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Resonant scattering and localization in heterogeneous Biot media
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This is the second of a pair of papers considering acoustic multiple scattering and localization in fluid-
saturated porous solids. Such systems are represented by the Biot effective medium, and spatiallyd-function
correlated disorder is incorporated by replica-field methods. In the companion paper it was shown that a
preferred form of the wavelength-scale scattering operator, coupling primarily to slow waves, is selected by a
universal renormalization-group flow toward strong coupling. The simplification afforded by a single scattering
interaction is used here to define both Ginzburg-Landau and coherent-potential descriptions of the localized
density of states. It is found that, as long as the Biot medium is the appropriate background, a description of
localized slow and extended fast waves is possible, but that fast waves may not localize within the weak-
coupling limits of the models. Further, coupling between slow and fast waves contributes an apparent dissi-
pation that can inhibit slow wave localization. Finally, relations are found between fast-wave coherence length
and the slow noise spectrum, which make fast waves a potential probe of a slow-localized volume.

DOI: 10.1103/PhysRevB.64.134203 PACS number~s!: 63.50.1x, 63.20.Pw, 61.43.Gt, 61.43.2j
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I. INTRODUCTION

The possibility of acoustic Anderson localization1 has
been studied for heterogeneous elastic media, using too
effective medium theory and multiple-scattering perturbat
theory.2 In three dimensions, the conditions for localizatio
invariably require a medium with dense, strong discontin
ties on small scales, and models with dense granular in
tions in a resin or fluid background are usually proposed
potential realizations.

An important distinction arises for such models, thoug
between granular insertions that do not make contact
those that do, if the surrounding saturant is a fluid. In
former case, the material is a suspension, and elastic th
with sometimes-vanishing shear modulus is an adeq
model. In the latter, the insertions form a percolating clus
and the medium is a fluid-saturated porous solid. The imp
tance of percolation is well appreciated in the similar pro
lem of classical electromagnetic localization, where b
conductivity of connected dielectric spheres would scre
the medium entirely.3 In the acoustic case, the situation
somewhat different. Solid stress percolation does not sc
sound from the interior, but rather creates another effec
medium, with a richer set of wave types and descriptive
rameters than elasticity. The acoustic description of this
fective medium is called Biot theory.4–6

In a companion article,7 it was argued that Biot theory i
the universal generalization of linear elasticity appropri
for a porous-medium perturbation expansion, and further
all the methods for representing quenched parameter
domness can be applied to the two cases in the same for
main result of that work was that the complicated set
possible Biot scattering operators,8 which in the bare theory
would be an obstacle to saying anything general abou
localizing properties, flow to a universal, fairly simple form
in the long-range renormalized theory. With appropriate
veats about when this universality is useful, the main ide
physically simple: In keeping both fluid and solid degrees
freedom, Biot theory predicts two compressional wave ty
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with different wave speeds and wavelengths. The Rayle
cross section is generically larger for the one with the sho
wavelength, and a relevant9 renormalization group~RG! flow
tends to select this wave for strong coupling. It was a
shown in Ref. 7 that, even when the asymptotic RG is
reached, common examples yield scattering operators
are near the universal form even in the bare theory. It wo
then naturally be expected that the slower wave would
more susceptible to localization than the faster.

A. Goals and limitations

This paper studies the localizing transition in heterog
neous Biot theory, with the aim of extracting general char
teristics. The simplified universal form of the scattering o
erator from Ref. 7 will be used to represent the genera
enhanced coupling of the slower wave type. Both nonper
bative ~Ginzburg-Landau!10 and perturbative~coherent po-
tential approximation!,2,3 approaches to localization will be
considered, to derive a difference of treatments of densi
of states for the fast and slow wave types, when they ex
rience scattering interconversion, which has no exact ana
in acoustic or elastic systems.

As in Ref. 7, the methods used will require an assumpt
of inviscid fluids, so the results will only apply directly t
saturants such as sufficiently cold superfluid helium. O
feature of wave interconversion that will be derived is a c
herence loss that mimics dissipation in the critical RG flo
for diffusivity3 and inhibits localization, even in the idealize
inviscid limit. Any intrinsic absorption due to fluid viscosit
would then add to this inhibiting effect.

Another result will be that Biot media have an incohere
resonance effect like that in nonuniformly rough acous
media,10 but Biot media preserve it into the uniform limit
The incoherent resonance of nearly-localized slow wa
states will arise from the same interconversion that mim
dissipation in the critical RG flow.

B. Approaches to localization

There are two fairly different ways to study localizatio
within the replica formalism: a semiclassical Ginzbur
©2001 The American Physical Society03-1
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Landau~GL! treatment, and the perturbative renormalizati
of the coherent potential approximation~CPA! sigma model.
The GL method is intrinsically nonperturbative~an instanton
expansion!, and gives an explicit representation of the de
sity of localized states. This is important because the RG
Ref. 7neveridentifies such states, due to a divergence of
perturbation series, which in fact requires the semiclass
stationary point expansion to be stabilized in the localiz
regime.11 The GL expansion can also be applied to stati
cally nonuniform heterogeneity, and in fact this was the k
to discovering how instantons could arise to stabilize
acoustic problem at all.10 On the other hand, the GL expan
sion is intrinsically nonrenormalized, and cannot be appl
close to the mobility edge, whenever such exists.

