PHYSICAL REVIEW B, VOLUME 64, 134205
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The approach to calculating the effective dielectric and magnetic response in bounded composite materials
is developed. The method is essentially based on the renormalization of the dielectric matrix parameters to
account for the surface polarization and the displacement currents at the interfaces. This makes possible the use
of the effective-medium theory developed for unbounded materials, where the spatially dependent local di-
electric constant and magnetic permeability are introduced. A detailed mathematical analysis is given for a
dielectric layer having conducting fibres with in-plane positions. The surface effects are most essential at
microwave frequencies in correspondence to the resonance excitation of fibres. In thirhayérg a thick-
ness of the transition laygerthe effective dielectric constant has a dispersion region at much higher frequencies
compared to those for unbounded materials, exhibiting a strong dependence on the layer thickness. For the
geometry considered, the effective magnetic permeability differs slightly from unity and corresponds to the
renormalized matrix parameter. The magnetic effect is due entirely to the existence of the surface displacement
currents.
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[. INTRODUCTION neering material$ is of the order of few mm, whereas the
composite layer thickness is in the range of fractions of mm.
Metal-dielectric composite materials have received mucHn this case, the boundary effects must be taken into account
attention because of their importance in modern techndlogywhen considering the effective response from a thin system.
Metallic inclusions, in particular metallic fibres, can rein- This is the purpose of the present paper.
force the dielectric and magnetic properties of ceramics and A general approach to systems containing interfaces is
plastic materials. Electromagnetic properties of the compossolving the Maxwell equations in the regions, which are re-
ite materials are analyzed customarily in terms of the effecgarded as homogeneous and imposing the boundary condi-
tive macroscopic parameters: dielectric constagt and  tions at the interfaces. The system is then characterized by
magnetic permeabilitys.;, which are calculated by averag- ¢ and ues having a stepwise variation. However, since the
ing the responses from material constituénfs. The  microscopic fields near the boundaries are different, the ef-
effective-medium theory offers quick insight into linear fective parameters vary gradually within certain transition
problems, which are difficult to analyze by other means.regions(known as transition layersadjacent to the inter-
However, it has disadvantages typical to all mean-field theofaces. They also depend on properties and geometry of the
ries since it ignores the fluctuations in a system. It assumesiedia near both sides of the interface. In certain cases, the
that the local electric and magnetic fields are the same in thi#ansition layers can change the response from the entire sys-
volume occupied by each component of a composite. Iiem even if the system is thick'® For example, the concept
some cases the local-field fluctuations by no means can l@f a transition layer is used to explain the elliptical polariza-
ignored, as in the case of a percolation composite in théion of the light reflected from an isotropic medidin? In
frequency range corresponding to the plasmon resonancestine present work we also discuss the effect of the transition
metal grains. Then, the application of effective-medium layers on the dielectric responsealculating the reflection
theory (EMT) is rather questionable and adequate modificaand absorption coefficientérom thick composite systems.
tions are needed. Another example is bounded composites or The composite materials with elongated conducting inclu-
composites containing interfaces. The microscopic locakions have a number of characteristics specific for this sys-
fields near the surface@r interface$ differ considerably tem, which eventually result in strong boundary effects. In
from those in the internal regions, due to the existence of theuch composites, the concentration of the percolation thresh-
scattering fields from boundaries. In the approach developeald is proportional to the aspect ratm=r,/1.613In the
here a specific surface polarization is introduced into thdimit ro/1<1, p. is very small, however, the inclusion con-
EMT approach. The effect of the surface polarization can béribution to the effective dielectric constant becomes large
strong in thin materials, the characteristic size of which isalready for very small concentratiops<p,. . It implies that
smaller than the correlation lendttor elongated inclusions the interaction between the fibres is strong evenpgferp,
in the form of a fibre, their length>r, wherer is the fibore  and the assembly of conducting fibres is a system with a
radius, corresponds to the correlation length. For many englong-range strong interaction having a characteristic dimen-
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sionless correlation length 6f2ry. Then, the surface effects z
have to be essential at large distances comparable with the
correlation length. On the other hand, the fibre currents in-
duce surface displacement currents resulting in the fibre de-
polarization, which weakens the interaction in the transition
layer, changing the basic property of the system.

Another characteristic feature of composites containing
conducting fibres is the existence of a manifold resonance at
microwave fre.quenclle$)\m~2l, _Where )\.m is the wave- FIG. 1. Geometry of a single-particle problem: a dialectic layer
length in the dielectric matrjx This effect is responsible for with a conducting fibre.
the dispersion of the effective dielectric constant, which oth-
erwise at these frequencies appears only in the vicinity o
p..% For p<p,, the frequency behavior o is of the
form®

;ective magnetic properties. It is originated by the combina-
tion of the fibre current and surface displacement current
which together form a circulatory current inducing a mag-
netic moment directed along the magnetic figlelal part of
gef(w):8+2 > — , ) Mp is larger than unity In the present caseuf,—1)<1 and

N Wresp~ 0 TS0 is not noticeable in the experiments. However, if the com-
posite layer is placed on the metal substrate it may be essen-

n/]heres is the dfle|ECtI’IC pons_lt_?]nt_o{ the ?atrlx_t?]ntﬂesnbare d tial to take account of the magnetic response. The experi-
€ resonance frequencies. 1he interaction wi € boundayantal observation of the magnetic response would be a
changes the resonance excitation condition and the syste

. ®ffkect confirmation of the boundary effects.
has a different sequence of the resonance frequehcies.

Therefore the result of interaction with boundaries is the

modification of dispersion fog; at microwave frequencies. Il. SINGLE-PARTICLE MODEL
In this analysis, the desperation characteristics are restricted
to this frequency rangéut A ,,>r).

