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Magnetic structure of relativistic systems with low symmetry

L. M. Sandratskii
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~Received 2 April 2001; published 28 August 2001!

The notion of symmetry constraint is used to discuss the stability of the regular features of magnetic
structures in the density-functional theory~DFT! calculations and in nature. On the basis of symmetry argu-
ments and first-principles DFT calculations it is shown that the magnetic structure of a relativistic system with
atomic disorder is always noncollinear. The symmetry analysis and illustrative first-principles DFT calculations
for a series of magnetic configurations relevant to the magnetism of rare-earth metals are reported and used to
discuss the role of the spin-orbit coupling in the formation of the magnetic structure in these systems.
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I. INTRODUCTION

The relation between the symmetry and magnetic str
ture of a system attracted much attention in the history
solid-state magnetism. Much consideration was given to
prediction of the magnetic structures that can appear in
system as result of a continuous phase transition~see, e.g.,
Refs. 1 and 2!.

The subject of the present discussion is different. It is
stability of a given magnetic configuration, independent
the kind of the phase transition into magnetic state. The
terest to this problem is strongly stimulated by recent dev
opments in the density functional theory~DFT! that made
possible first-principles calculation of complex noncolline
magnetic configurations~see, e.g., Ref. 3 for review!. These
calculations have shown that the magnetic structure cho
at the beginning of the DFT calculation is, in general, u
stable: the magnetic moments deviate in the course of it
tions from the initial directions tending to form another ma
netic state. On the other hand, in some cases the mag
moments, although allowed to move, keep their initial dire
tions. The ability to predict to which of the two types o
structures a given magnetic configuration belongs is an
portant help in the study of the magnetism of the system

In previous work4–6 we have shown that there exists a
intimate connection between the stability of the magne
structure in the DFT calculations and the symmetry of
system. A criterion was formulated that allows the predict
of the instability of a given magnetic configuration on t
basis of the symmetry analysis. Applications of the criter
to cardinally different magnetic systems have been repor
For example, it was shown that in U3P4 the collinear mag-
netic structure cannot be stable.4 This instability is a conse-
quence of symmetry properties and relativistic interactio
In UFe4Al8, the criterion was used to explain an unusu
relative orientation of the magnetic moments of the Fe an
sublattices.5 In UPtGe, the symmetry arguments helped
understand the unique helical structure of this system.6

The aim of the present paper is twofold. In the first pa
we use the notion of symmetry constraint to give a so
mathematical basis to the symmetry treatment. We extend
discussion of the stability of a magnetic structure to the s
bility of particular regular features of the magnetic config
0163-1829/2001/64~13!/134402~9!/$20.00 64 1344
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ration. In the second part, a number of applications of
symmetry approach to interesting magnetic systems is
ported. The symmetry analysis is combined with fir
principles DFT calculations.

Note, that a close connection between the symmetry
the Hamiltonian of the problem, on the one hand, and
properties of the theoretical magnetic ground state, on
other hand, is a common feature of all theoretical mod
~see, e.g., an early paper by Lyons and Kaplan7 on the prop-
erties of the Heisenberg model of classical atomic spins a
example!. Depending on approximations used in the form
lation of the theoretical model, the symmetry of the Ham
tonian can substantially vary, even in the consideration of
same physical system. In an ideal case, these approxima
reflect the hierarchy of the interactions in the system a
provide a desired accuracy of the description of the prop
ties studied.8 The following features characteristic for th
DFT are important for the present discussion. First, in
DFT there is no separate equation for the magnetic deg
of freedom. The equations of the theory are formulated
the spinor wave functions of the effective electron states. T
effective potential entering the equation depends on
charge and magnetization densities and is considered i
full-space dependence. The magnetization of the system
pears as a sum of the magnetic polarizations of the individ
electron states. Such an approach limits drastically the p
sibility of approximations in the physical model that influ
ence the symmetry of the problem. Different DFT schem
vary mainly in the form of the exchange-correlation potent
and in the method of the numerical solving of the Koh
Sham equation, both do not change the symmetry of
Kohn-Sham Hamiltonian~KSH!. There is, however, an im
portant difference in the symmetry of relativistic and nonr
ativistic KSH.3 The consequences of this difference are
important part of the present discussion.

Second characteristic feature of the DFT is also relate
the complexity of the calculational task and consists in
iterational method of solving the problem. As we will sho
the iterational procedure of the DFT is subjected to the sy
metry constraint. Analysis of the properties of the symme
constraint is useful in the studies of the stability of regu
features of magnetic structures.
©2001 The American Physical Society02-1
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II. SYMMETRY CONSTRAINT

A. General formulation

We begin with the proof of the statement that the symm
try of the initial Kohn-Sham Hamiltonian is preserved in t
iterational DFT calculations. Let us assume that the ini
KSH of the problem commutes with the operators of gro
G and show that the density matrix, obtained with the use
the solutions of the Kohn-Sham equation, is invariant w
respect to the operators ofG. The concrete form of the KSH
is not important here.~See, e.g., Refs. 9 and 3 for the d
scription of the KSH of a noncollinear relativistic magne!
For nonrelativistic problems the operations are of
$aSuaRut% type whereaS is a spin rotation,aR is a space
rotation, t is a space translation.3 In the case of relativistic
problemsaS is always equal toaR and the operators are o
the $aRuaRut%[$aRut% type.3 In both cases these transform
tions can be accompanied by the time reversal.

