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Quantum phases of the Shastry-Sutherland antiferromagnet: Application to SrCy(BO3)»

C. H. Chung and J. B. Marston
Department of Physics, Brown University, Providence, Rhode Island 02912-1843

Subir Sachdev
Department of Physics, Harvard University, Cambridge, Massachusetts 02138
and Department of Physics, Yale University, P.O. Box 208120, New Haven, Connecticut 06520-8120
(Received 11 March 2001; published 4 September 2001

We study possible paramagnetic phases of antiferromagnets on the Shastry-Sutherland lattice by a gauge-
theoretic analysis of fluctuations in a theory with SN)2symmetry. In addition to the familiar dimer phase,
we find a confining phase with plaquette order and a topologically ordered phase with dec@:fithéd
spinons and helical spin correlations. The deconfined phase is contiguous to the dimer phase and in a regime
of couplings close to those found in the insulator S{@D,),. We suggest that a superconductor obtained by
doping this insulator with mobile charge carriers will be an attractive candidate for observing the anomalous
magnetic flux properties associated with topological order.
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[. INTRODUCTION not been possible. An analytic Schwinger boson mean-field
approach was undertaken by Albrecht and MilResults
Much interest has recently focused on the magnetic propwere obtained mainly for the magnetically ordered states,
erties of the insulator SrG(BOs),.1? The low-energy spin and the various distinct paramagnetic states were not distin-
excitations in this material reside on tf&=1/2 Cu ions guished.
which lie in two-dimensional layers decoupled from each Quite apart from determining the ground states of the spe-
other. The experiments show a clear indication of an energgific HamiltonianH, it is also of interest to determine the
gap towards spin excitations, making this one of the fewphases of models which are “near” the parameter space of
known two-dimensional systems with a spin gap. RemarkH. This is in the hope that future experiments may succeed in
ably, the pattern of near-neighbor antiferromagnetic ex-deforming the insulator SrG(BOs), by substitutional dop-
change couplings between the Cu ions turns out to be idering (which can induce mobile carrigrsr by the application
tical to that in a model Hamiltonian studied many years agof hydrostatic pressure. Doping the antiferromagnetic insula-
by Shastry and Sutherlarid:hese authors also showed that ator La,CuQ, led to the discovery of high-temperature super-
simple decoupled dimer wave function was an exact eigeneonductivity: Related phenomena may be expected here, al-
state of this Hamiltonian and that it was the ground state ovethough, as we shall argue later, the presence of strong
a restricted parameter regime. frustration in the parent insulator SrgfB0O;), may lead to
The Shastry-Sutherland antiferromagnet is sketched iprofound differences in the nature of a possible supercon-
Fig. 1. The Hamiltonian is ducting ground state.

H=J1% S-§+J, > S-S, (1.2) . N

diagonals [N N

where §; are S=1/2 operators on the sitesof a square > “
lattice. The exchang&,>0 acts along the nearest-neighbor ’ ’
links (shown as solid lines in Fig.) lwhile J,>0 acts on the 4 ’
diagonal links, shown as dashed in lines in Fig. 1. It was 4 4
establishedl that a simple product of singlet pairs on the ’ ’
diagonal links was the ground statetdffor sufficiently large N N
J,1J,. However, an understanding of the experiments re- ) .
quires a description of the excitation spectrum and also of \ \
possible quantum phase transitions to other states at smaller N >
J,1J,. These issues have been addressed in a number of . ’
recent theoretical works:'! Many of these studié$~28in- ’ ’
volve numerical analyses based upon large-order series ex- % %
pansions departing from various decoupled cluster states. ’ ’
Quantum Monte Carlo simulations have, in principle, a ¢ ¢ ¢ ¢ ¢

smaller bias due to the choice of an initial state and can be FIG. 1. The Shastry-Sutherland lattice. The exchadgects
extended to much larger system sizes; however, simulationsetween sites separated by the horizontal and vertical links, which
of H suffer from a sign problem, and so such studies havehe exchangd, acts across the diagonal links.
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This paper will examine a generalizationldfto Sp(N)  SrCy,(BOs), system, the positions of the sites are different,
symmetry[ SU(2)=Sp(2)] and describe the properties of and there will be a corresponding transformation in the wave
the largeN limit. Some of the phases obtained in such avector dependence of observablest the mean-field level,
largeN limit may not actually appear in the phase diagramthis phase is identical to that found earti&?® on the square
of the SU2) modelH—nevertheless, as we have just argued lattice withJ,=0. However, we will show here that a differ-
the phases may still be of relevance to physical systemsnce does emerge upon consideration of fluctuations. For
whose microscopic Hamiltonians are near the parameteJ,=0, it was show”?° that Berry phases associated with
space oH. Such an approach has been fruitfully applied to ahedgehog instantons led to columnar spin-Peierls order in the
number of other frustrated quantum antiferromagnets in pre¢s, ) SRO phase. Here we show that a closely related
vious work:*"**The method leads to an unbiased selectionanalysis for the Shastry-Sutherland lattice leads instead to
of possible ground states in the layelimit, both with and  “plaquette” order in this phase. Just such a phase was con-
without broken spin rotation symmetry. Moreover, a gaugesidered recently by Koga and Kawakahi.
theoretic description of the fluctuations about the mean-field Our other results are also associated with a paramagnetic
solution allows a systematic and reliable assessment of thehase. This phase is denoted,) SRO in Fig. 3 and is
stability of the various ground states, along with a descripobtained by a destroying the long-range magnetic order in a

tion of the dynamics of the excitations.

