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Quantum phases of the Shastry-Sutherland antiferromagnet: Application to SrCu2„BO3…2
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We study possible paramagnetic phases of antiferromagnets on the Shastry-Sutherland lattice by a gauge-
theoretic analysis of fluctuations in a theory with Sp(2N) symmetry. In addition to the familiar dimer phase,
we find a confining phase with plaquette order and a topologically ordered phase with deconfinedS51/2
spinons and helical spin correlations. The deconfined phase is contiguous to the dimer phase and in a regime
of couplings close to those found in the insulator SrCu2(BO3)2. We suggest that a superconductor obtained by
doping this insulator with mobile charge carriers will be an attractive candidate for observing the anomalous
magnetic flux properties associated with topological order.
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I. INTRODUCTION

Much interest has recently focused on the magnetic pr
erties of the insulator SrCu2(BO3)2.1,2 The low-energy spin
excitations in this material reside on theS51/2 Cu ions
which lie in two-dimensional layers decoupled from ea
other. The experiments show a clear indication of an ene
gap towards spin excitations, making this one of the f
known two-dimensional systems with a spin gap. Rema
ably, the pattern of near-neighbor antiferromagnetic
change couplings between the Cu ions turns out to be id
tical to that in a model Hamiltonian studied many years a
by Shastry and Sutherland.3 These authors also showed tha
simple decoupled dimer wave function was an exact eig
state of this Hamiltonian and that it was the ground state o
a restricted parameter regime.

The Shastry-Sutherland antiferromagnet is sketched
Fig. 1. The Hamiltonian is

H5J1(̂
i j &

Si•Sj1J2 (
diagonals

Si•Sj , ~1.1!

where Si are S51/2 operators on the sitesi of a square
lattice. The exchangeJ1.0 acts along the nearest-neighb
links ~shown as solid lines in Fig. 1!, while J2.0 acts on the
diagonal links, shown as dashed in lines in Fig. 1. It w
established3 that a simple product of singlet pairs on th
diagonal links was the ground state ofH for sufficiently large
J2 /J1. However, an understanding of the experiments
quires a description of the excitation spectrum and also
possible quantum phase transitions to other states at sm
J2 /J1. These issues have been addressed in a numbe
recent theoretical works.4–11 Many of these studies4,6–8 in-
volve numerical analyses based upon large-order series
pansions departing from various decoupled cluster sta
Quantum Monte Carlo simulations have, in principle,
smaller bias due to the choice of an initial state and can
extended to much larger system sizes; however, simulat
of H suffer from a sign problem, and so such studies h
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not been possible. An analytic Schwinger boson mean-fi
approach was undertaken by Albrecht and Mila:5 Results
were obtained mainly for the magnetically ordered stat
and the various distinct paramagnetic states were not dis
guished.

Quite apart from determining the ground states of the s
cific Hamiltonian H, it is also of interest to determine th
phases of models which are ‘‘near’’ the parameter space
H. This is in the hope that future experiments may succee
deforming the insulator SrCu2(BO3)2 by substitutional dop-
ing ~which can induce mobile carriers! or by the application
of hydrostatic pressure. Doping the antiferromagnetic insu
tor La2CuO4 led to the discovery of high-temperature supe
conductivity: Related phenomena may be expected here
though, as we shall argue later, the presence of str
frustration in the parent insulator SrCu2(BO3)2 may lead to
profound differences in the nature of a possible superc
ducting ground state.

FIG. 1. The Shastry-Sutherland lattice. The exchangeJ1 acts
between sites separated by the horizontal and vertical links, w
the exchangeJ2 acts across the diagonal links.
©2001 The American Physical Society07-1
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This paper will examine a generalization ofH to Sp(2N)
symmetry @SU(2)>Sp(2)# and describe the properties o
the large-N limit. Some of the phases obtained in such
large-N limit may not actually appear in the phase diagra
of the SU~2! modelH—nevertheless, as we have just argu
the phases may still be of relevance to physical syste
whose microscopic Hamiltonians are near the param
space ofH. Such an approach has been fruitfully applied t
number of other frustrated quantum antiferromagnets in p
vious work.12–16 The method leads to an unbiased select
of possible ground states in the large-N limit, both with and
without broken spin rotation symmetry. Moreover, a gau
theoretic description of the fluctuations about the mean-fi
solution allows a systematic and reliable assessment of
stability of the various ground states, along with a desc
tion of the dynamics of the excitations.

The Sp(2N) generalization ofH is defined by introducing
canonical Bose creation operatorsbia

† on every sitei, with
a51, . . . ,2N a Sp(2N) index. The allowed states in th
Hilbert space satisfy the constraint

bia
† bi

a52NS ~1.2!

on every sitei @we follow the convention of summing ove
all repeated Sp(2N) indices#; the right-hand side of Eq.~1.2!
must be a positive integer, and the values ofS are con-
strained accordingly—for the physical case,N51, S must
take half-integral values, as expected. The Hamiltonian i

H52
J1

2N (̂
i j &

~J abbia
† bj b

† !~Jgdbi
gbj

d!

2
J2

2N (
diagonals

~J abbia
† bj b

† !~Jgdbi
gbj

d!, ~1.3!

whereJ ab5Jab52Jba is the generalization of the ant
symmetric« tensor of SU~2! ~i.e., J containsN copies of«
along its center block diagonal and vanishes elsewhere!.

