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Localization in self-affine energy landscapes
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We discuss the localization behavior of quantum particles in a one-dimensional Anderson model with
self-affine random potentials, characterized by a Hurst expdier®. Depending orH and energyE, a new
type of “strong” localization can occur, where all states are localized in a way different from the regular
Anderson localized states. Using scaling arguments, we derive an analytical expression for the phase diagram
and test it by numerical calculations. Finally, we consider a somewhat related model where the variance of the
potential fluctuations is kept fixed for all system sizesnd a transition between localized and apparently
extended states has been reported.
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[. INTRODUCTION Extended states occur also in certain one-dimensional in-
commensurate systenfs!which can be viewed as systems

In the past decades, the question of localization in disorwith special long-range correlations. Here, the site energies
dered systems has attracted much inte(fest reviews see, are described by a periodic functien=V(nw), whose pe-
e.g., Refs. 1,2 In this work, we discuss, how localization is riod 27/w is incommensurate with the lattice periodicity,
changed, when the disorder is spatially long-range correke., » is an irrational number. Most common is the Harper
lated. We focus on one-dimensional systems and considenodel! whereV(nw)=(w/2) cos(2mw). In this model a
single-particle electronic wave functions in the tight-bindinglocalization-delocalization transition occurs. All states are
approximation. In this approximation, the Sctiimger equa- extended fow<w,=4 and localized fow>w,.

tion becomes In Ref. 12 the inverse localization length was calculated
for one-dimensional systems with stationary long-range cor-
En=Van-1¥n-1t €nt¥ntVonse1¥ni1. (1) related potentials, among them incommensurate systems, in

an analytical perturbative approach for energies not too close
find an electron at sitel e. are the site potentials. and to the band center or to the band edges. It was shown, how to
ron b ' construct site potentials,, that lead to preset localization-

E)/g'tl\}\;é;\;né;%stl-qr?e\i/nhnt;rc}r:sxg; 1‘%?[@ :‘ro]ﬁor\:voir?plwetﬁtrm(?e delocalization transitions. The mobility edges of these sys-
9 " : 9, ems were demonstrated experimentally by microwave tran-
trate on the Anderson model with diagonal disorder, where

all hopping terms are set to unity and only tieg are sition measurements on waveguides with inserted correlated
disordgfedg y y scatterers? In view of the following discussion, we would

It had long been believed that all states of the One_Ilke to stress that this construction was developed for station-

dimensional Schidinger equation in a random potential are ary potentialse, <1 (see below.

localized exponentially* However, asymptotic exponential In this paper, we deal with another type of exception,
P : » asympl PO . _namely with wave functions that are localized, but do not

was rigorously proven only for completely uncorrelated ran?:iecay in-an homogeneous way. We consider the Anderson
Y y.p y pietely model in a self-affine landscape. The aim of this paper is to

dom potentialg: , o : . .
Meanwhile, several systems with differing behavior haveeluudate the conditions leading to nonexponential localiza

been found. Some systems with correlated disordered potetipn in _this case. Th_e crucial ppint IS that the quctuatic_)ns of
tials exhibit a certain amount of extended states. Amon gelf-.affme systems increase with system size. Self-affine po-
these, we can distinguish between long- and short-r.ange cg gnt!als are therefore nonstationary. To estimate these fluc-
’ . truat|0ns, we note that the local potentiajsare given by the
related potential models. An example for the latter are

) . .~ trace of a fractional Brownian particle with Hurst exponent
random-dimer models, where the local potential has a blnaq(|>O 14'15Accordingly the fluctuations of the potential in-
distribution and one of the two valuékere:e,) occurs al- ' '

- o . ) : . ._crease with increasing length scélas
ways pairwise, giving, e.g., chains with series of site energies

Here, E is the energy eigenvalugy,|? is the probability to

€A EA L€ EALEN L EALEN L ER €, EALENER, .- - (2) ((€ny1—€n)?)~121, (3

It has been theoretically predicfednd numerically proven

by transfer-matrix method$ that a discrete number of the Consequently, the potential fluctuations increase with the
eigenstates are extended. Experimental evidence for thesgstem size.

extended states has recently been gained by transmission Recently, the occurrence of a localization-delocalization
measurements on random-dimer semiconductor supetransition was reporté@'’ for a somewhat different model,
lattices® where one imposes the normalization condition
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(4) and calculate the phase diagram between apparently ex-
tended and localized states in this case.

