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Self-consistent effective-medium approximation for strongly nonlinear media
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A self-consistent effective-medium theory is proposed for random dielectric composites of arbitrary nonlin-
ear constitutive law. It is based on a Gaussian approximation for the probability distributions of the electric
field in each component, and on second-order Taylor expansions with an integral remainder of the local
energies. The effective energy is exact to second order in contrast. With power-law media with constitutive
relation D= yE?'E, the critical exponents are=t=(y+1)/2. The theory reduces to Bruggeman’s in the
linear casey=1, and its percolation threshold is independent of the nonlinearity.
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I. INTRODUCTION possesses an incorrect weak-contrast expansion. On the other
hand, the PCK theory is exact to second order in the contrast.
Estimating the effective properties of nonlinear dielectricUnfortunately, it also incorrectly gives a nonlinear suscepti-
composites is a problem which has attracted wide attentiohility lower than that of PC-WLHY, in the vicinity of the
in the past decadés?? However, to deal with highly disor- percolation threshold, as a consequence of possessing inad-
dered, contrasted, and strongly nonlinear composites, a sefeduate critical exponents.
consistent theory extending the Bruggeman-Landauer The purpose of this study is to partially reconcile both
effective-medium approaéh?* to the nonlinear domain is @pproaches. The theory presented below relies on simulta-
still lacking. The same situation prevails in the mechanics ofteous closure conditions on the averagelthe second mo-
continuous medi& Indeed, none of the existing theories hasment of the field, thanks to a Gaussian approximation for the
passed all of the necessary tesit}sexactness to second order probablllty distribution of the electric field in each phé%e
in a weak-contrast perturbative expansitin, existence of a  In this way, it optimizes the use of the linear underlying
nonlinearity-independent percolation threshBidand (iii) theory. In order to achieve this goal, a linearization based on
the fulfillment of various bounds. the Taylor formula with integral remainder is adopted. This

Recently theories have been constructed which obey criénsures the correct second-order expansion in the contrast
terion (i).817212226Ag to criterion (i), only two theories (the PCK approach was based on a Taylor expansion with a
leave the threshold unchanged, and reduce to the BruggemAgrange remaindgrand the use of the second moment in
theory in the linear case: the first one is the self-consisterfihe closure condition guarantees reasonable exponents, those
versio? of the variational theory of Ponte Castata, Of the PC-WLHY theory. This paper extends to strongly non-
deBotton, and LY (PC), rediscovered under a different form linear media a previous work dealing with weakly nonlinear
by Wan and co-worket4® (WLHY ); the second one is the composite$! and focuses on the static properties only.
“second-order” approach of Ponte Castala and Sections Il and Ill are devoted to setting up our notations
Kailasant’(PCK). and to presenting an integral formalism for the nonlinear

The equivalence between the PC and WLHY approacﬁheory which mimics that of a linear theory with spontaneous
was demonstrated by Yu, Hui, and [!2en a particular ex- Polarization. The theory of linear homogeneization in aniso-
ample, and has since been established in full geneflity: tropic media with spontaneous polarization, on which this
this theory in fact constitutes an exact lower bound in thestudy heavily relies, is then explainé8ec. IV). The material
class of self-consistent theories reducing to Bruggeman’s i§oncerning the fluctuations in this theory is relegated to the
the linear cas@l®2%\we shall refer to it as the PC-WLHY Appendix for the sake of clarity. The theories of PCK and
theory hereafter. It is interesting to note that the PC and®C-WLHY are next reviewed in this framewot&ec. ). We
WLHY theories first appeared in the context of nonlinearadopt the WLHY presentation of the PC-WLHY approach,
elasticity, under the name *“variationd” and “secant” simpler to explain. Their combination is carried out in Sec.
approache& their equivalence having been proven there a<VIl. The outcome of this new theory is discussed in Sec. VII,

well. %8 before we conclude in Sec. VIII.
Both the PC-WLHY and PCK procedures aim at finding
the “best” linear approximation to the nonlinear theory, but Il. GENERAL FRAMEWORK

are somewhat orthogonal to each other: Whereas PCK use a\ye consider a nonlinead-dimensional inhomogeneous

nonlinear self-consistent closure condition on the average Qfigjectric medium of volum& characterized by a local elec-
the electric field in each component of the medium, PCy,qiatic energy density,(E) depending on the electric field

WLH4Y29utiIize a conditior_1_on th_e seco_nd moment of the E at x. From this function derives the local constitutive law
field,»" both these quantities being derived from the undery,, ihe electric displacemei® (Refs. 31,9

lying linear effective-medium scheme. None of these ap-
proaches is completely satisfactory. The PC-WLHY result D=dgw,(E). (D)
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where dg stands ford/JE. Whenw, is a quadratic polyno- This equation features an effective local polarization vector
mial, the constitutive relation is linear. Hevg, is not neces- defined by
sarily quadratic. In a composite medium, the functiepis

the same in regionsV, (called “phases) of V, («a P(E) = deWx(E) — dedewy(E) - E. ®)
=1,...m), and takes the fornw,=w, if xeV,. The |ntroducing an arbitrary anisotropic homogeneous medium
phase volume fractions,=V,/V are such thak ,p,=1. with constant anisotropic permittivity tenset*? and setting