The large-N analysis of a large class of models, of whic
H is a member, was described with some generality in Se
of Ref. 15. We will follow the same method here and so w
dispense with the details of the computation. The result
mean-field phase diagram is shown in Fig. 3 below, a
function ofJ2 /J1 and 1/S ~in the large-N limit, Sbecomes a
continuous real variable!. The positions of the various phas
boundaries are not expected to be quantitatively accurate
the physicalN51 case. However, the general topology
the phase diagram, the nature of the phases and their ex
tions, and the critical properties of the quantum phase tr
sitions can be reliably described using Fig. 3 as a star
point.

The properties of all the phases in Fig. 3 will be discuss
in detail in Sec. II. Here we highlight our main results.

One of the paramagnetic phases has short-range e
time spin correlations peaked at the wave vector (p,p). @We
denote this phase (p,p) short-range ordered~SRO! in Fig.
3; here we are placing the sites on the vertices of a reg
square lattice as in Fig. 1 and measuring wave vector
units of 1/(nearest-neighbor spacing). In the experime
13440
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SrCu2(BO3)2 system, the positions of the sites are differe
and there will be a corresponding transformation in the wa
vector dependence of observables.# At the mean-field level,
this phase is identical to that found earlier19,20 on the square
lattice withJ250. However, we will show here that a differ
ence does emerge upon consideration of fluctuations.
J250, it was shown19,20 that Berry phases associated wi
hedgehog instantons led to columnar spin-Peierls order in
(p,p) SRO phase. Here we show that a closely rela
analysis for the Shastry-Sutherland lattice leads instea
‘‘plaquette’’ order in this phase. Just such a phase was c
sidered recently by Koga and Kawakami.8

Our other results are also associated with a paramagn
phase. This phase is denoted (p,q) SRO in Fig. 3 and is
obtained by a destroying the long-range magnetic order
helically ordered phase. Equal-time spin correlations sh
short-range incommensurate order, and the spin struc
factor is peaked at the incommensurate wave vector (p,q)
~the value ofq varies continuously as a function ofJ2 /J1).
As in previous incommensurate SRO phases found on f
trated square lattice models,12,14we argue that the excitation
above the ground state aredeconfined spinonswhich carry
spin S51/2 @for SU~2!#. Also, as in previous work,12,14 the
quantum phase transition between this phase and the (p,p)
SRO ~plaquette! phase~Fig. 3! is described by theory of a
charge-2 Higgs scalar coupled to a compact U(1) ga
field; the deconfinement transition is associated with the c
densation of the Higgs field, and the critical properties
those of aZ2 gauge theory.21,12–14,22–24We will also consider
here the transition between the deconfined phase and
dimer phase: By a somewhat different analysis, we will sh
that this transition also reduces to aZ2 gauge theory descrip
tion.

II. MEAN FIELD PHASE DIAGRAM

As discussed in Sec. II of Ref. 15, a key quantity det
mining the nature of the phases is a complex, directed,
field Qi j 52Qji . Operationally, this field is introduced t
decouple the quartic boson interactions inH by a Hubbard-
Stratonovich transformation. After this decoupling, the effe
tive action contains the terms

S5E dt(
i . j

Ji j

2
@NuQi j u22Qi j Jabbi

abj
b1H.c.#1•••,

~2.1!

wheret is imaginary time,Ji j 5J1 (Ji j 5J2) on the horizon-
tal and vertical~diagonal! links, and the ellipses represen
standard terms which impose the canonical boson comm
tion relations and the constraint~1.2!. It is also clear from the
structure ofS that the average value ofQi j satisfies

^Qi j &5
1

N
^J abbia

† bj b
† &. ~2.2!

For larger values ofS, the dynamics ofS requires condensa
tion of thebi

a bosons and hence a nonzero value of

xi
a5^bi

a&; ~2.3!
7-2
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QUANTUM PHASES OF THE SHASTRY-SUTHERLAND . . . PHYSICAL REVIEW B64 134407
such phases break the spin rotation symmetry and have m
netic long-range order. As described in Ref 15, we optimiz
the ground-state energy with respect to variations in^Qi j &
andxi

a for different values ofJ2 /J1 andS. The four-site unit
cell of the Shastry-Sutherland lattice, depicted in Fig. 2,
ten differentQi j fields. Care must be taken to identify gaug
equivalent configurations. We find that each saddle po
may be described by purely real^Qi j &. The resulting phase
diagram is shown in Fig. 3. We describe the phases in tur
the following subsections, considering first the magnetica
ordered phases withxi

aÞ0 in Sec. II A and then the para
magnetic phases in Sec. II B.

A. Magnetically ordered phases

1. Néel „p,p… LRO state

This is the familiar long-range-ordered~LRO! state in
which ^Si& is collinearly polarized in opposite directions o
two checkerboard sublattices. It is known to be the grou
state ofH for J250, S51/2 in the physicalN51 limit. A
gauge may be chosen in which the expectation values of
variables,̂ Qi j &, are nonzero and equal on the horizontal a
vertical links, while the expectation values on the diago
links are zero. In the notation of Fig. 2, then,Qi5Pi ( i
51,2,3,4) andR15R250.

2. Helical „p,q… and „q,p… LRO states

This phase is characterized by nonzero values of^Qi j & on
the horizontal, vertical, and diagonal links. A gauge cho
sets all theQi equal to each other, and similarly for thePi ;
in the Appendix we present an argument which shows
the values of thePi and Qi are also equal to each othe
There are two gauge-nonequivalent choices for the value
R1,2: One state hasR15R2 and the otherR152R2. The two
states are interchanged under a 90° rotation and corres
to spirals ordered in the horizontal or vertical directions.
large values of the spin, this phase appears atJ2.J1, in
accordance with the classical calculation of Shastry
Sutherland.3 Equal-time spin correlations exhibit long-rang

FIG. 2. The four sites of the unit cell~labeled A, B, C, and D!,
and the ten-link variablesQi j .
13440
g-
d

s
-
t

in
y

d

k
d
l

e

at

of

nd
t

d

incommensurate order, and the spin structure factor peak
the incommensurate wave vectors (p,q) or (q,p) with the
value ofq varying continuously as a function ofJ2 /J1. This
state also appears in the studies of Refs. 5 and 10.