The density matrix of the system can be written in t
form

r~r !5 (
i ,occ

c i~r !c i
†~r !, ~2.1!

wherec are the two-component eigenspinors of the KS
the sum runs over occupied states.

According to the basic theorems of quantum mechanic
operatorĝ commutes with HamiltonianĤ andc is an eigen-
function ofĤ corresponding to eigenvalue«, thenĝc is also
an eigenfunction corresponding to the same energy. A
consequence, all eigenstates ofĤ can be separated into th
subsets such that the states of one subset correspond t
same energy and form a basis of an irreducible represe
tion of G. The contribution to the density matrix of any suc
subset is invariant with respect to the operations ofG. In-
deed,

ĝ(
n

cn
j ~r !cn

j †~r !

5(
n

ĝcn
j ~r !@ ĝcn

j ~r !#†

5(
n

(
m

Dmn
j ~ ĝ!cm

j ~r !F(
h

Dhn
j* ~ ĝ!ch

j ~r !G
5(

mh
F(

n
Dmn

j ~ ĝ!Dhn
j* ~ ĝ!Gcm

j ch
j

5(
n

cn
j ~r !cn

j †~r ! ~2.2!

HereD j is the j th irreducible representation ofG.
Since

r~r !5
1

2 S n~r !1mz~r ! 2 imx~r !1my~r !

imx~r !1my~r ! n~r !2mz~r !
D , ~2.3!
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the invariance of ther matrix immediately means the invar
ance of the particle densityn and spin magnetic densitym
with respect toĝ. Therefore the effective potential

v~r !5vs@n~r !#1Dv@n~r !,m~r !#s•

m~r !

um~r !u
~2.4!

calculated with the use of densitiesn andm is also invariant
with respect toĝ. As a result, the KSH for the next iteration
which uses the calculated effective potential~2.4!, is again,
as the initial one, invariant with respect to operations ofG.

Thus we have shown that the densities obtained in
calculations are invariant with respect to the symmetry
erations of the initial KSH and any symmetry operation
the initial KSH is preserved in the calculations. Since on
the densities invariant with respect to operations ofG appear
in the calculations, one deals with a constrained minimi
tion of the total energy considered as a functional of
densities. We will refer to this type of restrictions on th
densities as symmetry constraint.

A general approach to a constrained minimization of
energy as a functional10,11 of the charge and magnetic dens
ties requires adding to the functional the following term:

E drp~r !@ ĝn~r !2n~r !#1b~r !@ ĝm~r !2m~r !#.

This term contains Lagrange parametersp(r ) andb(r ) that
play the role of external fields stabilizing the constrain
state.

A remarkable feature of the symmetry constraint is th
the state providing the minimum of the functional under t
symmetry restriction does not need a nonzero stabilizing
ternal field. This follows from the property that the symmet
of the KSH and densities is preserved in calculations.12

The property that a symmetry-constrained state does
need an external stabilizing field is of exceptional impo
tance since only such states can be the ground state o
system. This property permits cardinal simplification of t
calculation of the ground state if the experimental data a
theoretical considerations evidence the presence of ce
symmetry in the system. Note, that the DFT allows, in pr
ciple, to begin calculations with a random magnetizati
and, by carrying out the iterational process to se
consistency, to determine the magnetic state with the m
mal energy. A highly symmetrical ground state can be est
lished in such calculations since, opposite to the loss
symmetry, an increase of symmetry in the DFT calculatio
is possible. These calculations are, however, extremely c
plex and time consuming even for the simplest magne
systems. Therefore, the symmetry constraint is an effic
tool in the DFT studies of magnetic systems.

B. Two types of symmetry constraints

We will distinguish two types of symmetry constraints. T
introduce them we consider in more detail the restrictio
imposed on the magnetization by the condition that
magnetization is invariant with respect to the operations
groupG.
2-2
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Since, on the one hand, the symmetry operationĝ trans-
forms the magnetic densitym(r ) and, on the other hand
leaves it invariant, the magnetization must fulfill the follow
ing condition13

$aSuaRut%m~r ![aSm~$aRut%21r !5m~r ! ~2.5!

After integration of the magnetization over atomic sphe
we get the restriction

mi5aSmj ~2.6!

imposed on the atomic magnetic moments wherei andj label
the atoms defined by the relation

$aRut%ai5aj . ~2.7!