The critical CPA sigma-model renormalization is exac
complementary. It, like the free-field RG, makes no expli
identification of localized states, and furthermore inheren
assumes uniform heterogeneity. All states in a uniform s
tem lie on the allowed wave number for propagation, and
entire density of states at a given frequency is only identifi
as localized or extended as the scale-dependent diffus
either remains finite or goes to zero at large distances. In
latter case, the length where the diffusivity goes throu
some characteristic value becomes identified as the loca
tion length, whose scaling with frequency may then be
tained in arbitrary neighborhoods of the mobility edge.

Inputs from both approaches will be used here, to try
piece together a picture of localization in heterogeneous B
media. A result from the GL expansion will be that, as lo
as the two wave types have scattering interconversion du
polarization overlap, there isno instanton representation o
localized states at the allowed~on-shell! fast wave number,
as there would be in a simple acoustic medium with the
wave speed. On the other hand, there are instantons nea
slow-wave number, which correspond to the simple acou
case, but have small admixtures of fast-wave polarizatio
The ordering of this species dependence is due precise
the ordering of wave speeds, and is interpreted to mean
the slow wave localizes first and most strongly, and tha
the fast wave localizes at all, it must do so as a second
transition in the effective theory after slow waves have be
integrated out.

A further consequence of the interspecies coupling is
duced from comparison of the GL result with the CPA. A
guing that only the density of states represented by ins
tons should be renormalized coherently in the slow-wa
CPA, the additional coherence attenuation from scatte
into fast waves is treated as an apparent intrinsic slow-w
dissipation. The resulting effective theory for slow wav
becomes indistinguishable from the scalar-acoustic prob
with intrinsic absorption, for which the critical propertie
have already been derived.3 An upper bound on the dissipa
tion, to allow coherence-induced localization, becomes
this application a bound on the coupling strength between
wave types.

The piecing together of limited descriptions in this way
likely to be a good approximation when there is a large se
ration between slow and fast wave speeds~as there often is
experimentally!, simply because of the difference of Ra
13420
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leigh cross sections that scale as large powers of the res
tive wave numbers. In an imaginable opposite limit, whe
all wave speeds are comparable and all scattering me
nismsa priori equivalent, presumably some rapid-mixing a
gument like that in Ref. 2 should be used. No ideas
presented here, however, about how to tame the unbri
anarchy of forms possible in that limit.

C. Methods and organization

The derivation below reflects the dichotomy and logic
precedence of the GL and CPA descriptions. New calcu
tions will almost entirely follow the instanton methods
Ref. 10, which rely on a statistically nonuniform scatteri
strength, to identify the different treatment of localized sta
near the fast and slow wave numbers. Once this has b
obtained, it will be used to define CPA field theories for fa
or slow sectors in the uniform limit, by selective integratio
out of fields. The resulting effective theories, though, will n
longer have the full Biot spectrum of wave types, and so w
be described by the scalar sigma models treated elsewhe2,3

Thus, no new critical scaling arguments will be compute
and results will simply be applied from the scalar case
needed. In particular, it will follow that when there is a m
bility edge v* 3 ~relevant only in three dimensions!, the lo-
calization length scales in a neighborhood of it as in
acoustic problem:l loc;uv2v* u21.

The language and notation will closely follow the replic
adaptation of Biot theory used in the companion paper.7 Be-
cause it is assumed that some aspects of Biot theory ma
unfamiliar to localization audiences, canonical results fro
homogeneous Biot theory are first reviewed in Sec. II. T
notation and relations defining replica Green’s functions
then presented, using the simplified scattering operato
Ref. 7.

The instanton expansion is derived in Sec. III, and
wave number dependence, polarization, and spatial distr
tion of localized states computed using nonuniform roug
ness as a regulator. The incoherent resonance effect c
sponding to the acoustic case10 is also derived in this section

The relation to the CPA is developed in Sec. IV, whi
contains the main results of the paper. The coherent atte
ation and noise spectrum are related using the instan
Green’s functions, and are then interpreted in passing to
uniform CPA in terms of the free fast and slow densities
states. The proportionality between the fast and slow co
ence lengths is derived, thus relating the fast cohere
length to the slow noise spectrum~the only noise spectrum in
the medium!. The argument for different treatment of fa
and slow scattering is then made, and the resulting diss
tive CPA for the slow wave sector obtained. Results fro
Ref. 3 are used to derive the slow-wave Ioffe-Regel criteri
and also to quantify a condition that coherence loss fr
slow-fast wave conversion not eliminate slow wave localiz
tion.

The picture that emerges is dominated by the form of
effective coupling. For the generic form of Ref. 7, there is
clear ascending scattering-strength hierarchy: fast-fast, f
slow5slow-fast, slow-slow. As a result, slow waves can l
3-2
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RESONANT SCATTERING AND LOCALIZATION IN . . . PHYSICAL REVIEW B64 134203
calize with sufficiently strong self-scattering, with slow-fa
scattering being only a weaker coherence inhibitor. In c
trast, fast wave coherence attenuation is dominated by
slow scattering, so both it and the resulting noise spect
are controlled by slow wave properties at leading order.

Localization in Biot media thus has one more importa
difference from the acoustic or elastic cases. In the latter,
noise spectrum could not be probed remotely, and was
lated only to the coherence length of the localized excitati
that it comprised. Here, weakly scattered, extended
waves remain a probe of the bulk medium, and can coupl
localized slow waves, as to a distribution of resonators d
persed throughout the medium.

II. HETEROGENEOUS BIOT THEORY

To study localization in porous media with convention
perturbative methods, it is necessary to have a smoot
effective-medium description that accounts for all of the
dependent large-scale degrees of freedom. However, s
many porous media are granular on scales approaching
acoustic wavelengths of interest, this description must be
fined by its symmetries, so as not to rely on a particu
homogenization scheme to have a sensible meaning.
theory, with the coefficients considered as renormalized
fective parameters, satisfies both of these requirements.