B. Paramagnetic phases

In this subsection we discuss the three phases for wh
xi

a50. As a consequence, spin rotation symmetry is p
served and only spin SRO arises; however, there may
ordering in other singlet order parameters.

1. Dimer state

This is the exact SU~2! eigenstate of decoupled single
pairs found by Shastry and Sutherland.3 In the large-N limit,
this corresponds to a saddle point at which the^Qi j & are
nonzero only on the diagonal links:R15R2Þ0 andQi5Pi

50. Note that thebi
a bosons are spatially decoupled at su

a saddle point: Eachbi
a can only hop across a single diagon

link. This simplifies the analysis of fluctuations about t
saddle point in or near the dimer state, as will be discusse
Sec. IV. At higher orders in 1/N, the bi

a can indeed hop
through the entire lattice; we expect that the lowest-lyi
excitation will be aS51 spin triplet4 @for SU(2)#, consisting
of a confined pair ofbi

a bosons.

FIG. 3. Large-N phase diagram of the Sp~N! Shastry-Sutherland
model, Eq.~1.1!, as a function ofJ2 /(J11J2) and 1/S. The five
phases are described in Sec. II. The LRO phases break spin-rot
symmetry: The spin order is collinear and commensurate in
(p,p) LRO phase and helical and incommensurate in the (p,q)
LRO phase. The SRO phases preserve spin-rotation invarianc
the (p,p) SRO only the horizontal and verticalQi j are nonzero in
the large-N theory—fluctuations lead to broken translational sy
metry in one of the states shown in Fig. 6.@A state with coexisting
(p,p) LRO and plaquette order is also allowed by the theory~Ref.
17! beyond the large-N limit ~not shown above!, and there is evi-
dence that this occurs on a frustrated square lattice antiferroma
~Ref. 18!.# The dimer phase has only the diagonalQi j nonzero in
the large-N theory. The (p,q) SRO phase has all theQi j nonzero:
This phase has topological order and deconfined spinons.
7-3
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C. H. CHUNG, J. B. MARSTON, AND SUBIR SACHDEV PHYSICAL REVIEW B64 134407
2. „p,p… SRO

This state is obtained by quantum disordering the N´el
state of Sec. II A 1, and the expectation values ofQi j have
the same structure as those in Sec. II A 1. As has been
cussed in some detail in Refs. 19 and 20, the quantum fl
tuations in this phase are described by a compact U(1) ga
theory. Such a theory is always confining, and thus thebi

a

bosons again bind to yield aS51 quasiparticle above a spi
gap. There is also an interesting structure in the spin-sin
sector: This is considered in Sec. III where it is demonstra
that at finiteN this phase has ‘‘plaquette’’ order.

3. „p,q… and „q,p… SRO

In this phasê Qi j & are nonzero on the diagonal, horizo
tal, and vertical links, like the helical (p,q) LRO phase of
Sec. II A 2. Again there are two gauge-nonequivalent c
figurations, corresponding to the choicesR15R2 with Qi
5Q,Pi5P @the (p,q) phase# and R152R2 with Qi5Q
.Pi5P @the (q,p) phase#. Thus all of the horizontalQi
fields acquire the same expectation value, but unlike in
helical LRO phase, this value differs slightly from that of th
verticalPi fields; the difference is only on the order of 1 pa
in 10 000. The state is a spin singlet and there is a gap to
spin excitations. Nevertheless, the symmetry of 90° rotati
between the vertical and horizontal directions is broken
this would now be apparent in various spin-singlet obse
ables like the bond-exchange energies or the bond-ch
densities. This phase may therefore be viewed as a s
singlet ‘‘bond-charge nematic’’ as only lattice rotational sym
metry is broken~the prefix ‘‘bond charge’’ implies that the
nematic order is observable only in the charge density in
bonds, which is in turn determined by the magnitude of
spin-singlet exchange energy across the bond!. The choice of
a vertical or horizontal spatial polarization in the nema
order leads to a twofold degeneracy in the ground state.
state also has ‘‘topological’’ order,25,26,12,24,27,28and this
would lead to an additional fourfold degeneracy in a to
geometry. Unlike the commensurate SRO phases,
spinons are deconfined. We describe the deconfinement
sition below in Sec. IV. The spinon dispersion has its mini
at momentum (p/2,q/2) or (q/2,p/2). Although this phase is
realized only forS,1/2 in the large-N limit, it seems pos-
sible that in the physical limitN51 it could extend up to
S51/2 for a narrow range ofJ2 /J1. Similar behavior was
found in a study of the Sp(2N) Heisenberg antiferromagne
on the anisotropic triangular lattice.16 It would interesting to
search for this phase using numerical methods.

We conclude this section by briefly comparing our resu
to other published calculations. ForS51/2 we find that the
transition between Ne´el and helical LRO phases is continu
ous, occurring atJ2 /J1'1.02, close to the value of 1.
found by Albrecht and Mila,5 who also report a continuou
transition. Also in agreement with Albrecht and Mila, we fin
that the transition between the helical LRO and dimer S
phase is first order, but occurs atJ2 /J1'2.7 instead of 1.65.
Carpentier and Balents10 also found a helical LRO phase, bu
presented arguments that an intermediate phase may
between the helical LRO and dimer phases: Our (p,q) SRO
13440
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state is precisely such a phase. Koga and Kawakami8 em-
ployed a series expansion to find, forS51/2, a plaquette
phase which intervenes between the Ne´el and dimer phases
As shown below, the (p,p) SRO phase acquires plaquet
order at finiteN, but as can be seen in Fig. 3, at largeN this
phase only occurs forS,1/5. If finite-N fluctuations push
the phase boundary up toS51/2, then the following se-
quence of phases would occur asJ2 /(J11J2) increases from
0 to 1: Néel, plaquette (p,p) SRO, (p,q) SRO, and finally
dimer SRO.

