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Effect of transition layers on the electromagnetic properties of composites containing
conducting fibres
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The approach to calculating the effective dielectric and magnetic response in bounded composite materials
is developed. The method is essentially based on the renormalization of the dielectric matrix parameters to
account for the surface polarization and the displacement currents at the interfaces. This makes possible the use
of the effective-medium theory developed for unbounded materials, where the spatially dependent local di-
electric constant and magnetic permeability are introduced. A detailed mathematical analysis is given for a
dielectric layer having conducting fibres with in-plane positions. The surface effects are most essential at
microwave frequencies in correspondence to the resonance excitation of fibres. In thin layers~having a thick-
ness of the transition layer!, the effective dielectric constant has a dispersion region at much higher frequencies
compared to those for unbounded materials, exhibiting a strong dependence on the layer thickness. For the
geometry considered, the effective magnetic permeability differs slightly from unity and corresponds to the
renormalized matrix parameter. The magnetic effect is due entirely to the existence of the surface displacement
currents.
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I. INTRODUCTION

Metal-dielectric composite materials have received mu
attention because of their importance in modern technolo1

Metallic inclusions, in particular metallic fibres, can rei
force the dielectric and magnetic properties of ceramics
plastic materials. Electromagnetic properties of the comp
ite materials are analyzed customarily in terms of the eff
tive macroscopic parameters: dielectric constant«ef and
magnetic permeabilitymef , which are calculated by averag
ing the responses from material constituents.2–6 The
effective-medium theory offers quick insight into line
problems, which are difficult to analyze by other mea
However, it has disadvantages typical to all mean-field th
ries since it ignores the fluctuations in a system. It assu
that the local electric and magnetic fields are the same in
volume occupied by each component of a composite.
some cases the local-field fluctuations by no means ca
ignored, as in the case of a percolation composite in
frequency range corresponding to the plasmon resonanc
metal grains.7 Then, the application of effective-medium
theory ~EMT! is rather questionable and adequate modifi
tions are needed. Another example is bounded composite
composites containing interfaces. The microscopic lo
fields near the surfaces~or interfaces! differ considerably
from those in the internal regions, due to the existence of
scattering fields from boundaries. In the approach develo
here a specific surface polarization is introduced into
EMT approach. The effect of the surface polarization can
strong in thin materials, the characteristic size of which
smaller than the correlation length.8 For elongated inclusions
in the form of a fibre, their lengthl @r 0 , wherer 0 is the fibre
radius, corresponds to the correlation length. For many e
0163-1829/2001/64~13!/134205~12!/$20.00 64 1342
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neering materialsl is of the order of few mm, whereas th
composite layer thickness is in the range of fractions of m
In this case, the boundary effects must be taken into acco
when considering the effective response from a thin syst
This is the purpose of the present paper.

A general approach to systems containing interfaces
solving the Maxwell equations in the regions, which are
garded as homogeneous and imposing the boundary co
tions at the interfaces. The system is then characterized
«ef andmef having a stepwise variation. However, since t
microscopic fields near the boundaries are different, the
fective parameters vary gradually within certain transiti
regions ~known as transition layers! adjacent to the inter-
faces. They also depend on properties and geometry of
media near both sides of the interface. In certain cases,
transition layers can change the response from the entire
tem even if the system is thick.9,10 For example, the concep
of a transition layer is used to explain the elliptical polariz
tion of the light reflected from an isotropic medium.11,12 In
the present work we also discuss the effect of the transi
layers on the dielectric response~calculating the reflection
and absorption coefficients! from thick composite systems.

The composite materials with elongated conducting inc
sions have a number of characteristics specific for this s
tem, which eventually result in strong boundary effects.
such composites, the concentration of the percolation thre
old is proportional to the aspect ratiopc}r 0 / l .6,13,14 In the
limit r 0 / l !1, pc is very small, however, the inclusion con
tribution to the effective dielectric constant becomes la
already for very small concentrationsp!pc . It implies that
the interaction between the fibres is strong even forp!pc
and the assembly of conducting fibres is a system wit
long-range strong interaction having a characteristic dim
©2001 The American Physical Society05-1
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sionless correlation length ofl /2r 0 . Then, the surface effect
have to be essential at large distances comparable with
correlation length. On the other hand, the fibre currents
duce surface displacement currents resulting in the fibre
polarization, which weakens the interaction in the transit
layer, changing the basic property of the system.

Another characteristic feature of composites contain
conducting fibres is the existence of a manifold resonanc
microwave frequencies~lm;2l , where lm is the wave-
length in the dielectric matrix!. This effect is responsible fo
the dispersion of the effective dielectric constant, which o
erwise at these frequencies appears only in the vicinity
pc .6 For p!pc , the frequency behavior of«ef is of the
form15

«ef~v!5«1(
n

An

v res,n
2 2v21 ibnv

, ~1!

where« is the dielectric constant of the matrix andv res,n are
the resonance frequencies. The interaction with the boun
changes the resonance excitation condition and the sy
has a different sequence of the resonance frequenc8

Therefore the result of interaction with boundaries is
modification of dispersion for«ef at microwave frequencies
In this analysis, the desperation characteristics are restri
to this frequency range~but lm@r 0!.