II. MODEL AND METHODS

In the most common form of the Anderson mo@Bl with
diagonal disorder, the site potentialsare uncorrelated ran-

0 500 dom numbers with zero mean, chosen randomly from a uni-
r‘L AN ' . form distribution of widthw, i.e., e, e [ —w/2w/2]. Here,w
o \ H=13/4, . " P .
0 oy rescaled M is a positive constant determining the degree of the disorder.
L= 10 . \\w potential This model has been thoroughly investigated both analyti-
W20 L=3101 AN 4 cally and numerically, see, e.g., Ref. 1. The wave functions
......... - e are all spatially localized in one and two dimensions for any
4ol L=10 N degree of disorder. Apart from the regions near the band
b . Y/ edges, the localization length scales as\(w)~w~?2 for

FIG. 1. lllustration of several normalized potential landscapes
In (8 four types of local potentialg, are shown: Uncorrelated
random potentialtop line), correlated potential withy=0.1, and

0 20000 40000 60000 80000

n

small w.2% Accordingly, A(w) diverges forw—0, but for
sufficiently large systems the eigenfunctions are always lo-
calized, ifw>0.

Less is known for the case of correlated potentials, where
the correlation functiorC(I)E(enenH)E(l/L)Eh:lenenH

self-affine potential landscapes with=1/2 and 3/4. The correlated does not vanish fof>0. For long-range correlated poten-
potential landscapes are shifted by integer multiples of 6. Thdials, C(I)~1"7, with the correlation exponeny (0<vy
curves in(b) show the same potential landscape witk=3/4, but ~ <1), the variances? is independent of. and the series is
rescaled such that the variane€ is kept fixed g=1) for all ~ stationary. Results from the transfer matrix method, from
system sizes considerel £ 9x 10°, 3x10% and 18). It is obvi-  level statistics, and from a renormalization group technique
ous that for increasing system sizes the potential landscape becomiesficate that all eigenfunctions remain localizZ&d?”?*
smoother due to the rescaling. Here, we focus on self-affine random potential land-
scapes, which may be considered having stronger correla-
tions and can be described by a negative correlation expo-
nenty. They can be generated by random wétk&ourier
transform'>?3 or by the random midpoint displacement
method*!®The potential at sitea+ 1 depends on the poten-
tial at siten by €,,,=€,+ 8,, where the increment§, are
normalization corresponds to dividing a} by L™. In this ran_dom nuzmberzs from an |_nterval of me(a?p)):O and f|>§ed
case the states near the center of the band seem to becoMf¥ianceA”=(d;). Regarding the correlations of the incre-
extended foH>1/2. However, as the normalization condi- MeNts, three cases have to be distinguistigdThe 5, are
tion (4) depends on the system size, the structural propertiesncorrelated and the, are thus essentially constructed by
i.e., the local smoothness of the system now become length€ trace of a random walk, i.es, corresponds to the dis-
dependent. Larger chains are smoother than shorter chaiRé&cement of a randorzn walker aftessteps. Since the mean-
and this is the origin for the artificial localization- Square d;splacemerqr (1)) at timet %beys Ficks law for
delocalization transitior® see also Ref. 19note Fig. 1b),  larget, (r°(t))~t, we have((e,. — €n)°)~1 for largel. (ii)
which will be discussed latgr The incrementsy, are long-range correlated with a correla-
Here, we study the problem of Anderson localization ontion function(&,dy.)~1"7,0<y<1 and thee, correspond
self-affine potentials with and without renormalization. First, therefore to the trace of a fractional random wedke, e.g.,
in Sec. II, we explain, how our self-affine chains are con-Ref. 19, where (r?(t))~t*" with the Hurst exponent
structed and how the localization lengths are calculated by 1~ ¥/2, hence 1/2H<1. Case(i) corresponds to an
the transfer-matrix method. In Sec. Ill we consider the sysHurst exponent oH =1/2. Landscapes with Hurst exponents
tem without renormalization and show that a crossover toH>1 can be obtained by successive summations, using the
wards strongly localized states occurs in this case. Thigesulting potentials of the previous random walk as the in-
crossover is accompanied by large fluctuations of the localcrements of the following, and so on. Each new summation
ization length. In Sec. IV, we calculate the wave functions ofwill increase the Hurst exponent by (iii) The increments
the strongly localized states and show that they decay nord, are long-range anticorrelated, which means that sections
exponentially and can thus be distinguished from the usuaf increments with positive mean ()= ""*8>0 are
Anderson localization. In Sec. V, we determine the phaseénost likely to be followed by sections of increments with
diagram that defines the crossover towards strongly localizedegative mean (Ih)=!" " 15,<0 for all section sizesn.
states in theE-H plane analytically and confirm it by nu- In this case the potentials, correspond to the trace of a
merical simulations. Finally, in Sec. VI, we consider self- fractional random walk with 82H<1/2. For all positiveH,
affine potentials with the additional normalization conditionthe series are non-stationary and the fluctuations increase