Let f(x)=Jyd%f(x)/V stand for volume averages. The Ae=&—¢°, we rewrite the equation for the potential as
homogeneization problem consists in computing the macro-
scopic energy density of the system defined by J o4 9

J
(?_Xlsllé’_)(] :_(?_)(I(ASIIEI+PI) (9)

W(E®) =w,[E(x)], 2 : . o
Using the dipolar Green tensor for the electric field in the
where the fielck is the solution of the electrostatic equations homogeneous medium
V-D=0 andE=—V ¢ completed by Eq(1) and a bound-

ary condition for the electrostatic potentidl=—Ey-x for . d kiki
; 0_ T thic imnline E o 0 0 NO_ T Gii(r)=—lim — ' (10
xedV. SettingD"=D, this impliesE=E" and E”-D"=E J 0k k(29 Kigl Koy
-D. The electric fieldE® is a macroscopic state variable, and _ .
one shows that the effective constitutive law is and taking care of the “boundary conditon”
D%= 9oW(EO). (3) E=E°, (12)

For simplicity we deal hereafter witkite-disorderecsys- ~ Ed- (9) is recast into
tems wherep, also is the probability thatv,=w, at the
point x (“site” ), and where the material properties are un- E(x):E°+f ddyG(x_y)[Agij(y)Ei(y)+ Pi(y)].
correlated from point to point. To each point is associated
a surrounding “infinitesimal” matter element of volume (12
in which the potential is constant. In the thermodynamicThe limiting prescription in Eq. (10) ensures that
limit V—o the energy is self-averaging so that volume [dG(x)=0 so that Eq(11) is satisfied. As is well known
averages and statistical averages over configurations denot&{r) possesses an infinite number of representations of the
by (- - -) coincide. type®

lIl. INTEGRAL FORMALISM Gjj(r)=gi;o(r)+Hjj(r), (13

We develop here an integral formulation for the nonlinear’VN€re the nonlocal patt is nonzero only outside some in-

electrostatic problem along the lines laid down by Stud finitesimal exclusion volume of arbitrary shafigeneralized

in the linear case. This will illustrate the fact that the nonlin- Lorentz cavity and where the local pags, represents the

ear problem has close formal bearings to the anisotropic lin2¢tion of polarization charges on the surface of the cavity at

ear problem with spontaneous polarizatidrn this section, Its center. The value df is shape dependent. For a spherical

useful quantities are introduced for further use. cavity we have
We start from the remark that the nonlinear electrostatic

problem is a locally anisotropic problem where the anisot-

ropy depends on the electric field. Witk= —V ¢ and Eq.

(1) indeed, we have in any homogeneous region with energy /2 ) .
densityw(E), where Sy=27%9YT(d/2) is the area of the unit

d-dimensional sphere. The integration is carried out over all
V.-D=-eVV¢=0, (4)  the directions of the unit vectds. For site disorder, the cav-
ity is identified to the microscopic matter element with vol-
umewv and the theory is tantamount to a theory of interacting
&(E) = dgdew(E). (5) point dipoles. Dealing W|t_h randomly oriented nonsphencal
matter element§ would introduce unnecessary technical
For isotropic media wherev(E) only depends on the complicationgamong which a position-dependeg)t so that
squared modulug?, ¢ is a uniaxial tensor with directiok  Only spheres are considered hereafter. Expresgldh is

Su RISIOmRm'

gij=

where thetangent permittivity tensois

=E/E, of the type equivalent to a more complicated one usually used in the
effective-medium literaturé?3*3® thanks to a suitable
eij=e,(8;—EE)+¢EE;. (6)  change of variables.

Extracting g out of the integral in Eq.(12) gives a
It proves convenient to emphasize this induced anisotropy bynultiple-scattering expression for thecal field impinging
formally writing the electric displacement in terms gfas on x. Setting (1 represents the identity majrix

D=g¢-E+P. (7) u=[1—g-Ae]™ %, (15)
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the local field is defined by

E=u'E-g-P (16)
and obeys the integral equation
E'=E°+J/ddyH(As-M-E'+P-M), (17

where the notationfdy stands for the principal value
Iim,ﬁofw,xb,,ddy. In arriving at(17), use was made of the
identity

1+g-Ae-u=1+pu-g-Ae=pu. (18

Note for further use that-g andg are symmetric tensors, so
that (superscript denoting the transpose

©n-9=9g-‘u. (19

IV. LINEAR HOMOGENEIZATION WITH SPONTANEOUS
POLARIZATION

A. Effective-medium conditions

Before carrying out the homogeneization of the nonlinear

problem, we first have to examine the anisotrofiiear

PHYSICAL REVIEW B4 134211

Were the medium homogeneoud{=0, P=const.), the
above relation between the field and the local field would
read

E=E'+g-P. (25

Comparing to Eq(24) shows that the effective-medium con-
ditions are

(=1, (26)
PO=(P- ) (27)

so that
(E"Y=E%—g-P°. (28)

Condition (26) determines the effective permittivity tensor
g0, and is equivalent to the equatidn

(Ag- w)=0, (29

as can be seen from E@L8). Applied to isotropic media, it
reduces to Bruggeman’s conditiéh?*As a consequence, we
note thate®=(e-w). In practice,e, can in most cases be
computed by iterating the equation

go=(s-w) ()~ * (30)
until convergence starting, e.g., from the upper bound ap-

theory with spontaneous polarization, a particular instance tproximation ep=(e). Eq. (27) defines the effective macro-
which the integral formalism of Sec. Il can be applied. We scopic polarizatiorP°.

thus consider here quadratic local potentials of the form

Wy(E)=(1/2)e*:EE+P*-E+c*, xeV,, (20

where e, P, and the scalac are constantsin each phase.