Therefore the atoms that are transformed one into anothe
ĝ possess the magnetic moments of equal magnitude, an
direction of one moment is transformed into the direction
another under the action ofĝ. In the case the position of a
atom is unchanged under the action ofĝ, Eq. ~2.6! takes the
form

mi5aSmi

and imposes a restriction on the moment of this atom
consists in the invariance of the moment with respect toĝ. If
operationĝ contains time reversal Eq.~2.6! is modified as
follows:

mi52aSmj . ~2.8!

The restrictions~2.6!–~2.8! on the lengths and direction
of the atomic magnetic moments can be considered as r
lar features~regularities! of the magnetic structure that ar
the necessary consequences of a given symmetry const
Two different situations can follow from relations~2.6!–
~2.8!. In the first case, the symmetry constraint determi
the magnetic structure uniquely. This means that any de
tion of the magnetic moments from the initial directions d
turbs, at least, one of the symmetry operations. Since
symmetry operations must be preserved the structure ca
change in the course of calculations. We will refer to th
type of constraint as symmetry constraint I. An example
symmetry constraint I is, e.g., the triple-k magnetic
structure.14

In the second case~symmetry constraint II! there is an
infinite set of magnetic configurations that, first, satisfy t
conditions ~2.6!–~2.8! imposed by the invariance with re
spect toG and, second, can be continuously transformed i
one another without disturbing the symmetry of the syste
Let u be a continuous parameter that describes this se
magnetic configurations.~The number of parameters can b
larger than one, but this does not change the essence o
guments.! As all magnetic configurations are described
the same symmetry none of theu values is distinguished
The purpose of the DFT calculations in this case is to find
value ofu that corresponds to the state with the lowest
ergy. Since allu values are equivalent, this minimum cann
be predicted without calculations~Fig. 1!.
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To begin the DFT calculation a valueus of parameteru is
selected. Since it is improbable thatus accidentally equals
umin providing the minimum of the total energy the initia
state in the case of symmetry constraint II is unstable. In
iterational process, the magnetic structure deviates from
state described byus tending to assume the state with th
lowest energy. Note, that a self-consistent DFT calculat
for the state with arbitraryu is possible. Such calculation
need, however, an additional~nonsymmetry! constraint on
the system.10 This additional constraint requires applicatio
of an external stabilizing field. Constrained calculations ar
useful tool in studies of low-lying excitations.

The situation described by symmetry constraint II is
lated to many interesting physical phenomena. In a typ
case the neglect of a part of interactions leads to the gro
state of the system that belongs to constraint I and, there
is uniquely determined by symmetry. With account for t
full Hamiltonian this state corresponds, however, to symm
try constraint II. Therefore in the full-Hamiltonian study
becomes unstable and a variation of the state must
place. Examples of such systems are, e.g., Fe2O3 and Mn3Sn
where the spin-orbit coupling~SOC! leads to the phenom
enon of weak ferromagnetism.3

Summarizing this section we can formulate a number
conclusions. First, a given magnetic structure is stable in
DFT calculations only in the case it corresponds to symme
constraint I. Second, if the structure corresponds to sym
try constraint II its variation is subjected to restrictions im
posed by the relations~2.6!–~2.8!. Thus, although the struc
ture itself is unstable, the regularities in the magnetic st
that follow from Eqs.~2.6!–~2.8! are preserved features o
the magnetic structure. On the other hand, an assumed r
larity in the initial magnetic structure that is not supported
a symmetry operation is not a stable feature of the magn
state of the system.

It is important to distinguish between the stability in th
DFT calculations and the stability in the nature. Magne
configurations stable in the calculations may not necessa
be the physical ground state, since random fluctuations c
acteristic of real systems are absent in the DFT calculatio
Therefore the symmetry constraint is not efficient in the r
systems. On the other hand, the instability of a magn

FIG. 1. Difference between symmetry constraints I and II~sche-
matic picture!. Continuous parameteru describes different magneti
configurations.~a! The state withu5us corresponds to the sym
metry constraint I. This state possesses additional regular fea
compared with the states withuÞus ~b! Symmetry constraint II.
The states with differentu possess the same regular features. Pr
ability that us accidentally coincides withumin is negligible.
2-3
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TABLE I. Noncollinear magnetic structure of distorted bcc iron: self-consistent relativistic calculations. Atomic positions and sh
given in the units of the bcc lattice parameter, the deviation angles in degrees. Calculation 1 is performed for the atomic shifts giv
second column and unscaled SOC. Calculation 2 is performed for the SOC twice the normal value. In calculation 3 all atomic shifts
those given in the second column.

Deviation of atomic moments
Calculation 1 Calculation 2 Calculation 3

Spin Orbital Spin Spin
bcc position Shift u,f u,f u,f u,f

~0,0,0! 0.81,188.8 1.63,215.6 1.15,165.0 0.82,184.9

( 1
2 , 1

2 , 1
2 ) (0.01,0.02,0.03) 0.79,193.6 0.96,206.8 1.09,169.6 0.88,190.

