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Self-consistent effective-medium approximation for strongly nonlinear media
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A self-consistent effective-medium theory is proposed for random dielectric composites of arbitrary nonlin-
ear constitutive law. It is based on a Gaussian approximation for the probability distributions of the electric
field in each component, and on second-order Taylor expansions with an integral remainder of the local
energies. The effective energy is exact to second order in contrast. With power-law media with constitutive
relation D5xEg21E, the critical exponents ares5t5(g11)/2. The theory reduces to Bruggeman’s in the
linear caseg51, and its percolation threshold is independent of the nonlinearity.
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I. INTRODUCTION

Estimating the effective properties of nonlinear dielect
composites is a problem which has attracted wide atten
in the past decades.1–22 However, to deal with highly disor-
dered, contrasted, and strongly nonlinear composites, a
consistent theory extending the Bruggeman-Landa
effective-medium approach23,24 to the nonlinear domain is
still lacking. The same situation prevails in the mechanics
continuous media.25 Indeed, none of the existing theories h
passed all of the necessary tests:~i! exactness to second ord
in a weak-contrast perturbative expansion,~ii ! existence of a
nonlinearity-independent percolation threshold,14 and ~iii !
the fulfillment of various bounds.

Recently theories have been constructed which obey
terion ~i!.8,17,21,22,26As to criterion ~ii !, only two theories
leave the threshold unchanged, and reduce to the Brugge
theory in the linear case: the first one is the self-consis
version9 of the variational theory of Ponte Castan˜eda,
deBotton, and Li10 ~PC!, rediscovered under a different form
by Wan and co-workers14,15 ~WLHY !; the second one is th
‘‘second-order’’ approach of Ponte Castan˜eda and
Kailasam17~PCK!.

The equivalence between the PC and WLHY appro
was demonstrated by Yu, Hui, and Lee15 on a particular ex-
ample, and has since been established in full generali20

this theory in fact constitutes an exact lower bound in
class of self-consistent theories reducing to Bruggeman’
the linear case.9,10,20 We shall refer to it as the PC-WLHY
theory hereafter. It is interesting to note that the PC a
WLHY theories first appeared in the context of nonline
elasticity, under the name ‘‘variational’’27 and ‘‘secant’’
approaches,28 their equivalence having been proven there
well.28

Both the PC-WLHY and PCK procedures aim at findi
the ‘‘best’’ linear approximation to the nonlinear theory, b
are somewhat orthogonal to each other: Whereas PCK u
nonlinear self-consistent closure condition on the averag
the electric field in each component of the medium, P
WLHY utilize a condition on the second moment of th
field,4,29 both these quantities being derived from the und
lying linear effective-medium scheme. None of these
proaches is completely satisfactory. The PC-WLHY res
0163-1829/2001/64~13!/134211~11!/$20.00 64 1342
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possesses an incorrect weak-contrast expansion. On the
hand, the PCK theory is exact to second order in the contr
Unfortunately, it also incorrectly gives a nonlinear suscep
bility lower than that of PC-WLHY, in the vicinity of the
percolation threshold, as a consequence of possessing
equate critical exponents.30

The purpose of this study is to partially reconcile bo
approaches. The theory presented below relies on simu
neous closure conditions on the averageand the second mo-
ment of the field, thanks to a Gaussian approximation for
probability distribution of the electric field in each phase21

In this way, it optimizes the use of the linear underlyin
theory. In order to achieve this goal, a linearization based
the Taylor formula with integral remainder is adopted. Th
ensures the correct second-order expansion in the con
~the PCK approach was based on a Taylor expansion wi
Lagrange remainder!, and the use of the second moment
the closure condition guarantees reasonable exponents,
of the PC-WLHY theory. This paper extends to strongly no
linear media a previous work dealing with weakly nonline
composites,21 and focuses on the static properties only.

Sections II and III are devoted to setting up our notatio
and to presenting an integral formalism for the nonline
theory which mimics that of a linear theory with spontaneo
polarization. The theory of linear homogeneization in anis
tropic media with spontaneous polarization, on which t
study heavily relies, is then explained~Sec. IV!. The material
concerning the fluctuations in this theory is relegated to
Appendix for the sake of clarity. The theories of PCK a
PC-WLHY are next reviewed in this framework~Sec. V!. We
adopt the WLHY presentation of the PC-WLHY approac
simpler to explain. Their combination is carried out in Se
VI. The outcome of this new theory is discussed in Sec. V
before we conclude in Sec. VIII.

II. GENERAL FRAMEWORK

We consider a nonlineard-dimensional inhomogeneou
dielectric medium of volumeV characterized by a local elec
trostatic energy densitywx(E) depending on the electric field
E at x. From this function derives the local constitutive la
for the electric displacementD ~Refs. 31,9!

D5]Ewx~E!. ~1!
©2001 The American Physical Society11-1
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YVES-PATRICK PELLEGRINI PHYSICAL REVIEW B64 134211
where]E stands for]/]E. Whenwx is a quadratic polyno-
mial, the constitutive relation is linear. Herewx is not neces-
sarily quadratic. In a composite medium, the functionwx is
the same in regionsVa ~called ‘‘phases’’! of V, (a
51, . . . ,m), and takes the formwx5wa if xPVa . The
phase volume fractionspa5Va /V are such that(apa51.