The approach developed in this paper essentially us
single-particle model within which the boundary effects a
considered. First, the current distribution is analyzed in
antenna approximation~ln l/2r 0@1, lm@r 0! at the fibre
placed in a dielectric layer of thicknessh. This problem was
investigated in Ref. 8, however, we need a more deta
analytical analysis which is of great importance for the c
culation of «ef . The equation for current distribution i
bounded layers can be transformed to the form valid for
infinite system using a renormalization procedure. In t
sense, the boundaries can be eliminated, instead of them
renormalized matrix parameters~dielectric constant«b and
magnetic permeabilitymb! appear in the equation determin
ing current at the fibre. This approach allows the further
of EMT in its form developed for unbounded materia
There are a number of approximations in the literature
obtaining the effective parameters of the composite mate
with elongated inclusions. We use here the theory develo
in Ref. 6 as the most complete and consistent with exp
ment and not restricted to the quasistatic limit. An importa
feature of this theory is a spatial dependence of the effec
dielectric constant near a fibre for scales smaller than
fibre length. The nonlocal property of«ef is even enhanced
by the interaction with the boundary: the environment n
the fibre is characterized by«b andmb which depend on the
layer thickness and the fibre position. As a result, the eff
tive dielectric constant exhibits a strong dependence on
layer thickness for thin materials~thinner than the transition
layer!. In the case of thick materials, however, the role of t
transition layers is not essential and boundaries effects
be neglected.

For the geometry considered the magnetic permeab
mb arising in the renormalization method constitutes the
13420
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fective magnetic properties. It is originated by the combin
tion of the fibre current and surface displacement curr
which together form a circulatory current inducing a ma
netic moment directed along the magnetic field~real part of
mb is larger than unity!. In the present case, (mb21)!1 and
is not noticeable in the experiments. However, if the co
posite layer is placed on the metal substrate it may be es
tial to take account of the magnetic response. The exp
mental observation of the magnetic response would b
direct confirmation of the boundary effects.

II. SINGLE-PARTICLE MODEL

This section concerns a single-particle approximation8 for
the response of thin dielectric layer with a conductive fib
excited by an external electric field. This problem allows t
effective parameters of layered composite materials to
found taking the boundary effects. The construction of a c
rect EMT equation uses the differential equation for curr
density at the fibre, which involves the effect of boundari

A model depicted in Fig. 1 is considered. A conducti
fibre with a radiusr 0 and a lengthl is placed in a dielectric
layer of thicknessh parallel to its surface at a depthh0 @r 0
,h0,(h2r 0)#. The layer is characterized by a dielectr
constant« and magnetic permeabilitym. The fibre is as-
sumed to be an ideal conductor. This approximation is r
sonable when considering the boundary effects since the
rent distribution inside a fine fibre does not alter t
polarization at the surface. The system is subjected to a
uniform electrical field directed along the fibre~x direction!:
E05(E0x,0,0)exp(ivt). The z direction is chosen along th
normal to the layer, and the fibre is atz52h0 , y50. The
problem is considered in so-called antenna approximatio16

( l @r 0 , lm@r 0 where lm52pc/vA«m! which allows the
distribution of the current density at the fibre to be rep
sented asj (x)d(y)d(z1h0) whered is the Dirac function.
The electric and magnetic fieldsE and H scattered by the
fibre are convenient to write in terms of a vector potentialA
and scalar potentialw ~Gaussean units are used!,

E52
4p

c2 ivmA1
4p

iv«
grad divA, H5

4p

c
rotA. ~2!

In the present case, only two components of the vec
potentialAx andAz are needed, which are represented in
form of convolutions with current densityj (x) ~see
Appendix A!,

FIG. 1. Geometry of a single-particle problem: a dialectic lay
with a conducting fibre.
5-2
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Ax1,2,3~x,y,z!5@Gx1,2,3~x,y,z!* j ~x!#,

Az1,2,3~x,y,z!5@U1,2,3~x,y,z!* j ~x!#. ~3!

The convolution of two functionsg(x) and f (x) is deter-
mined as the following integral:

„g~x!* f ~x!…5E
2 l /2

l /2

g~x2s! f ~s!ds,

where indexes 1, 2, 3 designate areaszP@0,̀ 1#, zP
@2h,0#, and zP@2`,2h#, respectively. FunctionGx1,2,3
satisfies the equation

DGx1,2,31k1,2,3
2 Gx1,2,35q1,2,3 ~4!

with the boundary conditions

mGx2uz505Gx1uz50 ,

mGx2uz52h5Gx3uz52h ,

]Gx2

]z U
z50

5
]Gx1

]z U
z50

,

]Gx2

]z U
z52h

5
]Gx3

]z U
z52h

.

.

.

13420
Herek1,35v/c andk25(v/c)A«m are the wave numbers in
free space and dielectric layer, respectively,q1,3[0, q25
2d(x)d(y)d(z1h0), and D5]2/]x21]2/]y21]2/]z2 is
the Laplace operator.
FunctionsU1,2,3 satisfy the equation

DU1,2,31k1,2,3
2 U1,2,350 ~5!

with the boundary conditions

«U2uz505U1uz50 ,

«U2uz52h5U3uz52h ,

S ]U1

]z
2

]U2

]z D U
z50

5S 1

«m
21D ]Gx1

]x U
z50

,

S ]U3

]z
2

]U2

]z D U
z52h

5S 1

«m
21D ]Gx3

]x U
z52h

.

Equation~4! together with the boundary conditions is se
sufficient, whereas the boundary conditions for Eq.~5! con-
tain functionsGx1 andGx3 entering the boundary condition
for Eq. ~4!.

For further analysis, onlyGx2 and]U2 /]z are needed,
Gx2~x,y,z!5
exp~2 ik2r !

4pr
1

1

4pE0

1` ax2~k,h,h0!exp~g2z!1bx2~k,h,h0!exp~2g2z!

D2~k,h!g2
J0~kr!k dk, ~6!

]U2~x,y,z!

]z U
«Þm

5
]

]x F 1

2p E
0

1` @az2~k,h,h0!exp~g2z!2bz2~k,h,h0!exp~2g2z!#~«m21!