III. PLAQUETTE ORDER IN THE COMMENSURATE
PARAMAGNET

This section will discuss the fate of the spin-singlet sec
upon including fluctuations about the mean field in t
(p,p) SRO state. The results below are a straightforw
generalization of those obtained in Refs. 19 and 20 for
square-lattice antiferromagnet. We will only consider t
case where 2SN is an odd integer@for the physical SU(2)
case, this means thatS is half an odd integer#; the generali-
zation to other values ofS follows as in earlier work.

In the present large-N approach, regular perturbative co
rections order by order in 1/N do not qualitatively modify the
nature of the mean-field ground state. However, singular
fects do appear19,20 upon considering the consequences
‘‘hedgehog’’-like instanton tunneling events and their Ber
phases. Such a calculation is technically involved, and
somewhat more transparent discussion of essentially
same physics emerges from studying the ‘‘quantum dim
model25 ~see Appendix A of Ref. 20 for a discussion of th
equivalence between the instanton physics of the largN
expansion and dual representations of the quantum di
model!. Here we shall follow the treatment of Ref. 29.

The quantum dimer model represents the Hilbert spac
low-lying singlet excitations by assuming that it can
mapped onto states represented by a near-neighbor si
bond ~‘‘dimers’’ ! covering of the lattice. In the presen
(p,p) SRO phase, we need only take dimers connect
nearest-neighbor sites on horizontal and vertical links. T
dimers along the diagonal links are assumed to occur o
rarely in this phase: They can therefore be integrated out
serve mainly to modify the effective Hamiltonian in th
space of horizontal and vertical dimers. Indeed, the m
important consequence of this procedure is apparent fro
glance at Fig. 1: The diagonal dimers divide the plaquette
the square lattice into two classes, those with and with
diagonal links across them, and we expect dimer resona
terms around these plaquettes to have distinct matrix
ments~see Fig. 4!. This distinction will be the only differ-
ence from earlier analyses,19,20 and we will show that it is
sufficient to lead to plaquette order in the (p,p) SRO phase.

Our results emerge from an analysis of the ‘‘height’’ re
resentation of the quantum dimer model.20,30,31,29,28There is
a rigorous, one-to-one mapping between the set of cover
of the square lattice with nearest-neighbor horizontal a
vertical dimers, and the configurations of an interface
heightsha defined on the sitesa of the dual square lattice
~we identify two interfaces as equivalent if they are relat
7-4
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QUANTUM PHASES OF THE SHASTRY-SUTHERLAND . . . PHYSICAL REVIEW B64 134407
by a uniform translationha→ha1p, wherep is any integer!.
The values ofha are restricted to

ha5na1za , ~3.1!

wherena is a integer which fluctuates from site to site andza
is a fixed fractional offset which takes the valu
0,1/4,1/2,3/4 on four dual sublattices,X,Y,Z,W, as shown in
Fig. 5. We further restrict theha to satisfy uha2hbu,1 for
any pair of nearest-neighbor sitesa,b. We can now specify
the connection between the height model and the dimer c
erings. Examine the value ofuha2hbu for every nearest-
neighbor pair, and ifuha2hbu.1/2, place a dimer on link
shared by the plaquettes of the direct lattice arounda andb.
It is not difficult to see that a consequence of our choice
the za offsets is that dimers so obtained will form a clos
packed covering of the lattice. Examples of the relations
between the height values and dimer coverings are show
Fig. 4.

FIG. 4. Three states of the Hilbert space of the quantum di
model. There are off-diagonal matrix elements in the effect
Hamiltonian which connect state~a! to state~b!, and state~a! to
state~c!, by a resonance between pairs of horizontal and vert
dimers around a plaquette. The latter matrix element differs fr
the former because only the latter has a diagonal link across
resonating plaquette. Also shown are the corresponding value
the heightsha on the sites of the dual lattice.

FIG. 5. The four dual sublattices upon which the height offs
take the valueszW50, zX51/4, zY51/2, andzZ53/4.
13440
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We can now use general symmetry considerations to w
down an effective action for the height degrees of freedo
As is standard in theories of interface models, we prom
discrete heightsha , in Eq. ~3.1!, to continuous real variable
xa by the Poisson summation formula and ‘‘soften’’ the co
straints to periodic cosine potentials which have minima
the valuesxa5ha which obey Eq.~3.1!. In this manner we
obtain the action

Sx5E dtFK

2 (
^ab&

~xa2xb!21(
a

H Kt

2
~]txa!2

2yacos@2p~xa2za!#J G , ~3.2!

where the sum over̂ab& extends over nearest-neighbor sit
and K is the stiffness towards spatial fluctuations of the
terface height. The corresponding stiffness towards tim
dependent fluctuations isKt , and, for simplicity, we have
taken its valuea as independent. The symmetry of the latti
requires that the strength of the periodic potential take t
possible valuesya5y1 or ya5y2 depending upon whethe
the plaquettea has a diagonalJ2 link across it or not. This is
the sole distinction from the analysis of the square latt
antiferromagnet in Ref. 20, which hady15y2.

