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Tunnel splitting and quantum phase interference in biaxial ferrimagnetic particles at excited states
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The tunneling splitting in biaxial ferrimagnetic particles at excited states with an explicit calculation of the
prefactor of exponent is obtained in terms of periodic instantons that are responsible for tunneling at excited
states and is shown as a function of magnetic field applied along an arbitrary direction in the plane of hard and
medium axes. Using complex time path integral we demonstrate the oscillation of tunnel splitting with respect
to the magnitude and the direction of the magnetic field due to the quantum phase interference of two tunneling
paths of opposite windings. The oscillation is gradually smeared and in the end the tunnel splitting monoto-
nously increases with the magnitude of the magnetic field when the direction of the magnetic field tends to the
medium axis. The oscillation behavior is similar to the recent experimental observation withdkecular
clusters. A candidate of possible experiments to observe the effect of quantum phase interference in the
ferrimagnetic particles is proposed.
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[. INTRODUCTION particles is much higher than that in FM particles of the same
volumé™ the AFM particles are expected to be a better can-
The macroscopic quantum phenomenon in spin system alidate for the observation of macroscopic quantum phenom-
low temperature has attracted considerable attention boteha than the FM particles. The quantum tunneling of the
theoreticaiiy and experimentaiiy for more than a decade. Neel vector in AFM particles has been well studied in terms
The magnetization vector in a single-domain ferromagneti®f the idealized sublattice modef* in which the external
(FM) grain and the Nel vector in a single-domain antiferro- magnetic field does not play a role since the net magnetic
magnetic(AFM) grain can tunnel from a metastable state tomoment vanishes. The biaxial AFM particles with a small
a stable one, which is called the macroscopic quantum turfoncompensation of sublattices or in other words biaxial fer-
neling, or display a coherent oscillation between two degentimagnetic particles have to be considered in order to obtain
erate states, which results in the superposition of macrothe effect of the external magnetic field on the tunnel split-
scopically distinguishabléclassically degeneratstateq the  ting. The oscillation of tunnel splitting at ground state of the
understanding of which is a |0ng-standing probiem in quanbiaXiaJ ferrimagnetic particles was predicted recently with
tum mechanicsand is called macroscopic quantum coher-the magnetic field applied along the hard aXisn the
ence (MQC). The geometrical phasé&nown as the Berry present paper we investigate the effect of quantum phase
phas¢ interference plays a crucial role in the MQC. The interference at excited states for a biaxial ferrimagnetic par-
quenching of MQC can be interpreted by the quantum interticle in the external magnetic field applied along an arbitrary
ference between tunneiing paths of Opposite Windings thdﬂirection in the plane of hard and medium axis. Since the
possess a phase with obvious geometric meahihdhe  effect of geometric phase interference has been observed in
quenching of MQC for half-integer spin has been shownthe experiment of Remolecular clusters with the magnetic
physically to be related to Kramers’ degeneracy, howeverfield along an arbitrary direction, the present generalization
the effect of geometric phase interference is far richer thafo the ferrimagnetic particles is not only of theoretical but
that. For example, when the external magnetic field is apalso of practical interests. At ground state one only considers
piied aiong the hard anisotropy axis, a new quenching the paths of imaginary time under barrier. The extension to
MQC occurs and is not related to Kramers’ degeneracy sincexcited states is highly nontrivial. Paths of complex time
the external magnetic field breaks the time-reversahave to be taken into account since a path at excited states
symmetry’ The Zeeman energy of the biaxial spin particle &lso approaches the region of potential well and therefore is
associated with the external magnetic field produces an adf real time.
ditional geometric phase of tunnel paths that leads to the
q_uantum_interference, and the tur_me_l splitting th(_aref_ore 0s- Il. EFFECTIVE LAGRANGIAN OF A BIAXIAL
cillates with respect to the magnetic fl_eld. Th_e oscillations of oo IMAGNETIC PARTICLE IN A MAGNETIC EFIELD
the level splitting for the ferromagnetic particles have been
verified by the experiment with molecular clustersgFe We consider a biaxial AFM particle of two collinear FM
which at low temperature behave like a ferromagneticsublattices with a small noncompensation. Assuming that the
particle’ The experimental observation of the oscillation of particle possesses &neasy axis an-Y easy plane, and the
tunnel splitting has triggered off more detailed investigationamagnetic fieldh is applied along an arbitrary direction in the
along this directiort’*? Since the tunneling rate in AFM plane of the hard axisZ axis) and medium axisY axis), the