The Sp(2\) generalization of is defined by introducing
canonical Bose creation operatds§, on every sitei, with
a=1,..., 2N a Sp(N) index. The allowed states in the
Hilbert space satisfy the constraint

b/ b*=2NS (1.2
on every sitel [we follow the convention of summing over
all repeated Sp(¥) indiceq; the right-hand side of Eq1.2)
must be a positive integer, and the valuesS#re con-
strained accordingly—for the physical cas¢s= 1, S must
take half-integral values, as expected. The Hamiltonian is

Jl aBht Kt S
H= 58 2 (T"blublg) (7,407b)

J
S > (T bl (T,sb7b),

- = 1.3
2N diagonals ( )

where 7*#=7,5= — Js, is the generalization of the anti-
symmetrice tensor of SW2) (i.e., 7 containsN copies ofe
along its center block diagonal and vanishes elsewhere

The largeN analysis of a large class of models, of which field Q;=—Qj;.

helically ordered phase. Equal-time spin correlations show
short-range incommensurate order, and the spin structure
factor is peaked at the incommensurate wave vecitqg)

(the value ofq varies continuously as a function 8§/J;).

As in previous incommensurate SRO phases found on frus-
trated square lattice modéfs1*we argue that the excitations
above the ground state adeconfined spinonhich carry
spin S=1/2 [for SU(2)]. Also, as in previous work?!4the
quantum phase transition between this phase andithe)(
SRO (plaquette phase(Fig. 3) is described by theory of a
charge-2 Higgs scalar coupled to a compact U(1) gauge
field; the deconfinement transition is associated with the con-
densation of the Higgs field, and the critical properties are
those of aZ, gauge theory?2-1422-24ne will also consider
here the transition between the deconfined phase and the
dimer phase: By a somewhat different analysis, we will show
that this transition also reduces t&a gauge theory descrip-
tion.

Il. MEAN FIELD PHASE DIAGRAM

As discussed in Sec. Il of Ref. 15, a key quantity deter-
mining the nature of the phases is a complex, directed, link
Operationally, this field is introduced to

H is a member, was described with some generality in Sec. lecouple the quartic boson interactionsHrby a Hubbard-
of Ref. 15. We will follow the same method here and so will Stratonovich transformation. After this decoupling, the effec-
dispense with the details of the computation. The resultindive action contains the terms

mean-field phase diagram is shown in Fig. 3 below, as a

function ofJ,/J; and 15 (in the largeN limit, Sbecomes a

continuous real variableThe positions of the various phase
boundaries are not expected to be quantitatively accurate for
the physicaIN=1 case. However, the general topology of

J..
S=J drgj %[N|Qij|2—QijjaBbi“bJﬁ+H.C.]+---,
(2.1
wherer is imaginary timeJ;; = J; (J;;=J;) on the horizon-

the phase diagram, the nature of the phases and their excitgy ang vertical(diagona) links, and the ellipses represent
tions, and the critical properties of the quantum phase transtangard terms which impose the canonical boson commuta-
sitions can be reliably described using Fig. 3 as a startingon, relations and the constraitt.2). It is also clear from the

point.

The properties of all the phases in Fig. 3 will be discussed

in detail in Sec. Il. Here we highlight our main results.

One of the paramagnetic phases has short-range equal-

time spin correlations peaked at the wave vectorr). [We
denote this phasen(,7) short-range ordereSRO) in Fig.

structure ofS that the average value @;; satisfies

1
(Qij)= NU“”’b?abfﬁ)- 22

For larger values o§, the dynamics of requires condensa-

3; here we are placing the sites on the vertices of a reguldion of theb® bosons and hence a nonzero value of
square lattice as in Fig. 1 and measuring wave vectors in

units of 1/(nearest-neighbor spacing). In the experimental

xi'=(bi"); (2.3
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FIG. 2. The four sites of the unit cellabeled A, B, C, and

and the ten-link variable®;; . FIG. 3. LargeN phase diagram of the 89) Shastry-Sutherland
model, Eq.(1.1), as a function of),/(J;+J,) and 16. The five
such phases break the spin rotation symmetry and have maphases are described in Sec. Il. The LRO phases break spin-rotation
netic long-range order. As described in Ref 15, we optimizegymmetry: The spin order is collinear and commensurate in the
the ground-state energy with respect to variationg@y) (7.7 LRO phase and helical and incommensurate in theq]
andx? for different values ofl,/J; andS. The four-site unit LRO phase. The SRO phases preserve spin-rotation invariance. In
cell of the Shastry-Sutherland lattice, depicted in Fig. 2, ha%:
ten differentQ;; fields. Care must be taken to identify gauge-
equivalent Configurations. We find that each §add|e poin m,7) LRO and plaguette order is also allowed by the the@tgf.
may be described by purely ree;;). The resulting phase 17) beyond the largd¥ limit (not shown above and there is evi-

diagram is shown in Fig. 3. We describe the phases in turn iQence that this occurs on a frustrated square lattice antiferromagnet
the following subsections, considering first the magneticallyret. 18.] The dimer phase has only the diago@| nonzero in

ordered phases with’#0 in Sec. Il A and then the para- the largeN theory. The ¢r,q) SRO phase has all tH@;; nonzero:
magnetic phases in Sec. Il B. This phase has topological order and deconfined spinons.