The fundamental property of interface models in 211 di-
mensions, likeSx , is that they are always in a smooth phas
This means that the symmetry of height translations is
ways broken, and̂xa&5^ha& has some definite value acros
the entire system. As was argued in Refs. 19 and 20,
such definite value necessarily breaks the lattice symmetr
the underlying antiferromagnet and will lead here
plaquette order.

With the assumption of a smooth interface, the optim
interface configurations can be determine by a simple m
mization of Sx by a set of time-independent values ofxa .
We allow for distinct expectation valuesxW , xX , xY , and
xZ on the four dual sublattices. Then the problem reduce
the minimization of the following energy as a function
these four real variables:

Ex5K@~xX2xW!21~xW2xY!21~xY2xZ!21~xZ2xX!2#

2y1@cos~2pxW!2cos~2pxY!#2y2@sin~2pxX!

2sin~2pxZ!#. ~3.3!

This minimization is a straightforward, but somewhat t
dious, computation. The present analysis is valid only
smally1 , y2, and so we analytically determine the minima
power series iny1,2. We define

xW5x11x21x3 ,

xX5x12x21x3 ,

xY5x11x22x3 ,

xZ5x12x22x3 . ~3.4!

We find that at the saddle points ofEx ,
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C. H. CHUNG, J. B. MARSTON, AND SUBIR SACHDEV PHYSICAL REVIEW B64 134407
x25
p3~y1

21y2
2!

16K2
sin~4px1!1O~y1,2

4 !,

x352
py1

2K
sin~2px1!1O~y1,2

3 !,

x45
py2

2K
cos~2px1!1O~y1,2

3 !. ~3.5!

The average interface heightx1 is determined by the mini-
mization of

Ex5E01A cos~4px1!1B cos~8px1!1•••, ~3.6!

whereE0 is an uninteresting constant independent ofx1,

A5
p2~y1

22y2
2!

2K
2

p6~y1
42y2

4!

6K3
,

B5
p6~7y1

416y1
2y2

217y2
4!

96K3
, ~3.7!

and all omitted terms are of ordery1,2
6 or higher@in obtaining

the results in Eqs.~3.7! we had to include terms in Eqs.~3.5!
which are one order higher than those shown#. Note that the
square-lattice antiferromagnet, withy15y2, hasA50.

We now have to minimize Eq.~3.6! to determinex1. Then
from Eqs.~3.5! we knowx2,3,4, and hence the configuratio
of the interface heights. Then, from the connection betw
uha2hbu and the corresponding dimer occupation numbe
we can determine the pattern of the distribution probabilit
of the spin-singlet bonds in the original antiferromagnet. I
a simple exercise to determine the minima of Eq.~3.6! for
different values ofA and B; the resulting phase diagram
shown in Fig. 6, and we now list the various minima and

FIG. 6. Phase diagram of Eq.~3.6! as a function of the param
etersA andB; this model describes fluctuations in the (p,p) SRO
phase of Fig. 3. The thick line is a first-order transition, while t
thin lines are second order. The plaquette and spin-Peierls state
shown, with the different line styles representing distinct values
^Si•Sj& across the links.
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associated ground states of the antiferromagnet.
~i! A>0, B<A/4. There are degenerate minima atx1

51/4,3/4. The system spontaneously breaks a translati
symmetry by choosing one of these minima. With the ma
pings above, it is easy to see that these are the plaqu
states, one of which is depicted in Fig. 6.

~ii ! A<0, B<2A/4. Now the two equivalent minima ar
x150,1/2. These also correspond to plaquette states
above, but the chosen plaquettes are now around hal
those containing diagonal links~see Fig. 6!.

~iii ! The remaining values ofA andB have four degener-
ate minima atx151/46q,3/46q, where 0,q,1/4 varies
continuously as a function ofA/B. These states have spin
Peierls order of the type shown in Fig. 6: The links are
vided into four columnar sets, with each set having a diff
ent value of ^Si•Sj& on its links. This state interpolate
between the plaquette state in~i! asq→0 and that in~ii ! as
q→1/4.

The present analysis is for smally1, and so, from Eqs.
~3.7! we should assume thatB!uAu. Furthermore, the pres
ence of the frustratingJ2 interaction on half the plaquette
means that the hedgehog tunneling events are more like
be centered on these plaquettes. Using the mapping of
events to the model~3.2!, we expect thaty1.y2. From Eqs.
~3.7! we therefore conclude that the most likely possibil
for the ground state is that in~i! above. The same state ha
also been considered in Ref. 8.

We conclude this section with a few comments on t
(p,p) SRO phase of the antiferromagnet with full squa
lattice symmetry, in which there is a diagonalJ2 exchange
between every pair of next-nearest-neighbor sites. Recen
merical work on such an antiferromagnet32,18 has found evi-
dence for spin-Peierls ordering with the same spatial str
ture as in ~iii ! above for the Shastry-Sutherlan
antiferromagnet. However, we noted earlier that the squ
lattice symmetry implies thatA50: For this value,q51/8,
and the spin-Peierls state of~iii ! has a larger symmetry~two
of the four sets of columnar links are equal to each other! and
becomes equivalent to the ordering discussed in Refs. 19
20. To obtainqÞ1/8, and so a ground state with the sym
metry of that in Fig. 6, we need to add toEx a higher-order
term C cos(16px): Then there can be aneightfolddegener-
ate ground state, withq and 1/42q equivalent to each other
This is the state that appears to have been found in Refs
and 18.

