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Tunnel splitting and quantum phase interference in biaxial ferrimagnetic particles at excited states

Yi-Hang Nie,1,2,* Yan-Hong Jin,3 J.-Q Liang,1 and F.-C Pu3,4

1Institute of Theoretical Physics and Department of Physics, Shanxi University, Taiyuan, Shanxi 030006, China
2Department of Physics, Yanbei Normal Institute, Datong, Shanxi 037000, China

3Institute of Physics and Center for Condensed Matter Physics, Chinese Academy of Sciences, Beijing 100080, China
4Department of Physics, Guangzhou Normal College, Guangzhou 510400, China

~Received 20 November 2000; revised manuscript received 29 March 2001; published 12 September 2001!

The tunneling splitting in biaxial ferrimagnetic particles at excited states with an explicit calculation of the
prefactor of exponent is obtained in terms of periodic instantons that are responsible for tunneling at excited
states and is shown as a function of magnetic field applied along an arbitrary direction in the plane of hard and
medium axes. Using complex time path integral we demonstrate the oscillation of tunnel splitting with respect
to the magnitude and the direction of the magnetic field due to the quantum phase interference of two tunneling
paths of opposite windings. The oscillation is gradually smeared and in the end the tunnel splitting monoto-
nously increases with the magnitude of the magnetic field when the direction of the magnetic field tends to the
medium axis. The oscillation behavior is similar to the recent experimental observation with Fe8 molecular
clusters. A candidate of possible experiments to observe the effect of quantum phase interference in the
ferrimagnetic particles is proposed.
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I. INTRODUCTION

The macroscopic quantum phenomenon in spin system
low temperature has attracted considerable attention
theoretically and experimentally for more than a decade1–4

The magnetization vector in a single-domain ferromagn
~FM! grain and the Ne´el vector in a single-domain antiferro
magnetic~AFM! grain can tunnel from a metastable state
a stable one, which is called the macroscopic quantum
neling, or display a coherent oscillation between two deg
erate states, which results in the superposition of ma
scopically distinguishable~classically degenerate! states~ the
understanding of which is a long-standing problem in qu
tum mechanics! and is called macroscopic quantum coh
ence ~MQC!. The geometrical phase~known as the Berry
phase! interference plays a crucial role in the MQC. Th
quenching of MQC can be interpreted by the quantum in
ference between tunneling paths of opposite windings
possess a phase with obvious geometric meaning.5–7 The
quenching of MQC for half-integer spin has been sho
physically to be related to Kramers’ degeneracy, howe
the effect of geometric phase interference is far richer t
that. For example, when the external magnetic field is
plied along the hard anisotropy axis, a new quenching
MQC occurs and is not related to Kramers’ degeneracy s
the external magnetic field breaks the time-rever
symmetry.8 The Zeeman energy of the biaxial spin partic
associated with the external magnetic field produces an
ditional geometric phase of tunnel paths that leads to
quantum interference, and the tunnel splitting therefore
cillates with respect to the magnetic field. The oscillations
the level splitting for the ferromagnetic particles have be
verified by the experiment with molecular clusters Fe8,
which at low temperature behave like a ferromagne
particle.9 The experimental observation of the oscillation
tunnel splitting has triggered off more detailed investigatio
along this direction.10–12 Since the tunneling rate in AFM
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particles is much higher than that in FM particles of the sa
volume13 the AFM particles are expected to be a better c
didate for the observation of macroscopic quantum phen
ena than the FM particles. The quantum tunneling of
Néel vector in AFM particles has been well studied in term
of the idealized sublattice model8,14 in which the external
magnetic field does not play a role since the net magn
moment vanishes. The biaxial AFM particles with a sm
noncompensation of sublattices or in other words biaxial f
rimagnetic particles have to be considered in order to ob
the effect of the external magnetic field on the tunnel sp
ting. The oscillation of tunnel splitting at ground state of t
biaxial ferrimagnetic particles was predicted recently w
the magnetic field applied along the hard axis.15 In the
present paper we investigate the effect of quantum ph
interference at excited states for a biaxial ferrimagnetic p
ticle in the external magnetic field applied along an arbitra
direction in the plane of hard and medium axis. Since
effect of geometric phase interference has been observe
the experiment of Fe8 molecular clusters with the magnet
field along an arbitrary direction, the present generalizat
to the ferrimagnetic particles is not only of theoretical b
also of practical interests. At ground state one only consid
the paths of imaginary time under barrier. The extension
excited states is highly nontrivial. Paths of complex tim
have to be taken into account since a path at excited st
also approaches the region of potential well and therefor
of real time.