e (m,m) SRO only the horizontal and vertic@;; are nonzero in
e largeN theory—fluctuations lead to broken translational sym-
Enetry in one of the states shown in Fig.[A state with coexisting

A. Magnetically ordered phases incommensurate order, and the spin structure factor peaks at
1. Neel () LRO state the mcommen;urate wave vectors,(]) or'(q,w) with the
value ofq varying continuously as a function df/J;. This

This is the familiar long-range-ordere@dRO) state in  state also appears in the studies of Refs. 5 and 10.
which (S) is collinearly polarized in opposite directions on

two checkerboard sublattices. It is known to be the ground
state ofH for J,=0, S=1/2 in the physicaN=1 limit. A B. Paramagnetic phases

gauge may be chosen in which the expectation values of link | yhis subsection we discuss the three phases for which

variables{Q;;), are nonzero and equal on the horizontal anc%azo_ As a consequence, spin rotation symmetry is pre-

vertical links, while the expectation values on the diagonal' : e
links are zero. In the notation of Fig. 2, the@— P, (i served and only spin SRO arises; however, there may be

rdering in other sing| rder parameters.
—1.2,3.4) andR,=R,=0. ordering in other singlet order parameters

2. Helical (#7,q) and (q,#) LRO states 1. Dimer state

This phase is characterized by nonzero value&f) on _This is the exact S(2) eigenstate of decoupled_si_nglet
the horizontal, vertical, and diagonal links. A gauge choicePairs found by Shastry and Sutherlahth the largeN limit,
sets all theQ; equal to each other, and similarly for tg;  this corresponds to a saddle point at which {@;) are
in the Appendix we present an argument which shows thafionzero only on the diagonal link&; =R,#0 andQ;=P;
the values of theP; and Q; are also equal to each other. =0. Note that then® bosons are spatially decoupled at such
There are two gauge-nonequivalent choices for the values @& saddle point: Each® can only hop across a single diagonal
Ry 2: One state haR; = R, and the otheR;= —R,. Thetwo  link. This simplifies the analysis of fluctuations about the
states are interchanged under a 90° rotation and correspog@ddle point in or near the dimer state, as will be discussed in
to spirals ordered in the horizontal or vertical directions. AtSec. IV. At higher orders in N, the b{* can indeed hop
large values of the spin, this phase appeard,atJ;, in  through the entire lattice; we expect that the lowest-lying
accordance with the classical calculation of Shastry angxcitation will be aS=1 spin triplef [for SU(2)], consisting
Sutherland. Equal-time spin correlations exhibit long-range of a confined pair ob® bosons.
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2. (ar,71) SRO state is precisely such a phase. Koga and Kawakami-

This state is obtained by quantum disordering theeiNe PlOyed & series expansion to find, f8=1/2, a plaquette
state of Sec. Il A1, and the expectation valuesQgf have phase which intervenes between theeNand dlmer phases.
the same structure as those in Sec. Il A 1. As has been digS shown below, the £, ) SRO phase acquires plaquette
cussed in some detail in Refs. 19 and 20, the quantum flu@"der at finiteN, but as can be seen in Fig. 3, at lafgehis
tuations in this phase are described by a compact U(1) gaug[g"ase only occurs foB<1/5. If finite-N fluctuatlon_s push
theory. Such a theory is always confining, and thushfie he phase boundary up 8=1/2, then th? following se-
bosons again bind to yield 3= 1 quasiparticle above a spin 94€Nce of phases would occurBg(J, + J,) increases from

gap. There is also an interesting structure in the spin-singl(ﬁ. to 1:SI\I1?€8I, plaquette f,7) SRO, (m.q) SRO, and finally
sector: This is considered in Sec. Il where it is demonstrated'™M€" '

that at finiteN this phase has “plaquette” order.
Ill. PLAQUETTE ORDER IN THE COMMENSURATE
3. (#,9) and (q,7) SRO PARAMAGNET

In this phasg Q;;) are nonzero on the diagonal, horizon-  This section will discuss the fate of the spin-singlet sector
tal, and vertical links, like the helical®,q) LRO phase of upon including fluctuations about the mean field in the
Sec. Il A 2. Again there are two gauge-nonequivalent con{z,7) SRO state. The results below are a straightforward
figurations, corresponding to the choicBs=R, with Q;  generalization of those obtained in Refs. 19 and 20 for the
=Q<P;=P [the (m,q) phasé andR;=—R, with Q;=Q  square-lattice antiferromagnet. We will only consider the
>P;=P [the (q,7) phasg. Thus all of the horizontaQ; = case where 8N is an odd integeffor the physical SU(2)
fields acquire the same expectation value, but unlike in thease, this means th&is half an odd integdr the generali-
helical LRO phase, this value differs slightly from that of the zation to other values d follows as in earlier work.
vertical P; fields; the difference is only on the order of 1 part  In the present largd approach, regular perturbative cor-
in 10000. The state is a spin singlet and there is a gap to afections order by order in i do not qualitatively modify the
spin excitations. Nevertheless, the symmetry of 90° rotationgature of the mean-field ground state. However, singular ef-
between the vertical and horizontal directions is broken—fects do appea??° upon considering the consequences of
this would now be apparent in various spin-singlet observ¢hedgehog’-like instanton tunneling events and their Berry
ables like the bond-exchange energies or the bond-chargshases. Such a calculation is technically involved, and a
densities. This phase may therefore be viewed as a spisomewhat more transparent discussion of essentially the
singlet “bond-charge nematic” as only lattice rotational sym-same physics emerges from studying the “quantum dimer”
metry is broken(the prefix “bond charge” implies that the modef® (see Appendix A of Ref. 20 for a discussion of the
nematic order is observable only in the charge density in thequivalence between the instanton physics of the Iarge-
bonds, which is in turn determined by the magnitude of theexpansion and dual representations of the quantum dimer
spin-singlet exchange energy across the bofide choice of mode). Here we shall follow the treatment of Ref. 29.

