff sector gapped, is much
larger than randomness and the pinning potential. A sim
situation is known to occur in the problem of disorder
Hubbard ladders.46

We begin by the diagonal disorder. For concreteness,
consider the random magnetic field applied along the sy
metry axis as a typical example of this kind of randomne
From the low-energy expression~10! of Sz, it is easily seen
that the random field may be incorporated into the lo
energy effective action as

HR.F.5
1

pE dxh~x!]xf̃1E dx@j* ~x!e22i f̃1j~x!e12i f̃#.

~14!

In the above equation, the time-independent slowly-vary
field h(x) and j(x) @j* (x)# denote q50 and q
52K(22K) components of the quenched random field,
spectively. Since we are considering lattice systems, there
always exceptional cases; for such special values ofmz
0-4
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MAGNETIZATION PROCESS OF RANDOM QUANTUM . . . PHYSICAL REVIEW B64 134420
asK50 or p modulo 2p ~or, S2mz5Z or Z11/2), ‘‘ran-
dom backscattering’’J(x) is real and the above expressio
should be replaced with

HR.F.5
1

pE dxh~x!]xf̃12E dxJ~x!cos@2f̃#. ~15!

For simplicity, we assume Gaussian distributions with z
mean for thed-correlated random variables

h~x!h~y!5p2Dhd~x2y!, j* ~x!j~y!5
Dj

2
d~x2y!,

J* ~x!J~y!5
DJ

2
d~x2y!, ~16!

h~x!50, j* ~x!5j~x!50, J~x!50,

where the bars denote quenched disorder averages. T
may model the situation of high impurity concentration.

Bond randomness can be treated similarly. WhenS2mz

ÞZ or Z11/2, the random part of the Hamiltonian is give
by

HR.B.5
1

pE dxh~x!]xf̃1E dx@j* ~x!eiKe22i f̃

1j~x!e2 iKe12i f̃#. ~17!

In the above expressions, we have dropped less relevan
teractions. Note thatHR.B. @Eq. ~17!# is essentially the sam
asHR.F. @Eq. ~14!#. Therefore we may expect that the syste
behaves similarly underboth types of randomness when th
value of S2mz is generic. In the case whereS2mz

5Z or Z11/2, the relevant coupling to the random bond
again real andHR.B. reads

HR.B.5
1

pE h~x!]xf̃~x!

1H 2E dxJ~x!sin@2f̃# for S2mzPZ11/2

2E dxJ~x!cos@2f̃# for S2mzPZ.

~18!

Equations~15! and ~18! are derived for uniform systems
Extension of them to systems with longer periods is straig
forward; we have only to replaceS2mz with QHam(S
2mz). For special cases wheremz50 and there is no exter
nal ~neither uniform nor random! field, the exact ‘‘particle-
hole symmetry’’ (Sz°2Sz andS6°S7),

f°2f, f̃°2f̃1Sp, ~19!

forbid the first term in Eq.~18! to exist in the action. We will
see in Sec. IV B that the RG flow has a special feature
such cases.

Of course, there is a relevant interaction which leads
the plateau
13442
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E dxdt:cos@2Nf̃#:. ~20!

Although we have written the interaction using a single c
sine, it can be sine or a sum of sine and cosine accordin
the symmetry constraints such as the site parity. The inte
N, magnetizationmz, and the period of the Hamiltonian
QHam satisfy the commensurability condition3

NQHam~S2mz!PZ. ~21!

Of course, this condition is replaced withNQHam/2(1
2mz/S)PZ for the Ising-like case. Remember thatQHam is
not always equal to the period of the ground stateQG.S.. To
eliminate the random variables, we use the standard rep
trick, that is, we firstn-plicate the action and then integra
out the Gaussian random fields. Thus we arrive at the mu
plicatednonrandomaction:

Srep5E dxdt (
a51

n
1

2p F 1

vSR
2
~]tf̃

(a)!21
vS

R2
~]xf̃

(a)!2G
1UE dxdt (

a51

n

:cos@2Nf̃ (a)#:

2DhE dxdtdt8 (
a,b51

n

]xf̃
(a)~t!]xf̃

(b)~t8!

2DjE dxdtdt8 (
a,b51

n

cos$2@f̃ (a)~t!2f̃ (b)~t8!#%

2Dj8E dxdtdt8 (
a,b51

n

cos$2@f̃ (a)~t!1f̃ (b)~t8!#%.