II. EFFECTIVE LAGRANGIAN OF A BIAXIAL
FERRIMAGNETIC PARTICLE IN A MAGNETIC FIELD

We consider a biaxial AFM particle of two collinear FM
sublattices with a small noncompensation. Assuming that
particle possesses anX easy axis andX-Y easy plane, and the
magnetic fieldh is applied along an arbitrary direction in th
plane of the hard axis (Z axis! and medium axis (Y axis!, the
©2001 The American Physical Society17-1
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Hamiltonian operator of the AFM particle has the form

Ĥ5 (
a51,2

~k'Ŝa
z21kiŜa

y22ghzŜa
z2ghyŜa

y!1JŜ1•Ŝ2 ,

~1!

where k' ,ki.0 are the anisotropy constants,J is the ex-
change constant,g is the gyromagnetic ratio, and the sp
operators in two sublatticesŜ1 and Ŝ2 obey the usual com
mutation relation @Ŝa

i ,Ŝb
j #5 i\e i jkdabŜb

k( i , j ,k5x,y,z; a,b
51,2). In order to obtain the Lagrangian of the system,
begin with the matrix element of the evolution operator
spin-coherent-state representation by means of the s
coherent state path integrals

^Nf ue22iĤ T/\uNi&5E F )
k51

M21

dm~Nk!G
3F )

k51

M

^Nkue2 i eĤ/\uNk21&G . ~2!

Here we defineuN&5un1&un2&, uNM&5uNf&5un1,f&un2,f&,
uN0&5uNi&5un1,i&un2,i&, t f2t i52T, and e52T/M . The
spin-coherent state is defined as

una&5eiuaÔauSa ,Sa&,~a51,2!, ~3!

wherena5(sinuacosfa ,sinuasinfa ,cosua) is the unit vec-
tor, Ôa5sinfaŜa

x2cosfaŜa
y and uSaSa& is the reference spin

eigenstate. The measure is defined by

dm~Nk!5 )
a51,2

2Sa11

4p
sinua,kdua,kdfa,k . ~4!

Evaluating the path integral on the right-hand side of the
~2! we obtain in the largeS limit 16

^Nf ue22iĤ T/\uNi&5E )
a51,2

D@ua#D@fa#

3expF i

\Et i

t f
~L01L1!dtG ~5!

with

L05 (
a51,2

Saḟa~cosua21!

2JS1S2@sinu1sinu2cos~f12f2!1cosu1cosu2#,

~6!

L152 (
a51,2

~k'Sa
2cos2ua1kiSa

2sin2uasin2fa2ghzSacosua

2ghySasinuasinfa!, ~7!

whereL01L1 denotes the Lagrangian. Since spinsS1 andS2
in two sublattices are almost antiparallel, we may replaceu2
andf2 by u25p2u12eu andf25p1f11ef , whereeu
13441
e

in-

.

andef denote small fluctuations. Working out the fluctuatio
integrations overeu andef the transition amplitude Eq.~5!
reduces to

^Nf ue22iĤ T/\uNi&5E D@u#D@f#expS i

\Et i

t f
L̄dtD , ~8!

L̄5VF2
M11M2

g
ḟ1

M

g
ḟcosu1

x'

2g2
~ u̇21ḟ2sin2u!G

2V~u,f!, ~9!

where V(u,f)5VK'(cosu2Mhz/2K')21VK isin2u(sinf
2Mhy/2K isinu)2, and (u1 ,f1) has been replaced by (u,f).
Ma5g\Sa /V(a51,2),M5g\(S12S2)/V with V being
the volume of the AFM particle andx'5g2/J. K'

52k'S2/V andK i52kiS
2/V ~settingS15S25S except in

the term containingS12S2) denote the transverse and th
longitudinal anisotropy constants, respectively.