a vertical or horizontal spatial polarization in the nematic The quantum dimer model represents the Hilbert space of
order leads to a twofold degeneracy in the ground state. Thigw-lying singlet excitations by assuming that it can be
state also has “topological” ordér;**'#?4<":?8and this mapped onto states represented by a near-neighbor singlet
would lead to an additional fourfold degeneracy in a toruspond (“dimers”) covering of the lattice. In the present
geometry. Unlike the commensurate SRO phases, ther, ) SRO phase, we need only take dimers connecting
spinons are deconfined. We describe the deconfinement tranearest-neighbor sites on horizontal and vertical links. The
sition below in Sec. IV. The spinon dispersion has its minimadimers along the diagonal links are assumed to occur only
at momentum £/2,q/2) or (q/2,7/2). Although this phase is rarely in this phase: They can therefore be integrated out and
realized only forS<1/2 in the largeN limit, it seems pos- serve mainly to modify the effective Hamiltonian in the
sible that in the physical limiN=1 it could extend up to space of horizontal and vertical dimers. Indeed, the most
S=1/2 for a narrow range od,/J;. Similar behavior was important consequence of this procedure is apparent from a
found in a study of the Sp(®) Heisenberg antiferromagnet glance at Fig. 1: The diagonal dimers divide the plaquettes of
on the anisotropic triangular latti¢&It would interesting to  the square lattice into two classes, those with and without
search for this phase using numerical methods. diagonal links across them, and we expect dimer resonance

We conclude this section by briefly comparing our resultsterms around these plaquettes to have distinct matrix ele-
to other published calculations. F8=1/2 we find that the ments(see Fig. 4 This distinction will be the only differ-
transition between N and helical LRO phases is continu- ence from earlier analysé$2° and we will show that it is
ous, occurring atl,/J;~1.02, close to the value of 1.1 sufficient to lead to plaquette order in the, @) SRO phase.
found by Albrecht and Mil& who also report a continuous Our results emerge from an analysis of the “height” rep-
transition. Also in agreement with Albrecht and Mila, we find resentation of the quantum dimer mod&f%312%28There is
that the transition between the helical LRO and dimer SRQa rigorous, one-to-one mapping between the set of coverings
phase is first order, but occursBt/J,;~2.7 instead of 1.65. of the square lattice with nearest-neighbor horizontal and
Carpentier and BalenfSalso found a helical LRO phase, but vertical dimers, and the configurations of an interface of
presented arguments that an intermediate phase may extstightsh, defined on the sitea of the dual square lattice
between the helical LRO and dimer phases: Ouyg) SRO  (we identify two interfaces as equivalent if they are related
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We can now use general symmetry considerations to write
down an effective action for the height degrees of freedom.
As is standard in theories of interface models, we promote
discrete heights,, in Eq.(3.1), to continuous real variables
Xa by the Poisson summation formula and “soften” the con-
straints to periodic cosine potentials which have minima at
the valuesy,=h, which obey Eq.3.1). In this manner we
obtain the action

K K.,
Sx:f dr 5@2@ (Xa—xb)2+§ < (d:xa)’
_yaCOE{ZW(Xa_ ga)]] ) (3.2

where the sum ovefab) extends over nearest-neighbor sites
andK is the stiffness towards spatial fluctuations of the in-

FIG. 4. Three states of the Hilbert space of the quantum dimef€face height. The corresponding stiffness towards time-
model. There are off-diagonal matrix elements in the effectivedependent fluctuations i, and, for simplicity, we have
Hamiltonian which connect stat@) to state(b), and state(@) to  taken its valuea as independent. The symmetry of the lattice
state(c), by a resonance between pairs of horizontal and verticarequires that the strength of the periodic potential take two
dimers around a plaquette. The latter matrix element differs fronossible valuesy =y, or y,=y, depending upon whether
the former because only the latter has a diagonal link across théhe plaguette has a diagonal, link across it or not. This is
resonating plaquette. Also shown are the corresponding values ¢he sole distinction from the analysis of the square lattice
the heightsh, on the sites of the dual lattice. antiferromagnet in Ref. 20, which had=y,.

The fundamental property of interface models in22di-
by a uniform translatiom,—h,+ p, wherep is any integer. =~ mensions, likeS, , is that they are always in a smooth phase.