A. Biot phenomenology

The Biot effective medium theory4–6 is the generic ho-
mogenized description12,13 of acoustic excitations in fluid-
saturated porous solids. It directly extends the form and g
erality of linear elasticity to media with two locally-defined
independent, interpenetrating deformational degrees of f
dom, one supporting a shear stress and one not. From c
cation of two independent compressible media, Biot the
predicts two independent compressional solutions to
Helmholtz-type equation, with different speeds and relat
fluid-solid motions~called here ‘‘polarizations;’’ see below!.
The fast compressional wave will be called here simply
‘‘fast wave,’’ and the slow compressional wave the ‘‘slo
wave.’’ A shear wave is also predicted, which is a dire
extension of the elastic shear wave in the porous solid fra
The theory also includes a set of constitutive relations,14 pre-
dicting wave speeds, polarizations, and dissipations fr
material properties of the frame and saturating fluid that
readily measured in the laboratory.

All three predicted Biot waves have been measured
laboratory experiments~on consolidated, statistically homo
geneous porous solids!,15–17 and found to have properties i
excellent agreement with those predicted by the constitu
relations. Because the assumption of inviscid flow is so c
tral to the methods used in this paper and Ref. 7, it is s
nificant that Biot theory has been applied to solids satura
with superfluid helium,18,16,17and indeed, when the same so
ids are saturated with liquid helium or water, the wave pro
erties in the two cases agree with the predictions, with
adjustable parameters.17 The Biot parameter set and cons
tutive relations are discussed in somewhat greater deta
the first paper.7
13420
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It was shown in Ref. 7 that both the bulk Biot equatio
of motion, and the correct boundary conditions for perm
able interfaces, are obtained from a simple variational p
ciple directly extending that for linear elasticity. This vari
tional principle is the basis for the definition of scatterin
operators from formally pointlike fluctuations in the Biot p
rameters. From the argument that Biot theory is auniversal
homogenized description of porous media,12 it then follows
that this set of parameter fluctuations is alsocompletefor
describing arbitrary medium heterogeneities at the orde
the wave equation in derivatives.

B. Defining relations

Homogeneous Biot theory is defined in terms of two c
present displacement degrees of freedom:u, which will de-
scribe a solid, andU, a fluid.b is the porosity~mean volume
fraction occupied by the fluid!, and the volume-weighted
relative fluid displacement isw[b(u2U).19 In general, the
averaging procedure defining each of these in terms of
zero-frequency, grain-scale solid and fluid volumes and d
placements will be scale and frequency dependent. The
turbative RG~Ref. 7! is used to transform among the d
scriptions at different scales.

The solid has first-order strain tensor

e i j [ 1
2 ~ui , j1uj ,i !, ~1!

and the fluid displacement

« i j [ 1
2 ~wi , j1wj ,i !, ~2!

where commas denote partial differentiation with respec
spatial positionx in d dimensions. The trace of solid strain

e[¹•u5Tr~e![e i i , ~3!

where repeated indices are summed, and that ofw defines the
so-called ‘‘increment of fluid content:’’

z[¹•w5Tr~«![« i i . ~4!

To lowest order in derivatives, Biot theory assumes
existence of three density parameters,r, r f , andm, and four
modulus parametersH, C, M, and m. At zero frequency,
these can be related to grain and fluid densities, poro
tortuosity of fluid paths, and compressibilities and stiffne
of grains, fluid, and the composite grain framework.14,20–22

These parameters specify canonical equations of motion22,23

rüi2r f ẅ
i5¹ i@~H22m!e2Cz#1¹ j~2me i j ! ~5!

and

r f ü
i2mẅi5¹ i@Ce2Mz#. ~6!

Biot theory is the most general possible to second orde
derivatives, because Eqs.~5! and~6! are obtained by varying
the action
3-3
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ERIC SMITH PHYSICAL REVIEW B 64 134203
S5E dtE ddxH 1

2
@ u̇ ẇ# i

@r#F u̇

ẇ
G i

2
1

2
@e z#@l#Fe

z
G2m~e i j e i j !J , ~7!

which is the most general form for two degrees of freed
with the respective symmetries of solid and fluid. T
matrix-valued parameters are straightforward extension
the Laméparameters for density

@r#[F r 2r f

2r f m G ~8!

and compressibility

@l#[@K#22@m#, ~9!

where

@K#[F H 2C

2C M G ~10!

and

@m#[Fm 0

0 0G . ~11!

The term in Eq.~7! involving m could also have been writte
as a contraction with the matrix~11!, whose form identifiesu
as the unique effective solid degree of freedom.

C. Green’s functions, replicas, and ensembles

A variety of Green’s functions have been solved for B
theory in various approximations and cases.24 For the form
needed here in general static media, it will be adequat
work in the frequency domain, and the full action~7! is not
needed. Starting at the grain scale, it is convenient to for
nondimensionalized Lagrangian

L5
1

r f l 0
(d12)E ddxH 1

2
v2@u w# i

@r#F u

wG i

2
1

2
@e z#@l#Fe

z
G2m~e i j e i j !J ~12!

with r f , the fluid density, andl 0, a smallest correlation
length on which homogenization is sensibly defined.l 0 is
generally expected to be a few grain diameters, and fo
the ‘‘natural scale’’ for the perturbative RG flow.7

Quenched randomness with Gaussian fluctuations is m
eled by the replica trick,25 directly following Ref. 7. First,
each displacement degree of freedom is promoted to a ve
of n replicas ~given parenthesized superscripts here wh
needed!. Properly normalized Green’s functions for physic
displacements in a given background may be written
functional-integral expectation values of asingle replica
component@e.g., index ~1!# in the n-dimensional theory,
whenn is taken to zero afterward:
13420
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wG
x8

i
@u w#x

j L
v

5 lim
n→0

E DfDwDADae2LF u

wG
x8

i ~1!
@u w#x

j ~1!
.

