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Monte Carlo simulation of an Ising model on a Sierpiński carpet

G. Pruessner,* D. Loison,† and K. D. Schotte‡

Institut für Theoretische Physik, Freie Universita¨t Berlin, Arnimallee 14, 14195 Berlin, Germany
~Received 1 February 2000; revised manuscript received 18 December 2000; published 12 September 2001!

We study by Monte Carlo simulation the equilibrium and dynamical critical properties of fractal lattices with
noninteger Hausdorff dimension. These lattices are known to be good candidates to bridge the gap between
integer dimensions. Focusing on the Sierpin´ski carpet with Ising spins, we are able to obtain the critical
exponents that are to be compared to the predictions of the renormalization group. We point out that the use of
finite-size scaling is forbidden for fractal lattices. This might explain the difference from the exponents ob-
tained in previous studies.
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I. INTRODUCTION

The understanding of phase transitions has been gre
improved by the introduction of the renormalization gro
~RG!. In particular, various approaches such as that base
the nonlinear sigma model or thed542e Wilson expansion
make predictions regarding the critical behavior of syste
for noninteger space dimensions. In contrast to integer
mensions, it seems to be impossible to verify these pre
tions on critical exponents for second-order phase transit
with numerical simulations. This is regrettable because so
systems, like the Potts model1 or frustrated-spin models,2 are
predicted to change their behavior from second order to
order at specific noninteger dimensions.

An effective noninteger dimension and effective critic
exponents that differ from their standard values are expe
in partially finite systems undergoing a phase transiti
Ising systems, which are finite in all, sayd, but one dimen-
sion, have been studied by numerical transfer-ma
methods.3,4 The effective spatial dimension, as defined by t
finite-size scaling of the longitudinal correlation length, c
be tuned by changing the coupling constant at the bounda
of the finite layers. Depending on the value of this couplin
the boundary varies between periodic and antiperiodic.
resulting effective exponents agrees with the correspond
42e RG calculation at the effective spatial dimension.
similar attempt to study dimensional crossover has been
dertaken, by means of RG, in the spaceS13R32e,5,6 where
the circumference ofS1 has the finite valueL. Two qualita-
tively different regimes are expected, depending on the r
of L and the correlation lengthj. For L/j→` the model
should behave as a (42e)-dimensional model, whileL/j
→0 should lead to (32e)-dimensional behavior. Again ef
fective exponents can be calculated, which now depend
rectly onL. The main difference between these models a
the model considered in this paper is that the former re
standard theories in the thermodynamic limit, where
transfer-matrix method recovers the model with~effective!
dimensiond, while the RG approach is supposed to lead
standard 42e RG.

To overcome this problem, another way of scaling t
effective spatial dimension has been implemented, again
using numerical transfer-matrix methods.7,8,4 Here the con-
nectivity of the lattice becomes a continuous parame
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varying between nearest-neighbor coupling and uncoup
one-dimensional chains. Extensive calculations have b
carried out between effective dimensionde f f51 and de f f

52.8 Although the system obtained by this procedure
translationally invariant, it remains open whether the int
polation scheme is capable of covering the thermodyna
limit. Moreover, the physical interpretation of the interpol
tion is not obvious.

Another suggestion, at the beginning of the 1980s, wa
use fractal lattices to simulate systems in noninteger dim
sions. However, as disordered systems, fractals are not tr
lationally invariant and this causes difficulties for the sim
lations. Disorder can introduce relevant fields leadi
eventually to a new stable fixed point. In the case of fract
the situation is different: The lack of translational invarian
is caused by an ordered removal of sites, which leads
scale-invariant lattice. This fact makes fractal systems g
candidates for being treated by RG techniques since they
on rescaling. The prediction is that a fractal lattice possess
a noninteger dimension and infinite-ramification order9,10

reaches the standard fixed points.
The lack of translational invariance is considered as pr

lematic in analytic approaches, such as,11,9 which were per-
formed by means of low-temperature RG and Migd
Kadanoff realspace RG,12,13 respectively. The failure of a
fractal to be translationally invariant is characterized by
topological property lacunarity, which basically measures
variance of the density of sites within the lattice.14–16 At
vanishing lacunarity, translational invariance is recover
Therefore especially analytical techniques have been app
to systems of low lacunarity.17,18 However, studies on such
lattices suffer for their large lateral size of the initiator,18

which is needed in order to distribute the holes evenly~see
Sec. II!.