0163-1829/2001/64.3)/1344177)/$20.00 64 134417-1 ©2001 The American Physical Society



YI-HANG NIE, YAN-HONG JIN, J.-Q. LIANG, AND F.-C. PU
Hamiltonian operator of the AFM particle has the form
A= 2 (k S7+KS2 -y 8-, &) +35.-5;,

a=12

D

wherek, ,kj>0 are the anisotropy constantd,is the ex-

change constanty is the gyromagnetic ratio, and the spin

operators in two sublatticeS; and S, obey the usual com-
mutation relation[S,,S)]=i% € 3.pS5(i ., k=X,y,z; a,b

=1,2). In order to obtain the Lagrangian of the system, we
begin with the matrix element of the evolution operator in
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ande,, denote small fluctuations. Working out the fluctuation
integrations ovek, and €, the transition amplitude Eq5)
reduces to

<Nf|e—2iHT/ﬁ|Ni>=j D[e]D[¢]exy{;,L—thfdt), (8
4

M;+M

_ . M. . .
L=0| - 2200 T ocoso+ X (924 p2sirPo)
Y 292

Y

—V(0,9), (€)

spin-coherent-state representation by means of the spinvhere V(9,¢>)=QKL(cose—MhZIZKL)ZJrQK“sinZG(sin¢

coherent state path integrals

M-1

I1 dM(Nk)}
k=1

M

kl;[l (NiJe " H N )

<Nf|e—2iHT/h|Ni>: f

X

)

Here we defingN)=|n;)[nz), [Ny)=[N¢)=[n15)[nzp),
|N0>:|Ni>:|nlvi>|n2‘i>, tf_tiZZT, and GZZT/M The
spin-coherent state is defined as

Iny)y=€'%04[S, ,S,),(a=1,2), 3)

where n = (sin 6,084, ,Sin 6,sin ¢, ,c0s6,) is the unit vec-

tor, 0,=sing,S:— cos¢,S, and|S,S,) is the reference spin
eigenstate. The measure is defined by

S, +1

41

du(Ny=T1

sin Ha,kd Ga,kd d’a,k .
a=12

(4)

Evaluating the path integral on the right-hand side of the Eq.

(2) we obtain in the largé limit*®

<Nf|eiziﬁT/ﬁ|Ni>= j allz D[ea]D[d’a]

i [t
Xexp{%ﬁi (Lot+ Ll)dt} (5)

with

Lo= 2 Sa(-ﬁa(COSQa—l)
a=1,2

—JS;S,[sin#;sin 0,c0g ¢p1— ) + Cc0SH,C0SH5],
(6)

Li=— > ) (k, S2c0S 0, + k| SZsir? 0,5 by — vh,S,C0S0,

a=1

()

whereL+ L, denotes the Lagrangian. Since spBisandS,
in two sublattices are almost antiparallel, we may repléce
and ¢, by 0,=m—60,— €, and p,=m+ ¢+ €4, Wheree,

—vh,Sssind.sing,),

—Mhy/2Ksin6)?, and (¢;,¢,) has been replaced by ().
M,=vhS,/Q(a=12) M=y(S;—S,)/Q with QO being
the volume of the AFM particle andy, =7%J. K,
=2k, S*/Q andK=2k;S*/Q (settingS;=S,=S except in
the term containingS; —S,) denote the transverse and the
longitudinal anisotropy constants, respectively.

We assume a very strong transverse anisotropy,K.e.,
>K| . For this case, the N vector is forced to lie on a
cone of angle 2,. Where co%,=Mh,/2K, =sh,/h.(d
=K /K, ,h;=2K;/M). Introducing the fluctuation variable
n such that #=6,+7 and considering K, >K|
we have V(6,$)=QK,sirfyn’+QKsinty(sin ¢—b)*(b
=Mhy/2Ksin 00:hsina/5\/(hc/5)2—h§, where « is the
angle between the magnetic field ahdxis) and thus the Eq.
(9) is written as