We assume a very strong transverse anisotropy, i.e.,K'

@K i . For this case, the Ne´el vector is forced to lie on a
cone of angle 2u0. Where cosu05Mhz/2K'5dhz /hc(d
5K i /K' ,hc52K i /M ). Introducing the fluctuation variable
h such that u5u01h and considering K'@K i
we have V(u,f)5VK'sin2u0h

21VKisin2u0(sinf2b)2(b
5Mhy/2K isinu05hsina/dA(hc /d)22hz

2, where a is the
angle between the magnetic field andZ axis! and thus the Eq.
~9! is written as

L̄5VF1

2 S M2

2K'g2
1

x'

g2
sin2u0D ḟ22

M11M2

g

3ḟ1
M

g
ḟcosu02K isin2u0~sinf2b!2G

1VF x'

2g2
ḣ22K'sin2u0S h1

M ḟ

2K'g sinu0
D 2G .

~10!

Carrying out the integral overh we obtain

^Nf ue22Ĥb/\uNi&5E D@f#expS 2
1

\Et i

t f
Le f fdt D , ~11!

where

Le f f5
I

2 S df

dt D 2

1 iQ
df

dt
1V~f! ~12!

is the effective Euclidean Lagrangian.t5 i t and b5 iT. I
5I a1I f , whereI f5VM2/(2g2K') and I a5Vx'sin2u0 /g2

are the effective FM and AFM moments of inertia,17 respec-
tively. V(f)5VK isin2u0(sinf2b)2 is the effective potential
and Q5\(S02d) (S05S11S2 and d5hz /h05h cosa/h0
with h05\/gI f). The second term in the Eq.~12!, i.e.,
iQdf/dt has no effect on the classical equation of motio
however, it leads to a path-dependent phase in Euclid
action. Whenhy50,V(f)5K iV sin2u0sin2f possesses the
7-2
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form of the sin-Gordon potential and the directions withu
5u0 , f50 andp are two equilibrium orientations of th
Néel vector @Fig. 1~b!# around which the small oscillation
frequency of the Ne´el vector is seen to bev0

5A2K iVsin2u0 /I. The quantum tunneling of the Ne´el vector
through two paths of opposite windings results in the qu
tum phase interference. WhenhyÞ0, the potentialV(f)
5VK isin2u0(sinf2b)2 has an asymmetric twin-barrier@Fig.
2~a!#, and the net magnetic moment of the uncompensa
sublattices in the applied magnetic field shifts the equi
rium orientations of the Ne´el vector to f5f1 and p
2f1 (f15arcsinb) @Fig. 2~b!# around which the small os
cillation frequency of the Ne´el vector is modified asv
5v0A12b2. The quantum tunneling of the Ne´el vector
through two different barriers leads to the quantum ph
interference.

III. QUANTUM PHASE INTERFERENCE AS H YÄ0

When the external magnetic field is applied along the h
axis ~Z axis!, the effective potential is V(f)
5VK isin2u0sin2f. The quantum tunneling at finite energyE
is dominated by the periodic instantons.18 From the Euclid-

FIG. 1. ~a! The periodic potential and the instanton trajectori
The arrow lines denote two tunnel paths of opposite windings.~b!
The equilibrium orientations of the Ne´el vector in the absence ofY
component of the magnetic field.
13441
-

d
-

e

d

ean Lagrangian~12!, the equation of motion of the
pseudoparticles moving in the classically forbidden region
the barrier is seen to be

I

2 S df

dt D 2

2V~f!52E. ~13!

The Néel vector may rotate by tunneling through potent
barriers from one orientation (f50) to another (f5p)
along clockwise path and anticlockwise path~Fig. 1!. The
instantons satisfying periodic boundary condition are fou
to be

fc
656

p

2
6arcsin@k1sn~v0t!#, ~14!

where ’’2 ’’ denotes the clockwise path and ’’1’’ denotes the
anticlockwise path~see Fig. 1!, sn(v0t) is the Jacobian ellip-
tic function with modulus

k15A12
E

VK isin2u0

. ~15!