1o 1 2
oot 5 A (15 ) -1 @
n=1

n=1

that keeps the fluctuations fixed for all system size3his
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with increasing system size according to Eq(3). Figure 1 N

1(a) shows, for illustration, potential landscapes for uncorre- N qrith= NE A, (12
lated systemg$Anderson mode] for correlated systems with v=1

y=0.1, and for self-affine systems wit=; andH=3. We define the corresponding relative fluctuatiahs of the

In the following we consider two models. In the first |ocalization lengths by
model, the variancA? of the increments,, is kept fixed and

represents a measure for thoeal fluctuations. In contrast, 1 N vz
the variance O\ yp=E€X N;l PN —(Inkyp)?| 1 (19
2~ ((ns L~ €n) )~ LM (5) x "
[see Eq.(3)] is a measure for thglobal fluctuations of the 5)\Lyapz[NE (UN)2=(Niyap) 2| Aiyap, (14
system and increases with increasing system kizk the v=1
second modelg? is kept constant by imposing the normal-
ization condition(4), which is equivalent to dividing the lo-
cal potentials by, 1 N 12
Marir=| 12 NP~ Nai?| 5= (15
€n v=1 arith
RUERTE (6) . . . .
L As we will see in the following, these fluctuations show

éarge maxima at transition and crossover points between
gsates of different localization behavior and we will use the
maxima as indicators for the positions of these points. The
same method has been used to determine the transition points
in the context of electronic wavefunctions in 1D random
periodic-on-average systems by Deyathal

To get more information about the localization behavior,
it is useful to determine not only the localization lengths and
their fluctuations but also to calculate some of the eigenfunc-
tions of Eq. (1) with diagonal disorder. We have used an
iteration proceduré® which we briefly describe now. We

Figure Xb) demonstrates that this rescaling smoothens th
sequences considerably for larger systems. If the sequenc
are generated by the Fourier transform metfidéi(as done

in Refs. 16,17, the rescaling is implicitly contained in the
normalization factors.