The approach developed in this paper essentially uses
single-particle model within which the boundary effects are
considered. First, the current distribution is analyzed in th
antenna approximatiorfin1/2r,>1, A, >r,) at the fibre
placed in a dielectric layer of thickneks This problem was

An

This section concerns a single-particle approximétfon

the response of thin dielectric layer with a conductive fibre

&cited by an external electric field. This problem allows the

effective parameters of layered composite materials to be
Sound taking the boundary effects. The construction of a cor-
rect EMT equation uses the differential equation for current

investigated in Ref. 8, however, we need a more detailegensny at the fibre, which involves the effect of boundaries.

analytical analysis which is of great importance for the cal- A model depicted in Fig. 1 is considered. A conducting
y y org P o 7 2 fibre with a radiug g and a lengtH is placed in a dielectric
culation of e5. The equation for current distribution in

. layer of thickness parallel to its surface at a deptty [rq
e e o 1 & (n—ry)|. The lyer 1 craractenzed by = il

y 9 o P ' constante and magnetic permeability.. The fibre is as-
sense, the boundaries can be eliminated, instead of them new

renormalized matrix parametefdielectric constant, and sumed to be an ideal conductor. This approximation is rea-
. X P ) . b . sonable when considering the boundary effects since the cur-
magnetic permeabilitys,,) appear in the equation determin-

ing current at the fibre. This approach allows the further us ent distribution inside a fine fibre does not alter the
of EMT in its form developed for unbounded materials.%danzatlon at the surface. The system is subjected to an ac

L ; . uniform electrical field directed along the fibfe direction):
There are a number of approximations in the literature forEoz(EOX,O,O)exp(wt). The z direction is chosen along the

obtaining the effective parameters of the composite matenalgormal to the layer, and the fibre is at —hy, y=0. The

with elongated inclusions. We use here the theory develope roblem is considered in so-called antenna approxim&tion

in Ref. 6 as the most complete and consistent with experi: B — .
ment and not restricted to the quasistatic limit. An important(li%[rrig t)i\n;l> ffo twherer)r\mn; ﬁwﬁlﬁ’ 8’2‘ ?[hthli(l:)r: allovgs trher i
feature of this theory is a spatial dependence of the eﬁectivg St (;“' 0! 05 e50u+eh eh N yéa_l the Di € ? et' epre
dielectric constant near a fibre for scales smaller than th&€"€ ag(x) 8(y) 5(z+ ho) wheredis the Dirac function.

fibre length. The nonlocal property ef; is even enhanced .he electric and_ magnetic f'.elds and H scattered by the

by the interaction with the boundary: the environment neapbre are convenlgnt to write in terms of a vector potential

the fibre is characterized ky, and i, which depend on the and scalar potentiap (Gaussean units are used

layer thickness and the fibre position. As a result, the effec- 4 4 4

tive dielectric constant exhibits a strong dependence on the . ™ : ™

layer thickness for thin materialghinner g[Jhanpthe transition E=- ?Iw’U“A+ iwe grad divA, H= TrOtA' @

layen. In the case of thick materials, however, the role of the

transition layers is not essential and boundaries effects cam the present case, only two components of the vector

be neglected. potentialA, andA, are needed, which are represented in the
For the geometry considered the magnetic permeabilitform of convolutions with current densityj(x) (see

Mp arising in the renormalization method constitutes the ef-AAppendix A),
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AX1,2,3(le!Z) = [GX1,2,3(levZ)* ] (X)],

AZ1,2,3(X1y!Z):[U1,2,3(va!2)*j(x)]' (3)

The convolution of two functiong(x) and f(x) is deter-
mined as the following integral:

112

(9(x)*f(x))= IIZQI(X—S)f(S)dS,

where indexes 1, 2, 3 designate areas[0>~+], ze
[—h,0], and ze[ —,—h], respectively. FunctiorG,; ;3
satisfies the equation
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Herek, 3= w/c andk,= (w/c) /e are the wave numbers in
free space and dielectric layer, respectively,=0, ¥,=
—8(x)8(y) 8(z+hg), and A=d?/9x>+ 5%l 9y + 9%l 9z% is
the Laplace operator.

FunctionsU, , ;3 satisfy the equation

AU ,3+KE ,Ug05=0 (5)

with the boundary conditions
eUsl;-0=U1lz-0,

8U2|z:—h:U3|z:—hu

AGyq 231K 5 G125 V123 (4)
with the boundary conditions &_ & = (i_ 1 9Gx
gz dz ]|, , \em 2.
/~LGx2|z=0:le|z=Ov
MGx2|z:—h:Gx3|z=—hv (%_ (9_U2) :(i__l) ASE )
Jz 0z 7=—h em X 7=—h
Gy, Gy
9z _— ' Equation(4) together with the boundary conditions is self-
z=0 z=0 sufficient, whereas the boundary conditions for E5j.con-
Gy, Gy ]E?rnEf;n(ci;onszl andG,3 entering the boundary conditions
9z oy 92 z:—h. For further analysis, only,, anddU,/dz are needed,
|
exp(—ikar) 1 (+=ay(k,h,hg)exply.z) +bya(k,h,ho)expl — y22)
Cra(xy.2)=—7——+ Efo A,k 75 Jo(kp)k dk, (6)
Ux(X,y,2) d | 1 [*=[az(khhg)expy,z) —by(k hhg)exp( — y.z) (e u—1) _dU,
e S voJo(kp)k dk|=——, (7)
0z e x| 2w Jo Aq(k,h)A,(k,h) X
|
where r=\x*+y’+(z+ho)®, p=Vx*+y’  yi(K) bzo={y148H 2(h—ho) ]+ y2ch y2(h—ho) ]}

= k2= K2, y,(k)= k?*— K2, andJ, is the Bessel function.

In Eq. (7) a new functionU,, is introduced. Integrals in Egs.