D1~k,h!D2~k,h!
g2J0~kr!k dkG[ ]Ũ2

]x
, ~7!
the
on-

ld.
where r 5Ax21y21(z1h0)2, r5Ax21y2, g1(k)
5Ak22k1

2, g2(k)5Ak22k2
2, andJ0 is the Bessel function

In Eq. ~7! a new functionŨ2 is introduced. Integrals in Eqs
~6! and ~7! use the following functions:

D1~k,h!5~g2
21g1

2«2!sh~g2h!12g1g2«ch~g2h!,

D2~k,h!5~g2
21g1

2m2!sh~g2h!12g1g2mch~g2h!,

ax25~g22g1m!$g1msh@g2~h2h0!#1g2ch@g2~h2h0!#%,

bx25exp~2g2h!~g22g1m!@g1msh~g2h0!1g2ch~g2h0!#,

az25$g1msh@g2~h2h0!#1g2ch@g2~h2h0!#%~g21g1«!

3exp~g2h!2@g1msh~g2h0!1g2ch~g2h0!#

3~g22g1«!,
bz25$g1msh@g2~h2h0!#1g2ch@g2~h2h0!#%

3~g22g1«!exp~2g2h!2@g1msh~g2h0!

1g2ch~g2h0!#~g21g1«!.

A special method of calculating the integrals in Eqs.~6! and
~7! is given in Appendix B.

The tangential componentEt of the total electric field at
the fibre surface equals zero. In the approximation used
circulatory currents in the fibre are neglected, then this c
dition is written in the form

Et'~E0x1Ex!u xP@2 l /2,l /2#

y21~z1h0!25r
0
2
50, ~8!

whereEx is the longitudinal component of the scattered fie
Equations~2! and ~8! give
5-3
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2E0x5Ex5
4p

iv« Fk2
2Ax21

]2Ax2

]x2 1
]2Az2

]x]z G xP@2 l /2,l /2#

y21~z1h0!25r
0
2

.

~9!

Using Eqs. ~7!, ~9! and the equality ]2Az2 /]x]z

5]2(U2* j )/]x]z5]2(Ũ2* j )/]x2 the basic integrodifferen
tial equation is obtained:

F ]2

]x2 @~Gx21Ũ2!* j #1k2
2~Gx2* j !G xP@2 l /2,l /2#

y21~z1h0!25r
0
2

52E0x

iv«

4p
. ~10!

For Eq. ~10!, the boundary conditions for current density
the fibre ends have to be imposed,j (2 l /2)5 j ( l /2)50.
Equation~10! is simplified calculating the convolutions ap
proximately. Using Eqs.~6! and ~7!, the following approxi-
mations for the functionsGx2 and Ũ2 are obtained in two
limiting cases~h→0 andh→`!:

lim
h→0

Ũ25
~«m21!

m

e2 ik1r

4pr
, lim

h→`

Ũ250,

lim
h→0

Gx25
1

m

e2 ik1r

4pr
, lim

h→`

Gx25
e2 ik2r

4pr
. ~11!

Because the fibre has very small diameter 2r 0 , from Eq.~11!

it follows that the real parts Re(Gx2) and Re(Gx21Ũ2) have
sharp positive picks of the order of 1/r 0 in the vicinity of x
50 for any value ofh. To the contrary, the imaginary par
Im(Gx2) and Im(Gx21Ũ2) are limited when bothx and r 0
approach zero. Integration of the real parts in the vicinity
the picks~more exactly, within the interval@2n,n#, Alr 0/2
!n! l /2! gives the main contribution to the integrals. In th
case the convolutions are approximated as17

@Re~Gx21Ũ2!* j #' j ~x!E
2n

1n

Re~Gx21Ũ2!dx5 j ~x!Q1 ,

~12!

@Re~Gx2!* j #' j ~x!E
2n

1n

Re~Gx2!dx5 j ~x!Q2 ,

where the ‘‘form factors’’Q1 andQ2 are positive and repre
sent the area under the corresponding narrow bell-sha
curves.

Substituting approximations~12! into Eq. ~10! yields

Q1

]2

]x2 S j ~x!1 i
@ Im~Gx21Ũ2!* j #

Q1
D

1k2
2Q2S j ~x!1 i

@ Im~Gx2!* j #

Q2
D'2

iv«

4p
E0x .

~13!

Since the parametersQ1 and Q2 involve a large factor
2 ln(l/2r 0) ~see Appendix C!, Eq. ~13! can be further simpli-
13420
t

f

ed

fied when the convolutions with the imaginary parts are
glected in comparison with those with the real parts~see
Appendix C!,

Q1

]2 j ~x!

]x2 1k2
2Q2 j ~x!'2

iv«

4p
E0x , ~14!

j ~2 l /2!5 j ~ l /2!50.

Equation ~14! is a basic differential equation in terms o
which the boundary effects are introduced in EMT with t
aim to modify the effective parameters.

Equation~14! describes the current distribution in the la
ered system and allows a generalized expression for the r
nance wavelengthsl res to be obtained. In an infinite medium
the value ofl res is given by18,19

l res,n5
2lA«m

2n21
; n51,2,3... .

The effect of the boundaries results in a nonlinear dispers
equation

l res,n5
2lA«m

2n21
AQ2~l res,n ,h,h0!

Q1~l res,n ,h,h0!
; n51,2,3... . ~15!

The dependencies on thicknessh of the main resonance
frequency f res5c/l res,1 (n51) obtained from Eq.~15! for
different « (Im «5Im m[0) are given in Fig. 2~a!. The pa-

FIG. 2. Resonance characteristics of a dielectric layer wit
conducting fibre. In~a!, resonance frequencyf res as a function of
the layer thicknessh for different dielectric matrixes, in~b! deriva-
tive ] f res/]h versush, which defines the characteristic transitio
layer thicknesshc .
5-4
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EFFECT OF TRANSITION LAYERS ON THE . . . PHYSICAL REVIEW B 64 134205
rameters used for all the calculations areh0 /h50.5, r 0