In order to determine the localization behavior of the
eigenstates of Eql), we computed the localization lengths
N(E) directly, following the well-known transfer-matrix
method'?* In the transfer-matrix algorithm, one writes Eq.
(1) as recursion equation in matrix form

E—e, —1 consider a chain of 2'+1 sites o=—L",...,0,...L")
M ( ¥ _ ‘Z’“H) M. = @) with periodic boundary conditions. Starting with an initial
"\ Yoy Uy |’ n 1 0 value for the energyE, we define the coefficienta_;=E

_ o _ _ —€_1, ap=1, anda;=E— €;, and recursively set
The inverse localization length is defined by

1 |y a,=(E—-e))ap_1—an_o, (16)

N(E) == lim = In|—, 8
(E) Lok [0 ® a n=(E-€_pa_(n-1y—a (n2 (17)
for n=2,... L’. Using these coefficients, Eq1l) can be

where| s, /| can be obtained for large from the smallest

of the two eigenvalues of the product matrix recursively rewritten to become

L ‘//O:anlpn_anfllanrl:afn‘/ﬂn_af(nfl)‘ﬂf(mrl)
Mt=T] ™m,. 9) (18
=t forn=1,...L’. Forn=L’, the periodic boundary condi-
Hence, by diagonalizintyl“, we obtain both eigenvalues and tions ;= _, and ¥_+1)= ¥ can be inserted, and
thus the localization length. The\ obtained this way may after setting the starting valug,=1, ¢, and_ ., can be
fluctuate very strongly for different configurations. There-calculated. Using these results, &} and¢_,, can be calcu-

fore, in order to obtain th& for a given energyE, we aver-  lated recursively fon=L"—1, ...,1using Eq.(18). By this
aged\ for N=10" configurations by different average pro- procedure, (yet unnormalizef results for all ¢,, n
cedures =—L’,...,0,...L" are obtained. Since we use an odd

number of lattice sites, the only equation that still might not
be fulfilled is Eq.(1) for n=0 [not included in Eq.(18);
' (10 again withyy=1]:

1 N
)\typzex;{ﬁz Inx(®

v=1
LN -1 €t Y1+ —E=0. (19
)\Lyapf[ﬁvzl ()\(V))_l} : (1D This equation is only fulfilled if our starting value f&is an
eigenvalue. Hence, by varying the starting value Eosuc-
and cessively until Eq.(19) is fulfilled, we arrive at an eigen-
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FIG. 2. System size dependencegafthe localization lengths
and (b) its fluctuationss\ for self-affine potential landscapes with
H=1/2 that have been generated by summing uncorrelated rando
numbers with different variances?. The calculations were per-
formed by the transfer matrix method Bt=0.5 (close to but not
directly at the band centefor 10* configurations. The symbols
indicate: typical averagefEgs. (10),(13)] for A=0.005 (), A
=0.01 @), andA=0.02 (V); arithmetic averag€Egs.(12),(15)]
for A=0.01 (@); Lyapunov averag¢Egs. (11),(14)] for A=0.01
(filled diamonds.

FIG. 3. Plot of(a) the typical localization length, [Eq. (10)]
and (b) its fluctuationsd\y, [Eq. (13)] versus the energ for
Bbtential landscapes withi=1/2 for five system sizest =211
(), L=21B(0), L=2(A), L=2(V), andL=2°(0). 10}
configurations have been considered in the averaging procedure.
The self-affine potentials have been generated by summing uncor-
related numbers, with A=(5,)?=0.01.

ders of magnitude smaller than the maximum. Since in this
regime \ is microscopic, we expect that single parameter
scaling’ does not hold in the limit of infinite system size for

valueE and an eigenfunctiog,, n=—L",...,0,... L', oo.ocolad self-affine systems.
Whigh is normalized in the last stépliminating the arbitrary This interesting behavior witkdecaying\ (L) is in con-
choiceyo=1). trast to the behavior of the localization lengths in the regular
uncorrelated Anderson model. Therefore, it is reasonable to
[ll. STRONGLY LOCALIZED STATES: LOCALIZATION investigate the fluctuationd\ of the localization lengths,
LENGTH AND FLUCTUATIONS IN NONRESCALED defined by Eqs(13)—(15). They are shown in Fig.(B) for
SELF-AFFINE ENERGY LANDSCAPES the same parameters as in Figa)2 The drop of\(L) is

ccompanied by large fluctuatioda , which show maxima
t the inflection point ofA(L). While the fluctuations of
T,_yap and\ 4, Show a lot of noise in the crossover regime,