(6) and (7) use the following functions:

A(k,h)=(75+ ¥ie?)sh y2h) + 271 y,8ch(y2h),
A(k,h) =5+ ¥iu?)shiyh) + 271 yuch(y,h),
axo= (2~ yipu){ yaust yo(h—hg) ]+ y.ch y,(h—ho) I},
byo=exp(— y2h) (v2— vam)[ yimsh(y2ho) + yoch(y2ho) ],

azn={yi1ush yo(h—ho)]+ v yo(h—ho) I} (v2+ v18)
X exp(y2h) = [ yiush(y2ho) + y2ch(y2ho) ]

X(y2—v18),

X (y2— y18)exp( — y2h) = [ yiush(yzho)
+ y2eh(y2ho) [(y2+ y18).

A special method of calculating the integrals in E(®.and
(7) is given in Appendix B.

The tangential componeiit, of the total electric field at
the fibre surface equals zero. In the approximation used the
circulatory currents in the fibre are neglected, then this con-
dition is written in the form

E,~(EoxtEQ| xe[-ir2127 =0, (8

y2+(z+hg)2=r5

whereE, is the longitudinal component of the scattered field.
Equations(2) and (8) give
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4m [ A, IPA,
—Eox= Ex:m{szxz‘F 2 T axaz| xel-12i2
y2+(z+ho)2=r(2)
C)
Using Egs. (7), (9 and the equality 9°A,,/dxdz
=9?(U,*j)laxdz= 9*(U,*j)/9x? the basic integrodifferen-
tial equation is obtained:

92 T .
2L(Cxat Uz)*J]+k§(ze*J)} xe[—112]/2]

y2+(z+h0)2:r§

iwe

= - EOXH. (10)
For Eg.(10), the boundary conditions for current density at €=6,12,32,100
the fibre ends have to be imposep,—1/2)=j(1/2)=0. 2
Equation(10) is simplified calculating the convolutions ap- g
proximately. Using Eqgs(6) and (7), the following approxi- %
mations for the functions,, and U, are obtained in two E
limiting cases(h—0 andh—o): =
~ epu—1) e kir - b
jm U=~ Y L ImT,=0, ol e
h—0 s T s 00 05 10 15 20 25 30
_ _ h (mm)
- 1 eflklr . eflkzr
lim Gyo=— ypumt lim zezm- (11 FIG. 2. Resonance characteristics of a dielectric layer with a
h—0 K h—e conducting fibre. In(a@), resonance frequendy,s as a function of

the layer thicknesh for different dielectric matrixes, ifb) deriva-
tive df s/ dh versush, which defines the characteristic transition
layer thicknesd,..

Because the fibre has very small diameteg,2rom Eq.(11)
it follows that the real parts R€{,) and ReG,,+U,) have
sharp positive picks of the order ofr}/in the vicinity of x
=0 for any value ofh. To the .cohtrary, the imaginary parts fieq when the convolutions with the imaginary parts are ne-
Im(G,) and ImG,,+U,) are limited when bothx andr,  glected in comparison with those with the real paigse
approach zero. Integration of the real parts in the vicinity ofAppendix O,

the picks(more exactly, within the intervdl—wv,v], VIry/2 .
<v<l/2) gives the main contribution to the integrals. In this 0 9°j(x) 120, (X)~ — lw_8E (14
case the convolutions are approximatet as Loox? 22l 4 O

i(—1/2)=j(1/2)=0.

Equation (14) is a basic differential equation in terms of
(12) which the boundary effects are introduced in EMT with the
) aim to modify the effective parameters.
[Re(ze)*J]“J'(X)f Re(Gyp)dx=](X)Qg, Equation(14) describes the current distribution in the lay-
-v ered system and allows a generalized expression for the reso-
nance wavelengths,.sto be obtained. In an infinite medium,
he value of\ ¢sis given byt8:19

[Re(Gyot+Up)*jl~j(x) f "Re(Go+ U)dx=j(0)Qs,

where the “form factors"Q; andQ, are positive and repre-
sent the area under the corresponding narrow bell-shapé

curves. 2 @

Substituting approximation&l 2) into Eq. (10) yields Mesp=5 1 N=123...
Q iz i(X)+i [IM(Go+ Ug)*j] The effect of the boundaries results in a nonlinear dispersion
L2 |} Q; equation
. .[Im(ze)*j]) iwe 20Vepw  [Qu(Njesn.h,ho)
+k2 ( )4 —2 e —E . _ 2\ resn» 1110/ _
5Qa| J(X) 0, 2 Eox Nresn=r—1 Q2 0nrean R) n=1,2,3.... (15

(13 The dependencies on thickndsof the main resonance
Since the parameterQ; and Q, involve a large factor frequencyf,s=C/\ 1 (N=1) obtained from Eq(15) for
21n(l/2ry) (see Appendix G Eq.(13) can be further simpli- different & (Ime=Im u=0) are given in Fig. @). The pa-
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rameters used for all the calculations drg/h=0.5, r
=0.004 mm, =8 mm. The resonance frequency changes 721 e=52
from the vacuum value of/2l (18.75 GHz forl =8 mm) at —~ 644 =8 mm
h—0 to the value ot/2l e ath—o corresponding to that = 561 v .
for an infinite medium with the dielectric constast The © = Cwelw o .. Sxperiment
characteristic feature of all the curves is the existence of two «ﬁ 4.8+
regions defined by the parametgr. For h<h., the reso- a0{ b theory (h =h/2)
nance frequency rapidly drops with increasimgand forh 0
>h, it decreases slowly reaching the saturation limit. The 329 1 : , .
0.0 0.2 0.4 0.6 0.8 1.0