In this paper we consider solely the influence of the no
integer dimension of the fractal lattices. We have chosen
Sierpiński carpet~see Fig. 1! as a fractal. Previous Monte
Carlo simulations19–21 with Ising spins on this lattice have
produced controversial results partly due to limited comp
ing power available. There is also a methodological probl
with the finite-size scaling approach used, which we w
show is inapplicable to fractal lattices. For comparison, o
results for the critical properties based on equilibrium Mon
©2001 The American Physical Society14-1
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Carlo methods are checked using short-time dynamic Mo
Carlo.22–25

The outline of the paper is the following. In Sec. II w
discuss the realization of the Ising model on the Sierpin´ski
carpet. In Sec. III the analysis of the static Monte Ca
results and the problems encountered with the finite-s
scaling method are presented. Section IV contains the re
obtained from the dynamical simulations.

II. SIERPIŃ SKI-ISING MODEL

The Sierpin´ski carpets we use are the smallest poss
ones with fourfold symmetry allowing periodic bounda
conditions. They are constructed by an iteration process,
starting from an ‘‘initiator’’ one replaces all ‘‘substituands
by the ‘‘generator.’’10,26 As indicated in Fig. 1 the initiator
and also the substituand is a gray square and for the gen
tor a 333 square with a hole in the center is taken. With t
lateral size of the generatorl and the size of the holeq the
generator consists ofl D2qD subsquares, that is the genera
in Fig. 1 consists of eight gray squares, since the dimen
of the embedding spaceD is two in our case. Afterk itera-
tions one obtains a structure of lateral sizel k consisting of
slq(k)5( l D2qD)k subsquares. The Hausdorff dimension26

of this carpet is thendH5 ln(lD2qD)/ln(l), which is lower
than the space dimensionD.dH sincel .q.0.

For the simulations we consider also anexpandedSier-
piński lattice. The expanded form is obtained by tiling
square withl 3 l Sierpiński carpets of sizel k, which have
been generated byk iterations as described. To obtain th
same lateral sizel k11 as by a further iteration the square f
the tiling is l 3 l that is of the size of the generator witho
any hole. In principle the expansion process could be itera
i times and we will denote the Sierpin´ski carpet asSClq(k,i )
with i 50 the nonexpanded form andk→` the fractal in the
strict mathematical sense.

The Ising spins are placed on the sites,20,27 i.e., the center
of the filled squares in Fig. 1. One could also put them on
vertices of the lattice28,29 without changing the Hausdorf
dimension and therefore without expecting changes in
critical exponents. The interaction is ferromagnetic and m

FIG. 1. Different ways of enlarging a Sierpin´ski carpet: The
upper one is ‘‘expanded,’’ the lower one ‘‘iterated.’’
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diated by nearest-neighbor interaction. The Hamiltonian
given by

H52J(
( i j )

Si•Sj ~1!

with J positive andSiP$21,1% classical Ising spins. The
sum is over all nearest-neighbor spin pairs. The aver
number of nearest neighbors for the latticeSClq(k,i ) is

n̄ki5424q
12 l k/~ l 22q2!k

~ l 22q2!2 l
~2!

periodic boundary conditions included. This number does
change if the lattice is expanded, i.e., it does not depend
the numberi of the expansions.

III. STATIC CRITICAL BEHAVIOR

The low-temperature phase~LTP! below the critical tem-
peratureTc and the high-temperature phase~HTP! above are
studied avoiding the finite-size scaling~FSS! method. We
will demonstrate why the traditional FSS method cannot
used to extract the critical properties of magnetic systems
fractal lattices.

A. Algorithms, quantities, and errors

For the simulation we use cluster algorithms30,31 since
they have been proved to be more efficient than local al
rithms like the Metropolis or heat-bath method.30–33 Indeed
they allow to cross the phase space in larger steps, by
ping at once a large number spins. Thereby the correla
time is reduced and a larger number of independent sam
is produced with the same numerical effort. With this adva
tage and the fact that we can now use a larger numbe
Monte Carlo~MC! steps we can reduce the statistical erro
for the exponents at least by one order of magnitude co
pared to the previous studies in the 1980s.19,34

The choice between the Swendsen-Wang algorit
~SWA! and the Wolff algorithm~WA! for the HTP or LTP
region is decided the following way. The Wolff algorithm
~WA! is derived from the algorithm of Swendsen and Wa
~SWA! and both are cluster algorithms. The SWA divides t
entire lattice into clusters, where the probability to conn
two siteso andj along a specific link is with the reciprocal o
the temperatureb

P512exp~min$0,22JbSo•Sj%!, ~3!

which means, in the case of Ising spins, that all clust
consist of spins pointing in the same direction. A spec
spin Sj pointing in the appropriate direction gets ‘‘a conne
tion’’ to a neighboring cluster via a neighborSo with prob-
ability P. After all possible bonds are visited and thus
clusters are formed, each cluster is flipped separately w
probability 1