~22!

The resulting low-energy action is similar to that used for t
boson localization problem,7,30 in which only the case where
N51 and a region where the locking cos potential (U term!
is irrelevant was treated. Another important difference is t
existence of theDj8 interaction@the last term in Eq.~22!#. It
may seem strange because such an interaction is not g
ated by the Gaussian average of some random variables
is easily verified, however, we have to takeDj5Dj85DJ or
Dj52Dj85DJ for real random backscatteringJ(x). This
term has not been taken into account in the previo
studies19,21 and the necessity of it is closely related to t
particle-hole symmetry. The physical implication of it is di
cussed below in conjunction with the RG flow.

Considering a statistical selection rule, we can easily
that an interaction like this is actually allowed. Althoug
~typical! random systems do not possess any translatio
symmetry, the averaged ones recover it and we may imp
translational invariance on theaveragedaction Srep. As in
the pure cases, we replace the microscopic lattice transla
by a discrete shift of the boson fields:3,4

f̃ (a)°f̃ (a)2QHamK ~a51, . . . ,n!. ~23!
0-5
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If an interaction in the averaged action is invariant under t
operation, then it is allowedin a statistical sense. The Dj

interaction is always possible, whereasDj8 is allowed only
for

QHam~S2mz!PZ or Z11/2. ~24!

Actually, whenever theN52 pinning potential, which is
possible forQHam(S2mz)PZ or Z11/2, is present, RG gen
eratesDj8 radiatively.

IV. RENORMALIZATION-GROUP ANALYSIS

In this section, we treat the low-energy effective acti
~22! by the renormalization-group~RG! method and investi-
gate the effects of randomness on various gapped st
However, a weak-coupling RG approach is known to
hampered partly by the lack of the mean-field limit arou
which the theory is«-expanded and also by the existence
large strongly correlated rare regions. Hence we first use
equations to identify flow towards the strong-coupli
phases and then investigate these phases with the he
exact results obtained for some special cases.38

We compute the beta function using the operator-prod
expansion following Refs. 10 and 21. After taking the lim
n→0, we arrive at the final result:

dR2

d ln L
52

p2

vS
N2~R2!2U22

4p

vS
~R2!2Dj ,

dvS

d ln L
524p~R2!Dj ,

dU

d ln L
5@~22N2R2!22p2~R2!2N2Dh#U22dN,2Dj8 ,

~25!

dDh

d ln L
5Dh14g2~R2!~Dj

22Dj8
2

!,

dDj

d ln L
5~322R2!Dj22dN,2g~2R2!Dj8U,

dDj8
d ln L

5~322R2!Dj822dN,2g~2R2!DjU

28p2~R2!2DhDj8 .

The effective coupling constantg(R2) is defined by the
integral10

g~R2![E
2`

`

dt
1

~11t2!R2 , ~26!

which is convergent only forR.1/A2 to give ApG(R2

21/2)/G(R2) and diverges logarithmically asR→1/A210.
When the valueS2mz5Z or Z11/2, the action reduce

to a special caseDj
(0)5Dj8

(0)
5DJ

(0) or Dj
(0)52Dj8

(0)
5DJ

(0) ,
respectively, as is seen in Eqs.~15! and ~18!. In this case,
whether the forward-scatteringDh exists or not crucially af-
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fects the low-energy physics. From the RG flow equations
follows that if the forward-scatteringDh is zero initially,
then it remains so in the RG process. That is, the rand
forward-scatteringDh is not generated radiatively whenS
2mz5Z or Z11/2 and the initial relationDj5Dj8 or Dj

52Dj8 remains true at least in the weak-coupling regim
where theb functions ~25! are valid. From the RG view-
point, only the inversion (Sz°2Sz) symmetric case, that is
the case withDh

(0)50 and (Dj
(0))25(Dj8

(0))2, is special. Oth-
erwise, the RG process generates terms which do not e
initially and neither (Dj)

25(Dj8)
2 nor Dh50 holds in gen-

eral. This fact is important in treating the case of bond ra
domness whenS2mz5Z or Z11/2.

In order to consider the strong-coupling phases, it wo
be convenient to introduce the~dynamical! spin stiffness
Dspin, which is a spin analog of the Drude or superflu
weight, and the ~differential! susceptibility x // . In the
Tomonaga-Luttinger language, they are written as

Dspin5
vSR

2

p
, x //5

R2

pvS
. ~27!