50.004 mm, l 58 mm. The resonance frequency chang
from the vacuum value ofc/2l ~18.75 GHz forl 58 mm! at
h→0 to the value ofc/2lA« at h→` corresponding to tha
for an infinite medium with the dielectric constant«. The
characteristic feature of all the curves is the existence of
regions defined by the parameterhc . For h,hc , the reso-
nance frequency rapidly drops with increasingh, and forh
.hc it decreases slowly reaching the saturation limit. T
meaning of the introduced parameterhc can be understood
from Fig. 2~b!, where the derivatives] f res/]h as functions of
h are given. For smallh, this parameter has a constant lar
gradient, decreasing linearly withh. The value ofhc is de-
fined by continuing this line until it intersects zero derivati
level ~infinite medium!. Thenhc is a characteristic thicknes
when the system becomes sensitive to its outer boundarie
far as an electromagnetic response is concerned. For the
of Fig. 2, hc'0.2 mm. It is shown thathc is independent of
the material parameter«, but it depends on geometry of th
inclusions being a function of the fibre lengthl and radius
r 0 . The numerical analysis shows that this dependence
a logarithmic type:hc} ln(l/2r 0), which can be associate
with the energy stored in the fibreL0 j 2/2 where L0
>2 ln(l/2r 0) is the inductance per a unit length of a th
wire. The effect of the fibre position inside the layer is n
essential for thin layers (h,hc). The change in parameter
of thick materials with respect to the fibre position is abo
25%, as will be shown below.

To demonstrate the consistency of the model, the res
obtained for the resonance frequency are compared with
available experimental data.8 The experimental method20–23

is based on measurements of the reflection coefficient fro
composite system placed near a metal substrate. As the
tance between the sample and substrate is increased th
flection signal exhibits an interference minimum at a f
quency corresponding to the resonance frequency.
composite system consisted of a dielectric matrix contain
aluminum-coated glass fibres with the volume concentra
of about 0.02%. The metal coating is not always continu
and the effective concentration can be even smaller. T
concentration is considerably smaller than the percola
thresholdpc;0.1%, allowing the single-particle approxima
tion to be used for analysis. The dielectric matrix compris
a polymer with a metal powder, which makes it possible
reach large« with a small absorption (Im«!Re«). Figure 3
compares the theoretical plots with the experimental d
~taken from Ref. 8! for the resonance frequency as a functi
of thicknessh. For «552 ~obtained for the dielectric matrix
from independent measurement!, the experimental data ca
be fitted well by calculations for smallh, and there is a large
difference between the two curves forh.hc , since the ex-
periment does not come down to the limit corresponding
infinite medium with «552. It can be related to the fin
dispersed structure of the composite matrix used in Re
~polymer and metal powder! and the difficulty of determin-
ing the effective dielectric constant« near the fibre in this
case. Another reason of this discrepancy can be related
layered structure of thick samples as they are obtained
13420
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combining a number of 0.1–0.2-mm layers. The gaps
tween very thin layers can apparently decrease the effec
value of« resulting in an increasing resonant frequencyf res

5c/2lA«. Further experimental analysis is needed to clar
this case. However, it is more important for our purpose t
there is a good agreement for thin layersh<hc which proves
that the model describes functionally well the resonan
properties of composites containing elongated inclusions
thin layers.

A considerable boundary effect results in the existence
surface layers where the effective dielectric constant is
ferent from that in the inner region. Figure 4 shows the re
nance frequency as a function of inclusion positionh0 for a
thin layer (h50.2 mm) and thick layer (h52 mm). There is
a transition layerhs ~hs,hc for h,hc and hs5hc for h
.hc! within which the value of f res decreases and ap
proaches that for the case when the inclusion is placed
ficiently inside the sample. It is seen that the variation inf res
due to the change inh0 is considerably smaller than tha
whenh is altered. Thin layers (h,hc) can be considered a
resonantly uniform, in whichf res is nearly a function ofh
only and the dependence onh0 can be neglected. In the cas
of h.hc , this dependence is essential within the surfa
transition layers and the sample, generally speaking, can
be treated as uniform. However, as it will be demonstra

FIG. 3. Plots off resversush, comparison of theory~solid curve!
and experiment~dashed curve!. «552, l 58 mm, h05h/2.

FIG. 4. Resonance frequencyf res as a function of the fibre po-
sition h0 /h for two layer thicknessesh50.2 mm (;hc) and h
52 mm (@hc).
5-5
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MAKHNOVSKIY, PANINA, MAPPS, AND SARYCHEV PHYSICAL REVIEW B64 134205
later, the existence of the surface transition layers does
alter the resonance frequency in thick samples. This me
that they are not important in determining the effective
electric constant. On the contrary, the effective-medi
theory ~EMT! in thin composite materials with elongate
inclusions has to be essentially modified due to stro
boundary effects.

III. EMT FOR THIN COMPOSITE LAYERS BELOW THE
PERCOLATION THRESHOLD „hËhc , pËpc…

There are a number of methods developed in the litera
to calculate the effective macroscopic parameters of com
ite materials with nonspherical, in particular, elongated inc
sions. However, they are entirely restricted to the case
unbounded materials. Our objective is to obtain an extens
to the case of thin composite materials where the bound
effects cannot be ignored. If the layer thickness is com
rable with the size of inclusions embedded in it the conc
of the dielectric constant seems to lose its direct mean
Then, there is a question if such a layer can be character
by the effective parameter«ef . In the case under conside
ation, for h,hc , all the fibres are subjected to near-sam
boundary influence, as was demonstrated in Fig. 4. In
context, such a sample can be treated as a uniform l
characterized by effective parameters, yet these param
will depend on thicknessh and, in general, on properties o
the surrounding media.