Note also that for the square-lattice case, theB,0, A
50 solution has the four plaquette states degenerate
each other.29

IV. DECONFINEMENT TRANSITION OF THE
DIMER PHASE

The deconfined, ‘‘spin-liquid,’’ (p,q) SRO phase in Fig.
3 is flanked on both sides by confining paramagnetic pha
the plaquette and dimer phases.

As we indicated Sec. I, the deconfinement-confinem
quantum phase transition from the (p,q) SRO phase to the
plaquette phase can be described in a theory essentially i
tical to that considered previously for frustrated squa
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f
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lattice antiferromagnets.12,14At the mean-field level, the tran
sition is signaled by the onset of nonzero expectation va
of Qi j on the diagonal links: We will denote these diagon
Qi j as Qi j

d . Upon considering fluctuations, we find that th
Qi j

d constitute a charge-2 Higgs field in a compact U(
gauge theory, and the deconfinment-confinement transitio
that in aZ2 gauge theory.21,12–14,22–24

This section will consider the second deconfineme
confinement transition in Fig. 3 between the dimer a
(p,q) SRO phases in more detail. We will see that this
also described by aZ2 gauge theory, and the emergence
the Z2 gauge symmetry can be described in a somew
more transparent manner.

As noted in Sec. II B 1, the dimer phase is characteri
by nonzero expectation values of the diagonalQi j

d links.
These links are all decoupled from each other, and this le
to a simple, local structure in the effective action for t
fluctuations. The transition to the deconfined phase is n
signaled by the onset of nonzero expectation values of
Qi j on the horizontal and vertical links, and we will deno
these byQi j

h andQi j
v , respectively. Near the phase bounda

we need only consider the structure of the effective action
a functional of theQi j

h,v after all other degrees of freedom
have been integrated out.

The simplest terms in the effective action arise from
on-site propagation of thebi

a on the sitei in imaginary time.
Integrating out thebi

a in powers of theQi j
h,v , the lowest-

order terms have the form

S15E dtFc1(̂
i j &

uQi j
h,vu21c2(

h
$Q12

h Q23
v* Q34

h Q41
v* 1H.c.%

1•••G , ~4.1!

where c1 , c2 are constants, the first sum is over neare
neighbor links, and the second sum is over plaquettes,
the sites labeled as in Fig. 7. A crucial property ofS1 is that
all terms are invariant under a local U(1) gauge transform
tion

Qi j
h,v→Qi j

h,vei (f i1f j ), ~4.2!

where the phasef i can take arbitrary distinct values on th
sitesi.

We have so far not made use of the fact that the nonz
value of ^Qi j

d & allows thebi
a bosons to hop across a sing

diagonal link. Such hopping processes will induce a la
number of additional terms between theQi j

h,v . We will now
write down the structure of all such terms which appear
fourth order in theQi j

h,v . It is convenient to group thes
terms into sets associated with links emanating from a gi
plaquette which does not have a diagonal dimer acros
One such plaquette is that with the sites 1,2,3,4 in Fig. 7,
we now write down all four-link terms in which every lin
has at least one site on the central plaquette. It is not diffi
to see that all other four-link terms can be obtained b
simple translation of these terms to other plaquettes.
terms are
13440
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S25E dt@c3$Q51
h Q26

v Q32
v* Q43

h 2Q26
v Q37

h Q43
h* Q41

v

1Q37
h Q84

v Q41
v* Q12

h 2Q84
v Q51

h Q12
h* Q32

v 1c.c.%

1c4$Q51
h Q26

v Q12
h* Q41

v 2Q26
v Q37

h Q32
v* Q12

h

1Q37
h Q84

v Q43
h* Q32

v 2Q84
v Q51

h Q41
v* Q43

h 1c.c.%

2c5$Q51
h Q12

h* Q37
h* Q43

h 1Q26
v Q32

v* Q84
v* Q41

v 1c.c.%

1c6$Q51
h Q26

v Q37
h Q84

v 1c.c.%#. ~4.3!

Clearly, Eq.~4.3! is not invariant under Eq.~4.2!. However, a
residualZ2 gauge symmetry does survive. We see that E
~4.1! and ~4.3!, and all other allowed terms, are invaria
under

Qi j
h,v→Qi j

h,vh ih j , ~4.4!

whereh i561 performs the gauge transformation. Howev
it is not possible to choose theh i independently on every
site: It is easy to see that we need the additional constra

h i5h j whenever i and j

are separated by a diagonal link. ~4.5!

So the Z2 gauge degree of freedom is halved from th
present on the original square lattice.

To place theZ2 gauge theory in a more convention
form, it is useful to introduce a slightly different parametr
zation of the degrees of freedom. First, we neglect all am
tude and phase fluctuations and replace all theQi j by dis-
crete Ising variables taking only the values61. Then we
choose to represent all theQi j

h as Ising gauge fieldss, while
all the Qi j

v are written as products ofs and a second Ising
spin fieldm; thus,

FIG. 7. A section of the Shastry-Sutherland lattice. We ha
labeled sites around the central plaquette to enable the discussi
Sec. IV of the various terms in theZ2 gauge theory of the transition
from the dimer state to the (p,q) SRO phase with spinon decon
finement.
7-7



ch
th

-

th
th

.

m

rm
on
se
re
d
e

ee-
0°
ec-
the
in

-

nt-
-
in
s
the
nce
ym-
se

ne-
ion
en
by

and
ken
an-

re
lete
de-
nsi-
ical
ne-
not

-
ngly
x-

la-
ap

ery

e
nt

fluc-
but

e
e

red

ich
a

f t
si
s
re
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Qh;s,

Qv;sm. ~4.6!