2 .
The WA forms clusters in exactly the same way b

chooses randomly a site and flips the generated cluster
probability 1, leaving all other clusters untouched. Since
method would be very inefficient otherwise, the site is ch
4-2
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sen first and then a cluster is created around it. Both meth
fulfill the requirements of accessibility and detailed balan

In our case we find that the correlation CPU time, i.e.,
number of Monte Carlo evolution steps to create two in
pendent samples multiplied with the CPU time needed to
one step, was in the HTP 3 times smaller for the SWA th
for the WA, while in the LTP this relation is inverted in favo
of the WA but less significant. This is understandable sinc
the LTP domains of spins pointing in the same direction
large. The WA constructs clusters from a random site star
favorably with a spin belonging to a large cluster rather th
one from a small one. In the same LTP the SWA produ
large clusters also efficiently but in addition also small on
because the SWA always covers the whole lattice. For lo
temperatures these small clusters become smaller
smaller and their importance decreases, while their crea
still costs CPU time. Thus it is more efficient to use the W
and that tackles exclusively the largest clusters.

In the HTP the areas of spins pointing in the same dir
tion become smaller with increasing temperature and the
tends to single-spin-flip behavior, where only a few si
were updated at each Monte Carlo step. This leads to l
correlation times and thus higher ‘‘costs.’’ By contrast t
SWA, since it covers the whole lattice can also deal w
smaller clusters of sizes becoming more and more equa

The quantities calculated are the energyE as average of
the Hamiltonian~1! and the magnetization as average of

M5(
i 51

N

Si , ~4!

where the sum is over allN spins. The susceptibilityx is
then given by

x5
^M2&2^M &2

NT
. ~5!

The averages are indicated by^•••&. In the HTP region̂ M &
is put to zero. There is no unambiguous way to extrac
correlation lengthj directly from the numerical data due t
the lack of translational invariance. We come back to t
point in the following section.

In all cases we calculate the error by means of the Ja
knife estimator.35 See Appendix A for details, where we de
scribe a method that allows to calculate the errors in
Jackknife scheme without saving all samples. Otherwise
method would be very space consuming, requiring hundr
of megabytes of storage while the method used here red
the stored files to the size of a few kilobytes, without losi
the necessary information.

B. Problems of finite-size scaling method and results

To avoid finite-size corrections, one has to ensure that
correlation lengthj is smaller than the size of the lattice. Th
original Sierpiński carpet is part of the expanded one, i.
SC(k,0),SC(k,1), and the number of nearest neighbors
equal, i.e.,n̄k,05n̄k,1 ~see Sec. II for details!. Therefore their
thermodynamic behavior must be the same as long aj
! l k,0 with l k,0 the size ofSC(k,0). The expanded carpe
13441
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SC(k,1) consists of a number of lattices, nine in our case
the simple typeSC(k,0). As soon asj becomes comparabl
to l k,0 , finite-size scaling sets in and the behavior ofSC(k,0)
deviates from that ofSC(k,1). Thus a deviation ofSC(k,0)
from the behavior ofSC(k,1) gives a clear indication of the
violation of the conditionj! l k,0 . This scheme provides a
control of j without actually calculating it directly.

Near the critical point, i.e., whenj@ l k,0 , SC(k,`)
should behave as a two-dimensional~2D! Ising model, since
each SC(k,0) subcell can be taken as a single spin li
Kadanoff’s block spin. This Ising limit we will not analyze

The other limit further away from the critical temperatu
outside the finite-size region for the Sierpin´ski carpet is ana-
lyzed by plotting in Fig. 2 the susceptibilityx in HTP region
for the fractalsSC(4,0) andSC(5,0) together with their ex-
panded versionsSC(4,1) andSC(5,1).

While SC(4,0) behaves asSC(4,1) and SC(5,0) as
SC(5,1) the susceptibility forSC(4,0) deviates significantly
from the one forSC(5,0). This must be due to the differenc
in structure and in the average number of nearest neigh
~2! of SC(k,0) andSC(k11,0). In the temperature regio
with j! l k,0 the Ising model on the Sierpin´ski carpetSC(k,0)
behaves as expected likeSC(k,`) rather than likeSC(`,0).
EachSC(k,0) represents a new thermodynamic system a
SC(k11,0) cannot be treated as a scaled version
SC(k,0). The differences between thek54 andk55 ver-
sions are also linked to a change of the critical tempera
Tc

k that already prohibits the use of FSS in the naive sen
As long as the lattice is critical, but stillj! l k,0 we could

try a direct fit of the susceptibilitiesx or—with another
exponent—the magnetizationM

xT5x0uT2Tcu2g~11correct.! ~6!