The flow equations for these quantities read

dDspin

d ln L
52~pN2U218Dj!~R2!2,

dx //

d ln L
52

p

vS
N2~R2!2U2. ~28!

Note that the interactionU between magnetic excitations re
duces bothDspin andx // while the random backscatteringDj

decreases onlyDspin.
If disorder couplings (Dh ,Dj) grow much faster thanU,

the interactionU eventually renormalizes to 0 and we expe
the strong-coupling theory to be characterized byDspin50
andx //Þ0. On the other hand, when bothDh andU renor-
malize to infinity, the strong-coupling theory will have van
ishing Dspin and x // . We may regard the first and secon
cases as spin analogs of the Bose glass7 and the Mott
insulators,47 respectively.

Taking into account the weak-coupling RG behavior, w
have to consider the following three cases:~i! the incommen-
surate case:NQHam(S2mz)¹Z for small integersN; ~ii ! the
inversion symmetric case:QHam(S2mz)PZ or Z11/2 and
no uniform/random field; and~iii ! the commensurate case
NQHam(S2mz)PZ for a not so large integerN. The last case
includes situations whereQHam(S2mz)PZ or Z11/2 and a
random field is present.

A. Incommensurate cases

Now let us consider what the RGb functions~25! imply
to the~in!stability of plateaus. We begin by the simplest ca
~i! where magnetizationmz takes an incommensurate valu
In these cases, we can setU50, Dj850 in the RG flow
equation and bond and field disorder have almost the s
effects as mentioned in the previous section@see Eqs.~14!
and~17!#. Then the couplingh(x) (q50 component, or ran-
0-6
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dom forward scattering! can be eliminated formally30 by

shifting the dual fieldf̃. There are only three couplings
R, vS, andDj , left and the behavior of this system is we
known;7,30,48for R,A3/2 the system is unstable to an infin
tesimal perturbationDj and becomes the Bose glass. On t
other hand, for larger values ofR the system remains to b
the TL liquid as far as the randomnessDj is not very strong.
In the sense that there is no gap-generating interaction in
absence of disorder, the situation is similar in the so-ca
gapless spin-fluid region appearing in the absence of an
ternal field. For example, it is suggested49 that the ferromag-
netic region of the spin-S XXZchain is described by the TL
model with R2 given simply byR25pS/(p2cos21 D) (D
,0 denotes the Ising anisotropy! and the TL phase survive
the weak~bond/field! randomness whenS>1. Although the
Hamiltonian takes the form of the TL model, the groun
state correlation functions get modified substantially a
only the q50 component remains in the long-distance
ymptotics of^Sz(x)Sz(0)&.

We apply the above results to three examples. In conju
tion with the magnetization process, the behavior in the
cinity of the onset of magnetization~i.e., near the edges of
plateau! would be interesting. For a plateau characterized
the order of commensurabilityN, the parameterR takes an
asymptotic value 1/N(<1) near the edge.50 Hence when ran-
domness~field or bond! is present, any plateau region, if
exists, is surrounded not by the TL phase but by the B
glass phase. Near the edge, localization takes place fo
finitesimally small randomness~in this sense, Bose glass a
pears unconditionally!. Of course, the existence of such pl
teaus in the random system is highly nontrivial and we de
the problem to the following subsections.

Whether a region away from the edge belongs to the B
glass or not is model dependent. For example, we consid
spin chain close to the saturation; it is known that the sys
is described asymptotically byR51/N51 theory near satu
ration ~i.e., mz→S20) and magnetization approaches t
saturated value in a singular manner for clean syste
Analysis of the two-particle scatterings tells us that the sp
S Heisenberg antiferromagnetic chain near the edge is
ymptotically described by the nonlinear Schro¨dinger model51

with the coupling constantc52/(S21).52 We solved the Be-
the ansatz integral equations numerically and found that
region of the above unconditional localization (R,A3/2) is
confined only in the vicinity of saturationmz5S for S
.3/2.53 A similar argument applies also to the close vicin
of the lower critical field of the integer-spin Heisenbe
model. For sufficiently largeS, we can use the exact solutio
of the O~3! nonlinear sigma model54 and similar results are
obtained;R rapidly increases away from the lower critic
field and the Bose glass phase is confined only to a nar
region around the critical field.

