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Monte Carlo simulation of an Ising model on a Sierpirski carpet
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We study by Monte Carlo simulation the equilibrium and dynamical critical properties of fractal lattices with
noninteger Hausdorff dimension. These lattices are known to be good candidates to bridge the gap between
integer dimensions. Focusing on the Siesfincarpet with Ising spins, we are able to obtain the critical
exponents that are to be compared to the predictions of the renormalization group. We point out that the use of
finite-size scaling is forbidden for fractal lattices. This might explain the difference from the exponents ob-
tained in previous studies.
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I. INTRODUCTION varying between nearest-neighbor coupling and uncoupled
one-dimensional chains. Extensive calculations have been
The understanding of phase transitions has been greatbarried out between effective dimensiolRs =1 and de¢¢

improved by the introduction of the renormalization group =22 Although the system obtained by this procedure is
(RG). In particular, various approaches such as that based afanslationally invariant, it remains open whether the inter-
the nonlinear sigma model or tle=4— e Wilson expansion  polation scheme is capable of covering the thermodynamic
make predictions regarding the critical behavior of systemsimit. Moreover, the physical interpretation of the interpola-
for noninteger space dimensions. In contrast to integer dition is not obvious.
mensions, it seems to be impossible to verify these predic- apgther suggestion, at the beginning of the 1980s, was to
tions on critical exponents for second-order phase transitiongse fractal lattices to simulate systems in noninteger dimen-
with numerical simulations. This is regrettable because somgjong However, as disordered systems, fractals are not trans-
systems, like the Potts m"de’f fr_ustrated-spm modefsare . lationally invariant and this causes difficulties for the simu-
predicted to change their behavior from second order to f'rﬁtations. Disorder can introduce relevant fields leading

ordAerr] aetﬁzzif,glcnggmgegfr d(ijrlnn(]a?]r;‘iscl)onn;h d effective critical eventually to a new stable fixed point. In the case of fractals
exponents that differ frogm their standard values are expectettﬁle situation is different: The lack of translational invariance

in partially finite systems undergoing a phase transition'> cau_sed l_)y an o_rdered_removal of sites, which leads to a
Ising systems, which are finite in all, say but one dimen- scale-invariant lattice. This fact makes fractal systems good

sion, have been studied by numerical transfer-matrixc@ndidates for being treated by RG techniques since they rely

methods* The effective spatial dimension, as defined by the®n rescaling. The prediction is that a fractal lattice possessing
finite-size scaling of the longitudinal correlation length, can@ Nnoninteger dimension and infinite-ramification ofeér
be tuned by changing the coupling constant at the boundaridg§aches the standard fixed points.
of the finite |aye|’s_ Depending on the value of this Coup"ng, The lack of translational invariance is considered as prob—
the boundary varies between periodic and antiperiodic. Théématic in analytic approaches, such'&8which were per-
resulting effective exponents agrees with the correspondintprmed by means of low-temperature RG and Migdal-
4— ¢ RG calculation at the effective spatial dimension. AKadanoff realspace R&;™ respectively. The failure of a
similar attempt to study dimensional crossover has been urfractal to be translationally invariant is characterized by the
dertaken, by means of RG, in the sp&e<R®™€,>®where  topological property lacunarity, which basically measures the
the circumference o8' has the finite valué. Two qualita-  variance of the density of sites within the lattiée® At
tively different regimes are expected, depending on the ratiganishing lacunarity, translational invariance is recovered.
of L and the correlation lengtlj. For L/é— the model Therefore especially analytical techniques have been applied
should behave as a (4e)-dimensional model, whild-/¢  to systems of low lacunarity/.*® However, studies on such
—0 should lead to (3 €)-dimensional behavior. Again ef- lattices suffer for their large lateral size of the initiatbr,
fective exponents can be calculated, which now depend diwhich is needed in order to distribute the holes evesbe
rectly onL. The main difference between these models andec. ).
the model considered in this paper is that the former reach In this paper we consider solely the influence of the non-
standard theories in the thermodynamic limit, where thenteger dimension of the fractal lattices. We have chosen the
transfer-matrix method recovers the model widffective  Sierpirski carpet(see Fig. 1 as a fractal. Previous Monte
dimensiond, while the RG approach is supposed to lead toCarlo simulations’~2* with Ising spins on this lattice have
standard 4 € RG. produced controversial results partly due to limited comput-
To overcome this problem, another way of scaling theing power available. There is also a methodological problem
effective spatial dimension has been implemented, again bwith the finite-size scaling approach used, which we will
using numerical transfer-matrix methot$* Here the con- show is inapplicable to fractal lattices. For comparison, our
nectivity of the lattice becomes a continuous parameteresults for the critical properties based on equilibrium Monte
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diated by nearest-neighbor interaction. The Hamiltonian is
given by