For our analysis, a modified EMT equation developed
Ref. 6 is used. This approach has been distinguished f
other theories since it has a number of advantages: it giv
correct value of the percolation threshold and can be
panded to a nonquasistatic case when the boundary ef
are most essential. Along with this, it enables technically
take into account the boundary polarization. For this p
pose, it is important that the method combines the Brug
man EMT ~Refs. 2, 24, and 25! and Maxwell-Garnet
theory26,27 with its idea that the local medium near differe
inclusions may be different. Within this approach it is po
sible to introduce a renormalized parameters«b and mb for
the medium near fibres as the result of interaction with
boundaries. These parameters will then be involved in E
equations for«ef andmef and the boundaries can be omitte

The single-particle approximation considered above
be used for calculating the renormalized parameters. For
purpose, Eq.~14! describing the current distribution at th
inclusion is transformed to a certain canonical form. In t
antenna approximation~l @r 0 , lm@r 0! the current density
j (x) at the fibre in the unbounded medium with some ma
rial constants« and m is determined by Eq.~10! with Ũ2
[0,

F ]2

]x2 ~G* j !1k2~G* j !G
y21~z1h0!25r 0

2
xP@2 l /2,l /2#

52E0x

iv«

4p
.

This equation can be further simplified in a way simil
to that used for obtaining Eq.~14!, which requires
ln(l/2r 0)@1,
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]2 j ~x!

]x2 1k2Q j~x!'2
iv«

4p
E0x . ~16!

Here k5(v/c)A«m is the wave propagation parameter, t
function G(x,y,z)5exp(2ikr)/4pr is related to the solution
of Eq. ~4! when h5`, and Q5*2n

1n Re(G)dx. The form of
Eq. ~16! corresponding to the unbounded medium will
called a canonical form. In the case of bounded materi
Eq. ~14! can be reduced to this canonical form by renorm
izing material parameters as

«b5«Q/Q1 , mb5mQ2 /Q,

kb5~v/c!A«bmb5~v/c!A«m~Q2 /Q1!. ~17!

This procedure allows the boundaries to be eliminated w
determining the current distribution at the inclusion. Th
are replaced by a ‘‘new’’ medium with«b , mb , which ap-
pears near the inclusion at a characteristic distancehc , as
shown in Fig. 5. Forh,hc the factorsQ1 and Q2 depend
weakly on h0 , then «b and mb may be considered to b
functions of thicknessh only. The appearance of the perm
ability mb.1 owes its origin to the magnetic moment relat
to the current at the fibre and the induced displacement
rent at the layer surface.

Figure 6 shows the plots of the renormalized parame
«b andmb as functions of thicknessh at the resonance wave
length with«552, m51. The value of«b equals 1 for small
h→0 and increases to its bulk value« whenh tends to infi-
nite. The magnetic permeabilitymb differs slightly from 1
going through a maximum. This is related to the induc
magnetic moment as a function ofh: it tends to be zero in
two limiting casesh50 andh5`. In the experiment when
the metal substrate is placed away from the sample the m
netic response is not noticeable. In the case of the compo
placed on the metal substrate the magnetic properties
become noticeable to be measured.

After we have calculated the renormalized paramet
characterising the medium near fibres, the EMT equation
be constructed similar to the case of unbounded media. T
equation uses the condition that the total polarization av
aged over all the inclusions has to be zero.6,23 For bounded
materials, the surface polarization due to surface displa
ment currents has to be included as well, which gives

pPfibre1~12p!Pmatrix1Psurface50, ~18!

FIG. 5. Structure of a thin layer when the effect of boundaries
replaced by a new medium around the fibre.
5-6
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EFFECT OF TRANSITION LAYERS ON THE . . . PHYSICAL REVIEW B 64 134205
where p is the fibre concentration. The terms in Eq.~18!
correspond to averaged polarization of fibres, dielectric m
trix, and surface, respectively. Using renormalization pro
dure~17!, the surface contribution can be taken into acco
by means of the parameters«b and mb which are used as
renormalized matrix constants to determine the fibre po
ization Pfibre. In this approachPsurface50, however, the re-
gions with parameters«b and mb appear near fibres; the
polarization is different from that of the matrix and has to
included in Eq.~18!.

The polarizationPfibre can be calculated from the curre
distribution on a fibre given by Eq.~13!. It involves the
dielectric constant of the surrounding medium«. In the
effective-medium approach,« has to be replaced by«ef .
However, the effective medium near elongated inclusio
cannot be considered uniform on a characteristic scale o
order of inclusion sizel, and the corresponding effective p
rameter«̃ef depends on scales. Since the total electric field
on the inclusion is near zero, the interaction between
inclusions has little effect on the dielectric properties of t
medium in the vicinity of them. Therefore the value of«̃ef(s)
in this region equals«b which differs from« as the result of
boundary effects. Far from the inclusions at distances la
than l, the effective medium can be considered as unifo
having the dielectric constant«̃ef5«ef of a bulk material. It
means that Eq.~13! obtained for a fibre in a uniform medium
has to be modified. At this stage, it is also important to c
sider a fibre with a finite conductivity, which influences di
persion of the effective parameter via the skin effect. T
equation for the current distribution accounting for the fin
conductivity and scale-dependent«̃ef(s) was developed in

FIG. 6. Renormalized matrix parameters«b @in ~a!# and xb

5(mb21)/4p @in ~b!# as a function ofh.
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Ref. 6 for the case of infinite medium. It turns out that t
calculation of fibre polarization involves scaling along t
fibre only. Assuming a linear scaling results in

«̃ef~r2r 8!5«12~«ef2«!ur2r 8u/ l , ~19!

where the pointsr and r 8 are taken on the fibre surface. I
the case of the bounded composite the matrix constan«
must be replaced by the normalized effective constant«b .
Considering that fibres are placed in thex direction, Eq.~19!
becomes

«̃ef~x2x8!5«b12~«ef2«b!~x2x8!/ l . ~20!

Using the scale dependence~20! the fibre polarization can be
calculated6

Pfibre5
4p is f* /«efv

11~4p is f* /«bv!~4r 0
2/ l 2!ln~11 l«b/2r 0«ef!cosVb

3E0 , ~21!