This is natural in view of the classical limit of antiferro
magnetic spin chains; theT50 classicalantiferromagnetic
XXZ chain always has a staggered order in thexy plane
regardless of antiferromagnetic bond disorder or a rand
field in thez direction. Our finding means that as the spinS
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is increased the classical limit of the Heisenberg mode
reached rather quickly except in the vicinity ofmz50 andS.

Another interesting example is the two-leg spin ladd
which have been extensively studied in several conte
Among them, a strong-coupling ladder28 ~i.e., the coupling
on rungs is much larger than that in the leg direction! is
directly relevant to materials CuHpCl~Ref. 55! and BPCB
~Ref. 57!. The strong-coupling argument presented in Sec
is useful also in the incommensurate phase. The region ab
~below! mz51/2 corresponds to a positive~negative! exter-
nal field in the effectiveXXZ model~7!. The exact solution56

tells us thatR is always smaller thanA3/2 and this fact, when
combined with the RG argument,7,30 implies that the ground
state is the Bose glass for any small~bond or field! random-
ness at least for the repulsive case 2J21(12d).0. Recent
magnetization measurements58 carried out for Br-substituted
CuHpCl @Cu2(C5H12N2)2(Cl12xBrx)4# show rather different
behavior from the pure cases (x50 andx51) and we expect
that this is related to the Bose glass formation.

B. No external field

Before discussing the fate of plateaus in the presenc
randomness, we pause to investigate the special case w
no external field (H50 andmz50) is applied and only the
bond randomness exists. That is, we consider systems in
ant under a simultaneous spin inversion:Sj

z°2Sj
z ~or, f°

2f, f̃°Sp2f̃). In random systems without any kind o
spatial symmetry, internal symmetries are expected to p
important roles in classifying the universality classes. As
expected from the RG flow in Sec. IV, the situation in t
inversion-symmetric case is strikingly different from those
other cases and should be treated separately. Inversion
metry enforcesDh50 and eitherDj1Dj850 ~for SPZ
11/2) or Dj2Dj850 ~for SPZ) holds.

For clarity of argument, we take theS51/2 spin chains
with bond randomness, whereDj1Dj850 holds. In this
case, several interactions which lead to gapped ground s
~i.e., plateaus! are possible. Among them, we consider tw
types:

UE dx sin@2f̃~x!# ~N51! ~29!

and

UE dx cos@4f̃~x!# ~N52!. ~30!

The first interaction corresponds to bond alternation and
second one leads either to the SDW or~spontaneously!
dimerized phases59 according to the sign ofU. Cases with
S>1 may be treated similarly; for example,S51 bond-
alternating chains correspond to44 the caseN51.

In the first case withN51, bothU and 2DJ[Dj2Dj8
grow under renormalization and the space-time anisotr
develops. It is difficult to obtain the correct low-energy b
havior from the low-order RG analysis. Fortunately, exa
results are available38 for this case. That is, if we assume th
0-7
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the precise value ofR is irrelevant in the low-energy fixed
point, this problem can be fermionized to the so-cal
random-mass Dirac fermion,

HRMDF5E dxF2 ic1
†]xc11 ic2

†]xc2

1S 1

2
U1J~x! D ~c1

†c21c2
†c1!G , ~31!

discussed in many contexts.60–62 Note that inclusion of
forward-scatteringDh corresponds to adding an imagina
part toJ(x). The~averaged! density of states~DOS! r(E) is
computed exactly60 and it shows that the gap collapses
soon as the randomness is turned on although a regio
very small DOS survives ifU is larger thanDJ . The special
point is that the~averaged! DOS behaves algebraically like

r~E!;E1/z821 ~32!

around the band centerE50 and the state is localized with
finite localization length 2/U. As a consequence, the longitu
dinal susceptibilityx // has a low-temperature asymptot
form x //;(1/T)121/z8, which diverges forz8.1. The dy-
namical exponentz8 depends on the strength of disord
DJ , the value of the gapU/2, and so on. In our simple cas
it is given byz85DJ /(2U). Namely, the system exhibits th
so-called Griffiths-McCoy singularity15 for low tempera-
tures. This behavior was found also by the real-space d
mation method17 and was confirmed numerically.63

It would be interesting to consider how the magnetizat
increases in this phase. For a weak magnetic field, mag
zation per site is proportional to the integrated average d
sity of statesN(E), which is also computed exactly as60

N~E!5
DJ

p2@J1/2z8
2

~2E/DJ!1Y1/2z8
2

~2E/DJ!#

;
DJ

G2
„1/~2z8!…

S E

DJ
D 1/z8

~E;0!. ~33!