Let f (x)5*Vddxf (x)/V stand for volume averages. Th
homogeneization problem consists in computing the ma
scopic energy density of the system defined by

W~E0!5wx@E~x!#, ~2!

where the fieldE is the solution of the electrostatic equatio
“•D50 andE52“f completed by Eq.~1! and a bound-
ary condition for the electrostatic potentialf52E0•x for
xP]V. SettingD05D̄, this implies Ē5E0 and E0

•D05Ē
•D. The electric fieldE0 is a macroscopic state variable, an
one shows that the effective constitutive law is

D05]E0W~E0!. ~3!

For simplicity we deal hereafter withsite-disorderedsys-
tems wherepa also is the probability thatwx5wa at the
point x ~‘‘site’’ !, and where the material properties are u
correlated from point to point. To each point is associa
a surrounding ‘‘infinitesimal’’ matter element of volumev
in which the potential is constant. In the thermodynam
limit V→` the energy is self-averaging so that volum
averages and statistical averages over configurations den
by ^•••& coincide.

III. INTEGRAL FORMALISM

We develop here an integral formulation for the nonline
electrostatic problem along the lines laid down by Strou32

in the linear case. This will illustrate the fact that the nonl
ear problem has close formal bearings to the anisotropic
ear problem with spontaneous polarization.17 In this section,
useful quantities are introduced for further use.

We start from the remark that the nonlinear electrosta
problem is a locally anisotropic problem where the anis
ropy depends on the electric field. WithE52“f and Eq.
~1! indeed, we have in any homogeneous region with ene
densityw(E),

“•D52«:““f50, ~4!

where thetangent permittivity tensoris

«~E!5]E]Ew~E!. ~5!

For isotropic media wherew(E) only depends on the
squared modulusE2, « is a uniaxial tensor with directionÊ
5E/E, of the type

« i j 5«'~d i j 2Êi Êj !1« iÊi Êj . ~6!

It proves convenient to emphasize this induced anisotropy
formally writing the electric displacement in terms of«, as

D5«•E1P. ~7!
13421
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This equation features an effective local polarization vec
defined by

P~E!5]Ewx~E!2]E]Ewx~E!•E. ~8!

Introducing an arbitrary anisotropic homogeneous medi
with constant anisotropic permittivity tensor«032 and setting
D«5«2«0, we rewrite the equation for the potential as

]

]xi
« i j

0 ]

]xj
f52

]

]xi
~D« i j Ei1Pi !. ~9!

Using the dipolar Green tensor for the electric field in t
homogeneous medium

Gi j ~r !52 lim
k→0

E
k.k

ddk

~2p!d

kikj

kl« lm
0 km

eik•r ~10!

and taking care of the ‘‘boundary conditon’’

Ē5E0, ~11!

Eq. ~9! is recast into

E~x!5E01E ddyG~x2y!@D« i j ~y!Ei~y!1Pi~y!#.

~12!

The limiting prescription in Eq. ~10! ensures that
*ddxG(x)50 so that Eq.~11! is satisfied. As is well known
G(r ) possesses an infinite number of representations of
type33

Gi j ~r !5gi j d~r !1Hi j ~r !, ~13!

where the nonlocal partH is nonzero only outside some in
finitesimal exclusion volume of arbitrary shape~generalized
Lorentz cavity! and where the local partgd, represents the
action of polarization charges on the surface of the cavity
its center. The value ofg is shape dependent. For a spheric
cavity we have

gi j 52E dV k̂

Sd

k̂i k̂ j

k̂l« lm
0 k̂m

, ~14!

where Sd52pd/2/G(d/2) is the area of the uni
d-dimensional sphere. The integration is carried out over
the directions of the unit vectork̂. For site disorder, the cav
ity is identified to the microscopic matter element with vo
umev and the theory is tantamount to a theory of interact
point dipoles. Dealing with randomly oriented nonspheric
matter elements34 would introduce unnecessary technic
complications~among which a position-dependentg), so that
only spheres are considered hereafter. Expression~14! is
equivalent to a more complicated one usually used in
effective-medium literature,32,34,35 thanks to a suitable
change of variables.

Extracting g out of the integral in Eq.~12! gives a
multiple-scattering expression for thelocal field impinging
on x. Setting (1 represents the identity matrix!

m5@12g•D«#21, ~15!
1-2
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SELF-CONSISTENT EFFECTIVE-MEDIUM . . . PHYSICAL REVIEW B64 134211
the local field is defined by

El5m21
•E2g•P ~16!

and obeys the integral equation

El5E01« ddyH~D«•m•El1P•m!, ~17!

where the notationWdy stands for the principal value
limh→0* uy2xu.hddy. In arriving at~17!, use was made of the
identity

11g•D«•m511m•g•D«5m. ~18!

Note for further use thatm•g andg are symmetric tensors, s
that ~superscriptt denoting the transpose!

m•g5g• tm. ~19!

IV. LINEAR HOMOGENEIZATION WITH SPONTANEOUS
POLARIZATION

A. Effective-medium conditions

Before carrying out the homogeneization of the nonlin
problem, we first have to examine the anisotropiclinear
theory with spontaneous polarization, a particular instanc
which the integral formalism of Sec. III can be applied. W
thus consider here quadratic local potentials of the form

wx~E!5~1/2!«a:EE1Pa
•E1ca, xPVa , ~20!

where «, P, and the scalarc are constantsin each phase
Equations~5! and ~8! now become tautologies. The loc
electric displacement is

D5]Ewa~E!5«a
•E1Pa, xPVa . ~21!