Vb
25 l 2k2LbCb/4, Lb52 ln~ l /2r 0!1 ikbl ,

Cb5«b / ln~11 l«b/2r 0«ef!,

whereVb is the normalized resonance frequency,Lb is the
fibre inductance per unit length of fibre, andCb is the ca-
pacitance per unit length calculated after taking the acco
of the scale dependence~20!. The normalized fibre conduc
tivity s f* 5 f (D)s f takes into account the skin effect in th
conducting fibre wheres f is the fibre conductivity. The func-
tion f is obtained from a classical skin effect in a conducti
cylinder,28

f ~D!5@~12 i !/D#J1@~11 i !D#/J0@~11 i !D#,

where J0 and J1 are the Bessel functions,D
5r 0A2ps fv/c is the ratio of the fibre radiusr 0 to the skin
depthd5c/A2ps fv.

The matrix is represented as an assembly of fine sphe
particles of dielectric constant« which are embedded in th
effective medium with dielectric constant«ef . The polariza-
tion of the dielectric matrix is given by the standard qua
static equation28

Pmatrix5
3~«2«ef!

2«ef1«
E0 , ~22!

where « is the initial constant of the matrix~not «b!. In
general, the polarization of the regions with«b near fibres
has to be considered separately fromPmatrix. It seems rea-
sonable to assume that they can be represented by ellips
with short axeshc/2. The concentration of such new inclu
sions is enlarged by a factor of (hc/2r 0)2. With increasingp
these areas may change the matrix properties entirely. H
we consider thatp is sufficiently small to omit their contri-
bution.

Substituting Eqs.~21! and ~22! into Eq. ~18! yields
5-7
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p

2

4p is f* /«efv

11~4p is f* /«bv!~4r 0
2/ l 2!ln~11 l«b/2r 0«ef!cosVb

1~12p!
3~«2«ef!

2«ef1«
50. ~23!

Here the factor12 in the first term results from averaging b
directions in the plane.

Equation~23! describes the effective response from a th
composite sample (h,hc) below the percolation threshol
(p,pc).

IV. ANALYSIS OF THE EFFECTIVE RESPONSE NEAR
RESONANCE FREQUENCY

In this part the dispersion of the effective response n
the main resonance frequency is analyzed. The constant«ef is
calculated from nonlinear Eq.~23! for two concentrationsp
5231024 andp5231025. These small values ofp corre-
spond to the composite materials used for the experime
investigation of«ef in Ref. 8. Figure 7 shows the dispersio
of the real («1) and imaginary («2) parts of«ef5«11 i«2 for
a very thin sample withh50.05 mm!hc . The frequency
behavior is of a resonance type with the resonance freque
corresponding to a maximum of imaginary part. In the ca
p!pc , this frequency depends weakly on the inclusion co

FIG. 7. Effective dielectric constant«ef5«11 i«2 as a function
of frequency for two concentrations 0.002% and 0.02%,«552,
«b55, h50.05 mm. Real part«1 is in ~a! and imaginary part«2 is
in ~b!. The aluminum coating had the semicontinuous struct
since the effective fibre conductivitys f was less than in the case o
the all-metal inclusions and it is taken to be equal to 1016 s21.
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centration@see Fig. 7~b!#. Figure 8 compares the dispersio
characteristics of«ef for layers of different thicknessh. The
case of an infinite system is also given. The main resona
frequencyf res5c/2lA«b (mb'1) is considerably shifted to
the high-frequency region since the renormalized effect
constant«b is several times smaller than the matrix consta
«552 for h,hc . Besides, the next resonance which
clearly seen in the case of«b552 ~infinite system! is not
observed for thin layers. We can conclude that the bound
effects may change very strongly the dispersion characte
tics «ef( f ) near the resonance frequencies.

In the case of thin composite layersh,hc , the renormal-
ized parameter«b used to construct EMT is nearly uniform

FIG. 9. Renormalized matrix parameters«b as a function of the
fibre positionh0 /h for h52 mm(@hc).

e

FIG. 8. Effective dielectric constant«ef5«11 i«2 as a function
of frequency for different thicknessh. «1 is in ~a! and«2 is in ~b!,
p50.002%.
5-8
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EFFECT OF TRANSITION LAYERS ON THE . . . PHYSICAL REVIEW B 64 134205
having almost no dependence on the fibre positionh0 . Con-
trary, for thicker materials there are transition layers wh
«b changes significantly, as shown in Fig. 9. Then, the eff
tive dielectric constant is not uniform either and the ex
tence of the transition layers in thick composites seems a
it may affect the wave propagation changing such measu
parameters as transmission, reflection, and absorption co
cients. Then, there is a question if this can be a caus
shifting the measured resonance frequency in thick layers
discussed in Fig. 3. To answer this question, the respo
from a thick layer (h@hc) is calculated, dividing it into a
number of layers where«b is considered to be uniform. Th
calculation is done by the matrix method~Abele’s
method15,29!. Figure 10 compares the dispersion of the a
sorption coefficient for a single layer with the matrix co
stant«552 and for a layered system with«b distributed as
shown in Fig. 9. The internal part of the sample with«b
'« is considerably larger than the surface transition lay
whenhc!h. Then, the variation in«b in these layers is no
sufficient to change the total response from the system
means, that in thick materials withh@hc the EMT approach
has no need to be modified.

V. CONCLUSION

The effective-medium theory~EMT! applied to thin com-
posite layers with conducting sticks is developed taking i
account the surface displacement currents. The boundar
fects are treated within a single-particle approximatio
within which it is possible to transform the current distrib
tion at the inclusion to the form similar to that for an infini
system. In this approach, the boundaries can be elimin
considering that the inclusion is embedded in a new ma
with a renormalized dielectric constant. The cross section
this area is of the order of thickness of the transition lay
After this step, the standard procedure to obtain EMT can
used. The dispersion of the effective dielectric constan
thin materials is a function of thickness being significan
different from that for ‘‘bulk’’ materials: the resonance fre
quency is shifted to higher frequencies and the interval
tween two resonances is increased.