Equations(5) and (8) now become tautologies. The local

electric displacement is
D=0gW,(E)=¢*- E+P?, (21)

The problem being linear, the effective enerdy(E°)
=(wy(E)) is sought for under the form

xeV,.

W(E®) =(1/2)e% E°E®+ P°. EO+ P, (22)
whereby Eq(3) implies that
DO=¢0. EO+ PO, (23

The effective-medium conditions can be derived from an
assumption of statistical independence between the local

field E'(x) and the material properties at the same paint
Hence, for instance,u(X)E'(x))={(u)-(E"). It is clear that

this (ovensimplifying assumption, which may actually be

physically reasonable for a particular choice s3fand P°,
and particular microstructurdsuch as Milton’s hierarchical
composite for which Bruggeman’s theory is exitiand

where each element is surrounded by a smaller-scale self-

averaging environment which acts as a homogeneous isne

Remark in passing the consistency of ER8) with the
result of a volume average of the integral equation): Be-
cause of the boundary constraifid«G=0, we have
fd9%H=—g and Eq.(29) is recovered.

B. Macroscopic energy

An expression for the macroscopic energy density consis-
tent with the above homogeneization procedure is obtained
as follows. Starting from EQq(20), we have, withD=¢-E
+P,

W(E®) =(w,(E))=(1/2(E-D)+ (1/2(E-P)+{(c)
=(1/2)(E)-(D)+(1/2)(E-P)+{(c),
(31)

where the last equality stems from the boundary conditions
(see Sec. )l Moreover,

(P-E)=(P-p-E) +(P--g-P)
=(P-p)-(E)+(P-p-g-P)
=PY.E°—P%.g- PO+ (P-u-g-P)
=PY.E%+(AP- u-g-AP), (32

where

AP=P—P°, (33

definitely inexact for nonlinear media where material prop-Combining these results with E(3) finally yields an effec-

erties are intrinsically field dependent.

tive energyW(E®) of the form (22) with P° given by Eq.

Under the above assumption and imposing the conditiori27) and

(12), we find from Eqgs(16), (19

E%=(u)-(E') +(u-g-Py=(u)-(E') +g-(P- ). (29

C0=<c)+%(AP-M-g'AP>- (34)
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The last term in Eq(34) does not depend on the macro- 2 AW
scopic electric fieldE®, and represents, within the effective- Cil=— ——-M*?, (429
medium approximation, the interaction energy between the p* de|
random spontaneous dipoles.
1 2 W
C. Averages and fluctuations CY :m Y PR (42b)
p- ode;

For an-ary composite thenean field in each phase
Expression40) allows for a straightforward computation of

1 IW(E®) the derivatives in Eqs42). The sole difficulty consists in
Me=(E),=————=p"(E°+g-AP), (35  obtaining the variations of{ andg in a manageable form.

Pa 9P The necessary results are presented in the Appendix, where
where the notatiok- - - ), indicates an average over the elec- explicit expressions fog in dimensions of interest are also
tric field probability distribution in the phase (equivalent recalled.
to a volume average in the phasé&Ve check that(E)

=3 ,p(E),=(M)=E° and that V. NONLINEAR THEORIES
The previous section has provided us with the material
(Dy=2 P& (E)o+(P) and notations needed in what follows. We now briefly review
“ the two nonlinear effective-medium theories that this work
=(g-u)-E®+(e-u-g-P)—(e-p)-g- (‘- Py+(P) unifies.

— .0 0
=e B+ (A p-g-P)+(P) A. The PCK theory
=% E%+(P-(Ag- u-g+1)) The above theory for linear media has been utilized to
— 0. E04 (p. ;)= £0. E04 pO— DO _homogemze nonlinear me(_jla in the following wdyThe

o B (P p)=e B P20, (36 idea put forward by PCK is to start from a second-order
as must be. Likewise, theovariance matrix of the electric Taylor expansion with Lagrange remainder of the micro-

field in each phaseeads’ scopic nonlinear potentiak,(E), around the yet unknown
phase averaghl“ (35), assumed to be representative of the
C*=(EE),—(E){E)a (378  electric field in phaser. Thus
2 JW(E®) Wo(E) =Wo(M*) + dgW, (M) - (E- M)
=— — —M*M“. (37b 5
Po  de +(1/2) 9gdgW (M) :(E-M*)(E—M*),
For purely isotropic media without spontaneous polarization, (43)

the expression ofC is known explicitly?®" Deriving an

closed-form expression fa* similar to that found foM®, ~ Where (0<A<1)

however, is a difficult task in the general case. For nonlinear 5

homogeneization, we need to consider the case of uniaxial M=M*+N(E—M?). (44
anisotropy where the anisotropy direction is that of the mac-

roscopic fieldE®=E/E®. Then any vectoA is of the form | N€ Lagrange parameterdepends ofe, and PCK make the
Ai:AE? and any second-order tensaris of the formA, further approximatiom\ =0 which truncates the Taylor ex-