meaning of the introduced parameter can be understood
from Fig. 2b), where the derivativesf .4/ Jh as functions of
h are given. For smalh, this parameter has a constant large  F|G. 3. Plots off s versush, comparison of theorgsolid curve
gradient, decreasing linearly witlh The value ofh; is de-  and experimentdashed curje ¢ =52,1=8 mm, hy=h/2.
fined by continuing this line until it intersects zero derivative
level (infinite medium. Thenh, is a characteristic thickness combining a number of 0.1-0.2-mm layers. The gaps be-
when the system becomes sensitive to its outer boundaries g§een very thin layers can apparently decrease the effective
far as an electromagnetic response is concerned. For the cagque of e resulting in an increasing resonant frequerfigy
of Fig. 2,hc~0.2mm. It is shown thalt. is independent of  _ /o) /¢ Further experimental analysis is needed to clarify
the material parameter, but it depends on geometry of the s case. However, it is more important for our purpose that
inclusions beln_g a functhn of the fibre I(_anglthand radlus_ there is a good agreement for thin layars h, which proves
ro. The numerical .analy5|s shows that this dependence is Qfat the model describes functionally well the resonance
a logarithmic type:hce<In(l/2ro), which can be associated properties of composites containing elongated inclusions in
with the energy stored in the fibréoj“/2 where Lo thin jayers.
=21In(/2ro) is the inductance per a unit length of a thin A consjderable boundary effect results in the existence of
wire. The effect of the fibre position inside the layer is notgyrface layers where the effective dielectric constant is dif-
essential for thin layersh<hc). The change in parameters ferent from that in the inner region. Figure 4 shows the reso-
of thick materials with respect to the fibre position is aboutgnce frequency as a function of inclusion positignfor a
25%, as will be shown below. thin layer (1=0.2 mm) and thick layeri(=2 mm). There is

To demonstrate the consistency of the model, the resultg tyansition layerh, (he<h, for h<h, and hy=h, for h
obteyned for thg resonance frequency_are compared V\égh thghc) within which the value off,.. decreases and ap-
available experimental dafaThe experimental me_tha proaches that for the case when the inclusion is placed suf-
is based on measurements of the reflection coefficient from ficiently inside the sample. It is seen that the variatior,ig
composite system placed near a metal su'bSFrate. As the digge to the change iy, is considerably smaller than that
tance between the sample and substrate is increased the {@ianh is altered. Thin layersi{<h,) can be considered as
flection signal exhibits an interference minimum at a fre'resonantly uniform. in whickf iscnearly a function oh

. 1 res
quency correspondmg_ to the resonance frequency._ Thgnly and the dependence bg can be neglected. In the case
composite system consisted of a dielectric matrix containings h~h  this dependence is essential within the surface
c»

alumlnum—coaoted glass fibres W.'th the volume Concer1.tr""t'()'?ransition layers and the sample, generally speaking, can not
of about 0.02 /° The metal cqatlng is not always contlnuou_&be treated as uniform. However, as it will be demonstrated
and the effective concentration can be even smaller. This '

concentration is considerably smaller than the percolation
thresholdp.~0.1%, allowing the single-particle approxima-

tion to be used for analysis. The dielectric matrix comprises
a polymer with a metal powder, which makes it possible to | h! |
reach larges with a small absorption (Im<Reg). Figure 3 ~ H

h (mm )

6.0

N
compares the theoretical plots with the experimental data % 45k :
(taken from Ref. 8for the resonance frequency as a function - e=52
of thicknessh. For e =52 (obtained for the dielectric matrix ‘Hﬁ 40r h r. <h <(hr)
from independent measuremgrthe experimental data can — 0 0 0 :
be fitted well by calculations for smail, and there is a large 5 5
difference between the two curves for-h,, since the ex- h=2mm
periment does not come down to the limit corresponding to . . .
infinite medium withe=>52. It can be related to the fine 0.4 0.6 0.8 1.0
dispersed structure of the composite matrix used in Ref. 8 h /h
(polymer and metal powdeand the difficulty of determin- 0
ing the effective dielectric constast near the fibre in this FIG. 4. Resonance frequenéy as a function of the fibre po-

case. Another reason of this discrepancy can be related tosgion hy/h for two layer thicknessef=0.2mm (~h,) and h
layered structure of thick samples as they are obtained by:2 mm (>h).
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later, the existence of the surface transition layers does not
alter the resonance frequency in thick samples. This means
that they are not important in determining the effective di-
electric constant. On the contrary, the effective-medium
theory (EMT) in thin composite materials with elongated
inclusions has to be essentially modified due to strong
boundary effects.

IIl. EMT FOR THIN COMPOSITE LAYERS BELOW THE
PERCOLATION THRESHOLD (h<h., p<p.) FIG. 5. Structure of a thin layer when the effect of boundaries is

replaced by a new medium around the fibre.
There are a number of methods developed in the literature
to calculate the effective macroscopic parameters of compos- #j(x)
ite materials with nonspherical, in particular, elongated inclu- Q
sions. However, they are entirely restricted to the case of
unbounded materials. Our objective is to obtain an extensio&

) iwe
w2 T k?Qj(x)~ — . Eox- (16)

to the case of thin composite materials where the boundary€'€ K= (@/€) Ve is the wave propagation parameter, the

effects cannot be ignored. If the layer thickness is Compa_l;nctionG(xr,]y,z)hz_exp(—ilgr)/ iwr+iys relat(-;d to rt]hefsoluti(;n
rable with the size of inclusions embedded in it the concepf’ Eq. (4) when =%, an Q=J=,ReG)dx T € form o
of the dielectric constant seems to lose its direct meaning=d: (16) corresponding to the unbounded medium will be

Then, there is a question if such a layer can be characterizéd!léd @ canonical form. In the case of bounded materials,
by the effective parameter. In the case under consider- Eq. (14) can be reduced to this canonical form by renormal-

ation, for h<h,, all the fibres are subjected to near-same'2iNg Material parameters as
boundary influence, as was demonstrated in Fig. 4. In this

context, such a sample can be treated as a uniform layer ep=eQ/Q1, mp=pQ2/Q,
characterized by effective parameters, yet these parameters
will depend on thicknesh and, in general, on properties of kp=(w/c)Vepup=(w/c)Veu(Q2/Q;). a7

the surrounding media.