In the above equation,Jn , Yn , and G denote the Besse
function of the first kind, that of the second kind, and theG
function, respectively. Hence the ground state ismagnetic
and magnetization increases algebraically fromH50 as

mz;H1/z8. ~34!

A similar result has been obtained for the random transve
field Ising spin chain.16,64 We show the magnetization curv
for a few values ofDJ in Fig. 1. In the limit of a uniform
chainU→0, z85DJ /(2U) diverges and the so-called ran
dom singlet phase14 is realized where an extended state e
ists only atE50 and a logarithmic singularity appears. No
that contrary to the noninteracting case, the above expres
~34! will hold only in a narrow region aroundmz50.

It should be stressed that our effective field-theory
proach predicts thatall half-odd-integer spin chains with
bond alternation behave similarly under bond randomn
the gap in the DOS due to bond alternation collapses
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instead the algebraic behavior at the band center, which le
to the so-called Griffiths-McCoy singularity, sets in.

In the second case, the order of commensurability is gi
by N52 and the pure system has two degenerate gro
states, both of which break the translational symmetry.
example, in theS51/2 XXZ-like model with next-nearest
neighbor interaction,59 positive ~negative! U corresponds to
the dimer@Néel or spin-density wave~SDW!# phase. In gen-
eral, the sign ofU determines whether the site parity~i.e.,
reflection with respect to a given site! is spontaneously bro
ken or not.

We treat the caseU.0 ~‘‘dimer’’ phase! first. Note that
dimerization in this case isspontaneouslygenerated. BothU
and D̃j grows first and accordingly the value ofR gets re-
duced@see Eq.~25!#. Then the effective coupling constan
g(2R2) takes a large value to increaseD̃j further. Finally,
dU/d ln L turns to negative andU converges to zero. In a
sense, this is similar to the field-theoretical interpretation10 of
the Imry-Ma effect. In the vicinity ofR51, the low-energy
physics will be determined by Eq.~31! with U50 and we
may expect that the random-singlet phase14 takes over the
dimer phase.

This is not restricted to theS51/2 case. ForS>1, spon-
taneous dimerization is known to occur for a certain fam
of spin-S chains:65

HBBK52(
j

Ji ,i 11P0~Si ,Si 11!, ~35!

where P0 denotes the projection operator onto the sing
subspace spanned bySi andSi 11 andJi ,i 11 is assumed posi-
tive. The situation for the pure chain is similar65 to the case
U.0 described above and we can conclude that the dim
ized ground state is fragile and the random-singlet phase
pears upon introducing randomness intoJi ,i 11. Actually, the
method of real-space decimation13 is well-defined for the
Hamiltonian~35! and leads to the same conclusion.36,66

On the other hand, forU,0, the divergingly large
g(2R2) implies the contrary; it switchesD̃j from increasing

FIG. 1. Magnetization curve obtained forN51 andU52 by
using HRMDF . Solid line: Dh50.2, DJ50.08; dashed line:Dh

50.2, DJ50.8. The origin corresponds to the center of a plate
and magnetization is measured from the plateau magnetiza
Also shown is the magnetization curve for the pure case~thin bro-
ken line!. For the valueR51 used here, the system is compressib
Bose glass~see bold lines!.
0-8
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to decreasing@note thatU enters the flow equation ofD̃j in
the form 12g(2R2)D̃jU#. The result is that the gap
generating interactionU is diverging. That is, the Ne´el ~or
SDW! phase isrobustagainst weak bond randomness. No
that the difference in the sign ofU leads the system to com
pletely different phases.