H=-32 S5 @)
with J positive andSe{—1,1} classical Ising spins. The
sum is over all nearest-neighbor spin pairs. The average
number of nearest neighbors for the latte&,(k,i) is

ENEEEEEEE
[ |

— 1-14(12—-g*)*
ni=4-4q—————— 2
503’(2, ) periodic boundary conditions included. This number does not

change if the lattice is expanded, i.e., it does not depend on
FIG. 1. Different ways of enlarging a Siefki carpet: The the numbei of the expansions.
upper one is “expanded,” the lower one “iterated.”
Il. STATIC CRITICAL BEHAVIOR

Carlozr?_ezghods are checked using short-time dynamic Monte 1, low-temperature phastTP) below the critical tem-

Carlo: :
. : . peratureT; and the high-temperature pha$€TP) above are
d'sIh:sotLrJ]tgnr?aa?T g;%r??)?et[ulasléhr? f?#g;\g?%'nl?hgesc; II__vr\]/e studied avoiding the finite-size scalingSS method. We
Iscu Izall Ing el will demonstrate why the traditional FSS method cannot be

carpet. In Sec. Ill the analysis of the static Montg .Car.loused to extract the critical properties of magnetic systems on
results and the problems encountered with the finite-siz ' actal lattices

scaling method are presented. Section IV contains the results
obtained from the dynamical simulations. _ »
A. Algorithms, quantities, and errors
] For the simulation we use cluster algorithth& since
II. SIERPIN SKI-ISING MODEL they have been proved to be more efficient than local algo-

The Sierpiski carpets we use are the smallest possibldithms like the Metropolis or heat-bath methBd* Indeed
ones with fourfold symmetry allowing periodic boundary they allow to cross the phase space in larger steps, by flip-
conditions. They are constructed by an iteration process, i.eRiNg at once a large number spins. Thereby the correlation

starting from an “initiator” one replaces all “substituands” time is reduced and a larger number of independent samples
by the “generator.i%2® As indicated in Fig. 1 the initiator 1S produced with the same numerical effort. With this advan-

and also the substituand is a gray square and for the gener@9€ and the fact that we can now use a larger number of
tor a 3x 3 square with a hole in the center is taken. With theMonte Carlo(MC) steps we can reduce the statistical errors

lateral size of the generatbrand the size of the holg the ~ fOr the exponents at least by one order of magnitude com-
generator consists 6P — q° subsquares, that is the generatorPared to the previous studies in the 1985%!

in Fig. 1 consists of eight gray squares, since the dimension_The choice between the Swendsen-Wang algorithm
of the embedding spad2 is two in our case. Aftek itera-  (SWA) and the Wolff algorithm(WA) for the HTP or LTP

tions one obtains a structure of lateral sl¥econsisting of ~édion is decided the following way. The Wolff algorithm
Slq(k):(|D_qD)k subsquares. The Hausdorff dimengfn (WA) is derived from the algorithm of Swendsen and Wang

of this carpet is therd.,= |n(|D_qD)lln(|) which is lower (SWA) and both are cluster algorithms. The SWA divides the
than the space dimengio;h>d sincel>(,q>0 entire lattice into clusters, where the probability to connect
For the simulations we coﬁsider also ambandedSier- two siteso andj along a specific link is with the reciprocal of

pinski lattice. The expanded form is obtained by tiing a the temperaturg

square withl X | Sierpirski carpets of sizé*, which have 1 L e

been generated bl iterations as described. To obtain the P=1-expmin{0,~2J5S- S}), ©

same lateral siz&** as by a further iteration the square for which means, in the case of Ising spins, that all clusters

the tiling is1 X1 that is of the size of the generator without consist of spins pointing in the same direction. A specific

any hole. In principle the expansion process could be iteratesipin S; pointing in the appropriate direction gets “a connec-

i times and we will denote the Siefjgii carpet aS G (k,i) tion” to a neighboring cluster via a neighb&, with prob-

with i =0 the nonexpanded form amkd-« the fractal in the ability P. After all possible bonds are visited and thus all

strict mathematical sense. clusters are formed, each cluster is flipped separately with
The Ising spins are placed on the sité4’i.e., the center probability 3.