For our analysis, a modified EMT equation developed inThis procedure allows the boundaries to be eliminated when
Ref. 6 is used. This approach has been distinguished frordetermining the current distribution at the inclusion. They
other theories since it has a number of advantages: it givesae replaced by a “new” medium witk,, u,, which ap-
correct value of the percolation threshold and can be expears near the inclusion at a characteristic distdmgeas
panded to a nonquasistatic case when the boundary effecthown in Fig. 5. Folh<h, the factorsQ, and Q, depend
are most essential. Along with this, it enables technically toyeakly onh,, thene, and u, may be considered to be
take into account the boundary polarization. For this purfunctions of thicknesé only. The appearance of the perme-
pose, it is important that the method combines the Bruggeability 4,1 owes its origin to the magnetic moment related
man EMT (Refs. 2, 24, and 25and Maxwell-Garnet to the current at the fibre and the induced displacement cur-
theory?’®?’ with its idea that the local medium near different rent at the layer surface.
inclusions may be different. Within this approach it is pos-  Figure 6 shows the plots of the renormalized parameters
sible to introduce a renormalized parametegsand uy, for g, andu,, as functions of thicknedsat the resonance wave-
the medium near fibres as the result of interaction with théength withe =52, u=1. The value ok, equals 1 for small
boundaries. These parameters will then be involved in EMTh— 0 and increases to its bulk valgewhenh tends to infi-
equations foke s and per and the boundaries can be omitted. nite. The magnetic permeability,, differs slightly from 1

The single-particle approximation considered above camoing through a maximum. This is related to the induced
be used for calculating the renormalized parameters. For thijagnetic moment as a function bf it tends to be zero in
purpose, Eq(14) describing the current distribution at the two limiting casesh=0 andh=. In the experiment when
inclusion is transformed to a certain canonical form. In thethe metal substrate is placed away from the sample the mag-
antenna approximatiofi>r,, N>r1o) the current density netic response is not noticeable. In the case of the composite
j(x) at the fibre in the unbounded medium with some mateplaced on the metal substrate the magnetic properties may
rial constantse and w is determined by Eq(10) with U,  become noticeable to be measured.

=0, After we have calculated the renormalized parameters
characterising the medium near fibres, the EMT equation can

52 iwe be constructed similar to the case of unbounded media. This

52 (G +K3(Gx]) el Bz equation uses the condition that the total polarization aver-

aged over all the inclusions has to be z&fdFor bounded
materials, the surface polarization due to surface displace-
This equation can be further simplified in a way similar ment currents has to be included as well, which gives

to that used for obtaining Eq(14), which requires

In(l/2rg)>1, P Piipre (1= P) PmatrixT Psurface= 0, (18

y2+(z+hg)2=r2
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sof Ref. 6 for the case of infinite medium. It turns out that the
calculation of fibre polarization involves scaling along the
40t fibre only. Assuming a linear scaling results in
301 Eelr—r")=e+2(ge—e)|r—r'|/l, (19
= e=52
20 h =h/2 where the points andr’ are taken on the fibre surface. In
0l . the case of the bounded composite the matrix constant
must be replaced by the normalized effective constgnt
of . , , , . (‘a) Considering that fibres are placed in thdirection, Eq.(19)
00 05 1.0 15 20 25 30 becomes
h (mm)
30 Ee(X=X')=ept2(eer—ep) (X=X")/I. (20
25F Using the scale dependen@) the fibre polarization can be
calculated
20}
& £=52 4riotlegw
= h =h/2 D™ 1 + (47 0 I epw) (4r2/12)In(1+ 1 £/2r o& 61 COSQ,
Lot
X Ep, (21
05
® O2=12k2L,Cp/4, Lp=2In(1/2rq)+ikyl
0000 05 10 15 20 25 30 b bbb 07T Tbh

h(mm)
Cb: Sblln(1+ | Sb/2r08ef),
FIG. 6. Renormalized matrix parametesg [in (8)] and xy

=(up—1)/4a [in ()] as a function oh. where ()}, is the normalized resonance frequenky,is the

fibre inductance per unit length of fibre, aj, is the ca-
where p is the fibre concentration. The terms in E4.8) pacitance per unit length calculated after taking the account
correspond to averaged polarization of fibres, dielectric maof the scale dependenc¢20). The normalized fibre conduc-
trix, and surface, respectively. Using renormalization procetivity of =f(A)o takes into account the skin effect in the
dure(17), the surface contribution can be taken into accountonducting fibre where is the fibre conductivity. The func-
by means of the parametesg and u, which are used as tionfis obtained from a classical skin effect in a conducting
renormalized matrix constants to determine the fibre polareylinder?
ization Pgpe. In this approachPg .= 0, however, the re-

gions with parameters,, and w,, appear near fibres; their f(A)=[(1—D)/A]I[(L+D)A]/Jg[ (1 +i)A],
polarization is different from that of the matrix and has to be )
included in Eq.(18). where J, and J; are the Bessel functions,A