C. Case of plateaus

Finally, we discuss stability of plateaus appearing in
presence of a strong field. Here we mean by plateaus ga
states occurring in a finite field. Throughout this subsecti
the integerN appearing in Eq.~21! plays an important role
Note that there is no apparent inversion symmetry in th
cases and that the special symmetryuDju5uDj8u,Dh50 is
no longer preserved in the RG process. In fact, we can
plicitly verify that nonzero expectation value^Sz&5mz intro-
duces the random forward-scatteringh(x) through theSzSz

coupling.
For generic cases whereQHam(S2mz) equals neither an

integer nor a half-odd integer, the effective low-energy
tion is given by Eq.~22! with Dj850 regardless of whethe
randomness is concerning the external field or exchange
plings, and the problem reduces to that of the effects of r
dom field at incommensurate magnetization. In these ca
only plateaus withN>3 are allowed in pure systems. As wa
pointed out in Ref. 10, whenN>2, the divergingly large
g(R2) prevents the gap caused byU from surviving the dis-
order. Therefore small randomness smears out plateau
the Imry-Ma effect whenQHam(S2mz)ÞZ or Z11/2.

When QHam(S2mz)PZ11/2, the lowest possible valu
of N allowed by Eq.~21! is 2. As in the above case, platea
are fragile in the presence of disorder likeh. Hence three-
dimensional effects are necessary to maintain the plateau
this class. In all the above cases, plateau regions in the
cases are replaced by localized~but gapless! Bose glass
phases.

Now we discuss the only remaining case:QHam(S2mz)
PZ, where the lowest possible commensurability is given
N51. For example, themz51/2 plateau of theS51 bond-
alternating Heisenberg chain67,68 and mz51/2 plateau ofS
53/2 Heisenberg chain withD term37 fall into this category.
An N51 plateau is in a sense robust against randomness42,69

because it is not always subject to the Imry-Ma effects. T
robustness of this kind of plateau is anticipated also from
strong-coupling argument in Sec. II. As was pointed out
Fujimoto and Kawakami,10 the low-energy behavior is dete
mined by the competition betweenU andDh ; for largeDh
compared withU, the random forward-scatteringDh col-
lapses a gap and then the resulting gapless system bec
localized~Bose glass! by the ‘‘random backscattering’’Dj .
On the contrary, whenU is sufficiently large, the gap persis
and the system behaves as a Mott insulator (Dspin50,x //
50).

Therefore the DOS around the band center is expecte
be zero for weak enough randomness and the gap~i.e., pla-
teau! is not smeared out. Strictly speaking, however, this w
be valid for suchboundedrandomness as the box distrib
tion. Again, a special pointR51 can be treated by addin
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random forward-scatteringh(x) to HRMDF @Eq. ~31!#.27,60

Only a smooth crossover from the Anderson localized~finite
DOS atE50 but localized! to the Mott localized~vanishing
DOS at E50 and localized! behavior occurs aroundU
;Dj/J ~see Fig. 1! in our continuum model. We expect tha
this is an artifact by using an unbounded distribution and t
there occurs generically a~first-order! transition in between
as seen in Sec. II.

To summarize the above argument,in strictly one-
dimensional systems, stable plateaus are possible only f
magnetizationmz satisfying

QHam~S2mz!5 integer. ~36!

Note that the period appearing in the above equation is
of Hamiltonian. For example, plateaus in Refs. 67 and
(S51,mz51/2,QHam52) and Ref. 37 (S53/2,mz

51/2,QHam51) are stable against weak randomness in
above sense. The results obtained here are consistent
those of strong-coupling expansions.

A remark is in order here about the difference between
Bose glass and the TL liquid. In the Bose glass phase,
correlation isspatiallyshort ranged and hence the system h
a vanishing stiffnessDspin, while it has long-ranged correla
tion in the ~imaginary! temporal direction~thus having non-
zero compressibilityx //!. Because the gap in the DOS va
ishes, magnetization increases smoothlyalready in the local
limit. As has been shown in Sec. IV A, the vicinity of th
edges of a plateau always belongs to the Bose glass~BG!
phase; magnetization-onset transitions occurring there is
Bose condensation in thereal space~not in the momentum
space!.

On the other hand, the TL liquid has a gapless grou
state as a consequence of many-body effects. Accordin
the ground state is extended and has a finite stiffness. In
cases, the DOS is always finite and the ground state is m
netic ~or compressible, in the particle language!. In other
words, the TL liquid can hardly be distinguished from th
Bose glass only by the magnetization process.

V. SUMMARY AND DISCUSSION

In this paper, we investigated magnetization processe
random quantum spin chains. Strong-coupling argume
suggest that~in!stability of various gapped state of 1D qua
tum spin systems depends on the type of randomness
existence or nonexistence of spontaneously broken sym
try, and so on. Guided by these findings, we formulate
phenomenological approach to the problem of random s
chains.