The problem being linear, the effective energyW(E0)
5^wx(E)& is sought for under the form

W~E0!5~1/2!«0:E0E01P0
•E01c0, ~22!

whereby Eq.~3! implies that

D05«0
•E01P0. ~23!

The effective-medium conditions can be derived from
assumption of statistical independence between the l
field El(x) and the material properties at the same pointx.
Hence, for instance,̂m(x)El(x)&5^m&•^El&. It is clear that
this ~over!simplifying assumption, which may actually b
physically reasonable for a particular choice of«0 and P0,
and particular microstructures~such as Milton’s hierarchica
composite for which Bruggeman’s theory is exact,36 and
where each element is surrounded by a smaller-scale
averaging environment which acts as a homogeneous on!, is
definitely inexact for nonlinear media where material pro
erties are intrinsically field dependent.

Under the above assumption and imposing the condi
~11!, we find from Eqs.~16!, ~19!

E05^m&•^El&1^m•g•P&5^m&•^El&1g•^P•m&. ~24!
13421
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Were the medium homogeneous (D«50, P5const.), the
above relation between the field and the local field wo
read

E5El1g•P. ~25!

Comparing to Eq.~24! shows that the effective-medium con
ditions are

^m&51, ~26!

P05^P•m& ~27!

so that

^El&5E02g•P0. ~28!

Condition ~26! determines the effective permittivity tenso
«0, and is equivalent to the equation32

^D«•m&50, ~29!

as can be seen from Eq.~18!. Applied to isotropic media, it
reduces to Bruggeman’s condition.23,24As a consequence, w
note that«05^«•m&. In practice,«0 can in most cases b
computed by iterating the equation

«05^«•m&•^m&21 ~30!

until convergence starting, e.g., from the upper bound
proximation«0.^«&. Eq. ~27! defines the effective macro
scopic polarizationP0.

Remark in passing the consistency of Eq.~28! with the
result of a volume average of the integral equation~17!: Be-
cause of the boundary constraint*ddxG50, we have
*ddxH52g and Eq.~28! is recovered.

B. Macroscopic energy

An expression for the macroscopic energy density con
tent with the above homogeneization procedure is obtai
as follows. Starting from Eq.~20!, we have, withD5«•E
1P,

W~E0!5^wx~E!&5~1/2!^E•D&1~1/2!^E•P&1^c&

5~1/2!^E&•^D&1~1/2!^E•P&1^c&,
~31!

where the last equality stems from the boundary conditi
~see Sec. II!. Moreover,

^P•E&5^P•m•El&1^P•m•g•P&

5^P•m&•^El&1^P•m•g•P&

5P0
•E02P0

•g•P01^P•m•g•P&

5P0
•E01^DP•m•g•DP&, ~32!

where

DP5P2P0. ~33!

Combining these results with Eq.~23! finally yields an effec-
tive energyW(E0) of the form ~22! with P0 given by Eq.
~27! and

c05^c&1
1

2
^DP•m•g•DP&. ~34!
1-3
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The last term in Eq.~34! does not depend on the macr
scopic electric fieldE0, and represents, within the effective
medium approximation, the interaction energy between
random spontaneous dipoles.

C. Averages and fluctuations

For an-ary composite themean field in each phaseis

Ma[^E&a5
1

pa

]W~E0!

]Pa
5ma

•~E01g•DPa!, ~35!

where the notation̂•••&a indicates an average over the ele
tric field probability distribution in the phasea ~equivalent
to a volume average in the phase!. We check that^E&
5(apa^E&a[^M &5E0, and that

^D&5(
a

pa«a
•^E&a1^P&

5^«•m&•E01^«•m•g•P&2^«•m&•g•^ tm•P&1^P&

5«0
•E01^D«•m•g•P&1^P&

5«0
•E01^P•~D«•m•g11!&

5«0
•E01^P•m&5«0

•E01P05D0, ~36!

as must be. Likewise, thecovariance matrix of the electric
field in each phasereads37

Ca[^EE&a2^E&a^E&a ~37a!

5
2

pa

]W~E0!

]«a
2MaMa. ~37b!

For purely isotropic media without spontaneous polarizati
the expression ofC is known explicitly.21,37 Deriving an
closed-form expression forCa similar to that found forMa,
however, is a difficult task in the general case. For nonlin
homogeneization, we need to consider the case of unia
anisotropy where the anisotropy direction is that of the m
roscopic fieldÊ05E0/E0. Then any vectorA is of the form
Ai5AÊi

0 and any second-order tensorA is of the formAi j

5AiÊi
0Êj

01A'(d i j 2Êi
0Êj

0). The shorthand notationA
5(Ai ,A') is used hereafter, in terms of which

^m i&5^m'&51, ~38!

P05^m iP&. ~39!

Thus, withDP5P2P0

W~E0!5
1

2
« i

0E021P0E01
1

2
gi^m iDP2&1^c& ~40!

and

Ma5m i
a@E01gi~Pa2P0!#. ~41!

Moreover,
13421
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a5

2

pa

]W

]« i
a

2Ma2, ~42a!