~13!

Spatial subscripts here denote the arguments of the fie
and subscriptv on the expectation value denotes the fr
quency used in the Lagrangian~12!. The outer product~13!
gives the general correlation of solid and fluid motions in
arbitrary fixed background of parameters, not necessa
uniform.

The functional measure in Eq.~13! has been written in
terms of compressional and shear potentials, convenie
defined from bare theory scale factors, for the solid as

u[Ar f l 0
(d/211)~¹f1¹3A!, ~14!

and for the fluid increment as

w[Ar f l 0
(d/211)~¹w1¹3a!. ~15!

Vector potentialsA and a include only transverse compo
nents, so no gauge condition is needed to fix redundant
grees of freedom.

The conclusion of Ref. 7 was that the dominant lon
wavelength scattering operator decouples from vector po
tials. Therefore, to simplify this treatment, shear coupli
will be ignored from the start, and only compressional c
relation functions will be considered. Becausen→0, the
functional measure forA anda in Eq. ~13! is unity, and shear
terms in the action may simply be factored out and dropp
The convenient order in derivatives to consider ise
5r f l 0

(d/211)¹2f, z5r f l 0
(d/211)¹2w, so the canonical

Green’s function computed below will be defined as

1

r f l 0
d12K Fe

z
G

x8

@e z#xL
v

[G~x8,x,v!. ~16!

With these simplifications, Eq.~16! has the replica definition

G~x8,x,v!5
1

r f l 0
d12

lim
n→0

E DfDwe2LFe

z
G

x8

(1)
@e z#x

(1)
.

~17!

For piecewise-uniform parameters, the Lagrangian~12!
may be checked to produce the correct boundary condit
for abutting Biot media.23 The corresponding, correct bound
ary conditions are automatically generated for pointlike sc
tering perturbations by dividing the Biot matrices into un
form and fluctuating parts:@r#5@r0#1@r8#, @l#5@l0#
1@l8#, @m#5@m0#1@m8#.

It was shown in Ref. 7 that the fixed ray of the lon
distance RG flow contains only one relevant fluctuation
the form

@r8#→r* s* , ~18!
3-4
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RESONANT SCATTERING AND LOCALIZATION IN . . . PHYSICAL REVIEW B64 134203
with s* a fixed, degenerate matrix.@An explicit evaluation
of s* will be given in Eq.~46!, when the necessary notatio
has been defined.# This form will therefore be assumed from
the start, and only the parameter renormalized in relating
bare to the long-wavelength effective theory.

Arbitrary Green’s functions are then averaged over
ensemble of instances, by simply averaging the replica fu
tional integrals. A weight function is introduced for fluctu
tions,

Z[E Dr* e2Lweight
, ~19!

and the average defined by

G~x8,x,v![
1

ZE Dr* e2LweightG~x8,x,v!. ~20!

A choice

Lweight[
1

2GE ddxr* 2 ~21!

gives Gaussian-random, spatiallyd-function correlated den
sity fluctuations:

rx8
* rx* 5Gdd~x82x!. ~22!

In the bare theory, thed-function is regulated as a Kronecke
delta on patches of volumel 0

d , which defines the fluctuation
magnitudeGu l 0

[G0. In passing from the bare to the effe
tive theory later,G will be evaluated at the renormalize
value, and thed-function softened to include only wav
numbers less than the running cutoff.

Completing the square in Eq.~20!, and cancelling the fac
tor Z, leaves an averaged Green’s function defined enti
in terms of replica fields

G~x8,x,v!5
1

r f l 0
d12

lim
n→0

E DfDwe2LaveFe

z
G

x8

(1)
@e z#x

(1)
,

~23!

where

Lave5
1

2E ddx¹ i@f w#S ~v2@r0#1¹2@K0# !d i j

2
Gv4

4
s* ¹ iFf

w
G¹ j@f w#s* D¹ jFf

w
G ~24!

now contains a quartic coupling of strengthG. Contraction
of Biot fields is indicated by standard two-vector notatio
Further, replica contraction is between the same field pair
Biot contraction, so replica indices may be suppress
though all fields (f,w,e,z) now represent full replica
n-vectors. The forms~23! and~24! remain valid under renor
malization becauses* lies on a fixed ray, so the renorma
ized value ofG, and restricted wave number domains, w
be assumed from now on.~It was shown in Ref. 7 that wave
13420
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function renormalization is irrelevant, and additions to@r0#
small untilG approaches diverging, so these corrections w
be ignored below.!

D. Averaging squared Green’s functions

One-particle Green’s functions will always be implicitl
assumed causal, to allow explicit representation of B
fields, while minimizing notation. This is sufficient to com
pute the averaged density of states, but incoherent scatte
computations require averaging squared Green’s functio
so a supercondensed notation is unavoidable. Causal
quencies will be denotedv1 ih, and the fields indexed by
them f(v6 ih)[f6, w(v6 ih)[w6. Single-instance
Lagrangians such as Eq.~12!, computed with6 fields, will
be denotedL6. Similarly, Green’s functions will be denote
G6, and the imaginary regulator on the frequency not w
ten. The Biot column vector of displacement potentials w
then be written

Ff

w
G6

[F6, ~25!

and its transpose

@f w#6[F6T. ~26!