~0,0,1! (0,0.01,0.01) 0.69,191.1 0.28,78.7 0.98,160.2 0.65,194.1

( 1
2 , 1

2 , 3
2 ) (20.02,0,20.01) 0.73,188.8 1.26,309.2 1.06,160.1 0.69,187.5

~0,1,0! (0,20.03,0) 0.83,193.2 1.37,180.4 1.14,171.2 0.95,199.0

( 1
2 , 3

2 , 1
2 ) 0.81,194.5 1.48,233.8 1.08,173.0 0.90,205.1

~0,1,1! 0.72,195.4 0.93,78.4 0.96,168.3 0.82,209.0

( 1
2 , 3

2 , 3
2 ) 0.77,189.6 1.04,325.8 1.09,163.4 0.81,194.1
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state in the DFT calculations can be directly related to
instability in nature, because this instability is a conseque
of the interactions in the system. The latter property is
primary importance for the discussion of concrete phys
systems in the following section.

III. APPLICATIONS

A. Simple standard cases

To illustrate the application of the concept of symme
constraint we begin with the consideration of a number
simple standard cases.

With rare exceptions, the DFT calculations reported in
literature are performed under a symmetry constraint. H
torically, the first calculations have been performed for
nonmagnetic state of the systems. The magnetic density
assumed to be zero at each point in the space. The stud
magnetically ordered systems began with the collinear fe
magnetism of elementary metals, like Fe and Ni, and of
two-sublattice collinear antiferromagnetism of Cr.15

It can be easily shown that the regularities characteri
to all three simplest magnetic states correspond to the s
metry constraint and, indeed, must be stable in the calc
tions. The stability of the zero value of the magnetic m
ments in the nonmagnetic state is a consequence of
invariance of the KSH with respect to the time reversal. T
stability of the equal values and parallel directions of t
atomic moments in Fe and Ni are the consequences of
translational symmetry. The stability of the equal values a
antiparallel directions of the magnetic moments of two s
lattices in Cr are the consequence of the symmetry opera
that combines a lattice translation connecting two sublatt
and the time reversal. Any disturbance of the characteri
features of these magnetic states leads to the loss of th
variance of the KSH with respect to the corresponding sy
metry operation.
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B. Atomically disordered relativistic systems

The magnetic structure of atomically disordered syste
is a subject of much interest. The study of such syste
within the framework of the DFT is connected with seve
difficulties that are the consequences of the lack of period
ity. Usually, the collinear magnetic configuration is cons
ered to be one of the possible magnetic ground states o
system. However, according to the symmetry principles f
mulated in Sec. II, the magnetic structure of relativistic s
tems with atomic disorder is always noncollinear. Indeed
the presence of atomic disorder there is no spatial trans
mation that leaves the atomic positions invariant. Since
spin-orbit coupling connects the atomic and magnetic s
systems, a separate transformation of these subsystems
allowed. Correspondingly, the system possesses no sym
try operation that can be responsible for the collinearity
the atomic moments. This leads to the noncollinearity of
magnetic structure.

To verify this conclusion the following DFT calculation
have been performed.~See Refs. 9 and 3 for details of th
calculational scheme.! First, undistorted bcc Fe was consid
ered. In this case the collinear ferromagnetic structure
stable for both relativistic and nonrelativistic calculatio
~see Sec. III A!. At the next stage, a supercell containin
eight atoms was constructed and the atoms were shifted f
their positions in the bcc lattice by different vectors collect
in Table I. These shifts destroy the symmetry operations
the bcc structure that transform the atoms of the super
into one another. As a result, there is no symmetry opera
that can be responsible for the stability of the collinear
rections of the magnetic moments of any two atoms in
super cell. Therefore, according to the symmetry analysis
Sec. II each of the eight atomic moments must deviate fr
the initial direction. These deviations must be different f
each of the eight atoms.

The calculations confirmed these predictions. At the
ginning all magnetic moments were directed parallel to thz
2-4
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MAGNETIC STRUCTURE OF RELATIVISTIC SYSTEMS . . . PHYSICAL REVIEW B 64 134402
axis ~Fig. 2!. Already the first iteration resulted in differen
deviations of the moments of all eight atoms from the init
direction. The self-consistent deviation angles are collec
in Table I. Important that not only the spin moments of d
ferent atoms deviate differently but also the orbital and s
moments of the same atom assume different directions.
property is another consequence of the loss of the symm
in the system. The collinearity of the spin and orbital m
ments of the same atom is a regularity that can be stable
if it is supported by a symmetry operation. In the case
symmetry constraint II, the directions of the spin and orb
atomic moments are always different.