The values oh, are restricted to This means that the symmetry of height translations is al-
ways broken, andy.)=(h,) has some definite value across
ha=n,+{a, (3.1 the entire system. As was argued in Refs. 19 and 20, any

such definite value necessarily breaks the lattice symmetry of
wheren, is a integer which fluctuates from site to site ajd  the underlying antiferromagnet and will lead here to
is a fixed fractional offset which takes the valuesplaquette order.
0,1/4,1/2,3/4 on four dual sublattices,Y,Z,W, as shown in With the assumption of a smooth interface, the optimal
Fig. 5. We further restrict thé, to satisfy|h,—h,|<1 for interface configurations can be determine by a simple mini-
any pair of nearest-neighbor sitash. We can now specify mization of S, by a set of time-independent values yf.
the connection between the height model and the dimer cow/e allow for distinct expectation valuegy, xx, xy. and
erings. Examine the value dh,—hy| for every nearest- y, on the four dual sublattices. Then the problem reduces to
neighbor pair, and ifh,—hy|>1/2, place a dimer on link the minimization of the following energy as a function of
shared by the plaquettes of the direct lattice aroamahdb.  these four real variables:
It is not difficult to see that a consequence of our choice of
the £, offsets is that dimers so obtained will form a close- E,=K[ (xx—xw)*+ (xw—xv)*+ (xy=x2)*+ (xz= xx)°]
packed covering of the lattice. Examples of the relationship .
between the height values and dimer coverings are shownin Y1l COS27xw) = COS2mxy) ] = Yol SiN(2mxx)

Fig. 4. —sin(2mx2)]. (3.3

This minimization is a straightforward, but somewhat te-
dious, computation. The present analysis is valid only for
smally,, y,, and so we analytically determine the minima in
power series iry; ,. We define

xw=x1tx2t xs,

Xx= X1~ X2t X3,

Xy=Xx1t X2~ X3,

Xz=X1~ X2~ X3- (3.9
FIG. 5. The four dual sublattices upon which the height offsets £ Az AS

take the valueg,=0, {x=1/4, {y=1/2, and{,=3/4. We find that at the saddle points Bf ,
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< I'"F 1" associated ground states of the antiferromagnet.
. . J (i) A=0, B<A/4. There are degenerate minima yat
S I N =1/4,3/4. The system spontaneously breaks a translational
——f symmetry by choosing one of these minima. With the map-
] pings above, it is easy to see that these are the plaquette
BN states, one of which is depicted in Fig. 6.
O S A (i) A<0, B<—A/4. Now the two equivalent minima are
\»B x1=0,1/2. These also correspond to plaquette states as
above, but the chosen plaquettes are now around half of
those containing diagonal linksee Fig. 6.
(iii) The remaining values ok andB have four degener-
ate minima aty, = 1/4=+ 1, 3/4+ 9, where 06<9<1/4 varies
continuously as a function oA/B. These states have spin-
Peierls order of the type shown in Fig. 6: The links are di-
vided into four columnar sets, with each set having a differ-
ent value of(S-S;) on its links. This state interpolates
FIG. 6. Phase diagram of E€B.6) as a function of the param- P€tween the plaquette state(ipas9—0 and that in(ii) as
etersA andB; this model describes fluctuations in the,) SRO 9—1/4.
phase of Fig. 3. The thick line is a first-order transition, while the ~ The present analysis is for smali, and so, from Egs.
thin lines are second order. The plaquette and spin-Peierls states d@7) we should assume th&<|A|. Furthermore, the pres-
shown, with the different line styles representing distinct values ofence of the frustrating, interaction on half the plaquettes
(S- ;) across the links. means that the hedgehog tunneling events are more likely to
be centered on these plaquettes. Using the mapping of such

w3(yrf+y§) events to the moddB.2), we expect thay,>y,. From Egs.
Xzz—zsim4qr)(1)+0(y‘1"2), (3.7 we therefore conclude that the most likely possibility
6K for the ground state is that ifi) above. The same state has

also been considered in Ref. 8.

We conclude this section with a few comments on the
(7,7) SRO phase of the antiferromagnet with full square-
lattice symmetry, in which there is a diagonbl exchange

Y5 3 between every pair of next-nearest-neighbor sites. Recent nu-
Xa= 5 Cod2mx1) + O(y1 ). (39 merical work on such an antiferromagffet has found evi-
dence for spin-Peierls ordering with the same spatial struc-
The average interface heiglt is determined by the mini- tyre as in (i) above for the Shastry-Sutherland
mization of antiferromagnet. However, we noted earlier that the square-
lattice symmetry implies thaA=0: For this value,J=1/8,

mYy1 .
Ya=— 2_Kls|n(277)(1)+ O(yiz)’

Ey=EotAcog4my)+Bcog8mxy)+ -, (3.8 gpgihe spin-Peierls state ii ) has a larger symmetr§iwo
whereE, is an uninteresting constant independenjgf of the four sets of columnar links are equal to each gtand
becomes equivalent to the ordering discussed in Refs. 19 and
m(yi—y3)  we(yi-y3) 20. To obtain¥+1/8, and so a ground state with the sym-
= 2K - okE metry of that in Fig. 6, we need to add i, a higher-order

term C cos(16Gry): Then there can be asightfold degener-
ate ground state, witht and 1/4- ¢ equivalent to each other.
This is the state that appears to have been found in Refs. 32

g T (TYIHEYIY3+TY))

96K 3 ! (3.7 and 18.
Note also that for the square-lattice case, Bx0, A
and all omitted terms are of ordgf , or higherfin obtaining =0 solution has the four plaquette states degenerate with

the results in Eq93.7) we had to include terms in Eq8.5  each othef®
which are one order higher than those shavidpte that the
square-lattice antiferromagnet, wigh=y,, hasA=0.