C'
a5

1

d21

2

pa

]W

]«'
a

. ~42b!

Expression~40! allows for a straightforward computation o
the derivatives in Eqs.~42!. The sole difficulty consists in
obtaining the variations of« i

0 andgi in a manageable form
The necessary results are presented in the Appendix, w
explicit expressions forg in dimensions of interest are als
recalled.

V. NONLINEAR THEORIES

The previous section has provided us with the mate
and notations needed in what follows. We now briefly revie
the two nonlinear effective-medium theories that this wo
unifies.

A. The PCK theory

The above theory for linear media has been utilized
homogenize nonlinear media in the following way.17 The
idea put forward by PCK is to start from a second-ord
Taylor expansion with Lagrange remainder of the mic
scopic nonlinear potentialwa(E), around the yet unknown
phase averageMa ~35!, assumed to be representative of t
electric field in phasea. Thus

wa~E!5wa~Ma!1]Ewa~Ma!•~E2Ma!

1~1/2!]E]Ewa~M̃a!:~E2Ma!~E2Ma!,

~43!

where (0,l,1)

M̃a5Ma1l~E2Ma!. ~44!

The Lagrange parameterl depends onE, and PCK make the
further approximationl50 which truncates the Taylor ex
pansion at second order, so that finally

wa~E!.wa
lin~E![ca1Pa

•E1~1/2!«a:EE, ~45!

where«a, Pa are defined by Eqs.~5!, ~8! at E5Ma, and

ca5wa~Ma!2Pa
•Ma2~1/2!«a:MaMa. ~46!

The nonlinear homogeneization procedure then consist
applying the previous linear homogeneization theory to
approximated potentials~45!. The mean fieldsMa on which
the constantsca, Pa, and «a depend are computed sel
consistently by means of Eq.~35!. This last set of equations
acts as closure relations for the nonlinear EMA. We refer
reader to the original paper for practical details about
resolution of these equations. We emphasize that the per
tivity used here is an anisotropic tensor.
1-4



nt
.

at

e

e

ca

m

e
io

n
m
th
u
c

of

r

re
nd

r-

ari-
nsor
av-

-
or.
a-

we

n

the

SELF-CONSISTENT EFFECTIVE-MEDIUM . . . PHYSICAL REVIEW B64 134211
B. The PC-WLHY theory

The PC-WLHY theory stems from a completely differe
approach, where one only deals with scalar permittivities
can be simply summarized as follows~showing that it con-
stitutes a lower bound requires a more elabor
presentation9!. An effective localscalarpermittivity « is de-
fined via the relation

D[«E. ~47!

Thus, in terms of the potentialwx ~assumed to depend on th
modulusE only!,

«5E•]Ewx /E2[«~E2!. ~48!

This is the so-called ‘‘secant’’ permittivity. WLHY assum
that in the phasea, D can be approximated~‘‘decoupling
approximation’’! by D5«aE, where

«a5^«~E2!&a.«~^E2&a
1/2!. ~49!

This approximation therefore amounts to replacing the lo
potentialwa by

wa
lin5~1/2!«aE2. ~50!

This problem is homogenized with Bruggeman’sisotropic
EMT, which yields an effective scalar permittivity«0. The
self-consistent closure relations now concern the second
ment, obtained via a particularization of Eq.~37b! ~Refs.
29,38,39!

^E2&a5
1

pa

]«0

]«a
E0

2 . ~51!

Solving the system~49!, ~51! then allows one to compute th
effective nonlinear response under the form of a relat
D05«0(E0)E0.

VI. COMBINING BOTH APPROACHES

So to speak, the previous theories are ‘‘orthogonal’’ to o
another, and use complementary information about the
ments of the electric field in each phase borrowed from
linear theory. We now present a combination of the previo
approaches which utilizes both the means and the varian
It consists in approximating the probability distribution
the electric field in each phase by the Gaussian21

Pa~E!5
1

@~2p!ddet~Ca!#1/2
e21/2DEa

•Ca21
•DEa

, ~52!

where DEa5E2Ma. The parametersMa and Ca are, by
definition of the Gaussian distribution, the mean and va
ance of the field as defined in Eqs.~35! and ~37a!. This
approximation is discussed below, in Sec. VII E.

A property of the Gaussian distribution~easily demon-
strated by integration by parts! is the following one. LetX be
a random vector variable, distributed according to a cente
~zero-mean! Gaussian law of variance the symmetric seco
13421
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order tensorC. Denoting—in this paragraph only—an ave
age with this Gaussian bŷ•••&, one has for any function
f (X) the identity

^ f ~X!X&5C•^¹f ~X!&. ~53!

From this property derives Wick’s theorem~which essen-
tially states that the average of an even moment of the v
able is obtained as a sum of products of the variance te
which exhausts the possible pairings of the indices; the
erage of an odd moment is zero!: for instance, applying it
twice to ^X4& yields

^X4&5^XiXiXjXj&5Cii Cj j 12Ci j Ci j . ~54!

Identity ~53!, however, permits one to extend Wick’s decom
position beyond mere integer powers of the random vect

This identity allows one to build a quadratic approxim
tion to the local energy densitieswx as follows. Contrary to
PCK who expandwx around the mean fieldM by using a
second-order Taylor formula with Lagrange remainder,
apply here the Taylor formula withintegral remainder

f ~1!5 f ~0!1 f 8~0!1E
0

1

dt~12t ! f (2)~ t ! ~55!

to the function

f ~ t !5wa~Ma1tDEa!. ~56!