of the filled squares in Fig. 1. One could also put them onthe The WA forms clusters in exactly the same way but

vertices of the lattic®?® without changing the Hausdorff chooses randomly a site and flips the generated cluster with

dimension and therefore without expecting changes in th@robability 1, leaving all other clusters untouched. Since the

critical exponents. The interaction is ferromagnetic and memethod would be very inefficient otherwise, the site is cho-
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sen first and then a cluster is created around it. Both methods 500 .
fulfill the requirements of accessibility and detailed balance. T

In our case we find that the correlation CPU time, i.e., the ) ° * 5C(4,0)
number of Monte Carlo evolution steps to create two inde- 490 ° : gg(;’;) 7
pendent samples multiplied with the CPU time needed to do 8055’ 1;

one step, was in the HTP 3 times smaller for the SWA than

for the WA, while in the LTP this relation is inverted in favor 300
of the WA but less significant. This is understandable since in
the LTP domains of spins pointing in the same direction are
large. The WA constructs clusters from a random site starting
favorably with a spin belonging to a large cluster rather than
one from a small one. In the same LTP the SWA produces
large clusters also efficiently but in addition also small ones,
because the SWA always covers the whole lattice. For lower 100 |
temperatures these small clusters become smaller anc , ‘ ‘
smaller and their importance decreases, while their creation 1.65 1.70 1.75 1.80
still costs CPU time. Thus it is more efficient to use the WA T

and that tackles exclusively the Iarg.es.t clgsters. . FIG. 2. Behavior ofyT in HTP for different lattices. The larger
~ Inthe HTP the areas of spins pointing in the same direCierated ones 0(5,0) does not behave as the origigal(4,0), while
tion become smaller with increasing temperature and the Whne expandedsQ(4,1) of SO(4,0) and the expande8((5,1) of
tends to single-spin-flip behavior, where only a few sitessc(5,0) do, as long as the correlation length is small enough.
were updated at each Monte Carlo step. This leads to large
correlation times and thus higher “costs.” By contrast thes(k,1) consists of a number of lattices, nine in our case, of
SWA, since it covers the whole lattice can also deal withihe simple typeSC(k,0). As soon ag becomes comparable
smaller clusters of sizes becoming more and more equal. g I, o, finite-size scaling sets in and the behavioS@(k,0)

The quantities calculated are the eneEyas average of deviates from that 08C(k,1). Thus a deviation 08 C(k,0)
the Hamiltonian(1) and the magnetization as average of  from the behavior o8C(k,1) gives a clear indication of the

N violation of the conditioné<Iy . This scheme provides a
M = 2 S, (4) control of ¢ without actually calculating it directly.
i=1 Near the critical point, i.e., wherg>l,,, SC(k,»)

should behave as a two-dimensiof2D) Ising model, since
each SC(k,0) subcell can be taken as a single spin like
Kadanoff's block spin. This Ising limit we will not analyze.

(M2)—(M)2 The other_li_mit fgrther away from th_e,cr_i_tical temperature
= TNT (5 outside the finite-size region for the Siergln carpet is ana-
lyzed by plotting in Fig. 2 the susceptibility in HTP region
The averages are indicated py: - ). In the HTP regiofM)  for the fractalsSC(4,0) andSC(5,0) together with their ex-
is put to zero. There is no unambiguous way to extract ganded version§C(4,1) andSC(5,1).
correlation lengthé directly from the numerical data due to ~ While SC(4,0) behaves asSC(4,1) and SC(5,0) as
the lack of translational invariance. We come back to thisSC(5,1) the susceptibility fo6C(4,0) deviates significantly
point in the following section. from the one foISC(5,0). This must be due to the difference

In all cases we calculate the error by means of the Jackin structure and in the average number of nearest neighbors
knife estimator® See Appendix A for details, where we de- (2) of SC(k,0) andSC(k+1,0). In the temperature region
scribe a method that allows to calculate the errors in thavith £<I, o the Ising model on the Sierpski carpetSC(k,0)
Jackknife scheme without saving all samples. Otherwise thbehaves as expected lig(k, ) rather than likeSC(,0).
method would be very space consuming, requiring hundredgachSC(k,0) represents a new thermodynamic system and
of megabytes of storage while the method used here reduc&C(k+1,0) cannot be treated as a scaled version of
the stored files to the size of a few kilobytes, without losingSC(k,0). The differences between the=4 andk=5 ver-