However, the uncertainty ofTc and the presence of possib
corrections make the determination of a precise exponeng
rather difficult. A way around is to use data from LTP an

FIG. 2. Behavior ofxT in HTP for different lattices. The large
iterated oneSC(5,0) does not behave as the originalSC(4,0), while
the expandedSC(4,1) of SC(4,0) and the expandedSC(5,1) of
SC(5,0) do, as long as the correlation length is small enough.
4-3
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G. PRUESSNER, D. LOISON, AND K. D. SCHOTTE PHYSICAL REVIEW B64 134414
HTP region in the same fit and to ‘‘linearize’’ the plot b
taking instead ofxT the ratio (xT)/(xT)8 with the tempera-
ture derivative in the denominator. In order to do this w
have to calculate also the derivative ofx or generally of a
quantityA making use of

]

]T
^A&5b2~^AE&2^A&^E&! ~7!

with A5M or M2 that introduces higher moments to b
determined. In lowest approximation the quotientxT/(xT)8
is the same in LTP and HTP region

xT

~xT!8
52

~T2Tc!

g
~11correct.! ~8!

and one can determine 1/g as the slope of a straight line. W
have used this method for the Ising model36 and found it had
principal advantages compared to a direct fit. One has a
rect and visual control of the fit and obtains more relia
results. The method also provides implicitly an indica
whether or not the system behaves critical. The straight-
behavior, which can be seen in Fig. 3 sets in only if t
system is really critical, but stops as soon asj! l k,0 is
violated.

In Fig. 3 only points ‘‘valid’’ in this sense are shown. Th
results differ markedly for different Sierpin´ski carpetsk. Es-
pecially the critical temperature, given by the intersection

FIG. 3. Results ofxT/(xT)8 for different lattices. The slope o
the fitted straight line gives the inverse of the critical exponeng
and the intersection with the zero line the critical temperature.
13441
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the fitted line with thex axis, decreases withk, which corre-
sponds to a decreasing average number of nearest neigh
n̄k ~2! if the iteration depth increases. Also the slope 1g
changes, fortunately not so strong, see Table I. It is not c
how one could extrapolate to the limitk→`, since already
SC(6,0) with 218 spins could not be checked by the e
panded latticesSC(6,1) with nine times more spins. In a
cases for equilibration 105 MC steps were used and 106 steps
to obtain sufficient statistics.

The numerical results obtained from the straight line
are listed in Table I. The points in Fig. 3 are not distribut
symmetrically aroundTc and this is not optimal for the fit.
Moreover the LTP critical region is very narrow, where th
system is not yet in FSS region. Therefore only a small nu
ber of points can be used. This leads to a loss in accuracy
we could not complete the entries forSC(6,0) in Table I.

From Figs. 2 and 3 and from the variation ofTc(k) in
Table I it is obvious that a straight forward application of t
FSS method is impossible. The basic idea behind FSS ca
summarized by the following equation, valid forx and also
for other thermodynamic quantities by changing the fi
exponent,

x~T!5Lg/n f „~T2Tc!L
1/n
… ~9!

which states, thatx is a generalized homogeneous functi
in L. At Tc Eq. ~9! simplifies tox(Tc)}Lg/n. The ratio of
critical exponentsg/n is then obtained as slope by plottin
ln x as function of lnL. Of course the use of FSS requires t
availability of large and many different realizations of th
samesystem. Howevera priori it is unknown how to enlarge
a Sierpiński carpet; there is no obvious way doing it, sin
scaling of SC(k,i ) in k leads to a different behavior o
SC(k,0) and SC(k11,0) even if the correlation length i
sufficiently small,j! l k,0 , while scaling ini violates the con-
struction law of the Sierpin´ski carpet and leads to a usu
2D-Ising behavior. Furthermore FSS can only work out if
the sizes have the same critical temperature, which is not
case for the few Sierpin´ski latticesSC(k,0) we could ana-
lyze. In case of the fractals the number of nearest neighb
n̄ varies if the size given byk changes. This has the cons
quence that apart from the change ofTc in Eq. ~9! to Tc

k , one
has also to consider a dependence of the scaling functionf on
k. Elimination of the shift inTc by using the ‘‘maximum-of-
susceptibility’’ method to obtain critical exponents would b
a doubtful procedure since the unknown variation off k

enters.
s
TABLE I. Results from static behavior. Two estimates exist forg, one from the method referenced a
‘‘slope method’’ and in addition from direct fits, which produces also an estimate forb.

g b
Lattice Tc ~slope method! by slope~slope method! directly ~HTP only! directly ~LTP only!