This is shown a more explicitly in Fig. 7. Notice that ea
pair of horizontal and vertical links that form a triangle wi
a single diagonal link shares the same Ising gauge fields.
This choice is a consequence of the constraint~4.5!—as a
result, all them fields areinvariant under the gauge transfor
mation generated by theh i , while the s ’s transform like
conventional Ising gauge fields. This is also evident from
structure of the effective action obtained by substituting
parametrization in Eq.~4.6! and Fig. 7 into the effective
action in Eqs.~4.1! and~4.3!; for the terms displayed in Eqs
~4.1! and ~4.3! we obtain

S35E dt@ c̃2s1s2s3s4m2m41 c̃3s1s2s3s4$m1m22m1m4

1m3m42m3m2%1 c̃4$m1m42m1m21m2m32m3m4%

2 c̃5s1s2s3s4$11m1m2m3m4%1 c̃6s1s2s3s4m1m3#.

~4.7!

The terms involving thes i appear to have the plaquette for
associated with Ising gauge fields. The spatial structure
these gauge interactions is made clearer by the transfo
tion in Fig. 8. Here, we have collapsed pairs of sites c
nected by the diagonal links into single sites—we now
that thes i can viewed as residing on the links of a squa
lattice which is tilted by 45° from the original lattice, an
their gauge interactions have the usual form around elem
tary plaquettes.

FIG. 8. A deformation of the Shastry-Sutherland lattice wh
exposes the structure of theZ2 gauge theory. Pairs of sites across
diagonal bond have been compressed into a single site. Four o
sites carry pairs of sites labels, corresponding to the original
numbers in Fig. 7. TheZ2 Ising gauge fields on some of the link
are indicated, with a notation corresponding to the degrees of f
dom in Fig. 7.
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The m i constitute a separate global Ising degree of fr
dom associated with the breaking of the symmetry of 9
spatial rotations between the horizontal and vertical dir
tions. In the mean-field theory of the deconfined phase,
state withm i51 corresponds to the state with dominant sp
correlations at the wave vector (p,q) ~say!. The degenerate
partner state with spin correlations at (q,p) is obtained by
the statem i5(21)i y, where (i x ,i y) are the Cartesian coor
dinates of the sitei.

So the actionS3 describes aZ2 gauge theory (s) coupled
~rather intricately! to an Ising spin field (m); them field does
not carry a nonzero charge under theZ2 gauge transforma-
tion. The Z2 gauge theory can undergo a confineme
deconfinement transition~which is related by a duality trans
formation to the magnetic transition in an Ising model
three dimensions!, corresponding to the liberation of spinon
upon moving out of the dimer phase. In a different sector,
ordering of them degrees of freedom leads to the appeara
of bond charge nematic order and the breaking of the s
metry of 90° spatial rotations. In the mean-field theory, the
two transitions occur at the same point; i.e., the deconfi
ment transition is also the point where the spatial rotat
symmetry is broken. More generally, the interplay betwe
these two potentially distinct transitions can be addressed
an analysis of fluctuations using the actionS3. It does appear
possible that the two transitions are not simultaneous
that there can be a deconfined phase without any bro
spatial symmetries; moreover, if there is a simultaneous tr
sition in the two sectors, it is likely to be first order. A mo
definitive conclusion on these issues must await a comp
study of the coupled Ising gauge and Ising spin theory
fined byS3. We note that these issues concerning the tra
tion from the confined dimer phase to the deconfined hel
SRO phase are somewhat different from earlier deconfi
ment transitions23 because here the dimer phase does
break any lattice symmetries.

V. CONCLUSIONS

The Mott insulator SrCu2(BO3)2 is perhaps the only ex
perimental example of a spin-gap paramagnet on a stro
frustrated two-dimensional lattice. Another experimental e
ample of a two-dimensional paramagnet is CaV4O9, but its
spin gap is realized by homogeneous dilution and modu
tion of the exchange constants, not frustration. A spin-g
state is also expected on theS51/2 kagome´ lattice antiferro-
magnet: In Ref. 15 this state was described by a theory v
similar to that discussed here for the (p,q) SRO phase, with
deconfined spinons and topological order.~It is known nu-
merically that thekagome´ antiferromagnet also has a larg
density of low-energy singlet excitations—in the prese
theory these singlet modes are captured by the gauge
tuations and are eventually expected to acquire a small,
finite, singlet gap.33,15,34–36! However, thus far there hav
been no well-characterized experimental examples of thS
51/2 kagome´ antiferromagnet.

To date, it appears that the spin gap in SrCu2(BO3)2 is
realized in a simple decoupled dimer ground state discove
originally by Shastry and Sutherland.3 Here, we undertook a
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more detailed study of the parameter space of this antife
magnet and found that other paramagnetic spin-gap state
also possible. One of these was the plaquette state,8 which
appears in a region of weaker frustration and commensu
spin correlations. The other was a more exotic state w
‘‘topological order,’’ deconfinedS51/2 excitations, and he
lical spin correlations. The latter state was found to be c
tiguous to the dimer state and so not too far from the ph
cally relevant regime: It appears that SrCu2(BO3)2 is quite
close to the boundary of stability of the dimer phase.