200

where the sum is over aM spins. The susceptibility is
then given by

the necessary information. sions are also linked to a change of the critical temperature
TE that already prohibits the use of FSS in the naive sense.
B. Problems of finite-size scaling method and results As long as the lattice is critical, but stifi<l, o we could

gy a direct fit of the susceptibilitiegy or—with another

To avoid finite-size corrections, one has to ensure that th o
éxponent—the magnetizatidvi

correlation lengtlg is smaller than the size of the lattice. The
original Sierpirski carpet is part of the expanded one, i.e.,
SCk,0)CcSCk,1), and the number of nearest neighbors are
equal, i.e.n,o=ny ; (See Sec. Il for detailsTherefore their However, the uncertainty of. and the presence of possible
thermodynamic behavior must be the same as long as corrections make the determination of a precise expomgent
<l o with I the size ofSC(k,0). The expanded carpet rather difficult. A way around is to use data from LTP and

XT=x0|T—T.|~7(1+correct) (6)
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the fitted line with thex axis, decreases witky which corre-
sponds to a decreasing average number of nearest neighbors

ne (2) if the iteration depth increases. Also the slope 1/

changes, fortunately not so strong, see Table I. It is not clear

how one could extrapolate to the linkt—c, since already

SC(6,0) with 2'8 spins could not be checked by the ex-

panded latticesSC(6,1) with nine times more spins. In all

cases for equilibration 20MC steps were used and®Léteps

/ to obtain sufficient statistics.

SC(6,0) The numerical results obtained from the straight line fits

=005 T | are listed in Table I. The points in Fig. 3 are not distributed

ree 1. symmetrically aroundr'; and this is not optimal for the fit.

‘ T Moreover the LTP critical region is very narrow, where the
\ | system is not yet in FSS region. Therefore only a small num-

'0'101.40 1.50 160 T 1.70 ber of points can be used. This leads to a loss in accuracy and

we could not complete the entries f81C(6,0) in Table I.
FIG. 3. Results of¢T/(xT)’ for different lattices. The slope of From Figs. 2 and 3 and from the variation Bf(k) in
the fitted straight line gives the inverse of the critical exponent Table | it is obvious that a straight forward application of the
and the intersection with the zero line the critical temperature. ~ FSS method is impossible. The basic idea behind FSS can be
summarized by the following equation, valid fgrand also

HTP region in the same fit and to “linearize” the plot by for other thermodynamic quantities by changing the first

taking instead of T the ratio (xT)/(xT)’ with the tempera- exponent,

ture derivative in the denominator. In order to do this we

have to calculate also the derivative pfor generally of a Y(T)=L""F(T=TL) (9)

guantity A making use of

P which states, thag is a generalized homogeneous function

—(A)=B%((AE)—(A)(E)) (7) in L. At T, Eq. (9) simplifies to x(T.)*L"*. The ratio of

JT critical exponentsy/v is then obtained as slope by plotting
with A=M or M2 that introduces higher moments to be In x as function of IrL. Of course the use of FSS requires the

determined. In lowest approximation the quotigif/(yT)’  availability of large and many different realizations of the
is the same in LTP and HTP region samesystem. Howevea priori it is unknown how to enlarge
a Sierpirski carpet; there is no obvious way doing it, since
xT (T-T.) scaling of SC(k,i) in k leads to a different behavior of
== (1+correct) (8  SCk,0) andSC(k+1,0) even if the correlation length is
(xT) Y sufficiently small,é<l o, while scaling ini violates the con-

and one can determineqlAs the slope of a straight line. We Struction law of the Sierpski carpet and leads to a usual
have used this method for the Ising mofieind found it had ~ 2D-1sing behavior. Furthermore FSS can only work out if all
principal advantages compared to a direct fit. One has a df"€ Sizes have the same critical temperature, which is not the
rect and visual control of the fit and obtains more reliablecase for the few Sierpski latticesSC(k,0) we could ana-
results. The method also provides implicitly an indicator!yze. In case of the fractals the number of nearest neighbors
whether or not the system behaves critical. The straight-lin@ varies if the size given bk changes. This has the conse-
behavior, which can be seen in Fig. 3 sets in only if thequence that apart from the changeTgfin Eq. (9) to T‘é, one
system is really critical, but stops as soon &<l,, is  has also to consider a dependence of the scaling funtction
violated. k. Elimination of the shift inT by using the “maximum-of-

In Fig. 3 only points “valid” in this sense are shown. The susceptibility” method to obtain critical exponents would be
results differ markedly for different Sierski carpetsk. Es- a doubtful procedure since the unknown variation f&f
pecially the critical temperature, given by the intersection ofenters.