SC(4,0) 1.5266~11! 1.911~15! 1.901~36!a 0.1043~9!a

SC(5,0) 1.5081~12! 2.030~35! 2.069~8!a 0.1221~6!a

SC(6,0) 1.4992~11! 2.055~54!

a
ImposingTc ~see text!.
4-4
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These limitations could explain why the exponents fou
by the FSS method20 are so different from the exponents
previous studies~see Table III of Ref. 20! and also from our
results ~see Table I and II!. We note that the use of fre
boundaries in Ref. 20 with additional finite- size correctio
could increase the problems with the FSS method.

To obtain the exponentsg andb, as reported in the sec
ond and third columns of Table I, we have used the ‘‘slop
method~8! explained above and direct fits according to E
~6! without any correction terms. These fits have been d
by fixing the critical temperature at the value determined
the slope method. This way we arrive at the small err
quoted in Table I. WithTc as a free parameter the erro
would increase without changing the results considerably
the LTP region the number of points is too small for a dire
fit of xT to Eq. ~6! in order to give reliable estimates for th
critical exponents. The exponentsg obtained with the two
methods agree quite well. We observe a small but system
growth of the exponentg as function of the iteration param
eterk.

Before we compare the results with the RG prediction37

we study first the dynamical properties of the system in or
to have an independent check.

IV. DYNAMIC CRITICAL BEHAVIOR

A. Algorithm and scaling

In this section we want to study the dynamical behavior
the fractal Ising model at the critical temperature. T
method consists of ‘‘annealing’’ the spin system fromT50
to the critical temperatureTc . As a function of time or evo-
lution steps, the magnetization or another quantity is
corded before the system reaches the equilibrium st
Prima facie it is surprising that the system shows critic
behavior although it is not in equilibrium. Indeed the stu
of critical behavior by the dynamic approach has not be
very common in numerical simulations. For quite some tim
however, it had been shown that between a short timet0 and
a much longer equilibration timet f there exists a period
where the calculation of the critical properties should
feasible22–24 ~see a recent review of Zheng.25!

The dynamic critical behavior is similar to the norm
critical behavior in the sense that in the annealing proc
after the timet0 a finite correlation lengthj exists that grows
steadily until it reaches the system size att f . In essence this
is equivalent to the increase of correlation length in a
proachingTc until the FSS region is reached. Fort,t f one
observes critical behavior in the form of a power law as
Fig. 4. The critical exponents one obtains are free fr
finite-size corrections sincej,L.

TABLE II. Results from dynamic critical behavior.

Lattice V1(t)→nz x(V1)→g M (V1)→b

SC(4,0) 3.06~11! 1.959~32! 0.1154~29!

SC(5,0) 3.21~15! 2.048~49! 0.1200~55!
13441
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We reformulate the results of Ref. 25 for our purpos
One assumes that the free energy per sitef has the usual
scaling form

f „~T2Tc!,h,t…5b2df „~T2Tc!b
yt,hbyh,t/bz

… ~10!

with the time t measured in MC steps and the dynamic
exponentz included. The magnetic field is denoted byh and
d the dimension. While FSS is impossible since it is n
known how to scale thesize of the system systematicall
without changing relevant properties, the dynamics can
assumed to obey the usual scaling since scaling oftime is not
affected by the lattice structure, as time is measured
scaled in number of Monte Carlo steps. However we n
that assuming the resulting exponents of the dynamic
proach to be estimates of exponents of the thermodyna
limit, without knowing how to scale size, i.e., how to con
struct this limit, raises an interesting philosophical quest
about the meaning of such estimates. We expect them
approximate the exponents ofSC(`,0) better and better with
each step of iteration ofk in SC(k,0).

In Eq. ~10! the part of the free energy that is analytic
nearTc has been dropped. The exponentsyt and yh are the
usual ones given by38

yt51/n, ~11!

yh5d2b/n5~d1g/n!/2, ~12!

with the Josephson relation 2b1g5dn automatically
satisfied.

Assuming that the various thermodynamic quantities
obtained by deriving Eq.~10! correspond to their average
after timet, ^& t , the spontaneous magnetization is

^M & t5
] f

]hU
h50

5b2d1yhf h„~T2Tc!b
yt,0,t/bz

…, ~13!

where f h is the derivative with respect toh. Using Eqs.~11!
and ~12! and puttingb5t1/z one gets

FIG. 4. The average magnetization^m& t5^M & t /N after t evo-
lution steps for different lattices.
4-5
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^M & t5t2b/(zn) f h„~T2Tc!t
1/(zn),0,1…, ~14!

which reduces atT5Tc to

^M & t}t2b/(zn). ~15!

In the same way one finds at the critical temperature

x t5
]2f

]h2U
h50

}tg/(zn), ~16!

Ut512
^M2& t

^M & t
2

}td/z, ~17!

V1t5
] ln~^M & t!