The polarizationPg,. can be calculated from the current =FoV2morw/C is the ratio of the fibre radius, to the skin
distribution on a fibre given by Eq(13). It involves the depthé=c/\2mow.
dielectric constant of the surrounding mediwm In the The matrix is represented as an assembly of fine spherical
effective-medium approach; has to be replaced by,. particles of dielectric constamtwhich are embedded in the
However, the effective medium near elongated inclusion&ffective medium with dielectric constaats. The polariza-
cannot be considered uniform on a characteristic scale of théon of the dielectric matrix is given by the standard quasi-
order of inclusion sizé, and the corresponding effective pa- Static equatioff
rametere s depends on scale Since the total electric field
on the inclusion is near zero, the interaction between the 3(e—eep)
inclusions has little effect on the dielectric properties of the Pmatfix:zseT 0
medium in the vicinity of them. Therefore the valuesmf(s)
in this region equals,, which differs frome as the result of where ¢ is the initial constant of the matrixnot ¢;,). In
boundary effects. Far from the inclusions at distances largegeneral, the polarization of the regions with near fibres
thanl, the effective medium can be considered as uniformhas to be considered separately fré.qix. It sSeems rea-
having the dielectric constaf@t= e of a bulk material. It  sonable to assume that they can be represented by ellipsoids
means that Eq13) obtained for a fibre in a uniform medium with short axesh./2. The concentration of such new inclu-
has to be modified. At this stage, it is also important to consions is enlarged by a factor ofif/2r ). With increasingp
sider a fibre with a finite conductivity, which influences dis- these areas may change the matrix properties entirely. Here
persion of the effective parameter via the skin effect. Thewe consider thap is sufficiently small to omit their contri-
equation for the current distribution accounting for the finitebution.
conductivity and scale-dependedi«(s) was developed in Substituting Eqs(21) and(22) into Eq. (18) yields

(22)
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160
100 i
ol o = 1016 ¢-1 Infinite sample G =1016¢1
i 90{ €, =¢ !
120+ £ =52 b e=52
100k 8b=5.0 80} h=0.1mm |p=0.002%
L h=0.05 mm — 70k =75
80 W™ 70 __[_fib h=0.05 mm
60t p =0.002% 60F = g = 5.0
40+ 50+
20[
0 1 1 1 1 (a) 40 [ 1 Il 1 ' (a)
0 5 10 15 0 5 10 15
50
120 Infinite sample 101651
100 of___1016s-1 a0k /Eb=£ cf- )
e=52 e=52
804 . =50 30k h=0.1 mm p =0.002%
- 60l hb o0 €, = 15
w =0.05 mm 20t
401
20 10F
0] ®) op ~" | - :
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FIG. 8. Effective dielectric constanty=¢,+ie, as a function
of frequency for different thickneds ¢4 is in (a) ande, is in (b),
p=0.002%.

FIG. 7. Effective dielectric constarty=¢,+ie, as a function
of frequency for two concentrations 0.002% and 0.02%:52,
ep,=5,h=0.05mm. Real part, is in (a) and imaginary part, is
in (b). The aluminum coating had the semicontinuous structure . . . . .
since the effective fibre conductivity; was less than in the case of Cemrat'on_[s_ee Fig. Tb)]. Figure 8 _compareg the dispersion
the all-metal inclusions and it is taken to be equal t&*s0". characteristics of for layers of different thicknesk. The

case of an infinite system is also given. The main resonance
frequencyf = c/2l \/a?b (up=1) is considerably shifted to

HI.
p Ao 5e the high-frequency region since the renormalized effective
2 1+ (4miaflepw)(Arg1%)In(1+1gh/2r gz o) COSQ, constants,, is several times smaller than the matrix constant
3(s—eq) £=52 for h<h.. Besides, the next resonance which is
+(1-p) >———=0. (23)  clearly seen in the case ef,=52 (infinite system is not
2eeit e observed for thin layers. We can conclude that the boundary

Here the factos in the first term results from averaging by effects may change very strongly the dispersion characteris-

directions in the plane. t|csI sﬁff) near ;tklﬁlresonanc.et frleqlé:nct;es.th |
Equation(23) describes the effective response from a thin, c? € cas;a orthin ((j:c;mpo& (t:} a)t/ E;TC" € rT”O”T}a )

composite sampleh<h.) below the percolation threshold Ized parametee,, used to construc IS nearly unitorm

(P<Pc)-

a5t
IV. ANALYSIS OF THE EFFECTIVE RESPONSE NEAR
RESONANCE FREQUENCY

In this part the dispersion of the effective response near
the main resonance frequency is analyzed. The constaist “ 35l
calculated from nonlinear E@23) for two concentration®
=2x10"%andp=2x10"°. These small values gf corre-

spond to the composite materials used for the experimental 0f

investigation ofe in Ref. 8. Figure 7 shows the dispersion

of the real €,) and imaginary §,) parts ofe,=e,+ie, for 555 05 0 5 20
a very thin sample witth=0.05mm<h,. The frequency ho(mm)

behavior is of a resonance type with the resonance frequency

corresponding to a maximum of imaginary part. In the case FIG. 9. Renormalized matrix parametefsas a function of the
p<<p., this frequency depends weakly on the inclusion conAibre positionhy/h for h=2 mm(>h,).
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0.4 APPENDIX A
p=0.002%

In this part, the differential equations completed with the
boundary conditions for the vector potentfalin the system
shown in Fig. 1 are obtained. If a fibre is placed in an infinite
e=52 ---------- medium, the field scattered by it is described by the vector

) potential having onlyA, component. In the case when the
surface effects are essential, using one component of the vec-
tor potential is in conflict with the condition of continuity of

Absorption
o
[ 8]

h=2mm

----------- monolayer

0o} multilayer the fieldsE andH at the interface vacuum dielectric. As it
; s . : s s - follows from Eq.(2), two component®\, andA, are suffi-
o2 4 f(CG;Hz) 8 1012 cient to satisfy the continuity conditioll. The equations for

the component#, andA, are written as
FIG. 10. Effective dielectric responsgeoefficient of absorption 5 L
from a thick composite layefh=2 mm(h,)]. Solid curve: AA 23T KT 5 Ax1237 —T123, (A1)
multilayer system. Dashed curve: uniform single layer. 2
AAz1 23t K128A2123=0.