TABLE I. Results from static behavior. Two estimates exist forone from the method referenced as
“slope method” and in addition from direct fits, which produces also an estimatg for

Y B
Lattice T, (slope methogd by slope(slope method directly (HTP only)  directly (LTP only)
SC(4,0) 1.526611) 1.911(15) 1.90136)2 0.10439)?
SC(5,0) 1.508112) 2.03035) 2.0698)% 0.12216)?
S(C(6,0) 1.499211) 2.05554)

aImposing T, (see text
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TABLE Il. Results from dynamic critical behavior. 1.00 i -
Lattice Vi(t)—wvz x(Vy)—vy M(Vi)— B <m>,
SC(4,0) 3.0611) 1.95932) 0.115429) 09
SC(5,0) 3.2115) 2.04849) 0.120@55)

0.90 4
~ \

These limitations could explain why the exponents found
by the FSS methdd are so different from the exponents of
previous studiegsee Table Ill of Ref. 2Dand also from our 0.80
results (see Table | and JI| We note that the use of free
boundaries in Ref. 20 with additional finite- size corrections
could increase the problems with the FSS method.

To obtain the exponentg and 3, as reported in the sec-
ond and third columns of Table I, we have used the “slope” 0.70 5 100 200 200 %00 500
method(8) explained above and direct fits according to Eq.
(6) without any correction terms. These fits have been done L
by fixing the c)r/itical temperature at the value determined by FIG. 4. The average magnet'zat'ém%:(M)‘/N aftert evo-

. . lution steps for different lattices.
the slope method. This way we arrive at the small errors
quoted in Table I. WithT. as a free parameter the errors
would increase without changing the results considerably. |Ib
the LTP region the number of points is too small for a direct
fit of T to Eq.(6) in order to give reliable estimates for the
critical exponents. The exponenjsobtained with the two f(T—To),h,t)=b 9 (T—T,)b¥,hb'ht/b?) (10
methods agree quite well. We observe a small but systematic
growth of the exponeny as function of the iteration param- With the timet measured in MC steps and the dynamical
eterk. exponentz included. The magnetic field is denoted fyand

Before we compare the results with the RG predicﬁans d the dimension. While FSS is impOSSible since it is not

we study first the dynamical properties of the system in ordeknown how to scale theize of the system systematically
to have an independent check. without changing relevant properties, the dynamics can be

assumed to obey the usual scaling since scalirtgrafis not
affected by the lattice structure, as time is measured and

We reformulate the results of Ref. 25 for our purposes.
ne assumes that the free energy per kiteas the usual
scaling form

IV. DYNAMIC CRITICAL BEHAVIOR scaled in number of Monte Carlo steps. However we note
that assuming the resulting exponents of the dynamic ap-
A. Algorithm and scaling proach to be estimates of exponents of the thermodynamic

In this section we want to study the dynamical behavior ofimit, without knowing how to scale size, i.e., how to con-
the fractal Ising model at the critical temperature. Thestruct this limit, raises an mteregtmg philosophical question
method consists of “annealing” the spin system frdm:0 about t_he meaning of such estimates. We expect th_em to
to the critical temperatur®, . As a function of time or evo- aPProximate the exponents $(,0) better and better with
lution steps, the magnetization or another quantity is re®ach step of iteration d€in SC(k,0). _ _
corded before the system reaches the equilibrium state. N Ed- (10) the part of the free energy that is analytical
Prima facieit is surprising that the system shows critical "€@r Tc has been dropped. The exponeysandy, are the
behavior although it is not in equilibrium. Indeed the studyusSual ones given
of critical behavior by the dynamic approach has not been
very common in numerical simulations. For quite some time,
however, it had been shown that between a short tjrand
a much longer equilibration timé; there exists aug?r]iod yn=d=plv=(d+yv)i2, (12
where the calculation of the critical properties should bewith the Josephson relation g2 y=dv automatically
feasiblé?~%*(see a recent review of ZheRy. satisfied.

The dynamic critical behavior is similar to the normal  Assuming that the various thermodynamic quantities as
critical behavior in the sense that in the annealing procesgbtained by deriving Eq(10) correspond to their averages
after the timet, a finite correlation lengtl§ exists that grows  after timet, ()¢, the spontaneous magnetization is
steadily until it reaches the system sizdatIn essence this
is equivalent to the increase of correlation length in ap- of dty y ,
proachingT, until the FSS region is reached. Fort; one <M>t:% =b "h((T=Te)b",04/b%), (13
observes critical behavior in the form of a power law as in h=0
Fig. 4. The critical exponents one obtains are free fromwheref,, is the derivative with respect ta Using Eqgs.(11)
finite-size corrections sincé<L. and(12) and puttingb=t'? one gets