Analysis of the calculational process provides an insi
into the mechanism of the appearance of the noncollinea
Crucial quantities are the two-by-two atomic charge ma
ces, that is the density matrix integrated over atomic sphe
The value of the density matrix depends on the choice of
spin-quantization axis.16 A convenient choice of the spin
quantization axis of an atom is the direction of the magne
moment of this atom. The atomic moment will not devia
from the initial direction only in the case that the of
diagonal elements of the integrated density matrix is z
because only in this case the torque on the atomic mom
vanishes. Since the off-diagonal element of the matrix i
continuously varying quantity, a symmetry operation m
exist that is responsible for the vanishing torque. This is
symmetry operation that is responsible for the stability of
magnetic configuration~see Sec. II!.

To study the dependence of the deviations of the magn
moments on the strength of the spin-orbit coupling and
magnitude of the atomic displacements, two additional c
culations have been carried out, one with the SOC and
other with the displacements twice the values used in the
calculation~see Table I!. We see that there is no simple line
relation between the self-consistent deviation angles, on
one hand, and the SOC and atomic shifts, on the other h

FIG. 2. Atomic disorder leads to the noncollinearity of the ma
netic structure. Broken arrows show the initial collinear structur
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The absence of a simple linear dependence reflects the c
plexity of the processes in the system under the influenc
the atomic disorder and SOC.

IV. EXCHANGE HELICES IN RELATIVISTIC SYSTEMS

A rich variety of complex magnetic configurations wa
experimentally found in the heavy rare-earth met
~REM!.17,18 An important contribution to the understandin
the magnetic properties of heavy REM is made by Jen
and Mackintosh~see the book18 and references therein an
later publications, e.g., Ref. 19! who used a model spin
Hamiltonian to describe peculiar magnetism in these s
tems.~See also Ref. 20 for earlier phenomenological the
of the magnetic ordering in REM.!

In contrast to the model-Hamiltonian approach, the co
tribution of the DFT to the study of the complex magnetis
in heavy REM is very modest. Most of the DFT calculatio
for REM were performed for the collinear ferromagne
structure of Gd. To the best of the author’s knowledge, o
two direct first-principles DFT calculations of complex ma
netic configurations in heavy REM were reported. Nordst¨m
and Mavromaras21 used the scalar-relativistic approximatio
to study theq dependence of the total energy of planar spi
structures. Hereq is the propagation vector of the spiral. Th
E(q) curves were compared with the Fourier components
the interatomic exchange parameterJ(q) determined experi-
mentally. Perlovet al.22 employed scalar-relativistic approx
mation to calculateJ(q) by examining the conical spiral con
figurations. No studies of the influence of the SOC on
magnetic configurations of heavy REM have been perform
within the framework of the DFT. The success of the DFT
the investigation of the magnetic properties of solids a
recent developments in the computational techniques and
cilities make the complex magnetism of the heavy REM o
of the important topics for the nearest-future studies. Co
bination of the model-Hamiltonian and first-principles DF
approaches should provide a new level of the theoretical
scription of REM magnetism.

It is not a purpose of this paper to report a detailed D
study of the magnetism of concrete REM. Rather we aim
perform the symmetry analysis for a number of magne
configurations relevant to the REM magnetism, to disc
instabilities connected with the influence of the SOC. A
conclusions of the symmetry analysis reported in this sec
have been verified by the results of first-principles DFT c
culations. A contact is made between calculational res
and experimental properties.

In the calculations, the 4f states were treated a
pseudocore23 states and did not hybridize with the valenc
electron states. A scalar-relativistic approximation was u
in the description of the core states. The SOC was consid
for the valence electrons only. The neglect of the SOC in
4 f states is a severe approximation in the physical mo
describing the effects of the magnetic anisotropy in RE
For example, the SOC in the 4f states plays an importan
role in the description of the magnetic properties of thef
metals in terms of the model crystal-field Hamiltonian.18 Ne-
glecting the SOC in the 4f states we can expect that th

-

2-5



n
o
pe
r o

e
er
lix
u

ty
th
e

c.
rt
tr
is

al

no
no
r

he
la-
e
a

-
d

th
m

nt
ym-
in-
the
re-
me-
t
o-
e

c-
e

ar
nts

ents
sult

c-
ia-
n
of
to
s
ect
ith

irs

e
-

in
ry
are
st
the
o-

9,11
ents
en
o-

fect
uc-

sis
f the
the
ruc-
ic

tic

o-
de-
o-
the
ne

ted

r-
to

ed
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strength of the magnetic anisotropy will be substantially u
derestimated. To simulate a stronger magnetic anisotr
within the given calculational scheme in some cases we
formed calculations with the SOC enhanced by the facto
10 or 20.