For our numerical studies we first consider nonrescale
self-affine potential landscapes generated by the rando

2 i 2 :
walk method?? where the fluctuations? of the potential the fluctuations ok, (open symbols in Fig. Byield smooth

lsilnocizciiplsiz 'gcrﬁg\?vetk\:\gigyi?ngjslgge g)epEgr.\(o?é h'[\/\llgcglriitatio r:?md symmetric curves. For very small and very large values
length (L) and its fluctuationss\ behave close to the band of L the fluctuations disappear and the different averages of

. . N\ approach each other for identical In the following, we
2
center. We calculated(L) for different variancea“ of the concentrate ok, .

increments and for the different averaging procedures of Eqs.” _. _ _
(10—(12). The localization behavior of the eigenstates can Figures &) and 4@ show, forH=1/2 andH=3/2, the

be deduced from the dependence\ét ) on the system size typical localization length\,(E) calculated by the transfer-
L. For delocalized statefgwith N()>L], N(L) increases
linearly with L, whereas, for localized statém the usual
Anderson modglit approaches a constant value fof-.
Note that the possible variety of scaling behaviors is more
rich in the case of rescaled potentiééee Sec. Vl

Figure Za) shows for fixed energfg= 0.5, how the local-
ization lengths\ (L) behave with increasing system sizén
our case. For small, A (L) increases approximately linearly
with L, indicating delocalized states. Contrary to the behav-
ior in the usual Anderson model(L) does not cross over to
a constant value for large, but drops sharply, after having
reached a maximum value. The drop occurs when the system 10
sizeL exceeds a limit valuéthat depends sensitively ak,
H, andE, as well as on the averaging procedure. The value FiG. 4. Plot of(a) the typical localization length,,, and (b) its

of | will be derived in Sec. IV. FolL.>1, A(L) decreases fluctuationssy, versus the energ for potential landscapes with
monotonously withL. At L values much larger than all rel- H=3/2 for five system sizegsame symbols as in Fig.).3The

evant length scales in the system, the decay becomgsmtential landscapes have been generated by double summation of
smoother and the localization lengthbecomes several or- uncorrelated numbers, with A=5x10"".

2 a1 o 1 2
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I lilh i T T _ strong localization are shifted Hy and becomee,—E|=2,
2™ 'W; ?" Wi, A i as can be seen in Figs(d,5(c). Now, the wave functions
(2) W T > drop, as soon as, becomes larger than2E or smaller than
'Q E-o0 1 o —2+E. This behavior can be understood by the following
@ ] < considerations: If we apply Eql) to a linear chain with all
% 1-20 €,=0, the band of allowed eigenenergies is given by
2 @ I8 el 1530 e[ —2,2]. If all local potentials are the same,=¢, Eq. (1)
& -1000 -500 .0, 500 1000 depends only onE—€) and not onE and e separately. In
position n : . .
- — this case, the band is shifted to valueg ef2+ €,2+ €]. For
X LI | ©1ll 1= fluctuating e,, we can define a local band, following the
== Ll 1' A —}E potential landscape and ranging locally fror2+ e, to 2
41 (®) 7 g0 +€,. In regions, wherée,— E| exceeds 2E is outside this
N ) 10 local band and the respective eigenstates are strongly
w - n
= — 120 damped and show a sharp decay. In a very large self-affine
g= 30 system, where the local potentials are growing towards very
2 300010000 -1000~ 0 1000 large values, only strongly localized states can occur. These
& position n position n considerations are valid for all self-affine potential land-

scapes wittH>0. The “critical” system size, where the po-
FIG. 5. Three examples of strongly localized wave functionsiantial e, of one site exceeds the bound, defined |y
(Iower.curves, right scajewith (a) E~O0, (b) E-41,‘ and(c) E —E|=2, for the first time, depends d.
~—1 in energy landscapéspper curves, left scalavith H=1/2, We would like to note that this strong localization behav-
where several site energién the shaded regiopsre larger than o ¢ self affine potentials has to be distinguished from the
sEit-;-Zer?errzirgglfgu?:f;uiagncgroszfsaeenalrr;;)illiltucdaeses that these usqal Anderson localization, \_/vhere Fhe wave functions have
' an irregular structure and their amplitudes decay roughly ex-