We now have to minimize Ed3.6) to determiney;. Then
from Eqgs.(3.5) we know ;3 4 and hence the configuration
of the interface heights. Then, from the connection between The deconfined, “spin-liquid,” r,q) SRO phase in Fig.
|h,—hy| and the corresponding dimer occupation numbers3 is flanked on both sides by confining paramagnetic phases:
we can determine the pattern of the distribution probabilitiegshe plaquette and dimer phases.
of the spin-singlet bonds in the original antiferromagnet. Itis As we indicated Sec. |, the deconfinement-confinement
a simple exercise to determine the minima of E6) for  quantum phase transition from ther,(y) SRO phase to the
different values ofA and B; the resulting phase diagram is plaquette phase can be described in a theory essentially iden-
shown in Fig. 6, and we now list the various minima and thetical to that considered previously for frustrated square-

IV. DECONFINEMENT TRANSITION OF THE
DIMER PHASE
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lattice antiferromagnet$:1*At the mean-field level, the tran- o—@6

sition is signaled by the onset of nonzero expectation values /’

of Q;; on the diagonal links: We will denote these diagonal i' ol
F N

QH as Qﬂ- . Upon considering fluctuations, we find that the

ij constitute a charge-2 Higgs field in a compact U(1)
gauge theory, and the deconfinment-confinement transition is 3
that in aZ, gauge theorgt12-14.22-24

This section will consider the second deconfinement-
confinement transition in Fig. 3 between the dimer and
(7,9) SRO phases in more detail. We will see that this is
also described by &, gauge theory, and the emergence of
the Z, gauge symmetry can be described in a somewhat
more transparent manner.

As noted in Sec. Il B 1, the dimer phase is characterized
by nonzero expectation values of the diagoﬁ;ﬂ links.
These links are all decoupled from each other, and this leads
to a simple, local structure in the effective action for the
fluctuations. The transition to the deconfined phase is now FIG. 7. A section of the Shastry-Sutherland lattice. We have
signaled by the onset of nonzero expectation values of thiabeled sites around the central plaquette to enable the discussion in
Qj;; on the horizontal and vertical links, and we will denote Sec. IV of the various terms in tr#, gauge theory of the transition
these byQ!]— andQ}’j , respectively. Near the phase boundary,f,rom the dimer state to then(,q) SRO phase with spinon decon-
we need only consider the structure of the effective action ad"ement
a functional of theQihj'” after all other degrees of freedom

have been integrated out. S :f drcfoM.0oL.ovx oh.— 0L Oh.oh* ov
The simplest terms in the effective action arise from the 2 (31 Q51Q26Q57 Qua~ Q26Q7Qu3

on-site propagation of thie* on the site in imaginary time. L oMo ovroh v oh Q% v o

, , —~ c.cl
Integrating out theb* in powers of theQ[}*, the lowest- Qa1Q6:Qu1 Q12— QaiQ61Qu2 Qo+ C-C
order terms have the form +ca{ QM Q5QM QY — Q4:Q5,Q% QY

5 J i + QBQ44Q43 Q% ~ QiQ5:Q4T Qlatc.cl
-
— c5{ QL QT QIF Qo+ Q56Q%3 Q4% Q4 +c.cl
+oe, (4.1) + e QN 1Q%6QQ4,+ c.Cl . 4.3

Clearly, Eq.(4.3) is not invariant under Eq4.2). However, a
wherec,, ¢, are constants, the first sum is over nearestresidualZ, gauge symmetry does survive. We see that Egs.
neighbor links, and the second sum is over plaguettes, wit4.1) and (4.3), and all other allowed terms, are invariant
the sites labeled as in Fig. 7. A crucial property&fis that  ynder
all terms are invariant under a local U(1) gauge transforma-

tion Q= Qi mim; (4.4

n— Qe (it o, (4.20  wheren;= =1 performs the gauge transformation. However,
it is not possible to choose the; independently on every

V\{ther_e the phase; can take arbitrary distinct values on the gjie. |t js easy to see that we need the additional constraint
sitesi.

c1<2> |Q!}’”|2+Cz§ {Q1,Q%5 Q5,Q4F +H.c}
i

We have so far not made use of the fact that the nonzero m=m; wheneveri and j
value of (Q¥) allows theb® bosons to hop across a single
diagonal link. Such hopping processes will induce a large are separated by a diagonal link. (4.5)

number of additional terms between t@%” . We will now

write down the structure of all such terms which appear aS0 the Z, gauge degree of freedom is halved from that
fourth order in theQf}*. It is convenient to group these Presenton the original square lattice.

terms into sets associated with links emanating from a given To place theZ, gauge theory in a more conventional
plaquette which does not have a diagonal dimer across iform, it is useful to introduce a slightly different parametri-
One such plaquette is that with the sites 1,2,3,4 in Fig. 7, angation of the degrees of freedom. First, we neglect all ampli-
we now write down all four-link terms in which every link tude and phase fluctuations and replace all@heby dis-
has at least one site on the central plaquette. It is not difficulérete Ising variables taking only the valuesl. Then we

to see that all other four-link terms can be obtained by ahoose to represent all ti@l} as Ising gauge fields, while
simple translation of these terms to other plaquettes. Thall the Qj; are written as products af and a second Ising
terms are spin field w; thus,
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The u; constitute a separate global Ising degree of free-
dom associated with the breaking of the symmetry of 90°
spatial rotations between the horizontal and vertical direc-
tions. In the mean-field theory of the deconfined phase, the
state withu; =1 corresponds to the state with dominant spin
correlations at the wave vectotr(q) (say. The degenerate
partner state with spin correlations at, {r) is obtained by
the stateu;=(—1)"v, where {y,i,) are the Cartesian coor-
dinates of the sité.