FIG. 10. Effective dielectric response~coefficient of absorption!
from a thick composite layer@h52 mm(@hc)#. Solid curve:
multilayer system. Dashed curve: uniform single layer.
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APPENDIX A

In this part, the differential equations completed with t
boundary conditions for the vector potentialA in the system
shown in Fig. 1 are obtained. If a fibre is placed in an infin
medium, the field scattered by it is described by the vec
potential having onlyAx component. In the case when th
surface effects are essential, using one component of the
tor potential is in conflict with the condition of continuity o
the fieldsE and H at the interface vacuum dielectric. As
follows from Eq. ~2!, two componentsAx and Az are suffi-
cient to satisfy the continuity condition.30 The equations for
the componentsAx andAz are written as

DAx1,2,31k1,2,3
2 Ax1,2,352 j 1,2,3, ~A1!

DAz1,2,31k1,2,3
2 Az1,2,3,50.

The following boundary conditions are imposed:

mAx2uz505Ax1uz50 , mAx2uz52h5Ax3uz52h ,

]Ax2

]z U
z50

5
]Ax1

]z U
z50

,
]Ax2

]z U
z52h

5
]Ax3

]z U
z52h

,

~A2!

Az2uz505Az1uz50 , Az2uz52h5Az3uz52h ,

1

« S ]Ax2

]x
1

]Az2

]z D U
z50

5S ]Ax1

]x
1

]Az1

]z D U
z50

,

1

« S ]Ax2

]x
1

]Az2

]z D U
z52h

5S ]Ax3

]x
1

]Az3

]z D U
z52h

,

where indexes 1, 2, 3 designates areaszP@0,̀ 1#,
zP@2h,0#, and zP@2`,2h#, respectively, j 1,3[0,
j 252 j (x)d(y)d(z1h0), k15v/c, k25(v/c)A«m.

The solution of Eq.~A1! can be presented in the form o
convolutions of Green’s functions and current densityj (x),
as it is shown in Eq.~3!. The coupled Eqs.~4! and ~5! are
solved using the double Fourier’s transformation with
spect to variablesx andy, which yields the differential equa
tions with respect toz for the obtained Fourier’s transforma
tions. The integrals in Eqs.~6! and ~7! are inverse Fourier’s
transformations written in the cylindrical coordinates wi
r5Ax21y2 ~known as Sommerfield’s integrals30!.

APPENDIX B

The theory developed here requires two types of integ
to be calculated. They are@see Eqs.~6! and ~7!#

E
0

1` f ~k,h,h0 ,z!

D2~k,h!
J0~kr!dk

or E
0

1` g~k,h,h0 ,z!

D1~k,h!D2~k,h!
J0~kr!dk, ~B1!

wheref andg are analytical functions with respect to variab
k, r5Ax21y2, functionsD1 , D2 are determined in Eqs.~6!
5-9
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and~7!. The difficulty in calculating Eq.~B1! occurs since in
the absence of the dissipation in the medium (Im«5Im m
[0) the functionsD1(k,h) and D2(k,h) have real zeros
which are located symmetrically in the regions2k2<k<
2k1 andk1<k<k2 .

The equationsD1(k,h)50 and D2(k,h)50 are called
dispersion equations of the layered media, which determ
the propagation numbers of those waves penetrating in
the medium at sufficient distance. The roots obey the follo
ing properties~which are given here without proof!: ~i! they
are positioned symmetrically aboutk50 ~then, only positive
k will be considered!; ~ii ! in the absence of dissipation the
areN5(21@Ak2

22k1
2h/p#) different roots in the regionk1

<k<k2 , where the square brackets designate the inte
part; ~iii ! for h→` this number increases to infinite and th
roots tend to occupy the regionk1<k<k2 continuously;~iv!
for h,p/Ak2

22k1
2 there is the only root which ath→0 ap-

proachesk1 ; ~v! for h5pn/Ak2
22k1

2, where n>1 is any
integer number, one of the roots equalsk1 .

To find real positive roots in the regionk1<k<k2 , it is
convenient to represent the dispersion equations in the f

D1~k,h!5~2g̃2
21g1

2«2!sin~ g̃2h!12g1g̃2« cos~ g̃2h!50

which is equivalent to

~g1
2«21g̃2

2!sin$g̃2h1arctg@2g1g̃2«/~g1
2«22g̃2

2!#%50,
~B2!

whereg̃25Ak2
22k2, g1(k) and g̃2(k) are real functions of

variablek in the considered region. A similar form can b
written for D250. From Eq.~B2! the condition of root exis-
tence is obtained

g̃2h1arctg@2g1g̃2«/~g1
2«22g̃2

2!#5pm, ~B3!

wherem is integer number including zero. For anym there is
only one root and the maximum value ofm equalsN5(2
1@Ak2

22k1
2h/p#) as mentioned above. Equation~B3! can be

solved by a graphical method finding the intersection
lines: f 1(k)52g̃2h1pm and f 2(k)5arctg@2g1g̃2«/(g1

2«2

2g̃2
2)#, which is easily realized numerically.

In a standard method,30 the integrals containing function
with real poles are calculated by integrating along the ve
cal cuts made from the poles. If the number of poles is la
this method becomes impractical and is of no use. The i
gration of Eq.~B1! can be made by introducing a small di
sipation in the system: a small imaginary part appears i«
~andm!. For example, if the medium has a small conduct
ity s, then Im«52ivs/4p @the sign ‘‘-’’ corresponds to time
dependence of exp(1ivt)#. As a result the poles shift in th
complex plane below the real axis and the integrals can
calculated in a usual way~as classical!. The challenge now is
to calculate the limit of the integrals when the dissipati
approaches zero. For this purpose, the integrals of Cau
type are considered,31

F~q!5
1

2p i EC

C~k!dk

k2q
, ~B4!
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whereC(k) is a continuous complex function,C is an arbi-
trary path in the complex plainP, and qPP is a complex
number. The limit ofF(q) when the pointq approaches a
point k* on the pathC can be found by means the Pleme
formulas~or, less often, the Sokhotski formulas!,

F1~k* !5F~k* !1 1
2 C~k* !,

F2~k* !5F~k* !2 1
2 C~k* !. ~B5!