This yields

wa~E!5wa~Ma!1] iwa~Ma!DEi
a1E

0

1

dt~12t !

3DEi
aDEj

a] i j
2 wa~Ma1tDEa!. ~57!

Now, considered as a function ofDEa, the distribution~52!
is centered, and property~53! applies. Under the Gaussia
approximation, averaging the last term of Eq.~57! therefore
leads to

E
0

1

dt~12t !^DEi
aDEj

a] i j
2 wa&a

5Cik
a E

0

1

dt~12t !@^] ik
2 wa&a1t^DEj

a] i jk
3 wa&a#

5Cik
a E

0

1

dt~12t !S 11t
]

]t D ^] ik
2 wa&a

5Cik
a E

0

1

dtt^] ik
2 wa~Ma1tDEa!&a . ~58!

This expression, where we recognize a decoupling of
fluctuations, allows for a linearization ofwa . Setting

« i j
a 52E

0

1

dtt^] i j
2 wa~Ma1tDEa!&a , ~59!

suggests that we approximatewa by
1-5



on
-

,
he
ng
t

-

ng

d
e

tiv
s
ns

or
r

s
a

al
ica
ly

t
ia

en
el
th

ty

ere
the
ns
ns-
.
on-
wo

ar
ar
ec-

ce

en

ry
-

-
ero-

nce

ays
no

een

en
-

,

nter-
,

s is
e
ry
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wa
lin~E!5wa~Ma!1] iwa~Ma!DEi

a1 1
2 « i j

a DEiDEj

[ca1Pa
•E1 1

2 E•«a
•E, ~60!

whereca andPa are again defined by

Pa5]Ewa~Ma!2«a
•Ma, ~61a!

ca5wa~Ma!2Pa
•Ma2~1/2!«a:MaMa. ~61b!

This approximation is such that both the original expressi
~57! and its linearization~60! give the same result when av
eraged with Eq.~52!, namely,

^wa&a5^wa
lin&a5wa~Ma!1 1

2 Ci j
a « i j

a . ~62!

Apart from a change in the definition of« i j
a expression

~60! is the same as that used in the PCK theory. Therefore
in the PCK theory, homogeneization follows from using t
linear theory of Sec. IV, the effective energy of which bei
used as the nonlinear effective potential. It is stressed tha
Eq. ~59!, the permittivity tensor now directly depends onMa

and the covariance tensorsCa, since the average entering«a

is carried out by means of the Gaussian distribution~52!. We
now have to usesimultaneousself-consistent closure rela
tions on the averagesMa and on the covariance tensorsCa.
The numerical solution is obtained, e.g., by the followi
iterative procedure: start from values ofPa, ca, and«a, ob-
tained by using the definitions~61! and~59! with Ca50 and
Ma5E0; iterate Eq.~30! to compute«0, then computeP0 by
means of Eq.~27!; deduce new values ofMa and Ca by
means of Eq.~35! and the equations of the Appendix, an
iterate until convergence~not guaranteed, but obtained in th
numerical examples presented below; an implicit alterna
procedure may be necessary!. Then compute the coefficient
ca, the energy, and deduce the effective nonlinear respo

VII. DISCUSSION

We now discuss the salient features of the above the
explain its residual flaws, and offer perspectives for futu
work.

A. General remarks

As with the PCK or PC-WLHY theory, our theory i
meant to apply to a large class of nonlinearities, as long
the phase constitutive laws derive from energy potenti
and does not require any prior knowledge of the analyt
form of the effective potential. In this respect, it marked
differs from that of Bergman and co-workers,8,16 analytically
approximated by Barthe´lémy,22 which relies on the fact tha
this analytical form is known in advance—for the spec
case of power-law potentials with thesameexponents—in
terms of only one scalar unknown. The authors can th
determine the effective potential by means of a single s
consistent equation, in the spirit of Bruggeman’s, but
method does not seem to be easily generalizable~and more-
over gives, in a yet unexplained way, a nonlineari
dependent percolation threshold!.
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Trying to be more versatile, the approach advocated h
insists on a self-consistent treatment of the fluctuations of
electric field. The decoupling procedure of the fluctuatio
used to linearize the nonlinear potential is completely tra
parent, and rigorous@in the sense of the first equality in Eq
~62!# as long as Gaussian distributions are used. In this c
text, so are the self-consistency conditions on the first t
moments of the electric field.

In this theory as well as in PCK’s, the effective nonline
energy is identified with the effective energy of the line
homogeneization theory of Sec. IV. We remark that the s
ond equality in Eq.~62! always holds independently of
Gaussian averagingin both theories, as a mere consequen
of the form~61! assumed byca andPa. The estimated non-
linear effective energy can therefore alternatively be writt

W5(
a

paFwa~Ma!1
1

2
Ci j

a « i j
a G ~63!

in both theories.
We also remark that the permittivity of the PCK theo

« i j
a 5] i j

2 wa(Ma), is formally recovered from the new proce
dure in the limit whereCa→0 in Eq. ~59!, since the Gauss
ian used for the averaging then degenerates into the z
width Dirac distribution

Pa~E!5d (d)~E2Ma!. ~64!