Several REM were reported to possess a helical magn
structure. Thus, a planar helix is observed in certain temp
ture intervals in Tb, Dy, Ho, and Er. A ferromagnetic he
~cone structure! is observed in Ho and Er. The incommens
rate helical magnetic structures

en
q5@sinu cos~qan1fs!sinu sin~qan1fs!cosu#

~4.1!

although not periodic with the underlying lattice periodici
are very regular. All magnetic moments have equal leng
and their directions are governed by a simple rule: the dir
tion of the moment of an atom at the positionan can be
obtained from the direction of the moment at the positionam
by the rotation by angle (an2am)q about a fixed axis@the z
axis in the Eq.~4.1!#. According to the consideration of Se
II, the regularity inherent for helices can be stable prope
of the system only in the case that there exist symme
operations responsible for this regularity. In the nonrelativ
tic case such operation, indeed, exist. These are so-c
generalized translations3 that combine lattice translationsRn
with spin rotations byqRn about a fixed axis.

If the SOC is taken into account such operations do
commute with the Hamiltonian of the system and can
support the regularity characteristic for the helix. Therefo
the presence of the SOC must distort the helix.24 Indeed, a
detailed experimental analysis detects the presence
distortions.18

We begin the study of the distortions of helices in t
relativistic DFT calculations with the consideration of a p
nar helix withq5 1

6 @Fig. 3~a!#. This type of commensurat
periodicity was observed in Ho. The magnetic moments
parallel to theab plane of the hcp structure. Theq vector
here and in all further examples is parallel to thec axis and
given in units of 2p/c. The operations describing the sym
metry of the KSH in the presence of the SOC are collecte
Table II.

The analysis of the transpositions of the atoms under
action of the symmetry operations shows that the ato
can be separated in two groups:$1,3,5,7,9,11% and

FIG. 3. The 12-layer magnetic configurations in hcp Ho.~a!
Planar helical structure.~b! Bunched magnetic structure. Solid a
rows: initial structure with pairs of magnetic moments parallel
the crystallographicb axes. Broken arrows: the structure obtain
under the influence of the SOC~schematic picture!.
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$2,4,6,8,10,12%. The atoms of the same group are equivale
and the directions of their moments are connected by s
metry transformations. The atoms of different groups are
equivalent and there is no symmetry relation between
directions and lengths of their moments. Analysis of the
strictions on the magnetic moments imposed by the sym
try operations~Table II! shows that all atoms of the firs
group preserve the initial directions of the magnetic m
ments @Fig. 3~a!#. For the atoms of the second group th
situation is different. Although the directions of the proje
tions of the moments on theab plane must be preserved, th
moments can deviate from theab plane without disturbing
any of the symmetry operations. Therefore the initial plan
structure is unstable. The out-of-plane deviations of mome
2, 6, 10 are equal and opposite to the deviations of mom
4, 8, 12. No ferromagnetic component can appear as a re
of these deviations.

An important feature of the experimental magnetic stru
tures in Ho is the effect of bunching. It consists in the dev
tion of the atomic moments from the uniform distributio
@Fig. 3~a!# and grouping of the moments of the atoms
neighboringab planes into pairs with the directions close
one of the crystallographicb axes. The symmetry analysi
and the results of the DFT calculations show that the eff
of bunching cannot be obtained if the calculation begin w
the regular helical structure shown in Fig. 3~a!.

Next we consider a strongly bunched structure with pa
of neighboring magnetic moments parallel to theb axes@Fig.
3~b!#. Although the period of this structure is equal to th
period of the helix@Fig. 3~a!#, the symmetry of the two struc
tures is different~Table II!. This confirms that the bunching
cannot be obtained in the calculations that use the helix
Fig. 3~a! as an initial magnetic configuration. Symmet
analysis shows that in the bunched structure all atoms
equivalent. The following distortions of this structure mu
take place under the influence of the SOC. We begin with
discussion of the in-plane components of the atomic m
ments. There are two subgroups of the atoms: 1,3,5,7,
and 2,4,6,8,10,12. Within each of the subgroups the mom
preserve their initial relative directions: the angles betwe
the moments are proportional to 60°. Both groups of m
ments rotate as a whole about thec axis. The values of the
rotation angle are opposite for the groups. Thus the per
bunching of the initial structure must be replaced by a str
ture with the moments deviated from theb axes@Fig. 3~b!#.
The value of this deviation cannot be predicted on the ba
of the symmetry arguments and depends on the details o
calculational model. Our calculations gave the value of
deviation angle close to 15° and the resulting magnetic st
ture close to a uniform helix with angles between atom
moments proportional to 30°.~The experimental deviation is
about 6°.18! This result shows that the in-plane magne
anisotropy is underestimated in the calculation.