HereF1(k* ) andF2(k* ) are the ‘‘left’’ and ‘‘right’’ limits
when the pointq approaches the pointk* from the ‘‘left’’
and ‘‘right’’ with respect to the integral path. The functio
F(k* ) is defined by the following equation:

F~k* !5
1

2p i EC

C~k!2C~k* !

k2k*
dk1

1

2
C~k* !

1
C~k* !

2p i
Ln

b2k*

a2k*
, ~B6!

where Ln@(b2k* )/(a2k* )#5 lnu@(b2k* )/(a2k* )#u
1i arg@(b2k* )/(a2k* )# is the principal value of a logarithm
anda,b are the ends of the path. In the absence of the di
pation whenk* is a real root ofD1(k,h)50 or D2(k,h)
50, the integrals in Eq.~B1! can be rewritten in the form o
the Cauchy integrals,

E
ai

bi f ~k,h,h0 ,z!

D2~k,h!
J0~kr!dk

5E
ai

bi f ~k,h,h0 ,z!~k2ki* !/D2~k,h!

k2ki*
J0~kr!dk.

~B7!

Here C(k)5 f (k,h,h0 ,z)(k2ki* )/D2(k,h) is a continuous
function of the variablek, the parameterki* is the i th real
root of the dispersion equation, and (ai ,bi) is the subinterval
containingki* . The value ofC(k* ) is found via residue:
C(ki* )5res@ f (k,h,h0 ,z)/D2(k,h)#k5k

i*
. The integrals in

Eq. ~B1! can be calculated by dividing the integration pa
into intervals: (0,k1),...,(ai ,bi),...,(k2 ,1`) where the in-
tegration in the intervals (ai ,bi) is carried out as explained
above. In Eq.~B5! the right limit F2(ki* ) has to be used
since in the case of dissipation the roots shift below the r
axis.

APPENDIX C

In this appendix, the approximation used to obtain E
~14! and ~16! is discussed. Let us consider Eq.~13! for the
current density, which is written as

]2

]x2 S j ~x!1
~G1* j !

Q1
D1kb

2S j ~x!1
~G2* j !

Q2
D52

iv«

4pQ1
E0x ,

~C1!
5-10
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where the following notations are used:G15 i Im(Gx21Ũ2),
G25 i Im(Gx2), and the wave numberkb

25k2
2Q2 /Q1 . As it

follows from Eq. ~11! the functionsG1 and G2 are propor-
tional to

G1,2; i
sin~kbx!

Ax21r 0
2

. ~C2!

The order ofQ1 andQ2 is estimated from Eqs.~11! and~12!,

Q1,2}E
2 l /2

1 l /2 dx

Ax21r 0
2
'2 ln~ l /2r 0!. ~C3!

Equation~C1! can be represented as a differential equat
with respect to the functionj (x)1(G1* j )/Q1 ,

]2

]x2 S j ~x!1
~G1* j !

Q1
D1kb

2S j ~x!1
~G1* j !

Q1
D

52
iv«

4pQ1
E0x1kb

2S ~G1* j !

Q1
2

~G2* j !

Q2
D . ~C4!

The general solution of Eq.~C4! can be written in the form
of an integral equation,

j ~x!52
iv«

4pQ1kb
2 E0x1A sin~kbx!1B cos~kbx!2

~G1* j !

Q1

1kbE
2 l /2

x

sin@kb~x2s!#F~s!ds, ~C5!

whereF(s)5@(G1* j )/Q12(G2* j )/Q2#, A and B are con-
stants which are defined from the boundary conditio
j (2 l /2)5 j ( l /2)50. The first three terms can be used to co
struct the zero-order solution,

j 0~x!52
iv«

4pQ1kb
2 E0x1A sin~kbx!1B cos~kbx!.

~C6!
gy

ys

J.

13420
n

s
-

The next-order terms can be found from a standard itera
procedure,

j n~x!5 j 0~x!1E
2 l /2

l /2

F̃~x,q! j n21~q!dq;n51,N, ~C7!

whereF̃(x,q) is the kernel of the total linear integral oper
tor,

F̃~x,q!52
1

Q1
G1~x2q!1kbE

2 l /2

x

sin@kb~x2s!#

3S G1~s2q!

Q1
2

G2~s2q!

Q2
Dds. ~C8!

The constantsA andB are found from the boundary cond
tions j n(2 l /2)5 j n( l /2)50 at the final stage of the iteratio
procedure for a fixedn5N>1. Since the integral operator i
linear the equation forA and B form a linear system. The
solution for j 0 (N50) has the form

j 0~x!52
iv«E0x

4pQ1kb
2

@cos~kbl /2!2cos~kbx!#

cos~kbl /2!
. ~C9!

Equation~C9! gives singularity at the resonance frequen
when cos(kb l/2)50, which can be eliminated using the ne
iterations. Since the kernelF̃(x,q) involves parameters
1/Q1 , 1/Q2}1/2 ln(l/2r 0), the last term in theNth iteration
series is of the order of@1/2 ln(l/2r 0)#N11. In the present
case, the iteration parameter is sufficiently small: takingl /2
50.4 cm and r 05431024 cm gives 1/2 ln(l/2r 0)'0.15.
Then, the higher-order iterations will introduce sma
changes in the effective parameterkb and the resonance fre
quency~but can change the current at the resonance con
erably, which is not important in this case! and thus the form
factors Q1 and Q2 properly define the modified effectiv
parameters. The zero-order iteration corresponds to neg
ing the imaginary parts in Eq.~13!.
ry
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