having almost no dependence on the fibre positipnCon-  The following boundary conditions are imposed:
trary, for thicker materials there are transition layers where

&, changes significantly, as shown in Fig. 9. Then, the effec- #Al 0= Aalz-0. 1Al n=Axslz-n.

tive dielectric constant is not uniform either and the exis- IA IA IA IA

o . . . . X2 x1 X2 X3
tence of the transition layers in thick composites seems as if 5 = C == ,
it may affect the wave propagation changing such measured Z |, P L PR Zl=n

parameters as transmission, reflection, and absorption coeffi- (A2)

cients. Then, there is a question if this can be a cause in

shifting the measured resonance frequency in thick layers, as

discussed in Fig. 3. To answer this question, the response 1((9A , dA 2)
X V4

A22|2:02A21|z:01 A22|z:—h:A23|z:—h:

_ ( A . aAZl)
0

from a thick layer b>h.) is calculated, dividing it into a —
&

x = Jz o

ox Jz

number of layers where,, is considered to be uniform. The
calculation is done by the matrix methodAbele’s
method®?9. Figure 10 compares the dispersion of the ab- }(’?Ax2+ 3Az2)
sorption coefficient for a single layer with the matrix con- el ox Jz
stante =52 and for a layered system with, distributed as , )
shown in Fig. 9. The internal part of the sample wity ~ Where indexes 1, 2, 3 designates areas[0+ ],
~¢ is considerably larger than the surface transition layeré¢€[—h.0l, and ze[—<,—h], respectively, j,5=0,
whenh.<h. Then, the variation iz, in these layers is not 12=—1(X)3(y)8(z+ho), ky=w/c, ko= (w/c) e u.

sufficient to change the total response from the system. It The solution of Eq(A1) can be presented in the form of

means, that in thick materials witie>h, the EMT approach ~convolutions of Green’s functions and current dens{ty),
has no need to be modified. as it is shown in Eq(3). The coupled Eqgs(4) and (5) are

solved using the double Fourier's transformation with re-

spect to variablex andy, which yields the differential equa-

tions with respect ta for the obtained Fourier’s transforma-

tions. The integrals in Eq$6) and(7) are inverse Fourier’s
The effective-medium theorfEMT) applied to thin com- transformations written in the cylindrical coordinates with

posite layers with conducting sticks is developed taking intop= X2+ y? (known as Sommerfield’s integrafs.

account the surface displacement currents. The boundary ef-

fects are treated within a single-particle approximation, APPENDIX B

within which it is possible to transform the current distribu- ) )

tion at the inclusion to the form similar to that for an infinite ~ The theory developed here requires two types of integrals

system. In this approach, the boundaries can be eliminatd@ e calculated. They afsee Eqs(6) and (7)]

considering that the inclusion is embedded in a new matrix e f(khh

with a renormalized dielectric constant. The cross section of J ﬂ

this area is of the order of thickness of the transition layer. o Axkh)

After this step, the standard procedure to obtain EMT can be

used. The dispersion of the effective dielectric constant in + g(k,h,hg,2)

thin materials is a function of thickness being significantly or fo Aq(k,h)A,(k,h)

different from that for “bulk” materials: the resonance fre-

quency is shifted to higher frequencies and the interval bewheref andg are analytical functions with respect to variable

tween two resonances is increased. k, p= VX%+y?, functionsA, A, are determined in Eq$6)

z=-h

z=—h

0Ay3 N dA3
oX 0z

V. CONCLUSION

Jo(kp)dk

Jo(kp)dk, (B1)
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and(7). The difficulty in calculating Eq(B1) occurs since in  whereW (k) is a continuous complex functio®; is an arbi-
the absence of the dissipation in the medium {#im .  trary path in the complex plai®, andqe P is a complex
=0) the functionsA(k,h) and A,(k,h) have real zeros, number. The limit ofF(q) when the pointq approaches a
which are located symmetrically in the regionsk,<k= point k* on the pathC can be found by means the Plemel]

—k; andk;<k=k,. formulas(or, less often, the Sokhotski formujas
The equationsA;(k,h)=0 and A,(k,h)=0 are called
dispersion equations of the layered media, which determine FH(k*)=F(k*)+3W¥(k*),

the propagation numbers of those waves penetrating inside
the medium at sufficient distance. The roots obey the follow-
ing propertiegwhich are given here without proof(i) they
are positioned symmetrically abokit=0 (then, only positive
k will be considerey (ii) in the absence of dissipation there when the pointq approaches the poirt* from the “left”
areN=(2+[yky—kih/a]) different roots in the regioly  anq “right” with respect to the integral path. The function
<k=k,, where the square brackets designate the mtegqf(k*) is defined by the following equation:

part; (iii ) for h—co this number increases to infinite and the
roots tend to occupy the regida<k=<k, continuously;(iv)

F(k*)=F(k*)— W (k*). (B5)

HereF*(k*) andF ~(k*) are the “left” and “right” limits

. . 1 W(k)—Ww(k*) 1
for h<m/\/k3— K there is the only root which dt—0 ap- F(k*)= o Td“ E\If(k*)
proachesk,; (v) for h=mn/\k3—k?, wheren=1 is any m Je
integer number, one of the roots equijs V(k*)  b—k*
To find real positive roots in the regidq<k<k,, it is to (B6)
convenient to represent the dispersion equations in the form
w22 v ~ -y — where L (b—k*)/(a—k*)]=In|[(b—K*)/(a—Kk*)]|
Aq(k,h)=(=%5+ y1e7)sin(7;h) + 2y, 7y,e cog7,h) =0 +iard (b—k*)/(a—k*)] is the principal value of a logarithm,
which is equivalent to anda,b are the ends of the path. In the absence of the dissi-
pation whenk* is a real root ofA;(k,h)=0 or A,(k,h)
(yisz+72)sin{3/2h+arctcj2yl3'/28/(yfez—%)]}zo, =0, the integrals in EqB1) can be rewritten in the form of
(B2) the Cauchy integrals,
wherey,= \/kzz—kz, v1(k) and?¥y,(k) are real functions of bi f(K,h,hg,2)
variablek in the considered region. A similar form can be f A’—I;r(:,‘]‘)(kp)dk
written for A,=0. From Eq.(B2) the condition of root exis- & 2(k.h)
tence is obtained jbi f(k,h,ho,z)(k—ki*)/Az(k,h)J ook
= p .
Foh+arctd2y,7,6/(Yie?~F)]=7m, (B3 k=K ’
(B7)