In addition to the in-plane deviations of the atomic m
ments, the symmetry analysis predicts the out-of-plane
viations of the moments. The out-of-plane deviations of m
ments 1, 2, 5, 6, 9, 10 are equal and opposite to
deviations of moments 3, 4, 7, 8, 11, 12. A small out-of-pla
deviations of the atomic moments were detec
2-6
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TABLE II. Generators of the symmetry groups for a number of magnetic states in hcp metals. Number of atoms in the magnetic
nat characterizes the periodicity of the magnetic structure along thec axis.C2a , C2b , andC2c are 180° rotations about thea, b, andc axis,
respectively;C3c is a 120° rotations about thec axis;sa andsc are the reflections in the plane orthogonal to the axisa andc, respectively;
I inversion;R time reversal. Vectors in the column ‘‘Operation’’ give the nonprimitive translations entering the symmetry operations
two components of the translation are given ina units, the third component inc units. Atoms not presented in the column ‘‘Transpositio
are invariant with respect to the given symmetry operation.

Magnetic nat Operation Transposition Restriction on
structure magnetic momentsa

Helix, ab plane 12 C2b 2↔12;3↔11;4↔10; TypeC2b

@Fig. 3~a!# 5↔9;6↔8;
C3c(0,0,2) 1→5→9→1;2→6→10→2; TypeC3c

3→7→11→3;4→8→12→4;
R(0,0,3) 1↔7;2↔8;3↔9; TypeR

4↔10;5↔11;6↔12;
Bunched 12

C2aS0,
A3

3
,
7

2D 1↔8;2↔7;3↔6; TypeC2a

@Fig. 3~b!# 4↔5;9↔12;10↔11;
C3c(0,0,2) 1→5→9→1;2→6→10→2; TypeC3c

3→7→11→3;4→8→12→4;
R(0,0,3) 1↔7;2↔8;3↔9; TypeR

4↔10;5↔11;6↔12;
Helix, ab plane 8 C2b 2↔8;3↔7;4↔6; TypeC2b

@Fig. 4~a!# R(0,0,2) 1↔5;2↔6;3↔7;4↔8; TypeR
Cycloid, bc-plane 8 C2b 2↔8;3↔7;4↔6; TypeC2b

@Fig. 4~b!# sa(0,0,2) 1↔5;2↔6;3↔7;4↔8; TypeC2a

R(0,0,2) 1↔5;2↔6;3↔7;4↔8; TypeR
Cycloid, ac plane 8 sc(0,0,2) 1↔5;2↔4;6↔8; TypeC2c

R(0,0,2) 1↔5;2↔6;3↔7;4↔8; TypeR
Helix, ab plane 14

C2cS0,
A3

3
, 7

2 D 1↔8;2↔9;3↔10;4↔11; TypeC2c

@Fig. 5~a!# 5↔12;6↔13;7↔14;
RC2b 2↔14;3↔13;4↔12; Typesb

5↔11;6↔10;7↔9;

aType E: mj5mi ; type C2a: S ma

mb

mc

D
j

5S ma

2mb

2mc

D
i

; type C2b : S ma

mb

mc

D
j

5S 2ma

mb

2mc

D
i

; type C2c : S ma

mb

mc

D
j

5S 2ma

2mb

mc

D
i

;

type C3c: S ma

mb

mc

D
j

5S 2
1
2 ma2

)
2 mb

)
2 ma2

1
2 mb

mc

D
i

; type R: mj52mi ; type sb: S ma

mb

mc

D
j

5S ma

2mb

mc

D
i

.

Here i and j are according to the column ‘‘Transposition.’’ Atomi is transformed to atomj under the action of the symmetry operation. F
atoms invariant under the action of the symmetry operation,j 5 i .
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experimentally.25 Note that a model spin Hamiltonian tha
contains only the terms of the second order with respec
atomic spins: the Heisenberg exchange interaction and
single-site magnetic anisotropy, fails to describe these de
tions. The forth-order ‘‘trigonal’’ interactions must b
added.19 In the magnetic and relativistic DFT calculation
these and higher order interactions are automatically ta
into account. Test calculations for Ho gave small out-
plane deviations that do not exceed a few tenths of a deg
13440
to
he
a-

n
-
e,

also in the case the SOC is enhanced by a factor of 10. T
deviation is smaller than the experimental value of ab
2°.25

In the case of Er the structures withq5 1
4 are of interest.18

First, we consider the influence of the SOC on a planar h
with q5 1

4 @Fig. 4~a!# The generators of the symmetry grou
are given in Table II. There are three groups of equival
atoms:$1,5%, $3,7%, $2,4,6,8%. The moments of atoms 1 an
5 must keep their initial directions parallel to theb axis.
2-7
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Atomic moments 3 and 7 deviate within theac plane, nob
component can appear. Moments 2,4,6,8 move both wi
the ab plane and out of theab plane. No ferromagnetic
component can appear.

Numerical calculations started with this helical structu
gave an interesting result that differs drastically with the
sults obtained in the calculations for Ho. For the SOC sca
by a factor of 20 the moments deviate strongly from theab
plane and result in the magnetic configuration shown in F
4~b!. Thus, the initial planar magnetic configuration with m
ments parallel to the horizontalab plane is replaced by a
planar magnetic structure parallel to the verticalbc plane.
This transformation of the magnetic configuration is not f
bidden by symmetry since all the symmetry elements of
initial structure are preserved. The final magnetic state
more symmetrical than the initial one since the symme
group contains one additional generator~Table II!. This ex-
ample illustrates the property that the symmetry of the s
of the system can increase in the calculations.