So the actiorS; describes &, gauge theory ¢) coupled
(rather intricately to an Ising spin field &); the u field does
not carry a nonzero charge under the gauge transforma-
tion. The Z, gauge theory can undergo a confinement-
deconfinement transitiofwhich is related by a duality trans-
formation to the magnetic transition in an Ising model in
three dimensions corresponding to the liberation of spinons
upon moving out of the dimer phase. In a different sector, the
ordering of theu degrees of freedom leads to the appearance
of bond charge nematic order and the breaking of the sym-

etry of 90° spatial rotations. In the mean-field theory, these

FIG. 8. A deformation of the Shastry-Sutherland lattice which
exposes the structure of ti® gauge theory. Pairs of sites across a
diagonal bond have been compressed into a single site. Four of t . T .
sites carry pairs of sites labels, corresponding to the original sit WO tranSItl'o.ns qccur at the sa}me poing; 1.e., the.deconfline-
numbers in Fig. 7. Th&, Ising gauge fields on some of the links ment trans_mon is also the point where the spatial rotation
are indicated, with a notation corresponding to the degrees of free3YMMetry is broken. More generally, the interplay between
dom in Fig. 7. these two potentially distinct transitions can be addressed by

an analysis of fluctuations using the acti It does appear
Q"o possible that the two transitions are not simultaneous and
' that there can be a deconfined phase without any broken
spatial symmetries; moreover, if there is a simultaneous tran-
Q’~opu. (4.6)  sition in the two sectors, it is likely to be first order. A more

o L . definitive conclusion on these issues must await a complete
Th!s is shc_)wn a more expllcnly in Fig. 7. Notlcg that egch study of the coupled Ising gauge and Ising spin theory de-
pair of horizontal and vertical links that form a triangle with a4 bySs. We note that these issues concerning the transi-
a single diagonal link shares the same Ising gauge field {jon from the confined dimer phase to the deconfined helical

This choice is a consequence of the constrédnf—as @ RO phase are somewhat different from earlier deconfine-
result, all theu fields areinvariantunder the gauge transfor- ant transition® because here the dimer phase does not
mation generated by the;, while the o’s transform like ek any lattice symmetries.

conventional Ising gauge fields. This is also evident from the
structure of the effective action obtained by substituting the
parametrization in Eq(4.6) and Fig. 7 into the effective V. CONCLUSIONS

action in Eqs(4.1) and(4.3); for the terms displayed in Egs. The Mott insulator SrCA(BO,), is perhaps the only ex-

(4.1 and (4.3 we obtain perimental example of a spin-gap paramagnet on a strongly
frustrated two-dimensional lattice. Another experimental ex-

ample of a two-dimensional paramagnet is Gay, but its

spin gap is realized by homogeneous dilution and modula-
tion of the exchange constants, not frustration. A spin-gap

S3= f d7(Co0102030 4024+ C301020304{ 1o — fr1fts

+ papa— mapat +Colmapa— HapoF mopz— matha} state is also expected on tBe- 1/2 kagomdattice antiferro-
~ ~ magnet: In Ref. 15 this state was described by a theory very
—C50102030 41+ paptopapial T C60102030am1 03] gimilar to that discussed here for the,¢) SRO phase, with

4.7 deconfined spinons and topological ordgt.is known nu-
merically that thekagomeantiferromagnet also has a large

The terms involving ther; appear to have the plaquette form density of low-energy singlet excitations—in the present
associated with Ising gauge fields. The spatial structure afeory these singlet modes are captured by the gauge fluc-
these gauge interactions is made clearer by the transformésations and are eventually expected to acquire a small, but
tion in Fig. 8. Here, we have collapsed pairs of sites confinite, singlet gap>>2*~%% However, thus far there have
nected by the diagonal links into single sites—we now sedeen no well-characterized experimental examples ofSthe
that theo; can viewed as residing on the links of a square=1/2 kagomeantiferromagnet.
lattice which is tilted by 45° from the original lattice, and  To date, it appears that the spin gap in SiI®Ds), is
their gauge interactions have the usual form around elemenealized in a simple decoupled dimer ground state discovered
tary plaquettes. originally by Shastry and Sutherlariddere, we undertook a
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more detailed study of the parameter space of this antiferrdaelical LRO: We will analytically show that in then(,q) and
magnet and found that other paramagnetic spin-gap states g, w) LRO phases the link fields obey the following rela-
also possible. One of these was the plaquette Stafgich  tions:

appears in a region of weaker frustration and commensurate

spin correlations. The other was a more exotic state with Q=P,

“topological order,” deconfinedS=1/2 excitations, and he-

lical spin correlations. The latter state was found to be con-

tiguous to the dimer state and so not too far from the physi- [R1|=Ry], (A1)
cally relevant regime: It appears that SCBIO3), iS quite o .
close to the boundary of stability of the dimer phase. where |Q;|=Q, |Pj|=P. The reasoning is the same in the