1

2

M2
+X—lsin200
2K, 72 72

G M,+M,
Y

X ¢+ %ég&coseo— K Sin? fo(sin ¢p— b)zl
- 2
M
nt 2Klysin90) ]
(10

Y

+Q

Carrying out the integral oven we obtain

<Nf|e*2f:|,3/ﬁ|Ni>: j D[¢]ex% - %J'TfLefde), (11)

where

Leff—z ar +i0—+V(¢) (12

| (de)? d¢
( ) dr
is the effective Euclidean Lagrangian=it and 8=iT. |
=l,+1¢, wherel;=QM?/(29°K,) andl,=Qx, Sirf6,/»
are the effective FM and AFM moments of inertfarespec-
tively. V() = QKsify(sin¢—b)* is the effective potential
and O =7%(Sy—d) (Sy=S;+S, and d=h,/hy=h cosalhg
with ho=7%/vyl;). The second term in the Ed12), i.e.,
i®dg¢/dT has no effect on the classical equation of motion,
however, it leads to a path-dependent phase in Euclidean
action. Whenh,=0\V(¢)=KQ sirffsin‘¢ possesses the

134417-2



TUNNEL SPLITTING AND QUANTUM PHASE . ..

V(o)
- <I>2 ¢1 4:>1 ci)2 T 0
T T (a)
z

(b)

FIG. 1. (a) The periodic potential and the instanton trajectories.
The arrow lines denote two tunnel paths of opposite windifigs.
The equilibrium orientations of the evector in the absence of
component of the magnetic field.

form of the sin-Gordon potential and the directions with
=6y, ¢=0 andx are two equilibrium orientations of the
Neel vector[Fig. 1(b)] around which the small oscillation
frequency of the Ne vector is seen to bewg
= \/ZKHQSWGO/I. The quantum tunneling of the Wvector

through two paths of opposite windings results in the quan-

tum phase interference. Whem,#0, the potentialV(¢)
= QK sirfo(sin ¢—b)? has an asymmetric twin-barrifFig.

2(a)], and the net magnetic moment of the uncompensate _ . ) .
@] g P p-along clockwise path and anticlockwise pdffig. 1. The

sublattices in the applied magnetic field shifts the equili
rium orientations of the N& vector to ¢=¢, and =
— ¢, (¢, =arcsib) [Fig. 2(b)] around which the small os-
cillation frequency of the Na vector is modified asw
=wy1—b?% The quantum tunneling of the ‘N vector

through two different barriers leads to the quantum phase

interference.

IIl. QUANTUM PHASE INTERFERENCE AS H,=0
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FIG. 2. (a) The potential with asymmetric twin barrier and the
instanton trajectoriegb) The equilibrium orientations of the &
vector in the presence &f component of the magnetic field.

ean Lagrangian(12), the equation of motion of the
pseudoparticles moving in the classically forbidden region in
the barrier is seen to be

d¢o

dr (13

2
) ~V(¢)=—E.

2
The Neel vector may rotate by tunneling through potential

garriers from one orientationg(=0) to another {= )

instantons satisfying periodic boundary condition are found
to be

¢ === +arcsink;snwe7) ], (14

NI

where "—" denotes the clockwise path and+” denotes the
anticlockwise patfsee Fig. 1, sn(wg7) is the Jacobian ellip-
tic function with modulus

When the external magnetic field is applied along the hard

axis (Z axig, the effective potential is V(¢)
= QK sinfesin’e. The quantum tunneling at finite energy
is dominated by the periodic instantoffssrom the Euclid-

(15

k= /1 =
' QK|sirP 6,
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The two trajectories of instantork, are shown in Fig. (8). . _
The Euclidean actions evaluated along the trajectories of pe- '0:J' dod iy (be) Ye(h)G( bt B i, — B), (29)
riodic instantons are

- F - 18—
S; =W+ 2EB+i6, , (16) G:j D[qb]ex;{ _ %IBLEHdT)' (25)
A =
e~ d c _ | qu 2
! Letr=5| =] +V(e). (26)
2\dr
4QK|Sinf 6,
=, L[E(k)—k K(kp)], (17 where I, is independent of tunnel directions. The path-
independent tunneling kern& is now evaluated with the

. ¢>C help of the periodic instantons. Following the procedure of
9"f ; —dr=x0(m-2 arcsirk;), (18 the periodic instanton calculation in Refs. 20 and 21 a gen-

eral formula for Eq.(24) is found to be
where/C(k,) andE(k,) are the complete elliptic mtegrals of
We
exy{ - 7) . (27)

the first and the second kinds, respectlvelkg 1-k? I0~2,8ex;{—2E—'8)
bﬁi investigate the quantum phase interference at excited

—E/QKHsmzao To investigate the quantum tunneling and h
state, we have to consider additional phases coming from the

related quantum phase interference at excited states, we
gin with the instanton induced transition amplitude
20 real-time paths in the potential well between-@,; and
E <Erf1 I5Eexp( __) [ > ¢o,—m(0—— ¢, and — ¢p,— — ). Thus tunnel splitting