This comparison enlightens the way the nonzero covaria
matrix enters the computation of«a ~the PCK theory pos-
sesses a nonzero covariance matrix as well which can alw
be computed from the effective energy, though it does
enter the linearization procedure!.

The numerical calculations presented below have b
carried out for binary composites in dimensiond52, with
power-law potentials of the type

wa~E!5
xa

g11
Eg11, ~65!

when g is constant in the medium andxa varies in each
component. The effective potential then readsW
5x0E0g11/(g11). The casesg53, 5 are examined for
various contrasts. These values are used because whg
52k21, the tensor«a @Eq. ~59!# can be computed analyti
cally in terms ofMa, Ci

a , andC'
a through a finite number of

repeated applications of identity~53!. Such an expansion
however, becomes rapidly unmanageable asg increases. For
nonodd exponent values, the vector Gaussian integrals e
ing the definition of«a have to be computed numerically
which complicates the task.40

B. Critical regime

When the dielectric contrast between the component
infinite, the binary composite displays percolativ
behavior.41,42The percolation threshold of the present theo
1-6
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is pc51/d (p denoting the volume fraction of the high su
ceptibility component!. This value is that of the Bruggema
theory, and is shared by the PCK and the PC-WLHY theo
as well. Indeed, the anisotropy of the phases is irrelevan
the value of threshold—a geometric quantity—and the lin
theory is consistent with this observation.43,44 Asymptotic
expansions of the linear theory in the vicinity ofpc allow
to compute the critical exponents in the nonlinear the
for general power-law potentials~65!. Two cases must be
studied.

(i) Medium 1 has zero energy(x150). This case is rel-
evant to dc conducting composites, under a prescribed a
age electric field, assuming that medium 1 is insulating a
that medium 2 is conducting. ThenD must be interpreted a
the current densityJ, andx2 , x0 represent nonlinear conduc
tivities. Letting p denote the volume concentration of com
ponent 2, the effective conductivity is nonzero forp.pc
only, and behaves asx0;x2(p2pc)

t(g) in the vicinity of
pc .45 Settingy5P2 /(«2iE

0) anddp5p2pc , and assuming
that «2i and «2' are of the same order of magnitude, t
linear theory gives«0i;«0';«2idp, M2;(adp2y)E0

~where a is an irrelevantd-dependent constant! and C2i
;C2';E02(11y2)dp. We now apply these findings to th
nonlinear theory. First, by Eq.~61a!, P2 /«2i5x2M2

g/«2i
2M2. Using the definition ofy and the expression forM2,
this implies M2

g;E0(«2i /x2)dp. Next, from the definition
~59! of «a and a suitable change of variables, we have

«2i;x2E
0

1

dtE dz~M2
212AtM2•C2

1/2
•z

1tz•C2•z!(g21)/2e2z2/2. ~66!

Assume now that the behavior of«2i is controlled byC2:
sinceM2 must decrease to 0 in the conductor at the per
lation threshold, y→0 so that C2;dp. Hence «2i
;C2

(g21)/2;dp(g21)/2, and M2
2;dp(111/g)!C2, which is

consistent with our assumption. Then, from~63!, W
;w2(M2)1«2iC2;dp(g11)/2, so thatt(g)5(g11)/2.

~i! Medium 2 has zero energy(x25`). This occurs when
p,pc in the presence of an infinitely susceptible~‘‘super-
conducting’’! component 2. The electric field then identical
vanishes in this componentbelow the percolation threshold
and its corresponding contribution to the overall energy
zero. The effective dielectric susceptibility then behaves
x0;x1(pc2p)2s(g) for p,pc in the vicinity of pc .45 We
now setdp5pc2p. In the linear theory, the quantities rela
tive to the first component now depend on the above-defi
y, a quantity pertaining to component 2. More precisely,
linear theory gives hereM1.(d1y)/(d21)E0, M2
52yE0, C1i.C1'.E02(11y)2dp21/@d(d21)#. Since
the field must vanish in component 2 in the power-law ca
we deduce thaty50, and only component 1 needs to b
considered; HenceM1 is finite andC1 diverges. Translating
Eq. ~66! to the first component, we deduce that«1i
;dp2(g21)/2 and finally that W;w1;dp2(g11)/2; hence
s(g)5(g11)/2.

The above exponentss(g) and t(g) have already been
found in the PC-WLHY theory.14 In opposition, the PCK
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theory features30 s51, t5g, these values having been ob
served in other theories as well.8,13,16,22They are easily re-
covered from the above arguments by ignoring the dep
dence of the phase permittivity tensors with respect to
variancesCa, and indicate that the approach to the critic
point is controlled by the mean field rather than by fluctu
tions. Fluctuations thus play a major role near the percola
threshold in determining a satisfactory nonlinear overall s
ceptibility. To illustrate this point, the behaviors at high~but
finite! contrast of the three theories are compared in Fig
for potentials withg55 and various contrastsx2 /x150.5,
1021, . . . ,1026. Our new theory apparently admits the PC
WLHY curve as a lower bound, as required.9,10The violation
of the bound by the PCK theory is due to its exponents,30 and
becomes conspicuous for high contrasts only.