_ _ _ ponentially. In contrast, in the case of strong localization, the
matrix method for several fixed system sizes over the wholgaye functions decay practically instantaneously, when the
energy range and averaged oW 10* configurations ac-  gself-affine potentials exeed the critical value. At the cross-
cording to Eq.(10). For small system sizes ariginear the  oyer towards strongly localized states, the potentials fluctu-
band centen\,(E) increases approximately linearly with  ate petween the upper and the lower bound and are thus
indicating delocalized states. For largeand at the band gypsequently lying above and below the critical values. As a
edges, however, this behavior is reverseg,(E) decreases consequence, decay regions and roughly constant regions al-
.dras.tically.with increasing system size. We refer to the stategarnate, yielding a nonexponential, patchy decay of the wave
in this regime asstronglylocalized states. _ functions. From this we can understand the large fluctuations
~ Figures 3b) and 4b) show o\ for the same configura- of the localization lengths in the crossover regime. We think
tions as in 8a) and 4a), respectively. It can be clearly seen that the usual definition of localization lengths by the
that the fluctuations have maxima at the crossover that IByapunov exponent is not appropriate in this situation, be-
situated near the band edges for small system dizasd  cause of the nonexponential decay of the wave functions.
moves to the band center for larderFor very large system |nstead, the typicallog) average and its fluctuations show a
sizes, all states are strongly localized and the fluctuations gf,;ch more smooth and symmetric behavior.

A drop to very low values again. This enables us to deter- A different approach may measure the size of the region,
mine the crossover towards strongly localized states by th@here the wave function is large. For valuestbk 1 this
maxima in the fluctuationésee also Ref. 25 and Sec).V  can be done by random walk theory: We know that the wave
functions begin to become strongly localized, whep—E|
exceeds 2 within the system site The self-affine energy
landscapee, can be considered as the trace of a one-

In order to determine the origin of these strongly localizeddimensional random walk with the step leng#)=¢,
states, we have investigated the explicit form of the eigen—e¢,,_,, where the “first passage time,” i.e., the number of
functions. Figure 5 shows three examples of eigenfunctionssteps” | required for reaching a given “distance” scales
for E~0, E~1, andE~ —1 together with the correspond- g
ing potential landscapes. Let us first look at the wavefunction
with E~0: It can be seen that the amplitude sharply drops at l(e) |[Ae
sites where the local potentia} exceeds a value of 2 of2. A_l A
The drop increases drastically with increasing size of the
region where the potential is outside these boufstmded Here, A=(353)?is the mean step length aq andA, are
regions in Fig. 5. With increasing system size, the fraction nonuniversal parameteﬁ_ldentifying ¢ with the minimum
of sites with potentials exceeding the boupegj|=2 in-  of 2—E and 2+E, i.e., with 2—|E|, we finally get
creases and the wave function becomes more and more
strongly localized. |(_E)_( 2—|E|)1/H

For wave functions with eigenenerg 0 the bounds for A, 2 A

IV. STRONG LOCALIZATION: WAVE FUNCTIONS

1H
(20)

(21)

134209-5
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of ' ' ' ' ' R The remaining parametess; and A, have been determined
by separate calculations tfe), as explained in the figure

08 caption of Fig. 6. Figure 6 shows, that the simple relationship
(22) describes surprisingly well the dependenceegion A,

£6 on L and onH for self-affine potential landscapes with

<1. The wave functions become strongly localized above
the crossover. The critical lines are symmetrid(E)
=H(—E) and the extent of the regime of strongly localized
states(upper part of Fig. Bincreases with increasing.