~ 020 020 ) pansion at second order, so that finally
=AE/Ej+A (d;j—E/E}). The shorthand notationA

=(A|,A,) is used hereafter, in terms of which W, (E)=w"(E)=c*+P*-E+(1/2)¢“:EE, (45
(mp=(m)=1, (38)  wheree?, P* are defined by Eqg5), (8) atE=M?, and
PO=(wP). (39 Co=W, (M%) —P*. M= (1/2e“ MM  (46)

H —p_po
Thus, withAP=P—P The nonlinear homogeneization procedure then consists in

1 1 applying the previous linear homogeneization theory to the
W(E) = _gﬁ’502+ POEO So)( A P?)+(c) (400 approximated potentialgl5). The mean field$1“ on which
2 2 the constant®, P%, and ¢“ depend are computed self-
consistently by means of E35). This last set of equations

and
acts as closure relations for the nonlinear EMA. We refer the
M= uf[E%+gy(P*—P%)]. (41  reader to the original paper for practical details about the
resolution of these equations. We emphasize that the permit-
Moreover, tivity used here is an anisotropic tensor.
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B. The PC-WLHY theory order tensolC. Denoting—in this paragraph only—an aver-

The PC-WLHY theory stems from a completely different 29€ With this Gaussian bf - -), one has for any function
approach, where one only deals with scalar permittivities. Iff (X) the identity
can be simply summarized as followshowing that it con- B
stitutes a lower bound requires a more elaborate (fX)X)=C-(VE(X)). (53

presentatiof). An effective localscalar permittivity ¢ is de- From this property derives Wick’s theorefwhich essen-
fined via the relation tially states that the average of an even moment of the vari-
able is obtained as a sum of products of the variance tensor
D=e¢E. (47)  which exhausts the possible pairings of the indices; the av-

erage of an odd moment is zerdor instance, applying it

Thus, in terms of the potentiat, (assumed to depend on the twice to(X?) yields

modulusE only),
4\ _ —
e =E- dgw, /E2=&(E2). (48) (XM =(XiXiX;X;)=C;;Cj; + 2C;;Cj; . (54
Identity (53), however, permits one to extend Wick's decom-
position beyond mere integer powers of the random vector.
This identity allows one to build a quadratic approxima-
tion to the local energy densities, as follows. Contrary to
o 20\ 20 1/2 PCK who expandw, around the mean fiell by using a
2" =(e(E%))e=e (B9 (49) second-order Taylor formula with Lagrange remainder, we
This approximation therefore amounts to replacing the locafPply here the Taylor formula witmtegral remainder
potentialw, by

This is the so-called “secant” permittivity. WLHY assume
that in the phaseyr, D can be approximated‘decoupling
approximation’) by D= ¢“E, where

1
_ _ / @
Wi (1/2)sE2 (50 f(1)=f(0)+f (0)+jodt(1 0f@t) (55

This problem is homogenized with Bruggemaisstropic  to the function
EMT, which yields an effective scalar permittivis®. The

self-consistent closure relations now concern the second mo- f(t)=w,(M“+tAE®). (56)
ment, obtained via a particularization of E@7b (Refs. .
29 38,39 This yields
1
1 9&° E)=w,_ (M%) +g; M“AE-“+I 1-
<E2>a:__Eg- (51) Wa( ) Wa( ) (?,Wa( ) i Odt( t)
pa (980’
X AEFAE 95 W, (M +tAE®). (57)

Solving the systen49), (51) then allows one to compute the
effective nonlinear response under the form of a relation\ow, considered as a function &fE®, the distribution(52)

0_ .00y =0 ) . .
D =g (E")E". is centered, and propertp3) applies. Under the Gaussian
approximation, averaging the last term of E§7) therefore
VI. COMBINING BOTH APPROACHES leads to

So to speak, the previous theories are “orthogonal” to one 1
another, and use complementary information about the mo- J dt(1-t)(AE[AEf 9 W,),
ments of the electric field in each phase borrowed from the 0
linear theory. We now present a combination of the previous 1
approaches which utilizes both the means and the variances. =CﬁiJ dt(L=1)[(FWe) o+ L{AET I W) o]
It consists in approximating the probability distribution of 0
the electric field in each phase by the GausSian

1 J
= ﬁ;f dt(l—t)(l+tﬁ (TrW o)
0

P (E)= ; 1 - 1/28—1/2AE“-<:“‘1»AE“, (52) )
[(2m)"de(C)] = f;(fodttw?kwa(mutAEa))a. (59)

where AE“=E—M¢®. The parameter$1“ and C* are, by
definition of the Gaussian distribution, the mean and vari-This expression, where we recognize a decoupling of the
ance of the field as defined in Eg&5 and (378. This  fluctuations, allows for a linearization @f,. Setting
approximation is discussed below, in Sec. VII E.