The time dependence of resonant scattering effects wil
of interest, so Green’s functions and their conjugates mus
evaluated at different real frequenciesv6 . The mean and
difference frequencies will be denotedv̄[(v11v2)/2,
dv[(v12v2), so thatv66 ih5v̄6(dv12ih)/2.

In this notation, Eq.~17! is written

G 6~x8,x,v6!5 lim
n6→0

E DF6e2L6
¹x8

2 Fx8
(16)¹x

2Fx
(16)T,

~27!

and it follows thatG 2(x8,x,v)5„G 1(x8,x,v)…* . Carrying
out the same averaging steps as for the coherent Gre
function yields the two-particle ensemble average

G 1~x8,x,v1!G 2~x8,x,v2!

5 lim
n1 ,n2→0

E DF1DF2e2(L0
1

1L0
2

1L int)

3¹x8
2 Fx8

(11)¹x
2Fx

(11)T¹x8
2 Fx8

(12)¹x
2Fx

(12)T.

~28!

The homogeneous Lagrangians can be combined int
block-diagonal matrix form mirroring that for the acoust
case10
3-5
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L0
11L0

252
1

2E ddx@F1T F2T
#S v̄2F @r0#

@r0#
G

1¹2F @K0#

@K0#
G1v̄~dv12ih!

3F @r0#

2@r0#
G D¹2FF1

F2G , ~29!

and the interaction term includes products of1 and2 rep-
licas:

L int52
Gv̄4

8 E ddx¹ i@F1T F2T
#

3Fs*

s* G¹ iFF1

F2G¹ j@F1T F2T
#

3Fs*

s* G¹ jFF1

F2G . ~30!

Replica contraction, as before, follows Biot contraction, a
now also the1/2 two-vector contraction ofF6 The forms
~28!–~30! are direct extensions of those used in acoustic10

with scalar potentials replaced by two-component Biot v
tors. The term ‘‘polarization’’ will apply to these two-vector
~not spatial directionality!, to describe the relative amplitud
and phasing of a collocated deformation of the effective so
and fluid components.

III. STATISTICALLY NONUNIFORM HETEROGENEITY
AND INSTANTONS

A self-consistency condition relates the nearly-fr
Green’s function to the ensemble-averaged scattering att
ation in the coherent potential approximation~CPA! for uni-
form elastic systems,2 and a similar derivation has bee
given in quite different form for Biot media.26 However, the
CPA cannot identify the semiclassical configurations that
needed11 to regulate perturbation theory in the regime of l
calized states. Therefore it was of mathematical, as wel
physical, interest to study statistically nonuniform scatter
in acoustic problems.10 The magnitude and scaling of th
density of localized states could then be directly carried o
to the uniform limit and CPA treatment.

Because of the essential use of the effective scatte
vertex in the current derivation, the applicability of th
weak-coupling instanton expansion will be more limited,
strictly nonvanishing nonuniformity. However, as the scali
of the density of states exactly follows that in the acous
case, and their contribution to the CPA background is de
mined by a projection matrix that does not depend on
instanton expansion, the continuation of these results to
uniform-limit CPA is expected to hold for Biot theory a
well.

The formal structure of coherent and incoherent~two-
particle! Green’s functions will first be presented, and th
explicit forms and existence arguments for semiclassical
tionary points given, using the decomposition of the B
13420
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matrices from Ref. 7. The coherent Green’s function will
treated first in explicit Biot notation, to give some physic
sense of the structure of the instantons. The two-part
Green’s function will then be derived in condensed notati
to make contact with the similar replica divergence struct
of the acoustic problem.

A. Structure of semiclassical Green’s functions

Green’s functions must first be transformed to the d
~wave number! representation:

G~x8,x,v![E ddk8

~2p!dE ddk

~2p!d
e2 ik8•x81 ik•xG~2k8,k,v!,

~31!

and likewise for products like Eq.~28!. The wave number
representation of the causal-frequency action~24! becomes

Lave5
1

2E ddk

~2p!d
@f w#2k~v2@r0#2k2@K0# !k2Ff

w
G

k

2
Gv4

8 E ddk1ddk2ddk3

~2p!3d
~k1•k2!

3~k3•k4!
@f w#2k1s* Ff

w
G

k2

@f w#2k3s* Ff

w
G

k4

,

~32!

in which k45k12k21k3.
As in the acoustic problem, the only channel for coope

tive semiclassical effects is diagonal in wave number, so
convenient to transform to a symmetric basis2k1[k2k8,
k2[k1k8, 2k3[2k2k9, andk4[2k1k9, with the Jaco-
bean of the measure simply carried along via notation

ddk1ddk2ddk3[Dddkddk8ddk9. ~33!

The resulting directional inner products~density fluctuations
are dipole scatterers! become (k1•k2)5(k822k2), (k3•k4)
5(k922k2). The self-consistent ansatz of Ref. 10 was th
the product of these contains the same weight as two pos
delta-function terms, and a negative-semidefinite remain

~k22k82!~k22k92!5v1~k2!2~2p!2ddd~k8!dd~k9!

1v2k82k92~2p!ddd~k!2Vrem.

~34!