The difference in the behavior of the helical structures
Ho and Er reflects difference in the character of the mag
tocrystalline anisotropy that is in agreement with the exp
mental data.18 The planar vertical structure obtained in th
calculations is in good agreement with a vertical planar
cloidal structure found experimentally in Er. Two structur
are, however, not identical: The calculations resulted in
structure parallel to thebc plane. The experimental structur
is parallel to theac plane. A wobbling of the vertical struc
ture found experimentally is also not reproduced in this c
culation. The reason for this disagreement is, again, c
nected with the symmetry of the initial state. Indeed,
structure shown in Fig. 4~a! cannot transform within the DFT
calculations into the planar structure parallel to theac plane
since this transformation leads to a loss of symmetry op
tions.

To understand the nature of the wobbling of the expe
mental vertical structure we performed the symmetry ana
sis for a magnetic configuration shown in Fig. 4~b! but, in
this case, parallel to theac plane. The symmetry of this
structure preserves~i! the directions of the atomic moments
and 7,~ii ! the zeroc component of the moments 1 and 5, a
~iii ! the compensated character of the structure as a wh
Moments 2–4 and 6–8 deviate from theac plane leading to
the wobbling observed experimentally. Similar to the out-
plane deviations of the atomic moments in theq5 1

6 structure

FIG. 4. The 8-layer magnetic configurations in hcp Er.~a! The
initial planar helical structure. All moments are parallel to theab
plane. ~b! The calculated planar magnetic structure. All mome
are parallel to thebc plane.
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of Ho, the forth-order trigonal terms must be added to
model Hamiltonian to describe the wobbling.19 No further
terms need to be included into the magnetic and relativi
KSH to describe this effect.

To study the dependence of the properties of the magn
structure on the propagation vector we considered a pla
helical structure with atomic moments parallel to theab
plane andq5 1

7 @Fig. 5~a!#. The symmetry operations ar
collected in Table II. There are four groups of equivale
atoms: $1,8%, $2,7,9,14%, $3,6,10,13%, $4,5,11,12%. The b
component of moments 1 and 8 must be zero. For any of
four groups, the in-plane components of the moments co
pensate. Remarkable, however, that there is no symm
restriction demanding the compensation of thec components
of the atomic moments. Therefore the initial planar magne
structure@Fig. 5~a!# breaks, in the presence of the SOC, t
equivalence of the positive and negative directions of thc
axis that inevitably leads to the formation of a ferromagne
component along thec axis. This example shows that th
distortion of the in-plane helix by the SOC is, under certa
conditions, connected with the appearance of a ferrom
netic component along thec axis. Figures 5~b! and 5~c! show
schematically the distorted magnetic structure.

V. CONCLUSIONS

We used the notion of symmetry constraint to discuss
stability of the regular features of a magnetic structure in
DFT calculations and in nature. On the basis of symme
arguments and first-principles DFT calculations we show t
the magnetic structure of a relativistic system with atom
disorder is always noncollinear.

We report the symmetry analysis and illustrative fir
principles DFT calculations for a series of magnetic config
rations relevant to the magnetism of REM. Correlations
tween the numerical results and experimental data
obtained. Restrictions of the present calculational scheme
not allow direct quantitative comparison of the calculation
results for REM with experiment. Since the magnetic anis
ropy is very sensitive to the details of the theoretical mod
future systematic DFT studies of the REM magnetism sho
consider such effects as polar magnetic interaction of ato
moments and lattice distortion caused by magnetoela
interactions.20 The account for the SOC in the 4f states is of

s

FIG. 5. The 14-layer magnetic configurations in hcp crys
structure.~a! The initial planar helical structure. All moments ar
parallel to theab plane.~b! The deviation of the magnetic momen
from theab plane under the influence of the SOC~schematic pic-
ture!. ~c! The in-plane configuration of the magnetic moments d
torted by the SOC~schematic picture!.
2-8
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great importance. Another important direction for the im
provement of the calculational scheme is a better accoun
the correlation effects in the 4f states. Here self-interactio
corrections,26 orbital polarization corrections27 or local den-
sity approximation (LDA)1U ~Ref. 28! scheme should be
considered as possible approaches. Combination of these
provements should make possible a first-principles quan
tive description of the delicate balance of different intera
tions traditionally described in terms of a model crystal-fie
Hamiltonian.18 Detailed DFT study of the magnetism o
heavy REM with account for the SOC and noncollinearity
the magnetic structure is an exciting topic for the neare
e
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future researches. The symmetry analysis reported here
serves its validity also for more elaborated physical mod
We hope that the present symmetry analysis and result
numerical calculations will stimulate further studies of t
complex magnetism in REM systems.
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