Our results suggest exciting possibilities for materials obd0th (,q) and (@, ) phases, and we will fix our state in the
tained by doping SrGBOs), with mobile carriers. It is (.d) phase for simplicity. In this state, the directions of the
expected that the helical state will be more amenable to thbnk fields Q;; are shown as in Fig. 2. The spinon dispersion
motion of charge carriers than the dimer state, and so dopin this phase can be obtained from the following eigenvalue
may well drive the system into a topologically ordered state €quatiori® in momentum space:

Such a state is a prime candidate for superconductivity with

the exotic properties associated with the proximity of a Mott DKM =M 2o (k),
insulator with deconfined spinons: These include a regime of

stablehc/e vortices”*and the closely related flux-trapping

effect of Senthil and Fishéf.An experimental effort to dope S T 0
SrCw(BOs), (or related compoundistherefore appears o -1/
worthwhile.
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DMR 00-98226(S.S) and DMR 97-12391J.B.M). where 1 is the & 4 unit matrix, (k) is a diagonal matrix of

the bosonic eigenenergiel] is a 8X8 matrix whose col-
umns are the eigenvectors of the mats¥D(k), and the

This appendix will provide a proof of a statement made indiagonal elements afw(k) are the corresponding eigenval-
Sec. Il A 2 on the nature of the saddle point in the phase withues; P(k) is a 4xX4 matrix with the following form:

APPENDIX

0 iJ,Q sin(ky) (J2Ry/2)e' M) i3 P sin(k,)
iJ;Q sin(ky) 0 (J,R,12) e (Kxtky)
P(k)= : _ . _ _ : (A3)
—(J,Ry/2)e 1k ky) iJ1P sin(k,) 0 iJ,Q sin(k,)
iJ1P sin(k,) —(J,R,12)e Ttk 3,Q sin(ky) 0
[
and \ is the Largrange multiplier of the mean-field Hamil- W, =(1je 19212 1 ,_efiq/2,_efiq/21i)eilzl-F,

tonian which we assume to be independent of latticeisite

With this assumption, it can be shol@rihat the eigenvalues

occur in pairs with opposite signs ,(k),— »,(k)) where o o . T
u=1,....4 and thenatrix M has the form Wo=(1je'?ie'9?1,—i,el9% 92 —i)el2", (AB)

u -—-v*
M= ( v U ) : (A4)  respectively. Substituting’, (or ¥,) into Eq.(A2), we have

where theU, V are 4<4 matrices associated with the posi-

tive eigenvalues. The{,q) LRO phase X{*#0) occurs at _ R; .

the wave vectok,,;,= (* /2, q/2) where the eigenenergy )‘_[‘]1(P+Q)S'“(q/2)+3275'”(‘1)}
vanishes, i.e.,w(lzmin)=0. The two linearly independent

eigenvectors associated with = (7/2,g/2) and k,=(7/2, 4
—q/2) can be shown to be

J;Qcodq/2)+ Jz%coiq)} =0,
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. R, . wheree,, is the SU(2) antisymmetrie tensor, andr, o’
)\—[Jl(P+Q)S|n(q/2)+J27sm(q)} =1,]. The condensates’(q) must be the linear combina-
tions of the eigenvector® ; and¥, associated with the zero
mode: this introduces two complex numberg, c,, with
only the value of|c,|?+]c,|? fixed by the saddle-point
equations?> Working out the orientation of the condensate at

We can easily see th&;=R,=R from the above condi- eyery lattice site over the unit cell, the condensates can be
tions. Also, we find that each saddle point may be describegritten in the form

by purely reak Q;;). Therefore, we may fix the values af
andq in the LRO phase from the above condition: (XL>

+i =0. (A6)

R
31Q cog/2) + 3, 7 cog )

Ci+Cy

1 Pk Ak
Xa icy—icyt

R
J1(P+Q)sin(a/2) + Iz 5sin(a) = A,

(XTB> ( _Cle—iqlz_czeiq/2 )

R 1 ik a—iQ/2 i A% 4iQl2

31Q cosq/2) + 3,5 cos ) =0. (A7) X8 Icz€ Trric; e

1 _ —iq_ iq

To proveP=Q, we need one additional condition from the Xc _ C1€ . C2€ .
saddle-point equations. The mean-field free enégy is a X& —icse '9—icye'd)’

function of A, Q, P, R, andx®(q) where these are indepen-

dent parameters. The largésolutions of this model are ob- xh cie” 124 ¢ eld’2
tained by solving the saddle-point equations which set the ( )=( —igl2 iq,z)- (A10)
derivatives of free energy with respect to these independent

variables to be zero. Notice thatis also an independent By substituting Eqs(A10) into Eq. (A9), we can explicitly
parameter. The additional condition we need comes from thgork outE,(q). It is given by

saddle-point equation associated wathit is given by

xh) \icke '92—icte

R
JEmF _ (A8) Ex(Q)=_[\]1(P+Q)Sin(qlz)+32§Sir‘(Q)}(|01|2+|C2|2)-
aq ' (A11)

The only explicitq dependence in the free energy is in the Now the saddle-point conditiofA8) becomes
Bose condensate variable¥q). This piece of free energy is

given by (9EMF_J P+Q
gq "t 2

Combining Egs(A7) and(A12), we haveP=Q.

R
] cos{q/2)+J2§cos(q)=0. (A12)
Ex(@)=2 51~ Quesx/(@x] (@ +Hel, (A9
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