Because of the wrong sign of the interaction term~see Ref.
11 for this usage!, the positive operatorVrem simply contrib-
utes perturbative corrections, which are small in any we
coupling, low-cutoff effective theory. The termv2 in Eq. ~34!
renormalizes the dispersion at perturbative order if there
instantons, but because it only appears integrated, ca
create them. Only thev1 term can lead to classical cooper
tive effects, so the others will be dropped or implicitly a
sorbed into weakly renormalized coefficients.

The rescaled coupling of the wave-number-diagonal in
action is
3-6
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g[Dv1Gv̄4. ~35!

Rather than makeg position dependent, nonuniformity wil
be introduced as in Ref. 10, by giving a parabolic profile
the density parameters,

@r0#→@r0#S 12
x2

D2D 5@r0#S 11
¹k

2

D2D . ~36!

Though not intended to represent particular physical par
eters, this varies the wavelength, and thus regulates
strength of the Rayleigh cross section spatially. Becaus
contains the lowest order in derivatives in the dual basis
should represent any effects not explicitly dependent on
fraction in the simpler acoustic case, up to local rescaling
fields. In the Biot case it is less general, because the t
components ofr0 can certainly vary independently. How
ever, as a representation of nonuniformity of a single sca
ing coefficientg, the form~36! is appropriate, and will there
fore be kept. The resulting effective action, wi
appropriately symmetrized factors ofki , is

Lnonunif5
1

2E ddk

~2p!d
~k2!@

f w#2kkiFv2

k2
@r0#S 11

¹k
2

D2D
2@K0#2

g

4
s* Ff

w
G

2k

@f w#ks* GkiFf

w
G

k

. ~37!

The fields actually independent in the semiclassical
pansion are not eigenvectors ofk, but their symmetrized
is

rm
n

l
s

13420
-
he
it
it
e-
f

ee

r-

-

components with respect to the harmonic oscillator poten
formed by the dispersion relation and the spatial regulato

Ff

w
G

R

~k![
1

2 S Ff

w
G

k

1Ff

w
G

2k
D , ~38!

Ff

w
G

I

~k![
2 i

2 S Ff

w
G

k

2Ff

w
G

2k
D . ~39!

~The explicit wave number argument will be suppress
when not needed.!

The R and I components at eachk are then split into
classical backgrounds and fluctuations,

Ff

w
G

R,I

5Ff

w
G

R,I

cl

1Ff

w
G

R,I

8
, ~40!

so that the action has the expansion

Lnonunif5Lcl1
1

2E ddk

~2p!d H @f w#R8MRFf

w
G

R

8

1@f w# I8MIFf

w
G

I

8J . ~41!

Lcl[Lnonunif@fcl,wcl#, and the notation for the second vari
tion is introducedLnonunif[Lcl1L9.

Choosing classical solutions of the equations of mot
ensures vanishing of terms linear in fluctuations:
H v2

k2
@r0#S 11

¹k
2

D2D 2@K0#2
g

2 Fs* S @f w#R
cl
s* Ff

w
G

R

cl

2@f w# I
cl
s* Ff

w
G

I

clD 12s* Ff

w
G

I

cl
@f w# I

cl
s* G J Ff

w
G

R

cl

50,

~42!

or likewise forR↔I . The solutions are further restricted to have the appropriatek-sign symmetry10 implied by the splits~38!
and ~39!.

With these conditions, the kernel for real fluctuations inL9 becomes

MR5~k2!2H v2

k2
@r0#S 11

¹k
2

D2D 2@K0#2
g

2 F2s* S Ff

w
G

R

cl
@f w#R

cl
1Ff

w
G

I

cl
@f w# I

clD s*

1s* S @f w#R
cl
s* Ff

w
G

R

cl

2@f w# I
cl
s* Ff

w
G

I

clD G J ~43!
do

n a
ec-
m
free
rm
pa-
with a symmetric form forR↔I . A single stationary point
never has both real and imaginary backgrounds nonvan
ing, because the apparentO(2) symmetry that would allow
this arises only as an artifact of the harmonic-oscillator fo
of the regulator, and is broken correspondingly by no
degeneracy of the oscillator states.10 As a result, the kerne
for cross terms inR and I, though formally defined, alway
vanishes. Similarly,R fluctuations in theI background~or
h-

-

vice versa! do not have identically zero eigenvalue, and
not fall within the class of zero modes considered below.

The semiclassical Green’s function is now expanded i
sum over stationary points. Unlike the case of uniform el
tronic systems,11 where the only density of states comes fro
instantons, the potential in this problem preserves the
Green’s function in the harmonic oscillator well as the te
with no instantons. Single-instanton solutions are then
3-7
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ERIC SMITH PHYSICAL REVIEW B 64 134203
rametrized by a center position in the forbidden region of
well. The sum over these stationary points is written forma
as

G~2k8,k,v!5G free~2k8,k,v!1
1

r f l 0
d12

lim
n→0

(
k̃2.ks

2
e2Lcl

3E Df8Dw8e2L9Fe

z
G

2k8

cl,(1)
@e z#k

cl,(1)
,

~44!

representing a dimensionless measure that will be evalu
in the next section.

In Eq. ~44!, ks is the maximal slow wave number allowe
in the noninteracting well. Because by assumptionks.kf
~the maximal fast wave number! at any fixed frequency, both
slow and fast waves are classically forbidden fork2.ks

2 . In
this range only, both Biot components can form semiclass
solutions of finite action, independent of the value ofD. For
kf

2,k2,ks
2 , though the fast component might be expected

form bounded instantons, the slow component employs
propagating~extended! Green’s function. The amplitude o
instantons is set by the coupling, so the magnitude of a s
component coupled to fast waves by the classical equat
of motion is fixed independent of well width. As the regula
ing well is widened (D increased!, such solutions have di
verging action and make zero contribution. Even at fin
large D ~soft regulator or slow variation of couplin
strength!, possible solutions atk2,ks

2 have large action, and
so will be ignored.