A property of the Gaussian distributiofeasily demon-
strated by integration by pajtis the following one. LeX be
a random vector variable, distributed according to a centered
(zero-meahGaussian law of variance the symmetric second-suggests that we approximaite, by

1
sﬁzzfodtt(aﬁwa(maﬂAEa))a, (59
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chivn(E):Wa(Ma)_’_é,iWa(Ma)AEia_’_ %s-‘}AEiAEj _ Trying to be more.versatile, the approach advogated here
insists on a self-consistent treatment of the fluctuations of the
—co+ P E+ LE. % E, (60) electric field. The decoupling procedure of the fluctuations
used to linearize the nonlinear potential is completely trans-
wherec® and P* are again defined by parent, and rigorougn the sense of the first equality in Eq.
(62)] as long as Gaussian distributions are used. In this con-
PY=0gW, (M%) —&%-M*, (613  text, so are the self-consistency conditions on the first two
moments of the electric field.
Ca=Wo(M*)—=P*M“—(1/2)e":M*M*.  (61b) In this theory as well as in PCK’s, the effective nonlinear

energy is identified with the effective energy of the linear
%omogeneization theory of Sec. IV. We remark that the sec-
ond equality in Eq.(62) always holdsindependently of
Gaussian averagingn both theories, as a mere consequence
of the form(61) assumed byg* andP®. The estimated non-
linear effective energy can therefore alternatively be written

This approximation is such that both the original expression
(57) and its linearization(60) give the same result when av-
eraged with Eq(52), namely,
(We) o= (We) e =Wa(M?) + 3 Clief} (62)

Apart from a change in the definition af] expression 1
(60) is the same as that used in the PCK theory. Therefore, as W= W (MY + = Cs 63
in the PCK theory, homogeneization follows from using the ; Pu WM+ 5 Cijei €3
linear theory of Sec. 1V, the effective energy of which being
used as the nonlinear effective potential. It is stressed that iy both theories.
Eq. (59), the permittivity tensor now directly depends bt We also remark that the permittivity of the PCK theory
andthe covariance tenso*, since the average enteriag el =d5W,(M*?), is formally recovered from the new proce-
is carried out by means of the Gaussian distributsi®). We  dre in the limit whereC*—0 in Eq. (59), since the Gauss-

now have to usesimultaneousself-consistent closure rela- jan ysed for the averaging then degenerates into the zero-
tions on the averagdd “ and on the covariance tens®@S$.  idth Dirac distribution

The numerical solution is obtained, e.g., by the following
iterative procedure: start from values Bf, c, ande®, ob-
tained by using the definition$1) and(59) with C*=0 and
M<«=E?; iterate Eq.(30) to computec®, then computé® by , , , ,
means of Eq(27); deduce new values df1® and C* by Thls_comparlson enllghtens_the way the nonzero covariance
means of Eq(35) and the equations of the Appendix, and matrix enters the comp.utatlon @f’.(the PCK th_eory pos-
iterate until convergenc@ot guaranteed, but obtained in the SESSES & nonzero covariance matrix as well whlch_can always
numerical examples presented below; an implicit alternativd® computed from the effective energy, though it does no
procedure may be necessgafyhen compute the coefficients €Nter the linearization procedyre

¢ the energy, and deduce the effective nonlinear response. 1€ numerical calculations presented below have been
carried out for binary composites in dimenside2, with

power-law potentials of the type

PE)=8VE-M). (64)

VIl. DISCUSSION

We now discuss the salient features of the above theory, Xa
explain its residual flaws, and offer perspectives for future W, (E)= mE”l, (65
work.

when vy is constant in the medium ang, varies in each
component. The effective potential then readd/

As with the PCK or PC-WLHY theory, our theory is =xoE®""Y/(y+1). The casesy=3, 5 are examined for
meant to apply to a large class of nonlinearities, as long agarious contrasts. These values are used because when
the phase constitutive laws derive from energy potentials=2k—1, the tensoe® [Eq. (59)] can be computed analyti-
and does not require any prior knowledge of the analyticatally in terms ofM“, Cj*, andC{ through a finite number of
form of the effective potential. In this respect, it markedly repeated applications of identi$s3). Such an expansion,
differs from that of Bergman and co-workér& analytically — however, becomes rapidly unmanageable a@screases. For
approximated by Barfemy,?? which relies on the fact that nonodd exponent values, the vector Gaussian integrals enter-
this analytical form is known in advance—for the specialing the definition ofe* have to be computed numerically,
case of power-law potentials with treameexponents—in  which complicates the task.
terms of onlyone scalar unknown. The authors can then
determine the effective potential by means of a single self-
consistent equation, in the spirit of Bruggeman’s, but the