. FIG. 2. ~a! The potential with asymmetric twin barrier and th
instanton trajectories.~b! The equilibrium orientations of the Ne´el
vector in the presence ofY component of the magnetic field.
7-3
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The two trajectories of instantonsfc
6 are shown in Fig. 1~a!.

The Euclidean actions evaluated along the trajectories of
riodic instantons are

Se
65We12Eb1 iue

6 , ~16!

We5E
2b

b F I

2 S dfc
6

dt D 2

2V~fc
6!Gdt

5
4VK isin2u0

v0
@E~k1!2k

1

82
K~k1!#, ~17!

ue
65E

2b

b

Q
dfc

6

dt
dt56Q~p22 arcsink18!, ~18!

whereK(k1) andE(k1) are the complete elliptic integrals o

the first and the second kinds, respectively.k
1

82
512k1

2

5E/VK isin2u0. To investigate the quantum tunneling an
related quantum phase interference at excited states, we
gin with the instanton induced transition amplitude

(
m,n

K En
fU P̂EexpS 2

2Ĥb

\
D UEm

i L
5E df fdf icE* ~f f !cE~f i !G~f f ,b;f i ,2b!.

~19!

P̂E is the operator of projection onto the subspace of fix
energy.19 uEE

f & and uEE
i & are two excited states lying on dif

ferent sides of the barrier. From Eq.~19! the tunnel splitting
is written as

DE;

expS 2Eb

\ D
b

3U E df fdf icE* ~f f !cE~f i !G~f f ,b;f i ,2b!U,
~20!

G5E D@f#expS 2
1

\E2b

b

Le f fdt D . ~21!

When the quantum phase interference of tunneling thro
clockwise and counterclockwise paths is taken into acco
the Eq.~20! is written as

DE;

expS 2Eb

\ D
b

uI 1
11I 1

2u, ~22!

I 1
65E df f

6df i
6cE* ~f f

6!cE~f i
6!G~f f

6 ,b;f i
6 ,2b!

5expS 2
iue

6

\ D I 0 , ~23!
13441
e-
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t,

I 05E df fdf icE* ~f f !cE~f i !Ḡ~f f ,b;f i ,2b!, ~24!

Ḡ5E D@f#expS 2
1

\E2b

b

L̄e f fdt D , ~25!

L̄e f f5
I

2 S df

dt D 2

1V~f!. ~26!

where I 0 is independent of tunnel directions. The pat
independent tunneling kernelḠ is now evaluated with the
help of the periodic instantons. Following the procedure
the periodic instanton calculation in Refs. 20 and 21 a g
eral formula for Eq.~24! is found to be

I 0;2bexpS 2
2Eb

\ D F \v0

4K~k18!
GexpS 2

We

\ D . ~27!

To investigate the quantum phase interference at exc
state, we have to consider additional phases coming from
real-time paths in the potential well between 0→f1 and
f2→p(0→2f1 and 2f2→2p). Thus tunnel splitting
Eq. ~22! is rewritten as

DE5

expS 2Eb

\ D
b

UI 1
1expS iSr

1

\ D 1I 1
2expS iSr

2

\ DU
5

expS 2Eb

\ D
b

I 0UexpF i ~Sr
12ue

1!

\ G1expF i ~Sr
22ue

2!

\ GU,
~28!

where

Sr
65u r

61Wr
6 , ~29!

u r
652QE

[0,6f1] ø[ 6f2 ,6p]
df572Qarcsink18 , ~30!

Wr
656A I

2E[0,6f1] ø[ 6f2 ,6p]

E22V~f!

AE2V~f!
df. ~31!

It is obvious thatWr
15Wr

2 . Substituting Eqs.~27!, ~29!, and
~30! into the Eq.~28!, we obtain the tunnel splitting

DE5
v0\

K~k18!
expS 2

We

\ D ucos~Lp!u, ~32!

whereL5S02d. The tunnel splittingDE is a function of
the external magnetic field and energy.