We started by mapping a single spin chain without ra
domness onto a perturbed Tomonaga-Luttinger model. Th
are many analytical and numerical evidences to support
mapping. Then, we assumed weak randomness and han
it by the so-called replica trick to obtain the renormalizatio
group ~RG! equations. The RG analyses showed us that
weak-coupling RG behavior is qualitatively different accor
ing to whether the random forward scattering is presen
not. This led us to divide the situations into three categor
0-9
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~i! incommensurate cases,~ii ! inversion (Sz↔2Sz) symmet-
ric cases~with no uniform or random external field!, and~iii !
commensurate cases~without inversion symmetry! where
magnetization plateaus appear.

Case (i). In the first case, there is no relevant interacti
competing with randomness and the system is described
gapless spinfluid when disorder is absent; the weak-coup
RG gives the reliable answer that the system is in the lo
ized Bose-glass~BG!-like phase unconditionally when th
~fully renormalized! phenomenological parameterR is
smaller thanA3/2 and finite amount of randomness is nec
sary to localize the system forR.A3/2. In the BGphase,
longitudinal susceptibility x //5R2/(pvS) remains finite
while the dynamical spin stiffnessDspin vanishes. A typical
example of the incommensurate region is a smooth por
of magnetization processes. In the strong-coupling regio
the two-leg spin ladder~see Sec. II!, the conditionR,A3/2
is satisfied all the way from the lower critical field to th
saturation field and a single isolated ladder always localiz
The spin-S XXZchain (S>3/2), on the other hand, doesnot
localize in almost the whole portion of the finitely magn
tized region.

The effect of random forward-scatteringDh is most high-
lighted in the second and third cases.

Case (ii). When Dh50 and no uniform field is applied
initially, the RG flow goes to the strong-coupling regim
preserving the propertyDh50. Although our weak-coupling
RG itself is no longer reliable for such strong couplings,
can obtain some insights by mapping the problem to a s
able fermionic model—the random-mass Dirac fermion.
combination of the exact solution and the RG analyses le
to the following conclusion: when the pure system has a
and no translational symmetry is~spontaneously! broken, the
system is in the so-called quantum Griffiths phase and a g
less ground state with a finite localization length proportio
to the inverse of the gap. If the translational symmetry
brokenspontaneously, the situation is more subtle; in som
cases the pure gapped ground state is collapsed by the
domness and it is not in other cases. For example, such s
taneously dimerized phases as occur inHBBK @Eq. ~35!# is
easily destroyed by bond randomness while Ne´el-like
charge-density wave~CDW! states are robust. In the forme
we may expect that the extended random-singlet phase t
over.

Case (iii). In this case, the system is finitely magnetiz
and the inversion symmetry which was quite important
case~ii ! is already broken. The cases withmz50 and Dh
Þ0 also fall into this category. Then, the treatment of S
III shows that diagonal disorder~random field! and off-
diagonal disorder~random bond! can be treated in the sam
manner. We may naively speculate that the gapped sys
~plateau systems! are insensitive to disorder. However,
least in one dimension, the stability of the gapped states
pends strongly on the type of plateaus, or the degree of c
mensurabilityN. As is well known as the Imry-Ma mecha
nism, the gapped states withN>2 is fragile to the diagona
disorder like a random field; the gap collapses and the
tem is localized.

The case withN51 is, in this sense, not so well esta
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lished as in the above cases. Strong-coupling argum
~Sec. II! and RG analyses indicate that plateau gaps are
bust and transitions into BG phases do occur at fin
strength of disorder. Quite recently, the possibility of a n
intervening phase~incompressible but conducting! was
pointed out70 in the context of a spinless fermion with diso
der. The bosonized action used there is similar to oursN
51) and there might be analogous phases also in spin
tems. We postpone this interesting problem to future wor

Finally, we briefly discuss the effect of disorder on th
field-induced LRO occurring generically for incommensura
magnetization.

Recently, examples of long-range 3D ordering in a stro
magnetic field have been reported71–73 for various spin-
gapped systems. In the particle language, this LRO in
direction perpendicular to the external field can be viewed
superfluid LRO and the problem is a spin analog
superfluid-insulator transitions driven by disorder.