04

0.2 e

i
1 4

20 -15 -1.0 -05 0005 10 15 20

0.0 L Il Il Il

VI. THE PHASE DIAGRAM IN A RESCALED
FIG. 6. Phase diagram for the Anderson model with self-affine SELF-AFFINE ENERGY LANDSCAPE

potentials generated by Fourier transform and following single sum-

mation. The crossover towards strongly localized states, obtaineld I(\jlext we consider % rbe Iazjed '\r/ln odel of dret%caled po;entlal
from numerical simulations, is shown in thé-E plane for the andscapes, suggested by de Moura an rahere the

following lengthsL and disorder strengthd: L=2% A=0.01 variancng of the potentials is kept constafgee Eq.(4)].

(0), L=216 A=0.002 @), L=215, A=0.001 (), and L For sufficiently large values of all states are strongly lo-
=218 A=0.001 (filled squares L=28 A=0.0002 @), L calized, while for sufficiently small values of (and suffi-
=218 A=0.0001 (filled triangles. The theoretical curve§Eq.  ciently large values oH), the local fluctuations of the re-
(22)] are included for each by solid lines forL=2%% and by = scaled potentials decrease drastically, and we can expect
dashed lines fok. = 2'°, To determine the parameteks andA,, we  apparent “extended” statefsee Fig. 1)]. In Ref. 16, an
have calculated(e) for several values of. By plotting Al"/e ~ approximate phase diagram has been determined for this ap-
versusH in a semilogarithmic scalésee inset we obtainA,  parent transition for one value ef. According to Ref. 16,
=15.2+1.0 andA,=0.58+0.03 by a linear fi{see Eq(20)]. belowH=1/2, only localized states occur.

For 1/2<H<1, we can again generate the potentials by
as a characteristic length scale in the self-affine systems. Thike trace of a random walk and find an analytical expression
relation will help to identify the crossover towards the re-for the critical lines that separate regions of localized states
gime of strongly localized states as shown in the followingfrom regions of apparently extended states. When the poten-
section. We would like to note that the characteristic lengtttials are rescaled, the mean step lengytdepends or. and
scale I(A,H,E) is distinct from the characteristic length on the variancer? by
scalelg recently introduced by Deyckt al. in Ref. 27 to
describe the crossover to regimes where single parameter A (Bl>H

scaling is violated. —=0
B>

L (23)

V. THE PHASE DIAGRAM IN A SELF-AFFINE ENERGY

L ANDSCAPE whereB; andB, are parameters, similar #, andA, in Eq.

(20). Inserting Eq.(23) into the relation(22), we obtain for
Next we investigate how the crossover towards stronghyfhe critical energye.
localized states occurs. If the potentiglsreach the critical

value 2—|E| within the system size, the states become BB,
strongly localized. Therefore, it is obvious, that for suffi- Ec=%|2—0—/—| (24)
ciently large values of all states are strongly localized. For ATA;

sufficiently small chains and sufficiently small values of the

Hurst exponent, on the other hand,(E) can reach the For values oH=1 we obtain non-stationary increments and
system sizeL (or even larger valugsand strongly localized the theoretical derivation is not valid in this case.

states can not occur. For fixéd the critical linesH(E) can Figure 7 shows the resulting phase diagram in Bkl

be estimated with the help of E(1). If I(E) is smaller than  plane for several values of the variane® In addition to the
the system size, the states are strongly localized. For a giveignormalization of the potentials, the numerical procedure

system sizé., we have therefore a critical ener§y, where  has been the same as for Fig. 6 and again, the transition
l(Ec) =L, that defines a crossover towards a regime of Stron@OlntS have been determined from the maxima of the fluc-
diagram is independent &f. The critical lines are symmet-
AL\ ric, H(E)=H(—E) and the width of the regime of “ex-
Ec=*[2——|—] |. (22
Az Ay o . .
with increasing variance-.