A. General remarks

B. Critical regime

method does not seem to be easily generalizédole more- When the dielectric contrast between the components is
over gives, in a yet unexplained way, a nonlinearity-infinite, the binary composite displays percolative
dependent percolation threshpld behavio*'*?The percolation threshold of the present theory
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is p.=1/d (p denoting the volume fraction of the high sus- 10°

ceptibility component This value is that of the Bruggeman

theory, and is shared by the PCK and the PC-WLHY theories S

as well. Indeed, the anisotropy of the phases is irrelevant to ‘\\*i\ S

the value of threshold—a geometric quantity—and the linear E

theory is consistent with this observatibtf* Asymptotic I AN

expansions of the linear theory in the vicinity pf allow

to compute the critical exponents in the nonlinear theory

for general power-law potential€5). Two cases must be ‘\\\ N R

studied. 107 | —— PC-WLHY N
(i) Medium 1 has zero energyy,=0). This case isrel- | - PCK N

evant to dc conducting composites, under a prescribed aver- ——— Present theory AN

age electric field, assuming that medium 1 is insulating and NN

that medium 2 is conducting. Théh must be interpreted as 10 , . l .

the current density, andy,, xo represent nonlinear conduc- 0 0.2 0.4 0.6 0.8 1

tivities. Letting p denote the volume concentration of com- D,

ponent 2, the effective conductivity is nonzero forp.

only, and behaves %ONXZ(p_pC)t(y) in the vicinity of FIQ. 1. _Binary mec_iium wi_th power-law_pqtentialax_(:5) in

Pe 45 Settingy = P2/(82HE0) andsp=p—p,, and assuming two dmensnoqs. Effective nonlinear susceptibiligy/ xy; at increas- _

that &g and e, are of the same order of magnitude, the Ing contrasts in the PC-WLHY, the PClK, and th% present theories,

linear theory giveseg~&o, ~2p, M2~(a5p—y)E° Vs p,. The contrasts arg,/x,;=0.5, 10, ...,10°.

(where a is an irrelevantd-dependent constantnd C,

~C,, ~E%(1+y?) sp. We now apply these findings to the theory feature® s=1, t=1y, these values having been ob-

nonlinear theory. First, by Eq(61a, P,/ey=x,M3/e,  served in other theories as w&l>'***They are easily re-

—M,. Using the definition ofy and the expression fdvl,, ~ covered from the above arguments by ignoring the depen-

this impliesM}~ EO(Szn /x2) 8p. Next, from the definition dence of the phase permittivity tensors with respect to the

(59) of £ and a suitable change of variables, we have variancesC“, and indicate that the approach to the critical
point is controlled by the mean field rather than by fluctua-

XX

1 ) 12 tions. Fluctuations thus play a major role near the percolation
SZI\”ijo dtJ dZ(MzJFZﬁMZ' C"z threshold in determining a satisfactory nonlinear overall sus-
ceptibility. To illustrate this point, the behaviors at higbut
+tz~Cz~z)(7‘1)/2e‘22/2_ (66)  finite) contrast of the three theories are compared in Fig. 1
_ _ for potentials withy=5 and various contrastg,/x;=0.5,
Assume now that the behavior e} is controlled byC.: 1071, ...,10°8. Our new theory apparently admits the PC-

sinceM, must decrease to 0 in the conductor at the percow|HY curve as a lower bound, as requirgt The violation

lation  threshold, y—0 so that C,~dp. Hence e  of the bound by the PCK theory is due to its exponéhemd

~CY 2~ 5pr= 2 and M3~ sptt UM <C,, which is  becomes conspicuous for high contrasts only.

consistent with our assumption. Then, fro63), W We found that dramatic crossover effects prevent an easy

~W,(My) + &2 Co~8p"* D72 so thatt(y) = (y+1)/2. numerical determination of the critical exponents from our
(i) Medium 2 has zero enerdy,= ). This occurs when numerical procedure. Preliminary results where contrasts of

p<p. in the presence of an infinitely susceptilffsuper-  order 10-® have to be reached foy=5 (not shown, are

conducting”) component 2. The electric field then identically nonetheless fully consistent with the above asymptotic con-

vanishes in this componebelowthe percolation threshold, siderationgthough convergence problems show.ufhe ex-

and its corresponding contribution to the overall energy isponents are best observed in the case of truly infinite con-

zero. The effective dielectric susceptibility then behaves agrast, which will be discussed in detail elsewhé&te.

Xo~x1(pc—p) 3 for p<p. in the vicinity of p..*> We

now setép=p.—p. In the linear theory, the quantities rela-

tive to the first component now depend on the above-defined C. Weak-contrast expansion

y, a quantity pertaining to component 2. More precisely, the  The new procedure is exact to second order in contrast,
linear theory gives hereM;=(d+y)/(d—1)E°, M,  pecause it relies on a second-order Taylor expansion, and
=—yE%, Cy=Cy, =E%(1+y)?6p "/[d(d—1)]. Since uses a permittivity tensor related to the tangent permittivity.
the field must vanish in component 2 in the power-law caseThe reader is reminded that in the weak-contrast
we deduce thay=0, and only component 1 needs to be expansiorf;}%1"182146the |ocal potentialsw,(y) are as-
considered; HencM, is finite andC, diverges. Translating sumed to fluctuate weakly around their mean value. Intro-
Eq. (66) to the first component, we deduce thaf,  ducing a bookkeeping parameteto be set to 1 in the final
~op~ ("1 and finally thatW~w;~8p~ "1’ hence results, the contrasiw,(y) is defined by
s(y)=(y+1)/2.