Yi= 1/V, (ll)
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(M) =t~ Al (T-To)tHe) 0,), (14) !
which reduces aT =T, to ~<m>,
(M)yoet ™ A1), (15

In the same way one finds at the critical temperature

3%t I(zv)
=22 ot YRE, (16)
h=0
2
U1 Mg, an SC(4,0)
o
dn((M
Vf# @), (18) :
J h=0 Vit

from the deﬁr_]ition of t,he S,usceptibility)(, the time- FIG. 5. Magnetizatio m); versusVy, in a double-logarithmic
dependent equivalent to Binder’s paramétér or the cumu- lot giving 3 as the slope. The results &C(5,0) [SC(4,0)] are
lant V3. All these formulas can be written as the usual FSSpjtted downwards by a factor 0[@.81].

power laws like Eq(9) with the substitutiort'?—L. In the

following section we will use these relations to determine the ,
critical exponents. (t0,500). ForSC(4,0) t, was <80 and<100 for the Sier-

pinski carpetsSC(5,0) andSC(6,0). We have verified that a
similar behavior is obtained using the Metropolis algorithm
instead of the heat-bath algorithm. The initial ting is
The lattice is prepared in the ferromagnetic ground statelpnger, in agreement with the observation for the Ising model
which corresponds td=0. Then the system is exposed to on the square lattic®.
500 heat-bath steps using the temperaflye where a full Similarly we obtain the exponentgsandvz, plotting x; as
lattice update is counted as one time step. This procedurinction ofV,, (Fig. 6) andV, as function oft (Fig. 7). All
must be repeated many times and witk 20* repetitions  results are listed in Table Il for th&C(4,0) andSC(5,0).
enough statistical reliability is obtained. Fdr, we have The typical statistical error of exponents found in a double
taken the value determined by the method given aldiege log fit at a given temperature is one-half or more of the
Table ). Therefore we have at least two sources for the eroverall error. Another important source of uncertainty is as
rors. One due to the statistical errqsee Appendix Band  expected the limited accuracy of the critical temperature. To
one due to the error om,. take into account the uncertainty ©f, we have simulated
Besides the averages of the ene(@),=(H); Eq. (1), the system at three different temperaturesTatand atT,
magnetization M), Eq. (4) and susceptibilityy(t), see Eq. =+ ¢, whereo is one standard deviation @f,. Due to limited
(5), the following thermodynamic quantities are determined

B. Simulations

<ME>I ~X
= —(E),, (19 ¢

<M>t < >t 106
where( . . .), denotes the average over different ruhsre
2x10% after the same number of updating stegéere 1
<t=<500).

Vi

10

C. Results

In Fig 4 we have plottedm), as function of time, which .
is the number of evolution steps of the heat bath algorithm. 10
From the slope of a double log plot of the curve and @4)
the ratio of critical exponentg/vz could be obtained.

However, it is more efficient to determing directly by 10°
drawing (m); againstV,; (Fig. 5 in a double log plot and
using a linear fit. The results for the firg§ steps of the

evolution show not yet critical behavior. Sintgis a priori 1 V,
unknown the fit is applied to different ranggs<t;, ] of
data. As soon as linear behavior sets in, this deterntijpas FIG. 6. Susceptibilityy, versusVy, in a double-logarithmic plot

an upper boundary and a fit can be applied to the entire ranggving y as the slope.
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pendently, the short-time critical dynamics of an Ising sys-

100 tem on a Sierpiski carpet, partly by means of FSS. How-
~Vi ever, differences at least for all nonuniversal quantities are
expected, since in Ref. 40 the spins have been placed at the
vertices, rather than at the sites.
10
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APPENDIX A: CALCULATION OF ERRORS FOR
THE EQUILIBRIUM PROPERTIES

We used the so-called Jackknife estimator, which is a spe-
cial case of resampling, to calculate the average values and
the errors, see Ref. 35. The usual way to apply this method is

FIG. 7. V4, versus the number of Monte Carlo stéfs double-  to store the entire sample during the MC simulati{@rich
logarithmic plot giving 1/¢z) as the slope. The results 8/C(6,0)  means the values dfl andE after each sweep herand to
[SC(5,0)] are shifted upwards by a factor 25]. calculate the required quantities of all subsamples thereafter.