We found that dramatic crossover effects prevent an e
numerical determination of the critical exponents from o
numerical procedure. Preliminary results where contrast
order 10616 have to be reached forg55 ~not shown!, are
nonetheless fully consistent with the above asymptotic c
siderations~though convergence problems show up!. The ex-
ponents are best observed in the case of truly infinite c
trast, which will be discussed in detail elsewhere.40

C. Weak-contrast expansion

The new procedure is exact to second order in contr
because it relies on a second-order Taylor expansion,
uses a permittivity tensor related to the tangent permittiv
The reader is reminded that in the weak-contr
expansion,6,10,17,18,21,46the local potentialswx(y) are as-
sumed to fluctuate weakly around their mean value. Int
ducing a bookkeeping parametert to be set to 1 in the fina
results, the contrastdwx(y) is defined by

wx~y!5^wx~y!&1dwx~y!t. ~67!

FIG. 1. Binary medium with power-law potentials (g55) in
two dimensions. Effective nonlinear susceptibilityx0 /x1 at increas-
ing contrasts in the PC-WLHY, the PCK, and the present theor
vs p2. The contrasts arex2 /x150.5, 1021, . . . ,1026.
1-7
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An expansion for the effective potential is sought for as
power series int.46 For a general potential, we have to se
ond order21

W~E0!5^w~E0!&1
gi

2
^@]Edwx~E0!•Ê0#2&t21O~ t3!,

~68!

wheregi is computed from the Appendix with« i j
0 replaced

by

«0[^]E
2wx~E0!&. ~69!

This property can be checked analytically in the pres
theory at the price of tedious calculations which will not
reproduced here. Instead we illustrate it numerically for p
tentials of the type~65! and g55 in Fig. 2, where results
from the PCK and PC-WLHY theories are also included.

D. Limits of the Gaussian approximation

The main shortcoming of the theory is the unconsiste
between the values of the effective electric displacement
tained as

D05
]W

]E0
Þ K ]wx

]E L , ~70!

when the average is carried out with the help of Gauss
averaging in each phase. A necessary condition for the th
to be fully consistent is that an equality instead holds.
order to decide which value ofD0 must be retained here, w
recall that only the value of the nonlinear susceptibilityx0
obtained from the effective energyW is exact to second orde
in the contrast, and is thereforea priori acceptable.

In Figs. 3, 4, we display the predictions of the three the
ries at a contrastx2 /x151023, for g53 andg55, respec-
tively, along with the simulation results of Wanet al.14 for
power-law potentials on random resistor networks. The P
WLHY curves lie closer to the simulation points than t
other ones in both figures. The present theory appare

FIG. 2. Test of exactness to second order in the contrast. Bin
medium with power-law potentials (g55) in two dimensions. Plot
of x02^x& vs p2, with x151.05, x250.95.
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gives the worst results~the highest curves!, as long as one
extractsx0 from the energy. We also tested values of t
nonlinear susceptibility extracted from the right-hand s
~RHS! of expression~70!. The results~not shown! were nu-
merically higher than those extracted fromW, which defi-
nitely rules out the use of the RHS in~70!, as far as the
present theory is concerned. More interestingly, however,
fourth curves~white circles! in Figs. 3,4 display values of
x0 extracted from a ‘‘pragmatic’’~and unjustified! identifica-
tion of the nonlinear effective displacement to that of t
linear underlying theory@see Eq.~23!#, namely,

D05«0
•E01P0 ~71!

@the difference between this expression ofD0 and that in the
left-hand side of Eq.~70! is due, of course, to the dependen
of c0, P0, and «0 in E0]. We see that these last curves l

ry FIG. 3. Comparison between theoretical estimations ofx0 and
lattice numerical calculations~data borrowed from Ref. 14!. Con-
trastx2 /x151023. Power-law potentials withg53 in two dimen-
sions~see text!.

FIG. 4. Comparison between theoretical estimations ofx0 and
lattice numerical calculations~data borrowed from Ref. 14!. Con-
trastx2 /x151023. Power-law potentials withg55 in two dimen-
sions~see text!.
1-8
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much closer to the simulation data, and resemble that of
PC-WLHY theory. These curves were obtained from t
present theory, but similar observations can be made on
PCK theory as well~though the difference between the cri
cal exponents of the two theories subsists!. Note, however,
that the corresponding values ofx0 arenot exact to second-
order in the contrast. Because our theory is strictly valid
continuous media only, the relevance of comparisons to
sistor networks data may be questioned. Since the extran
dependence inE0 due to nonlinearity—ignored in Eq.~71!—
also lies at the crux of the mismatch in Eq.~70!, however, it
may well be that beyond the fact that the continuous the
cannot be expected to fully reproduce resistor networks
sults, curing the mismatch would improve the agreemen
simulations in high contrast situations.

E. Possible improvements

In this perspective, modifications could be carried o
along the following lines. In the author’s mind, the theo
presented here has to be understood as a first step towa
self-consistent calculation of the probability distribution
the electric field in each phase. At this stage, however,
self-consistency has been required on moments of de
higher than 2, the missing information being supplied trou
the use of the Gaussian ansatz~chosen for simplicity rea-
sons!. From this point of view, the theory is not free of arb
trariness, which leaves room for further developments.
particular one could easily generalize40 the central property
~53! to a wider class of probability distributions~encompass-
ing the Gaussian one!, namely, distributions of the type
Pa(E)5g(DE•Ca21

•DE), where g(x) is a suitably nor-
malized function decaying sufficiently fast whenx→`. Note
that neither the property of exactness to second-order in
contrast, nor the critical behavior discussed above, would
jeopardized by such an extension@Eq. ~68! and the discus-
sion of the critical regime are essentially independent ofg].
Among additional self-consistent requirements to determ
g, that of recovering an equality in Eq.~70! would certainly
play a central role.