ﬁwo
4K (ky)

mn h " Eq. (22) is rewritten as
=f debsd e Y () Y )G (b1 . Bi i, — B). exp(ZEﬁ)
iS,
(19 AE= ——F1— ;{ +I1_exp< ﬁr )‘
Pe is the operator of projection onto the subspace of fixed 2E,8
energy*® |EL) and|EL) are two excited states lying on dif- ex (S —g-
ferent sides of the barrier. From E@.9) the tunnel splitting F{'(Sr XF{'(SF e )”
is written as h '
2ER (28
ex h where
S =6, +W,, (29

dpid i g (bs) he( d))G( s, B; b, —

0i=—®f d¢=F20arcsink;, (30)
(20) ' 0% 11U[ = gy, = 7] '

178
= D[¢]exp(—— Leffdr). (21) _+\[ E-2V(e)
f ﬁfﬁ f[owl]u[ + ¢y, 21 NE— V() ¢ 3D

When the quantum phase interference of tunneling through N
clockwise and counterclockwise paths is taken into accountt is obvious thatV,” =W, . Substituting Eqs(27), (29), and

the Eq.(20) is written as (30) into the Eq. (28) we obtain the tunnel splitting
2EB h w
exp(T) AE= 2 exp(—f)mosmwn, (32)
AE~T||1++|1‘|, (22) K(k1)

where A=S,—d. The tunnel splittingAE is a function of

. T " " e the external magnetic field and energy.
hy :j dbidoi v (dr)ve($)C(Si Bidi . —B) For low lying excited statesk(L=\/E/QK”siﬁzao<1) in
which we are interested, the enefigynay be replaced by the
=exp< Ie)l (23) harmonic oscillator approximated eigenvaluds,=(m
no + 3)wofi. Expanding the complete elliptic integrat§(k,)
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and E(k,) as power series ok; and taking note of limit g 12
K(k;—0)— /2, we obtain the tunnel splitting of theath q= 7[(1+8)2—b2]”2, A=

excited state,

(1—&)?— b2
(1+b)?— 2

4B)T Our starting point for investigation of the tunneling and re-
AEm=( ) AE,|cog A ) (33) lated quantum phase interference at excited states is still the

m! transition amplitude of the barrier penetration projected onto
the subspace of fixed ener§y i.e., the Eq(19) from which
where . o .
the tunneling splitting is obtained as
_2hwg oy 2EB
AE, N (8B)Y%exp(—B), (34 . em(T)
with B=4K”Qsir1290/hw0 that denotes the tunnel splitting of B
ground state. It may be worth to estimate the range of valid-
ity of our results, i.e., how largm is. QKsir?é, is the bar- X f depd i WE () Ye( b)) G(br, B i, — B)| .-
rier height of potential and w, is the level space between
neighboring levels. For the horse-spleen ferritin reported in (37

Refs. 22 and 23 the residual spinSs-100 ( corresponding

momentM = 217uz) and volume i1 ~2x10 29 cn? (di- The result corresponding to the E(R2) is formally the

ameter 7.5 nm The longitudinal anisotropy constant and same,

transverse susceptibility are seen toKye=2x 10°erg/cn? 2Ep

andy, =10 °emu/G cm, respectively. Using the above pa- exp(—

rameters we find that the number of the levels in the potential AE~ S +15]. (39)
well is about ten a$~0.03. Fig. 3a) shows the oscillation B 22

of tunnel splittings of the lowest three states with respect t n the present case. however. the two tunneling paths are not
the external magnetic field due to the quantum phase inter- b ' ' gp

ference of two tunneling paths of opposite windings &r symmetric. Thus we find

=integer and halfinteger. From Fig(@ one can find that the i 5=
magnitude of tunnel splittings at excited states is much I§=ex;<——e)|_i (39)
. . . i 2
higher than that at ground state and may contribute signifi-
cantly to the experimental observation at finite temperature. . _ )
Whend=S,—|—%, i.e.,h=(Sy—I—2)hg (I is an integey, 0 == O[m+2arcsitbxe)], (40)
the tunneling splittingA E,,, vanishes. The period of oscilla-
thI’I |S T+ =+ + + +\ o~ =+ +
Iz‘=f dey doi ye(di ) de(bi )G (o5 .Bidi . —B),
h
Ah=—, (35 (4D
7 16
which is independent of the energy. 6¢=J D[d)]exr{ - %f fgffm-), (42
-B
IV. QUANTUM PHASE INTERFERENCE AS H#0 | [ do=)\2
TE c +
When the external magnetic field is applied along an ar- Leff_§< d +V(de). (43)