) ) ) . Huge volumes of data, in our simulation 20 MB, have to be
computing resources it was not possible to calculate reliablgioreq for each point and reprocessed for each required quan-
estimates for exponents and their uncertaintieS6(6,0).  jty. To avoid this overhead, we express the Jackknife esti-

_Both methods, the equilibrium as well as the dynamicmators for functions of expectation valué), and their
critical behavior, involve only two independent static critical 5i3ngard deviatios?(f), by simple averages. Fdi(x)=x
exponents:y and g are given by both methods, while the ;e optain
second gives in addition the dynamic critical exponent
The results forB and y from the dynamic simulations com- (xX),=X (A1)
pare favorably with those of the static simulations.

1
100

-
N
(=]

t

1 ~ o~
V. CONCLUSION SA(X)y= gy (XP— %) (A2)
(N-1)

We have studied the phase transition of the Ising model ~ ) ~
on the Sierpieki carpet of type 3 1. To obtain consistent WHeré x denotes the average simply calculated jas
results we avoided the finite-size scaling method that we- ~i%i/Niot, Wherex; is the value of the quantity in thigh
think cannot be used to study magnetic phase transitions offément of the sample ard,, is the size of the samplé,
fractal lattices. We used two different methods, the firsth® number oindependenelements in the sample, is calcu-
based on standard simulation techniques and the other basifd @8SN=Ni/(27+1), Ref. 41, with7 the correlation
on critical dynamics. Applying it to fractals we give a further UMe- ) _
example of its practicality. Both methods lead to consistent FOr f(X)=x" we obtain
results that indicate a significant deviation from 2D-Ising ~ ~
behavior. This gives a further evidence that fractal lattice o~y XX
possess a fractal, that is noninteger dimension also in the (Xa=x"+ (N—1)2’
sense and context of critical phenomena. This result is prob-
ably more important than the precise values of the critical 1 - -
exponents. S2(x?) ;= ————(— ANZX*+ 4(N+ 1)NX2x? — ANXx®

In conclusion we compare our results with the RG (N-1)3
calculationd’ with the Hausdorff dimensions of our Sierpin ~
ski carpetd=1.893, the 4 ¢ RG gives y~1.85 andj +x7), (A4)
~0.10. The results that we get~2.05 andB~0.12, would ~
be more compatible witld~1.70. A mean-field-like expla- Where we have use;p”zzix{‘Z/Ntm. For f(x,y) =x*+y, as
nation for this smaller value is that the coordination number€auired foryT=(M%)—(M)*, wherex=(M), y=—(M?)

of n.,= 3.2 suggestd = n../2=1.63* Although we cannot ex- andxT=—f(xy)
clude other corrections that could cause these deviations, our <x2+y>J=<x2)J+(y>J, (A5)
results suggest that the Hausdorff dimension of the lattice is
not exactly the effective noninteger spatial dimension for the

(A3)

phase transition even if it should give a rough estimate.  g2(x2y) — (XY —XXy) + L(;Zg_;(?)’,)’
After completion of this manuscript, the authors became (N—1)2 (N—1)2
aware of a paper by Zheng and*{.that investigates, inde- (AB6)
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The denominators in a functidir{x,y) =x/y are of course A2s2(F),+FE2s2(H),
assumed to be nonvanishing. In the following we will treat s?(FIH);= = (A16)
the estimates of as well as their standard deviation up to at H
leastO(N~2):

_2N|1|2| b|12 |a||

!
-1
v

+O(N73%) (A7) 11z
X XG5tz 3o+

X
<X/y>J::( 1+ —
y

N_l ~ — ~~

sz(x/y)JzNZ;A(xzyz—zi’yx"’er}ZF)Jrcf)(N*?) Xi Xir =X X1

\

X 2 iKiK,\,—JrO(N)
(A8) 12 Xi X}

For f(x,y,z)=x/y+z as used forV; with x=(ME), y  One constraint that should be always checked is

=(M) andz=—(E) we get o
XiXi — XiX;=0.

(XIy+2)3=(xly);+{2)4, (A9) _ _ _
In all cases numerical errors may become important, since
S(xly+2), small differences of large numbers are treated here.
2 2 2(Xxz X yZ 2 APPENDIX B: CALCULATION OF ERRORS FOR THE
=S (xly)y+si(2)t T 3 +O(N™) DYNAMICAL PROPERTIES
(A10) While the errors of the static properties were calculated in

a straightforward manner, dynamic errors are more complex.