For low lying excited states (k185AE/VK isin2u0!1) in
which we are interested, the energyE may be replaced by the
harmonic oscillator approximated eigenvaluesEm5(m
1 1

2 )v0\. Expanding the complete elliptic integralsK(k1)
7-4
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and E(k1) as power series ofk18 and taking note of limit
K(k18→0)→p/2, we obtain the tunnel splitting of themth
excited state,

DEm5
~4B!m

m!
DE0ucos~Lp!u, ~33!

where

DE05
2\v0

Ap
~8B!1/2exp~2B!, ~34!

with B54K iVsin2u0 /\v0 that denotes the tunnel splitting o
ground state. It may be worth to estimate the range of va
ity of our results, i.e., how largem is. VK isin2u0 is the bar-
rier height of potential and\v0 is the level space betwee
neighboring levels. For the horse-spleen ferritin reported
Refs. 22 and 23 the residual spin isS;100 ~ corresponding
momentM05217mB) and volume isV;2310219 cm3 ~di-
ameter 7.5 nm!. The longitudinal anisotropy constant an
transverse susceptibility are seen to beK i523105erg/cm3

andx'51025emu/G cm3, respectively. Using the above pa
rameters we find that the number of the levels in the poten
well is about ten asd;0.03. Fig. 3~a! shows the oscillation
of tunnel splittings of the lowest three states with respec
the external magnetic field due to the quantum phase in
ference of two tunneling paths of opposite windings forS0
5 integer and halfinteger. From Fig. 3~a! one can find that the
magnitude of tunnel splittings at excited states is mu
higher than that at ground state and may contribute sig
cantly to the experimental observation at finite temperatu
Whend5S02 l 2 1

2 , i.e., h5(S02 l 2 1
2 )h0 ( l is an integer!,

the tunneling splittingDEm vanishes. The period of oscilla
tion is

Dh5
\

gI f
, ~35!

which is independent of the energy.

IV. QUANTUM PHASE INTERFERENCE AS H YÅ0

When the external magnetic field is applied along an
bitrary direction in the plane of the hard axis and mediu
axis, the effective potentialV(f)5VK isin2u0(sinf2b)2 has
the asymmetric twin barrier that leads to that Ne´el vector
may rotate from one orientation(f5f1) to another (f5p
2f1) along clockwise underbarrier path and counterclo
wise path~Fig. 2!. Two different instantons~Fig. 2! corre-
sponding to tunneling through two types of barriers a
found as

fc
656

p

2
62 arctan@l6sn~qt,k2!#, ~36!

where

k25F ~12«!22b2

~11«!22b2G 1/2

, «5A E

VK isin2u0

,
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q5
v0

2
@~11«!22b2#1/2, l65F ~12«!22b2

~16b!22«2G 1/2

.

Our starting point for investigation of the tunneling and r
lated quantum phase interference at excited states is stil
transition amplitude of the barrier penetration projected o
the subspace of fixed energyE, i.e., the Eq.~19! from which
the tunneling splitting is obtained as

DE;

expS 2Eb

\ D
b

3U E df fdf icE* ~f f !cE~f i !G~f f ,b;f i ,2b!U.
~37!

The result corresponding to the Eq.~22! is formally the
same,

DE;

expS 2Eb

\ D
b

uI 2
11I 2

1u. ~38!

In the present case, however, the two tunneling paths are
symmetric. Thus we find

I 2
65expS 2

ide
6

\ D Ī 2
6 , ~39!

de
656Q@p72 arcsin~b6«!#, ~40!

Ī 2
65E df f

6df i
6cE* ~f f

6!cE~f i
6!Ḡ6~f f

6 ,b;f i
6 ,2b!,

~41!

Ḡ65E D@f#expS 2
1

\E2b

b

L̄e f f
6 dt D , ~42!

L̄e f f
6 5

I

2 S dfc
6

dt D 2

1V~fc
6!. ~43!

Ī 2
6 is now dependent on tunnel direction. The pa

dependent tunneling kernelḠ6 is evaluated with the help o
the periodic instanton. Following the above procedure
obtain

Ī 2
6;2bexpS 2

2Eb

\ D F \v0

4sK~k28!
GexpS 2

We
6

\ D , ~44!

s5@~11«!22b2#21/2, k285A12k2,

We
65

4Iq

l6
2 @l6

2 E~k2!1~k2
22l6

2 !K~k2!