The above exponents(y) andt(y) have already been
found in the PC-WLHY theory? In opposition, the PCK W, (Y) = {W,(y))+ Sw,(y)t. (67
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A Present theory
i o PCK / \\\ 3
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i second order (exact) g N
-0.0005 2 & 1 100 N
kN o
B, of
Q\A 9{9’ >
—<y> %
A< By e Xo »
2, L \
AAA gag x
B @ Lattice calculations \
-0.0010 | %MM I 10° | —— PC-WLHY \
------ PCK >
——— Present theory (W) X
¥=5 O Present theory (D) N
-0.0015 : . : ' 107 : ; 3 ;
0 02 0.4 0.6 0.8 L 0.0 02 0.4 0.6 038 1.0

P2 P,

FIG. 2. Test of exactness to second order in the contrast. Binary FIG. 3. Comparison between theoretical estimationgo&nd
medium with power-law p_otent|aI3y£:5) in two dimensions. PIot | uice numerical calculation@data borrowed from Ref. 24Con-
of xo=(X) VS Pz, with x;=1.05, x,=0.95. trasty,/x1=10 3. Power-law potentials withy=3 in two dimen-

. . - sions(see te
An expansion for the effective potential is sought for as a ( X

power series irt.*® For a general potential, we have to sec-

ives the worst result&he highest curvesas long as one
ond ordef* g 4 g 05 g

extractsy, from the energy. We also tested values of the

nonlinear susceptibility extracted from the right-hand side

(RHS) of expression70). The resultgnot shown were nu-

merically higher than those extracted from, which defi-
(68) nitely rules out the use of the RHS ii70), as far as the

whereg is computed from the Appendix witb% replaced present theory is concerned. More interestingly, however, the

by fourth curves(white circles in Figs. 3,4 display values of

Xo extracted from a “pragmatictand unjustifiedl identifica-

tion of the nonlinear effective displacement to that of the

(69
This property can be checked analytically in the presen[Inear underlying theorysee Eq/(23)], namely,

theory at the price of tedious calculations which will not be 71
reproduced here. Instead we illustrate it numerically for po-

tentials of the type(65) and y=5 in Fig. 2, where results e gifference between this expressiorD¥fand that in the
from the PCK and PC-WLHY theories are also included. gt hand side of Eq(70) is due, of course, to the dependence
of ¢, P° ande in E?]. We see that these last curves lie

9

W(E®) = (W(E%)+ 5 ([ 70w, (E°) - EJ)t?+ O(t?),

0=( 2w, (E?)).

DO=¢0 E%+P°

D. Limits of the Gaussian approximation

The main shortcoming of the theory is the unconsistency 10°
between the values of the effective electric displacement ob- o
tained as s
O\\\ Y:S
oW IWy 10 L N
Do=—- , 70
0 0—,E0 < JE > ( ) 0\\\\\
&\
. . . . Xo SN
when the average is carried out with the help of Gaussian ey
averaging in each phase. A necessary condition for the theory & ® Lattice calculations S
to be fully consistent is that an equality instead holds. In 1% & :ggfwa .
order to decide which value @° must be retained here, we ——~ Present theory (W) Oy
recall that only the value of the nonlinear susceptibility O Brescat thcary, () S
obtained from the effective enerdy is exact to second order . N\
. . 2 " , , , ,
in the contrast, and is therefoeepriori acceptable. e T 0 it 08 Y

In Figs. 3, 4, we display the predictions of the three theo-
ries at a contrasy,/y;=10"3, for y=3 andy=5, respec-
tively, along with the simulation results of Waet al* for

P,

FIG. 4. Comparison between theoretical estimationgpfnd

power-law potentials on random resistor networks. The PCrattice numerical calculationglata borrowed from Ref. 24 Con-
WLHY curves lie closer to the simulation points than the trasty,/y;=10 3. Power-law potentials withy=5 in two dimen-
other ones in both figures. The present theory apparentlyions(see text
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much closer to the simulation data, and resemble that of the ACKNOWLEDGMENTS
PC-WLHY theory. These curves were obtained from the M. Barthdémy, P. Ponte Castada, and P. Suguet are

pesant theary it sl oservations can b madS o1 Uy o smalating dcuscions o emars. P Pote
y 9 Castaeda is especially thanked for having communicated to

cal exponents of the two theories subdisidote, however, ' a0’ ior 16 publication, and for a critical reading of
that the corresponding values gf arenot exact to second- pr P ' 9

: ) : . the manuscript.
order in the contrast. Because our theory is strictly valid for
continuous media only, the relevance of comparisons to re- _
sistor networks data may be questioned. Since the extraneou8PPENDIX: FLUCTUATIONS IN THE LINEAR THEORY

. 0 . . . .
dependence i&" due to nonlinearity—ignored in EG71)— In this technical appendix, we complete our explicit solu-
also lies at the crux of the mismatch in H@0), however, it tjon for the EMT in a uniaxial medium with spontaneous
may well be that beyond the fact that the continuous theoryg|arization by giving the details required to compute the

cannot be expected to fully reproduce resistor networks regariances of the field42), and we provide in particular ex-
sults, curing the mismatch would improve the agreement t‘bressions for the variations of=(g;,g,) and of &0

simulations in high contrast situations. =(8ﬁ).88) under variationsse®= (s &) of the uniaxial

permittivity tensors in the phases.
E. Possible improvements We first recall the expression dfin a uniaxial mediun{®