This approximation will be justified by weak overlap o
fast and slow waves in the effective theory, anywhere t
slow wave localization can be calculated with a wea
coupling RG. As shown in Ref. 7 and recalled in the ne
section, the matrix form of the enhanced effective scatter
vertex comes from that part of the compressibility mat
that couples principally to the slow wave combination
fluid and solid motions. Thus presumably, in systems w
strong enough fast-wave scattering to localize the fast se
slow wave coupling is already so strong that the Biot eff
tive medium is of questionable validity, and convention
elastic models are as appropriate.

B. Particular solutions

The structure of instantons distinguishes between s
and fast waves, so extracting it requires identifying the
components in terms of the background Biot parameters.
perturbative RG was controlled by the modulus matrix@K0#,
which was divided in terms of its eigenvalues and eigenv
tors in Ref. 7 as

@K0#[K1~v1v1
T !1K2~v2v2

T !. ~45!

(v6 is a unit-normalized column Biot polarization, andv6
T is

its transpose.! With notation chosen so thatK2,K1 , the
maximal stationary ray for fluctuations~18! lies along the
projector
13420
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s* 5~v2v2
T !. ~46!

Thus @K0# is diagonalized as

Fv1
T

v2
T G @K0#@v1 v2#5FK1

K2
G , ~47!

and

Fv1
T

v2
T Gs* @v1 v2#5F0

1G . ~48!

Parameters for@r0# may be specified in the same basis
defining

Fv1
T

v2
T G @r0#@v1 v2#[Fr1 rT

rT r2
G . ~49!

In this notation, it then follows thatr* in Eq. ~22! is just the
fluctuationdr2 , and that in the unrenormalized theory,

G0 / l 0
d

r2
2

5S dr2

r2
D 2

~50!

evaluated on uncorrelated patches at the natural scale. In
~22! G ~the only coupling actually used in calculations her!,
represents the renormalized effective coupling at the wa
length scale, denotedGeff in Ref. 7.

The free Biot wave equation may be diagonalized by fi
rescaling the components multiplyingv6 , and then intro-
ducing orthogonal matrices to diagonalize the combinatio

R0

v2

k2 FK1
21/2

K2
21/2G Fr1 rT

rT r2
GFK1

21/2

K2
21/2GR0

T

[F ~l111!21

~l211!21G , ~51!

where

R0[F cosj sinj

2sinj cosj
G . ~52!

The degree of overlap between slow and fast wave po
izations is determined by the off-diagonal componentrT of
@r0# in Eq. ~49!, and encapsulated in the dimensionless an
j, given by

tan~2j!5
2rTAK1K2

r1K22r2K1
. ~53!

j will be assumed small in what follows, and checked qua
titatively in Appendix A. In this notation, asrT→0, the com-
pressional sector of Biot theory degenerates to two dec
pled acoustic waves, with speedsK1 /r1→cf

2 and K2 /r2

→cs
2 . In the more general case, the eigenvalues produ

under diagonalization ~51! define (l111)[k2/kf
2

5k2cf
2/v2 and (l211)[k2/ks

25k2cs
2/v2.

The harmonic oscillator potential created by finiteD has
its slowest speed at the spatial center, leading to bra
3-8
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points wherek2 attains the maximal values for either slow
fast waves. These correspond to the limits of the wave n
ber potential, where instantons first appear. Specifically,
maximal allowed fast and slow wave numbers are defined
the vanishing conditionsl1ukf

[0 andl2uks
[0.

As in previous treatments,11,10the magnitude of instanton
centered at each value ofk2 is determined by a dimension
less coupling strength, here given by

g0[
g

2

D4cos4j

K2
2 ks

4 ~DAl2!d24. ~54!

The magnitude ofg0 can be estimated from the definition
~35! and~22!. In the bare theory with the Kronecker-d regu-
larization of fluctuations,7 the bare coupling has approxima
magnitudeGl 0

; l 0
d^(dr2)2& l 0

, where subscriptl 0 indicates
the mean square fluctuation on patches of correlation len
l 0, assumed discrete and mutually independent. Using
fact that the approximate measure for the positive-defi
central region of the vertex operator in Eq.~34! should scale
as v1;ks

2d , as j→0, 2g0 /D→(v1GDd/r2
2 )(Al2)d24

„1
1O(j2)….

To conveniently express the Green’s function in terms
nondimensionalized functional forms for the instantons, i
necessary to introduce one more transformation matrix,
fined in terms ofR0:

Rk[Ak2F1/kf

1/ks
GR0FK1

21/2

K2
21/2GFv1

T

v2
T G . ~55!

Because the solutions of interest will all lie in a close neig
borhoodk2*ks

2 , it will often be acceptable to setk2→ks
2 , so

that Rk becomes a constant.
The dilationse, z are then used to define two nondime

sionalized, and as it will turn out, scale-free fieldsf 1 , f 2 :

1

Ar f l 0
(d/211) Fe

z
G[ i

~DAl2!d/2

Al2Ag0

R k
TF f 1

f 2
G . ~56!