1~l6
4 2k2

2!P~k2 ,l6
2 !#, ~45!
7-5
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FIG. 3. The level splitting as function of the external magne
field with angular (D«52\v0 /Ap) ~a! a50°, ~b! a53°, and~c!
a55° for S05 integer~solid line! andS05 half integer~dot line!.
Here S5100, V510219 cm3, x'51025, K i5105 erg/cm3 and d
;0.03.
13441
whereP(k2 ,l6
2 ) is the complete elliptic integral of the third

kind. Considering the additional phase contribution from t
real-time paths in potential well the tunnel splitting Eq.~38!
is written as

DE5

expS 2Eb

\ D
b

UI 2
1expS iSr

1

\ D 1I 2
2expS iSr

2

\ DU, ~46!

where

Sr
65d r

61F r
6 , ~47!

d r
6522Q@arcsin~b6«!2arcsinb#, ~48!

F r
652Iv0FE~w6,k28!

s
2s~17b!2F~w6,k28!

72bs~17b2«!P~w6,a6,k28!2«A16b

17bG ,
~49!

w65arcsinA17b1«

2~17b!
, a65A 2«

17b1«
,

whereF(w6,k28), E(w6,k28) and P(w6,a6,k28) are the in-
complete elliptic integrals of the first, the second, and
third kinds, respectively. Inserting Eqs.~39!, ~44!, and ~47!
into Eq. ~46!, we obtain the final formula of the tunnel spli
ting

DE5
\v0

2sK~k28!
H expS 2

2We
1

\ D 1expS 2
2We

2

\ D
12expS 2

We
11We

2

\ D cos@2Lp2~F r
12F r

2!#J 1/2

,

~50!

which is a function of the external magnetic field and t
energy. For low-lying excited states,«!1,k28!1, the energy
E is again replaced by harmonic oscillator approximated
genvaluesEm5(m1 1

2 )\v. Expanding the complete elliptic
integralsE(k2), K(k2), and P(k2 ,l6

2 ) in the Eq. ~45! as
power series ofk28 we obtain

We
65

4VK isin2u0

v0
FA12b22

1

16
~12b2!3/2k28

4S ln
4

k28
1

1

4D
1b arcsinb7

p

2 G . ~51!

Substituting the Eq.~51! into the Eq.~50! and taking note of
limits K(k28→0)→p/2, s(k28→0)→(12b2)1/2 and F r

1

'F r
2 at low lying excited states we obtain the tunnel sp

ting of themth excited state as
7-6
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DEm5
E2

m!
@4B~12b2!3/2#m@cosh~bBp!1cos~2Lp!#1/2,

~52!

E25
2\v0

Ap
@4B~12b2!5/2#1/2exp@2B~A12b21b arcsinb!#.

~53!

Figure 3 shows the oscillation of tunnel splitting at low-lyin
excited states with respect to the external magnetic field
S05 integer and half integer, respectively. WhenL5(2l
11)/2 (l is an integer!, tunnel splittingDEm tends to a mini-
mum value. The period of oscillation is

Dh5
h0

cosa
, ~54!

which is independent of the level, but dependent on the
rection of the external magnetic field. Whena50 and m
50, the tunnel splittingDEm reduces to the result in Ref. 15
The period increases with the anglea. When the direction of
the magnetic field is along the medium axis (a5p/2), the
A.

:

,

13441
or

i-

period approaches to infinity, in other words, the oscillat
disappears.

V. CONCLUSION

The effect of the macroscopic quantum phase interfere
at excited states is studied for the biaxial ferrimagnetic p
ticles with the external magnetic field applied along an ar
trary direction in the plane of hard and medium axis. W
present a general formula of tunnel splitting at excited sta
as a function of the magnetic field and the energy. The os
lation behavior of tunneling splitting at low-lying excite
states is similar to that in FM particles observed experim
tally in molecular clusters Fe8 and should be observed i
further experiment with ferrimagnetic particles for which
possible candidate of materials may be horse-spl
ferritin.22,23
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