Our results suggest exciting possibilities for materials
tained by doping SrCu2(BO3)2 with mobile carriers. It is
expected that the helical state will be more amenable to
motion of charge carriers than the dimer state, and so do
may well drive the system into a topologically ordered sta
Such a state is a prime candidate for superconductivity w
the exotic properties associated with the proximity of a M
insulator with deconfined spinons: These include a regim
stablehc/e vortices37,38 and the closely related flux-trappin
effect of Senthil and Fisher.39 An experimental effort to dope
SrCu2(BO3)2 ~or related compounds! therefore appears
worthwhile.
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APPENDIX

This appendix will provide a proof of a statement made
Sec. II A 2 on the nature of the saddle point in the phase w
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helical LRO: We will analytically show that in the (p,q) and
(q,p) LRO phases the link fields obey the following rel
tions:

Q5P,

uR1u5uR2u, ~A1!

where uQi u5Q, uPi u5P. The reasoning is the same in th
both (p,q) and (q,p) phases, and we will fix our state in th
(p,q) phase for simplicity. In this state, the directions of t
link fields Qi j are shown as in Fig. 2. The spinon dispersi
in this phase can be obtained from the following eigenva
equation15 in momentum space:

t3D~k!M5Mt3v̂~k!,

t35S ¶ 0

0 2¶D ,

D~k!5S l¶ P~k!

P†~k! l¶ D , ~A2!

where ¶ is the 434 unit matrix,v̂(k) is a diagonal matrix of
the bosonic eigenenergies,M is a 838 matrix whose col-
umns are the eigenvectors of the matrixt3D(k), and the
diagonal elements oft3v̂(k) are the corresponding eigenva
ues;P(k) is a 434 matrix with the following form:
P~k!5S 0 iJ1Q sin~kx! ~J2R1/2!ei (kx2ky) iJ1P sin~ky!

iJ1Q sin~kx! 0 ~J2R2/2!ei (kx1ky)

2~J2R1/2!e2 i (kx2ky) iJ1P sin~ky! 0 iJ1Q sin~kx!

iJ1P sin~ky! 2~J2R2/2!e2 i (kx1ky) iJ1Q sin~kx! 0

D , ~A3!
and l is the Largrange multiplier of the mean-field Ham
tonian which we assume to be independent of lattice siti.
With this assumption, it can be shown15 that the eigenvalues
occur in pairs with opposite signs„vm(k),2vm(k)… where
m51, . . . ,4, and thematrix M has the form

M5S U 2V*

V U* D , ~A4!

where theU, V are 434 matrices associated with the pos
tive eigenvalues. The (p,q) LRO phase (xi

aÞ0) occurs at

the wave vectorkWmin5(6p/2,6q/2) where the eigenenerg
vanishes, i.e.,v(kWmin)50. The two linearly independen
eigenvectors associated withkW15(p/2,q/2) and kW25(p/2,
2q/2) can be shown to be
C15~1,ie2 iq/2,ie2 iq/2,1,i ,2e2 iq/2,2e2 iq/2,i !eikW1•rW,

C25~1,ieiq/2,ieiq/2,1,2 i ,eiq/2,eiq/2,2 i !eikW2•rW, ~A5!

respectively. SubstitutingC1 ~or C2) into Eq.~A2!, we have

l2FJ1~P1Q!sin~q/2!1J2

R1

2
sin~q!G

1 i FJ1Q cos~q/2!1J2

R1

2
cos~q!G50,
7-9
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l2FJ1~P1Q!sin~q/2!1J2

R2

2
sin~q!G

1 i FJ1Q cos~q/2!1J2

R2

2
cos~q!G50. ~A6!

We can easily see thatR15R25R from the above condi-
tions. Also, we find that each saddle point may be descri
by purely real̂ Qi j &. Therefore, we may fix the values ofl
andq in the LRO phase from the above condition:

J1~P1Q!sin~q/2!1J2

R

2
sin~q!5l,

J1Q cos~q/2!1J2

R

2
cos~q!50. ~A7!

To proveP5Q, we need one additional condition from th
saddle-point equations. The mean-field free energyEMF is a
function of l, Q, P, R, andxa(q) where these are indepen
dent parameters. The large-N solutions of this model are ob
tained by solving the saddle-point equations which set
derivatives of free energy with respect to these independ
variables to be zero. Notice thatq is also an independen
parameter. The additional condition we need comes from
saddle-point equation associated withq. It is given by

]EMF

]q
50. ~A8!

The only explicitq dependence in the free energy is in t
Bose condensate variablesxa(q). This piece of free energy is
given by15

Ex~q!5(
i . j

Ji j

2
@2Qi j ess8xi

s~q!xj
s8~q!1H.c.#, ~A9!
i-
a

.
tt.

ig

.
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whereess8 is the SU(2) antisymmetrice tensor, ands,s8
5↑,↓. The condensatesxi

s(q) must be the linear combina
tions of the eigenvectorsC1 andC2 associated with the zero
mode: this introduces two complex numbersc1 , c2, with
only the value of uc1u21uc2u2 fixed by the saddle-poin
equations.15 Working out the orientation of the condensate
every lattice site over the unit cell, the condensates can
written in the form

S xA
↑

xA
↓ D 5S c11c2

ic2* 2 ic1*
D ,

S xB
↑

xB
↓ D 5S 2c1e2 iq/22c2eiq/2

2 ic2* e2 iq/21 ic1* eiq/2D ,

S xC
↑

xC
↓ D 5S 2c1e2 iq2c2eiq

2 ic2* e2 iq2 ic1* eiqD ,

S xD
↑

xD
↓ D 5S c1e2 iq/21c2eiq/2

ic2* e2 iq/22 ic1* eiq/2D . ~A10!

By substituting Eqs.~A10! into Eq. ~A9!, we can explicitly
work out Ex(q). It is given by

Ex~q!52FJ1~P1Q!sin~q/2!1J2

R

2
sin~q!G~ uc1u21uc2u2!.

~A11!

Now the saddle-point condition~A8! becomes

]EMF

]q
5J1

P1Q

2
cos~q/2!1J2

R

2
cos~q!50. ~A12!

Combining Eqs.~A7! and ~A12!, we haveP5Q.
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