. . e . It can be written
In this perspective, modifications could be carried out

along the following lines. In the author’s mind, the theory g=(g 'QL)Z(—HH/Sﬁy—nL/SE), (A1)
presented here has to be understood as a first step towards a

self-consistent calculation of the probability distribution of where we introduced the depolarization facterg, of a
the electric field in each phase. At this stage, however, nephere in a uniaxial anisotropic medium. Settingz|/s?
self-consistency has been required on moments of degregydu=k-E°, these depolarization factors obey

higher than 2, the missing information being supplied trough

the use of the Gaussian ansdthosen for simplicity rea- n+(d—1)n, =1 (A2)
song. From this point of view, the theory is not free of arbi- .

trariness, which leaves room for further developments. InWIth (d>1,r<1)
particular one could easily generafi2¢he central property
(53) to a wider class of probability distributioiencompass- nj= J
ing the Gaussian onenamely, distributions of the type
P(E)=g(AE-C* 1. AE), whereg(x) is a suitably nor-

dQg ru?
Sa 1+(r—1)u?

malized function decaying sufficiently fast whes-. Note _ Sd—lfl (1—-u?)(d-3)zy2

that neither the property of exactness to second-order in the Sy S 1+(r—1)u?

contrast, nor the critical behavior discussed above, would be

jeopardized by such an extensipeq. (68) and the discus- r

sion of the critical regime are essentially independeng]of = g2F(1.32; 1+ dizi1—r). (A3)

Among additional self-consistent requirements to determine

g, that of recovering an equality in EG70) would certainly ~ The quantity Sy=27%T'(d/2) is the area of the unit
play a central role. d-dimensional sphere, angF; is Gauss’s hypergeometric

function?” In physical dimensionsn| has been computed
under various equivalent fornt4322>We have
VIIl. CONCLUSION

. . nH:1 (d=1), (A4a)
We have presented and discussed idéaamely, the
Gaussian approximation applied to strongly nonlinear com- _ _
posites, and the use of the second-order Taylor expansion n”_\/F/(lJr V) (d=2), (Adb)
with integral remainder allowing for simultaneous self- tanh/I—1
consistency requirements on the first two moments of the nj= r (arc an r _1) (d=3). (A4c)
probability distribution of the electric field in each phase. 1-r 1-r

Thereby, we obtained a theory exact to second-order in the ) ) . ) )
contrast, with a percolation threshold independent of the-XPression(A4c) is analytically continued to the region
nonlinearity, which reduces to the Bruggeman theory in the” 1- This remark alsoaholds fan,, below.

linear case and which apparently admits the PC-WLHY | Under variationsss® of tk(l)e perr(r)nttlv(l)tles in the phases,
theory as a lower bound, displaying in particular the samee. undergoes a variatiode™=(de|,d¢ ) and the corre-

critical exponents. sponding variation of is 9= (59,69, ),
In spite of the qualitative progress made, some problems 0 0
remain, and the discrepancy with simulations data is in need 69 =T dej+(d=1)I'x b, (ASa)
for explanations. Further extensions of the theory, along the 0 0
lines discussed above, might help improving the situation. 09, =T de+(d=1)I', Je] . (ASb)
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We introduced Ty=m/ef?, T.=m,/(efe?), T, a1o=(d—1)(1—(uP)(T 19, (A9b)
=ml/sfz, and the “second order” depolarization factors
m),x,. defined by a1 =(1=(uI)N('x/g.), (A9c)
rdny(r) dn, (r)
m, = s = (A6a) 8=, (k) +(d=1)(1—(u2)(IL/g,), (A9d)
d-—1 dr dr
my+(d—1)m,=ny, (ABb) 5b1=gH<Mﬁ58”>=g”§ Paif?Sef,  (A9)
my+(d—1)m, =n, . (A6C)
Ford=1, 2, 3, respectively, we find Sby=g,(u? 5%):%2 Pami28e . (A9f)
mH =1, (A?a) . ] ) ) )
From these equations, the derivatives in Ed®) are readily
1 \/F obtained by means of the explicit formulas
m, =3 1+—\/_2 (A7Db)
(e MW _[E | o pago, 91\ pa| |78l _ PE° 99,
o TJFQIIMH P°E +§AP a9y o.a
1 arctanh/1—r e deft 9| e
=1 |32+ ——F—|. (A70)
*a-n 1o 1 502 E° 2 99 2‘98ﬁ)
S, - H S WAP)+ P | =~ 9]
Next, the variationsds” are determined by means of the 9 de e
effective-medium equation§u ) =(u,)=1, which lead to
(A10)
the system
0 02 0 00 0
all alz 58 5b1 W E (98“ P*E &gu 1 E
( ) : =( , (A8) = e g ot (AP + —(ufP)
dsy A 58L 5b2 O”SL 0-'8L gH &SL g||
where 0
J de
, , x(%— f—i) (A11)
ay =g (uf) + (=)L) /g), (A9a) ge® ' 9e°
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