]T U
h50

}t1/(zn), ~18!

from the definition of the susceptibilityx, the time-
dependent equivalent to Binder’s parameter39 U or the cumu-
lant V1. All these formulas can be written as the usual F
power laws like Eq.~9! with the substitutiont1/z→L. In the
following section we will use these relations to determine
critical exponents.

B. Simulations

The lattice is prepared in the ferromagnetic ground st
which corresponds toT50. Then the system is exposed
500 heat-bath steps using the temperatureTc , where a full
lattice update is counted as one time step. This proced
must be repeated many times and with 23104 repetitions
enough statistical reliability is obtained. ForTc we have
taken the value determined by the method given above~see
Table I!. Therefore we have at least two sources for the
rors. One due to the statistical errors~see Appendix B! and
one due to the error onTc .

Besides the averages of the energy^E& t5^H& t Eq. ~1!,
magnetization̂ M & t Eq. ~4! and susceptibilityx(t), see Eq.
~5!, the following thermodynamic quantities are determin

V1t5
^ME& t

^M & t
2^E& t, ~19!

where^ . . . & t denotes the average over different runs~here
23104) after the same number of updating stepst ~here 1
<t<500).

C. Results

In Fig 4 we have plotted̂m& t as function of timet, which
is the number of evolution steps of the heat bath algorith
From the slope of a double log plot of the curve and Eq.~14!
the ratio of critical exponentsb/nz could be obtained.

However, it is more efficient to determineb directly by
drawing ^m& t againstV1t ~Fig. 5! in a double log plot and
using a linear fit. The results for the firstt0 steps of the
evolution show not yet critical behavior. Sincet0 is a priori
unknown the fit is applied to different ranges@ t i,t i 11# of
data. As soon as linear behavior sets in, this determinest0 as
an upper boundary and a fit can be applied to the entire ra
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(t0,500). ForSC(4,0) t0 was <80 and<100 for the Sier-
piński carpetsSC(5,0) andSC(6,0). We have verified that a
similar behavior is obtained using the Metropolis algorith
instead of the heat-bath algorithm. The initial timet0 is
longer, in agreement with the observation for the Ising mo
on the square lattice.25

Similarly we obtain the exponentsg andnz, plottingx t as
function of V1t ~Fig. 6! andV1t as function oft ~Fig. 7!. All
results are listed in Table II for theSC(4,0) andSC(5,0).
The typical statistical error of exponents found in a dou
log fit at a given temperature is one-half or more of t
overall error. Another important source of uncertainty is
expected the limited accuracy of the critical temperature.
take into account the uncertainty ofTc , we have simulated
the system at three different temperatures, atTc and atTc
6s, wheres is one standard deviation ofTc . Due to limited

FIG. 5. Magnetization̂ m& t versusV1t in a double-logarithmic
plot giving b as the slope. The results ofSC(5,0) @SC(4,0)# are
shifted downwards by a factor 0.9@0.81#.

FIG. 6. Susceptibilityx t versusV1t in a double-logarithmic plot
giving g as the slope.
4-6
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computing resources it was not possible to calculate relia
estimates for exponents and their uncertainties ofSC(6,0).

Both methods, the equilibrium as well as the dynam
critical behavior, involve only two independent static critic
exponents:g and b are given by both methods, while th
second gives in addition the dynamic critical exponentnz.
The results forb andg from the dynamic simulations com
pare favorably with those of the static simulations.

V. CONCLUSION

We have studied the phase transition of the Ising mo
on the Sierpin´ski carpet of type 321. To obtain consisten
results we avoided the finite-size scaling method that
think cannot be used to study magnetic phase transition
fractal lattices. We used two different methods, the fi
based on standard simulation techniques and the other b
on critical dynamics. Applying it to fractals we give a furth
example of its practicality. Both methods lead to consist
results that indicate a significant deviation from 2D-Isi
behavior. This gives a further evidence that fractal latt
possess a fractal, that is noninteger dimension also in
sense and context of critical phenomena. This result is p
ably more important than the precise values of the criti
exponents.

In conclusion we compare our results with the R
calculations37 with the Hausdorff dimensions of our Sierpin´-
ski carpet d51.893, the 42e RG gives g'1.85 andb
'0.10. The results that we get,g'2.05 andb'0.12, would
be more compatible withd'1.70. A mean-field-like expla-
nation for this smaller value is that the coordination num
of n̄`53.2 suggestsd5n̄`/251.6.34 Although we cannot ex-
clude other corrections that could cause these deviations
results suggest that the Hausdorff dimension of the lattic
not exactly the effective noninteger spatial dimension for
phase transition even if it should give a rough estimate.