wherem s integer number including zero. For amthere is

only one root and the maximum value of equalsN=(2 Here W (k) = f(k,h,hg,2) (k—k*)/A,(k,h) is a continuous

L Vkz~kih/ar]) as mentioned above. Equatid) can be function of the variablek, the parametek is theith real

solved by a graphical method finding the intersection of . . . N .
lines: f,(k) = —¥,h+ 7m and fz(k)=arctq2yﬁzs/(yisz root of the dispersion equation, anal (b;) is the subinterval

ok . . o
_3/%)], which is easily realized numerically. containingki . The value of¥(k*) is found via residue:

o ) )
In a standard methatf,the integrals containing functions W (ki )_reif(k’h'ho'Z)/AZ(k'h)]_kfki*' The. mtegra.lls n
with real poles are calculated by integrating along the vertiEd- (B1) can be calculated by dividing the integration path

cal cuts made from the poles. If the number of poles is largdto intervals: (0ky),...,(@;,by), ..., (kz, +%°) where the in-
this method becomes impractical and is of no use. The intelegration in the intervalsg; ,b;) is carried out as explained
gration of Eq.(B1) can be made by introducing a small dis- above. In Eq.(B5) the right limit F~ (k") has to be used
sipation in the system: a small imaginary part appears in since in the case of dissipation the roots shift below the real
(and w). For example, if the medium has a small conductiv-axis.

ity o, then Ime=—iwo/4m [the sign “-” corresponds to time

dependence of exp(iwt)]. As a result the polt_es shift in the APPENDIX C
complex plane below the real axis and the integrals can be
calculated in a usual waias classical The challenge now is In this appendix, the approximation used to obtain Egs.

to calculate the limit of the integrals when the dissipation(14) and (16) is discussed. Let us consider H423) for the
approaches zero. For this purpose, the integrals of Cauchsurrent density, which is written as
type are consideret},

L P(odk 92 (j(X)-I— (G1*)) K2 § (%) + (Gz*j))_ iwe £
_ 0 2 b __4 0x »
F(Q)_zwi L k=g (B4) X Q1 Q2 mQ1 1
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where the following notations are use@; =i Im(G,,+U,),  The next-order terms can be found from a standard iteration

G,=iIm(Gy), and the wave numbefi=k3Q,/Q,. As it ~ Procedure,
follows from Eq.(11) the functionsG; and G, are propor-

) 2 _
tional to in(0=io00+ [ Foxin s@dan-1N, (€7)
o Sinkex) - .
~——. : : . )
1,2 \/XZTFS ;/(\;f;ereF(x,q) is the kernel of the total linear integral opera
The order ofQ; andQ, is estimated from Eqg11) and(12),
~ 1 x o
o [ o Fx )= - Gk | six-9)
o ———=~2In(1/2r).
Rl TN Ve ° Gu(s—q) Ga(S—q)
1(S— 2(S—
Equation(C1) can be represented as a differential equation X Q, Q, )ds. (C8)
with respect to the function(x) + (G1*j)/Qq,
_ . The constant#\ and B are found from the boundary condi-
[ (G1*]) 2l (G1*]) tions j,(—1/2)=j,(1/2)=0 at the final stage of the iteration
a2 Jx)+ Q, ke 10O+ Q, procedure for a fixeth=N=1. Since the integral operator is
_ _ . linear the equation foA and B form a linear system. The
_ we o[ (Gr*])  (G2*]) solution forj, (N=0) has the form
=———Eqtk; - . (CH
A o wsE kol 12) — cos kpX)
[ co —cog kpx
The general solution of EqC4) can be written in the form jo(X)=— ©° OXZ Lcosths )] (C9
of an integral equation, 47Q1Kp cogkyl/2)
iwe (Gy*)) Equation(C9) gives singularity at the resonance frequency
j(x)=-— WEOX—’_A sin(kpx) + B cogkpx) — é when cosk, 1/2)= 0, which can be eliminated using the next
Q1K ! iterations. Since the kernefF(x,q) involves parameters
x 1/Q,, 1/Q,*1/2In(/2ry), the last term in theNth iteration
+kbf_|/2 sinky(X—s)]F(s)ds, (C5  series is of the order of1/2In(/2ry)]N*1. In the present

case, the iteration parameter is sufficiently small: tality
whereF(s)=[(G1*])/Q:—(G,*])/Q,], AandB are con- =0.4cm andr,=4x10"%cm gives 1/2In{2r,)~0.15.
stants which are defined from the boundary conditionsThen, the higher-order iterations will introduce small
i(—1/2)=j(1/2)=0. The first three terms can be used to con-changes in the effective paramelgrand the resonance fre-

struct the zero-order solution, quency(but can change the current at the resonance consid-
) erably, which is not important in this cgsand thus the form
: e : factors Q; and Q, properly define the modified effective
X)= — ———— Eg,+ A sin(kpXx) + B cogkpX). L 2 NS
Jo(X) 4mQ k2~ (kox) sthox) parameters. The zero-order iteration corresponds to neglect-

(C6)  ing the imaginary parts in Eq13).
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