VIII. CONCLUSION

We have presented and discussed ideas~namely, the
Gaussian approximation applied to strongly nonlinear co
posites, and the use of the second-order Taylor expan
with integral remainder! allowing for simultaneous self
consistency requirements on the first two moments of
probability distribution of the electric field in each phas
Thereby, we obtained a theory exact to second-order in
contrast, with a percolation threshold independent of
nonlinearity, which reduces to the Bruggeman theory in
linear case and which apparently admits the PC-WL
theory as a lower bound, displaying in particular the sa
critical exponents.

In spite of the qualitative progress made, some proble
remain, and the discrepancy with simulations data is in n
for explanations. Further extensions of the theory, along
lines discussed above, might help improving the situation
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APPENDIX: FLUCTUATIONS IN THE LINEAR THEORY

In this technical appendix, we complete our explicit so
tion for the EMT in a uniaxial medium with spontaneou
polarization by giving the details required to compute t
variances of the field~42!, and we provide in particular ex
pressions for the variations ofg5(gi ,g') and of «0

5(« i
0 ,«'

0 ) under variationsd«a5(« i
a ,«'

a ) of the uniaxial
permittivity tensors in the phases.

We first recall the expression ofg in a uniaxial medium.48

It can be written

g5~gi ,g'!5~2ni /« i
0 ,2n' /«'

0 !, ~A1!

where we introduced the depolarization factorsni ,' of a
sphere in a uniaxial anisotropic medium. Settingr 5« i

0/«'
0

andu5 k̂•Ê0, these depolarization factors obey

ni1~d21!n'51 ~A2!

with (d.1, r ,1)

ni5E dV k̂

Sd

ru2

11~r 21!u2

5
Sd21

Sd
E

21

1

du
~12u2!(d23)/2ru2

11~r 21!u2

5
r

d 2F1~1,3/2;11d/2;12r !. ~A3!

The quantity Sd52pd/2/G(d/2) is the area of the uni
d-dimensional sphere, and2F1 is Gauss’s hypergeometri
function.47 In physical dimensions,ni has been computed
under various equivalent forms.17,32,35We have

ni51 ~d51!, ~A4a!

ni5Ar /~11Ar ! ~d52!, ~A4b!

ni5
r

12r S arctanhA12r

A12r
21D ~d53!. ~A4c!

Expression~A4c! is analytically continued to the regionr
.1. This remark also holds form3 , below.

Under variationsd«a of the permittivities in the phases
«0 undergoes a variationd«05(d« i

0 ,d«'
0 ) and the corre-

sponding variation ofg is dg5(dgi ,dg'),

dgi5G id« i
01~d21!G3d«'

0 , ~A5a!

dg'5G3d« i
01~d21!G'd«'

0 . ~A5b!
1-9
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We introduced G i5mi /« i
02, G35m3 /(« i

0«'
0 ), G'

5m' /«'
0 2, and the ‘‘second order’’ depolarization facto

mi ,3,' defined by

m35
r

d21

dni~r !

dr
52r

dn'~r !

dr
, ~A6a!

mi1~d21!m35ni , ~A6b!

m31~d21!m'5n' . ~A6c!

For d51, 2, 3, respectively, we find

mi51, ~A7a!

m35
1

2

Ar

~11Ar !2
, ~A7b!

m35
1

4

r

~12r !2 F32~21r !
arctanhA12r

A12r
G . ~A7c!

Next, the variationsd«0 are determined by means of th
effective-medium equationŝm i&5^m'&51, which lead to
the system

S a11 a12

a21 a22
D S d« i

0

d«'
0 D 5S db1

db2
D , ~A8!

where

a115gi^m i
2&1~12^m i

2&!~G i /gi!, ~A9a!
v

13421
a125~d21!~12^m i
2&!~G3 /gi!, ~A9b!

a215~12^m'
2 &!~G3 /g'!, ~A9c!

a225g'^m'
2 &1~d21!~12^m'

2 &!~G' /g'!, ~A9d!

db15gi^m i
2d« i&5gi(

a
pam i

a2d« i
a , ~A9e!

db25g'^m'
2 d«'&5g'(

a
pam'

a 2d«'
a . ~A9f!

From these equations, the derivatives in Eqs.~42! are readily
obtained by means of the explicit formulas

]W

]« i
a

5FE02

2
1gim i

a2S PaE01
gi

2
DPa2D G ]« i

0

]« i
a

2
P0E0

gi

]gi

]« i
a

1S 1

2
^m i

2DP2&1
E0

gi
^m i

2P& D S ]gi

]« i
a

2gi
2

]« i
0

]« i
aD ,

~A10!

]W

]«'
a

5
E02

2

]« i
0

]«'
a

2
P0E0

gi

]gi

]«'
a

1S 1

2
^m i

2DP2&1
E0

gi
^m i

2P& D
3S ]gi

]«'
a

2gi
2

]« i
0

]«'
a D . ~A11!
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