After completion of this manuscript, the authors beca
aware of a paper by Zheng and Li40 that investigates, inde

FIG. 7. V1t versus the number of Monte Carlo stepst as double-
logarithmic plot giving 1/(nz) as the slope. The results ofSC(6,0)
@SC(5,0)# are shifted upwards by a factor 25@5#.
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pendently, the short-time critical dynamics of an Ising sy
tem on a Sierpin´ski carpet, partly by means of FSS. How
ever, differences at least for all nonuniversal quantities
expected, since in Ref. 40 the spins have been placed a
vertices, rather than at the sites.
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APPENDIX A: CALCULATION OF ERRORS FOR
THE EQUILIBRIUM PROPERTIES

We used the so-called Jackknife estimator, which is a s
cial case of resampling, to calculate the average values
the errors, see Ref. 35. The usual way to apply this metho
to store the entire sample during the MC simulation~which
means the values ofM andE after each sweep here! and to
calculate the required quantities of all subsamples therea
Huge volumes of data, in our simulation 20 MB, have to
stored for each point and reprocessed for each required q
tity. To avoid this overhead, we express the Jackknife e
mators for functions of expectation values^ f &J and their
standard deviations2( f )J by simple averages. Forf (x)5x
we obtain

^x&J5 x̃ ~A1!

s2~x!J5
1

~N21!
~x2̃2 x̃2! ~A2!

where x̃ denotes the average simply calculated asx̃
5( ixi /Ntot , wherexi is the value of the quantity in thei th
element of the sample andNtot is the size of the sample.N,
the number ofindependentelements in the sample, is calcu
lated asN5Ntot /(2t11), Ref. 41, witht the correlation
time.

For f (x)5x2 we obtain

^x2&J5 x̃21
x2̃2 x̃2

~N21!2
, ~A3!

s2~x2!J5
1

~N21!3
~24N2x̃414~N11!Nx̃2x2̃24Nx̃x3̃

1x4̃!, ~A4!

where we have usedxñ5( ixi
n/Ntot . For f (x,y)5x21y, as

required forxT5^M2&2^M &2, wherex5^M &, y52^M2&
andxT52 f (x,y)

^x21y&J5^x2&J1^y&J , ~A5!

s2~x21y!J5
4N

~N21!2
~ x̃2ỹ2 x̃xỹ!1

2

~N21!2
~x2̃ỹ2x2ỹ!,

~A6!
4-7
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The denominators in a functionf (x,y)5x/y are of course
assumed to be nonvanishing. In the following we will tre
the estimates off as well as their standard deviation up to
leastO(N22):

^x/y&J5
x̃

ỹ
S 11

1

N2 F y2̃

ỹ2
2

xỹ

x̃ỹ
G D 1O~N23! ~A7!

s2~x/y!J5
N21

N2ỹ4
~x2̃ỹ222x̃ỹxỹ1 x̃2y2̃!1O~N22!

~A8!

For f (x,y,z)5x/y1z as used forV1 with x5^ME&, y
5^M & andz52^E& we get

^x/y1z&J5^x/y&J1^z&J , ~A9!

s2~x/y1z!J

5s2~x/y!J1s2~z!J1
2

N S xz̃

ỹ
2

x̃y z̃

ỹ2 D 1O~N22!

~A10!

The special cases just discussed can be generalize
follows. The generalization turns out to be very useful a
easily implemented. With the functions

F~x1 ,x2 , . . . ,xn!ª (
i 1i 2••• i n

ai 1i 2••• i n
x1

i 1x2
i 2
•••xn

i n ,

~A11!

H~x1 ,x2 , . . . ,xn!ª (
i 1i 2••• i n

bi 1i 2••• i n
x1

i 1x2
i 2
•••xn

i n

~A12!

that are sums of products of thei nth powers of observable
xn , it is a matter of straightforward but tedious algebra
show that

^F&J5F̃ªF~x1̃,x2̃, . . . ,xñ !1O~N22! ~A13!

K F

H L
J

5
F̃

H̃
1O~N22! ~A14!

wherexñ5( ixn iNtot with xn i as the value of observablexn

obtained at thei th step of the simulation. The standard d
viation are given then as

s2~F !J5
1

N (
i 1i 2••• i n

i 18 i 28••• i n8

ai 1i 2••• i n
ai

18 i
28••• i

n8
x1̃

( i 11 i 18)x2̃
( i 21 i 28)

•••

3xñ
( i n1 i n8) (

k51,2,•••,n
l51,2,•••,n

i ki l8
xi k

xi
l8̃
2xi k̃

xi
l8̃

xi k̃
xi

l8̃
1O~N22!

~A15!
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s2~F/H !J5
H̃2s2~F !J1F̃2s2~H !J

H̃4
~A16!