Figure 6 shows the resulting phase diagram in Eakl For Hurst exponentsl <1, we can compare our numeri-
bols have been obtained by transfer-matrix calculations, inparameteré\;,A, are the same as in Fig. 6 aBgd,B, are fit
vestigating again the fluctuations of the localization lengthsparameters. The agreement between the theoretical predic-

localization. Rearranging E421), we get tuations of the localization length. Note that now the phase
tended” stategnear the band center fdi >1/2) decreases
plane for several values df and two values of.. The sym-  cal results with the theoretical predictions of E84). The
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20 ' ' ' ' ' ' ' decay roughly exponentially, we find strong localization
OF XH oA v L S * v Ae mX - . .
exten- characterized by a patchy structure and a nonexponential de-
*BeL ¥V ¢ ded” ¢ vV Lo EX cay of the wave functions. In the regime of strong localiza-
I5F xmea v o o v aemx tion the system-size dependent localization lerdghreases
o cmea v e e v se mx with increasing system size. This behav[or is drastically dif-
ferent from the usual Anderson model with uncorrelated po-
U U R N A I B tentials, but is a universal feature of all self-affine potentials
Xhowh v e s A opx with given H independent of the way they are constructed.
05 e gkl gl gk Indeed, the potentials always have similar properties as frac-

I W R Y Al

AN LB tional Brownian motion and show similar universal features.
20 -15 -0 05 00p05 10 15 20 Accordingly, all eigenfunctions are strongly localized, if the
, , chains are long enough. For each finite chain of leihgtive

FIG. 7. Phase diagram for the Anderson model with rescalegjq 5 crossover towards strongly localized states, that de-
self-affine potentials generated by Fourier transfésimilar to Ref. ends orH andE. In this intermediate case, the usual defi-
16). Th'e transitio_n from apparently e>_<tended states to Iocglize ition of localization lengths is no longer appropriate, since
states is shown in théi-E plane for six disorder strength”  the fluctuations become very large. We applied random walk
=0.05 (crossep 0.1 (boxes, 0.2 (circles, 0.3 (triangles up, 0.5 theory to define a characteristic length sch(€), which
(triangles down, 1.0 (diamonds. For H<1, the theoretical curves jascribes the mean size of the region, where the patchy wave
[Eq. (24)] are included in the figure for eaeh (dashed lines The function is large. Using scaling arguments, we derived an

parameter#A; and A, are the same as in Fig. 6 af=8.8 and - . . .
B,=1.83 are fit parameters. It has been verified by separate (:alcdgl-nalytlc{JlI expression for a phase diagram definifig a

lations that they are in the right order of magnitude. Fox 1/2, given chain I_engthL) the crossover t_owards_, a regime O.f.
apparently extended states do not appear, in agreement Wif?ﬁtror_]gly localized s_tates_. We t_ested th.ls relation for the Cm.l'
Ref. 16. cal lines by numerical simulations, using the transfer matrix
method.
tion and the numerical findings fdE. is reasonable. Below Fma_lly, wezcon3|dered a_somewha_t relqted model where
H=1/2, the localization lengths incrcease slower than the syst—he vanancer of the potential fluctuafuon_s IS kept f|>§ed _for
tem siz'eL all system sized.. Recently, a Iocal!zatlon—delocallzatlon
' transition has been reported for this model fde>1/2,
which, however, is not a generic feature of self-affine poten-
VII. CONCLUSIONS tials with H>1/2, but due to the rescaling of the potentials.
In conclusion, we have investigated the localization be—W.e also determined the phase diagram for this case a}nq ap-
havior of quantum particles in linear potential Iandscapefl'Ed random walk theory to obtain an analytical description
with self-affine random potentials, characterized by a Hurs or H<1.
exponentH>0. In this case, the potentials are nonstationary
and we found that a new type of “strong” localization can
occur, as soon as the local potentials exceed the vdiues  We would like to thank ltzhak Webman for valuable dis-
+2, whereE is the energy. While in the usual Anderson cussions and the German Israeli Foundation and the Minerva
model, the wave functions have an irregular structure androundation for financial support.
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