bitrary direction in the plane of the hard axis and medium _
axis, the effective potentidd () = QK |sirfby(sing—b)*has 15 is now dependent on tunnel direction. The path-

the asymmetric twin barrier that leads to thateNeector dependent tunneling kern@™ is evaluated with the help of

may rotate from one orientatio= ¢ ) to another ¢p=m  the periodic instanton. Following the above procedure we
—¢.) along clockwise underbarrier path and counterclock-gptain

wise path(Fig. 2). Two different instantongFig. 2) corre-

sponding to tunneling through two types of barriers are _ 2ES fiwy W
found as I2t~2,8€X;< - —) — ex;{ - —) (44)
ho ]l 4cK(kp) h
. ™
¢ == =2 arctaih.snarky)], (36) o=[(1+e)2=b2] 12 Kj=\1—k,,
where

+ 4Iq 2 2 2
" \/T W =5 NEE(Q)+ (G -2 )K(ke)
"7 N aksirte, (= KD)T(kp A2)], (45)
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FIG. 3. The level splitting as function of the external magnetic
field with angular A e =2%w,/\7) (@ a=0°, (b) «=3°, and(c)
a=5° for Sy= integer(solid line) and Sy= half integer(dot line).
Here S=100, 0=10""cn?, x, =10"°, K;=10° erg/cn? and §
~0.03.
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wherell(k,,\2) is the complete elliptic integral of the third
kind. Considering the additional phase contribution from the
real-time paths in potential well the tunnel splitting E&8)

is written as

o

2EB

N % LISty [isy
E_T|2ex e +1,ex ik (46)
where
S =6 +d,, (47)
8. =—20[arcsirb+ &) —arcsinb], (48
E(e™ k3
07 =2l — 22 (150 ("
) B L 1+b
F2bo(1xb—e)ll(¢",a” ky) & \[ 7= |
(49)

. . [1¥b+te 2e
e AV gaze ¢~ Vizhie

whereF (¢~ ,k5), E(¢~,k}) andII(¢™,a” k) are the in-

complete elliptic integrals of the first, the second, and the

third kinds, respectively. Inserting Eq&9), (44), and (47)

into Eq. (46), we obtain the final formula of the tunnel split-
ﬁ(l)o

ting
E= —{ ex;{ +ex;< )
20K(k3)
WS +W,

1/2
+2exr< ——) COS{ZAW—(CI)?_‘DF)]] ’
(50)

h
which is a function of the external magnetic field and the
energy. For low-lying excited states<1k;<1, the energy
E is again replaced by harmonic oscillator approximated ei-
genvaluesE .= (m+ 3)Aw. Expanding the complete elliptic
integralsE(k,), K(k,), andTI(k,,\2) in the Eq.(45) as
power series ok, we obtain

2W7

h

2W,

h

. AOKsirfly| —— 1 T I
a
+barcsinb1§ . (52

Substituting the Eq(51) into the Eq.(50) and taking note of
limits K(k,—0)— /2, o(k,—0)—(1—b%)2 and &
~®  at low lying excited states we obtain the tunnel split-
ting of themth excited state as
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E, period approaches to infinity, in other words, the oscillation
AEm=H[4B(1—b2)3’2]m[costh7r)+cos(ZAw)]llz, disappears.

(52) V. CONCLUSION

wo The effect of the macroscopic quantum phase interference
[4B(1—b?)%?|Y%ex —B(\/1—b?+barcsitb)].  at excited states is studied for the biaxial ferrimagnetic par-
Jm ticles with the external magnetic field applied along an arbi-
(53 trary direction in the plane of hard and medium axis. We

Figure 3 shows the oscillation of tunnel splitting at low-lying Present a general formula of tunnel splitting at excited states
excited states with respect to the external magnetic field fofS & function of the magnetic field and the energy. The oscil-

21

E2:

Sp=Iinteger and half integer, respectively. Whe= (2l ation F’ehf"“’?or of tunn.eling splittjng at low-lying excited
+1)/2 (I is an integex, tunnel splitingA E,,, tends to a mini- states is similar to that in FM particles observed experimen-
mum value. The period of oscillation is tally in molecular clusters eand should be observed in
further experiment with ferrimagnetic particles for which a
h possible candidate of materials may be horse-spleen
Ah= Coga, (54 feritin 2223
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