22
1

N (
i 1i 2••• i n

i 18 i 28••• i n8

bi 1i 2••• i n
ai

18 i
28••• i

n8

3x1̃
( i 11 i 18)x2̃

( i 21 i 28)
•••xñ

( i n1 i n8)

3 (
k51,2,•••,n
l51,2,•••,n

i ki l8
xi k

xi
l8̃
2xi k̃

xi
l8̃

xi k̃
xi

l8̃
1O~N22!

One constraint that should be always checked is

xixĩ2xĩxĩ>0.

In all cases numerical errors may become important, si
small differences of large numbers are treated here.

APPENDIX B: CALCULATION OF ERRORS FOR THE
DYNAMICAL PROPERTIES

While the errors of the static properties were calculated
a straightforward manner, dynamic errors are more comp
Correlations coming from the dynamic behavior of the s
tem must be distinguished from correlations due to insu
cient sampling. At first glance all dynamic runs are mutua
independent, because they are all prepared in the same
in the beginning. Therefore usual error-estimation techniq
and thus the following scheme seems to be applicable~this
scheme is referenced in the following as the ‘‘dire
method’’!: Collect each configurationS t

i , which was created
after t evolution steps in runi, in an ordered set,

St5$S t
1 ,S t

2 ,•••,S t
N% ~B1!

whereN is the number of runs and 1<t<tmax, wheretmax is
the maximal time. For each configuration in each set
properties of interest are calculated. For instance an est
tor for the magnetization̂M & t at t steps is given by

^M & t5
1

N (
i

N

M ~S t
i !. ~B2!

The standard deviation could also be calculated in the u
way

s2~^M & t!5
1

N (
i

N

@M ~S t
i !2^M & t#

2. ~B3!

In more complicated cases, again the Jackknife could be
plied and the formulas as given above can be used to ca
late an estimator, for example, forV1t and its uncertainty.
The logarithms of these data then enter a linear fitting rou
and an estimator for the critical exponents, saym, is com-
puted. Although actually a set of estimates and standard
viations of a property enter the fitting routine, all these d
tails are hidden by writing the linear fitting routinem as a
function of all ordered setsSt
4-8
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m5m~S1 ,S2 , . . . ,Stmax
!. ~B4!

Unfortunately this simple approach turns out to be wron
Even though each setSt consists indeed of mutually inde
pendent configurations, the different setsSt from different
times t are not only connected by the dynamic behavior
the system~which is the wanted and investigated behav
that lead to critical exponents at all!. They are additionally
connected by the naive method they are produced by. ‘‘Na
method’’ here refers to the fact, that we create only one s
sequent sample at each step instead of considering the e
phase space accessible from any current state. Instead o
ating a whole histogram of transitions from one state to
other, we create onlyone subsequent state, hoping that th
state is a typical one. Apart from this, a rather atypical a
thus unimportant representative at a particular time mi
produce also atypical representatives at subsequent time

FIG. 8. Comparison of two methods for calculating estima
and errors of exponents for dynamical properties. The direct w
leads to incompatible results, while the Jackknife gives reason
estimates of the errors.
cs
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However the subsampling scheme as used by the J
knife method can again be used to estimate the average
its error in this case. We create new samples,St

Ji by deleting
the configurations of runi from all setsSt :

St
Ji5$S t

1 ,S t
2 , . . . ,S t

i 21 ,S t
i 11 , . . . ,S t

N%5St\$S t
i%.

~B5!

For each of these sets, we calculate our estimate of the c
cal exponent,mJi5m(S1

Ji ,S2
Ji , . . . ,Stmax

Ji ). The mean value of

these estimates of the exponent

mJ5
1

N (
i

N

mJi, ~B6!

represents the Jackknife estimator of the exponent, while

s2~mJ!5
N21

N (
i

N

~mJi2mJ!2 ~B7!

is its standard deviation~note the prefactorN21/N instead
of 1/N21, as in the usual calculation of a standard dev
tion!. The actual calculation of each estimate of the ex
nent, mJi, is independent of the subsampling scheme giv
here. Thus we note just for a better understanding thatmJi

uses by itself the Jackknife technique to calculate the ex
nent.

In Fig. 8 we show different results obtained by dividing
whole set of data into ten distinct sets and applying b
schemes, wherêM & t from SC(5,0) serves as an exampl
As expected both methods give almost exactly the same
timator for the exponent~hereb), but different results for the
error. By using the Jackknife scheme the scattering of
results for each subset is well compatible with the results
the estimate and the error from the entire set~marked as
ball). Manifestly the direct method gives incompatible r
sults. Additionally the error bar calculated for the entire
by means of the direct method is smaller than the numer
error and thus smaller than the line ofball .
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