For example, if anS51/2 zigzag spin ladder system
CuHpCl or BPCB is treated as a strictly one-dimensio
model, strong-coupling argument predicts that any weak
order localizes the incommensurate phase betweenmz50
andmz51/2 as has been mentioned in Sec. IV A. The thr
dimensional coupling weakens the effect of disorder and
vors the 3D LRO. Since the forward scatteringh(x) makes
the 2K component of̂ Sz(x)Sz(0)& decay exponentially, we
have only to take into account the superfluid LRO. We c
ried out a mean-field analysis similar to that in Ref. 74 f
the valueR50.9 ~which is appropriate for the midfield re
gion of CuHpCl! and Jinterchain/Jchain51/10 to find that the
~mean-field! transition temperatureTc(Dj)/Tc(Dj50) rap-
idly decreases to zero at aroundDj'0.2 ~beyond which no
LRO occurs for all temperatures!. Therefore for samples
with sufficiently weak disorder, we may expect a 3D ord
ing transition to occur as temperature is varied.

After completion of this work, we became aware of
paper investigating a magnetization process of a rand
q-merizedS51/2 spin chain.77 They found a plateau at a
irrational value of magnetization; the appearance of it
possible only when disorder in exchange couplings ex
and completely different from those treated in this paper.
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APPENDIX

In this appendix, we briefly describe the derivation of t
low-energy effective model used in Sec. III. In Sec. III, w
started from 2S coupled Tomonaga-Luttinger models and a
gued that only one of them is relevant to low-energy phys
On general grounds, we may expect that it is given by
symmetric combination
0-10
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fsym5
1

A2S
(
j 51

2S

f j . ~A1!

Considering thatfsym is directly related to totalSz, we can
easily see that it describes the ‘‘spin’’ sector of the spinS
model.

For the sake of clarity, we consider theS51 ~i.e., two
chain! case to demonstrate how the spin sector is singled
in the limit of a strong Hund coupling. By using these co
tinuum expressions, we can write the relevant part of
interchain interactions4,44 as

l1 : cos@~G24kF!x12~f̃11f̃2!#:, ~A2!

l2 : cos@2~f̃12f̃2!#:, ~A3!

l3 : cos@~f12f2!#:. ~A4!

The scaling dimensions of these operators are

x15x252R0
2 , x351/~2R0

2!2. ~A5!

In the above equations, the quantityG denotes the
reciprocal-lattice vectorG52p/a0 and the parameterR0 is
computed using the exact solution.56 As was described in
Sec. III, kF is uniquely determined by magnetization:

kF5
p

2
~12mz/S!.

It would be convenient to introduce the two fields~‘‘spin’’
and ‘‘charge’’ in the language of electron systems!

fsym5
1

A2
~f11f2!, fdiff5

1

A2
~f12f2! ~A6!

in place off1 andf2. For S>3/2, the decomposition is no
unique and it is convenient to consider$fdiff% as a set of
e

13442
ut
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e

independent operators likef i2f j .
Note that only the first interactionl1 contains thekF ~or

magnetization!-dependent factor. The remaining two a
magnetization independent and drive thefdiff sector massive
regardless of the value of magnetization. Hence we may
pect that in the strong-coupling region only thefsym boson
remains gapless for generic values of magnetization and
system is described by a single-component TL model.

Here we have to comment on another important case w
several gapless degrees of freedom. It is known that there
models75 which are described by multicomponent TL mode
in a field. The preceding argument is not applicable straig
forwardly to these models and we focused only on
single-component case in the text.76

As we mentioned in Sec. III, at least two kinds of gaple
phases are possible according to how thefdiff field is renor-
malized. Whenfdiff is locked and^cos(A2f̃diff)&50, the
2kF-oscillating terms vanish and a higher 4kF-density wave
becomes dominant. Therefore the low-energy effective s
operators take the following forms:

sz;mz1
1

p
]xf̃sym

(1) 1const cos@4kFx22f̃sym
(1) #

s6;eipx6 ifsym
(1)

1¯ . ~A7!

We included the explicitS dependence in Eq.~10!.
On the other hand, iff̃diff is locked, then cosA2f̃diff has a

finite expectation value and the 2kF-density wave analogou
to that occurring in the so-called Luther-Emery liquid b
comes dominant. Since the Hund coupling is ferromagne
the resulting low-energy theory should be invariant under
interchange f1↔f2. This implies that ^f̃diff&
[0 (modp/A2) and we arrive at expressions~11!.
v.
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