The special cases just discussed can be generalized &rrelations coming from the dynamic behavior of the sys-
follows. The generalization turns out to be very useful andem must be distinguished from correlations due to insuffi-
easily implemented. With the functions cient sampling. At first glance all dynamic runs are mutually

independent, because they are all prepared in the same state
i i in the beginning. Therefore usual error-estimation techniques
F(X1,Xg, ... X,)= 2 iy i XXX and thus the following scheme seems to be applicébis
i (A11) scheme is referenced in the following as the “direct
method”): Collect each configuratioB,, which was created
_ _ aftert evolution steps in rum, in an ordered set,
H(Xlixzv e 1/) _I Iz i b|1|2 I:LXIZZ. : 'ley El E2 EN
1l2 v = “on
(A1) S={%¢ 20,2} (B1)
<
that are sums of products of thgth powers of observables mr;eﬁ:):ismtgle t?;gbigfféggﬁ igﬁ;ur;"&%ﬁ vivnheef:'gp]aglst the
x,, it is a matter of straightforward but tedious algebra 10 5herties of interest are calculated. For instance an estima-

show that tor for the magnetizatiodM ), att steps is given by
(F)o=F=F(q5 ... X,)+ON?)  (AL3) 1y
(M)=y 2 M. (82)
F\ F 5
R/ SR TONT (Al4)  The standard deviation could also be calculated in the usual
J

way

whereX,=3x,;N; With X,; as the value of observabie, LN
obtained at theéth step of the simulation. The standard de- 2 _ [ 2

M))=— M —(M . B
viation are given then as 7 (M) N 2 ME)—(M)] (B3)

In more complicated cases, again the Jackknife could be ap-

1
sZ(F)Jzﬁ > @iy i Al xp 1+ (i2+i2) plied and the formulas as given above can be used to calcu-
f}ff . late an estimator, for example, f&f;; and its uncertainty.
a2ty The logarithms of these data then enter a linear fitting routine
o and an estimator for the critical exponents, gayis com-
(i+i') 2 AT puted. Although actually a set of estimates and standard de-
X X i ————+0O(N? - " ! i
= X X1 viations of a property enter the fitting routine, all these de

tails are hidden by writing the linear fitting routine as a
(A15) function of all ordered setS;
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-0.10 However the subsampling scheme as used by the Jack-
B Direct method knife method can again be used to estimate the average and
its error in this case. We create new samp@sby deleting
ot i the configurations of run from all setsS; :
5 S B _
oz LI Bay T | SR I e X o o1
| j (B5)
K ft-mooooneneee For each of these sets, we calculate our estimate of the criti-
013 F k 1 cal exponenty’i=u(S}1,S), ... S, ). The mean value of
max
% -\ these estimates of the exponent
-0.14 .
Jackknife subsampling 1 N
w=g 2w (B6)
-0.15 I I I I I I I I I I
t.e2 3 4 5 6 7 8 9 10 represents the Jackknife estimator of the exponent, while
Number of subsample
N
FIG. 8. Comparison of two methods for calculating estimates 2, 3\ _ -1 J_ 32
and errors of exponents for dynamical properties. The direct way o () N 2,: (poi=p) (B7)
leads to incompatible results, while the Jackknife gives reasonable
estimates of the errors. is its standard deviatiofnote the prefactoN— 1/N instead
of 1/N—1, as in the usual calculation of a standard devia-
p=u(S1,S, .. .S ) (B4)  tion). The actual calculation of each estimate of the expo-
ma:

nent, u”i, is independent of the subsampling scheme given

Unfortunately this simple approach turns out to be wrong:here. Thus we note just for a better understanding thiat
Even though each s&, consists indeed of mutually inde- uses by itself the Jackknife technique to calculate the expo-
pendent configurations, the different s§sfrom different  nent.
timest are not only connected by the dynamic behavior of In Fig. 8 we show different results obtained by dividing a
the systemwhich is the wanted and investigated behaviorwhole set of data into ten distinct sets and applying both
that lead to critical exponents at )allThey are additionally schemes, wheréM), from SC(5,0) serves as an example.
connected by the naive method they are produced by. “Naivés expected both methods give almost exactly the same es-
method” here refers to the fact, that we create only one subtimator for the exponerthereg), but different results for the
sequent sample at each step instead of considering the entiegror. By using the Jackknife scheme the scattering of the
phase space accessible from any current state. Instead of cresults for each subset is well compatible with the results for
ating a whole histogram of transitions from one state to anthe estimate and the error from the entire gmarked as
other, we create onlpne subsequent state, hoping that this B5)). Manifestly the direct method gives incompatible re-
state is a typical one. Apart from this, a rather atypical andsults. Additionally the error bar calculated for the entire set
thus unimportant representative at a particular time mighby means of the direct method is smaller than the numerical
produce also atypical representatives at subsequent times.error and thus smaller than the line 8§, .
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