Rescaling the coordinate differential (DAl2)dk[dv, and
the corresponding gradient (DAl2)21¹k[¹v , it becomes
possible to write the classical equations of motion~42! ap-
proximately, in the region where¹v(ln Al2)!1, as

S 2¹v
21Fl1 /l2

1G D F f 1

f 2
G5Fa

1G~a f 11 f 2!3. ~57!

The constant

a[Al111

l211
tanj5

cf

cs
tanj ~58!

is the small parameter that determines the coupling stre
of slow and fast components of the instanton.

By inspection of Eq.~57!, f 2 is even, andf 1 odd, in a.
Thus for smalla andl1.l2.0, throughO(a1), f 2 sat-
isfies the conventional equation for instantons in a homo
neous medium:
13420
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¹v
2f 2' f 22 f 2

3 . ~59!

ThroughO(a2), f 1 may be expressed in terms of the hom
geneousf 2 ,

S 2¹v
21

l1

l2
D f 1'a f 2

3 , ~60!

which may be solved in terms of the exponentially bound
1 Green’s function. Within the approximation o
v-translation invariance of Eq.~57! ~i.e., ignoring the slope
of the harmonic oscillator potential!, it is straightforward to
show in d51 that the continuation of this small-paramet
expansion converges to bounded instantons for all value
a, proving existence of backgrounds of finite action. A sim
lar result should be valid for spherically-symmetric solutio
in higherd.27

In uniform media, the solutions of Eqs.~59! and~60! are
formed by evaluating a single dimensionless1 or 2 func-
tion offset from a continuous range of center points. Letti
context indicate whether this function is being evaluated
its dimensional~k! or scale-free (v) argument, the classica
solution will be variously denoted

f 6
cl ~k![ f (6)

cl
„DAl2~k2 k̃!…5 f (6)

cl ~v2 ṽ ![ f 6
cl ~v !.

~61!

f (6)
cl is the canonical form, and the center point will alwa

be implicitly k̃ or ṽ.
The harmonic oscillator potential modifies the exactf 2

from the approximate uniform solution to Eq.~59! exactly as
in the acoustic case.10 Coexistence of propagating solution
in the allowed regionk2,ks

2 and instantons aroundk̃2.ks
2 ,

makes the well of the instanton a leaky potential. Solutio
to the wave equation in this well, including that of the i
stanton itself, continue through a tunneling barrier to allow
states of the free oscillator, and have eigenvalues with fi
imaginary parts dependent ong0. Such resonances do no
actually appear in the spectrum of~appropriately symme-
trized! eigenvectors at finiteD. Rather, at largeD, the dense
sets of oscillator states approximate a branch cut look
through to unphysical sheets, and the unstable states ap
as poles on these unphysical sheets, collectively represe
in the residues of the actual spectrum.

For quite common parameters,22,10 l1 /l2@1 over the
whole range ofk2 contained in the effective field theory, an
the Green’s function solution to Eq.~60! becomes approxi-
mately f (1)

cl →(l2 /l1)a( f (2)
cl )3. This result will be impor-

tant below, becausef 2 is regular at small (v2 ṽ), and de-
cays exponentially in large (v2 ṽ), toward the turning point
to allowed propagation. Within the range of validity of th
weak-coupling expansion, this exponential is already sma
than perturbative terms that have been dropped, but cre
the leading nonzero terms in the localized density of sta
and resonant tunneling amplitude. However, direct coupl
of f 1 through the turning points will be the cube of th
small exponential, and much smaller than allowed fast wa
perturbatively coupled to the classical slow-wave ba
ground. Finally, motivating the choice of dimensionless co
3-9
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pling g0, it can be shown that the classical action for a sin
instanton reduces toLcl5(ad /g0)„11O(a)…, wheread is a
constant depending only ond.11,10

The formal sum over semiclassical backgrounds in
~44! may now be defined. It is proportional to the integr
*ddk̃ over the center positions of the instantons. The Ja
bean from the measureDfDw is proportional tod/2 powers
of the integrated square of the gradient of the classical s
13420
e

.
l
o-

u-

tion, a zero mode of Eq.~43! ~or its counterpart whenR
→I ). This translational Jacobean contributes a factor
(1/g0)d/2. n21 rotational replica zero modes contribute
power ofg0

1/2 whenn→0. The rotational zero modes, and
single negative eigenvalue proportional to2l2 , contribute
cancelling powers ofAl2 and a single factor ofi. All other
scale factors are from the normalization~56!. Combining
these factors, the coherent Green’s function becomes
A

chinery.

d
s
uples

equations
denoted

is then
G~2k8,k,v!5G free~2k8,k,v!2 iC1E
k̃2.ks

2

ddk̃

~2p!d

~DAl2!d

l2
S 1

g0
D (d11)/2

e2ad /g0

3S R2k8
T F f 1

f 2
G

R

cl

~k8!@
f 1 f 2#R

cl~k!RkD 1R→I . ~62!

The matrix-valued result~62! directly extends its acoustic counterpart.10 The constantC1 is proportional to the volume of the
physical system*ddx, and is otherwise only formally defined atn→0. It can be specified physically in terms of the CP
attenuation,10 as will be done below.

C. Resonant scattering

The ensemble average of the squared Green’s function may now be computed without introducing additional ma
Incorporating the parabolic regulator~36! and symmetrizing fields as in Eqs.~38! and ~39!, the free action~29! becomes

~L0
11L0

2!nonunif5
1

2E ddk

~2p!d
~k2!2@F1T F2T

#RH v̄2

k2 F @r0#

@r0#
G S 11

¹k
2

D2D 2F @K0#

@K0#
G

1
v̄~dv12ih!

k2 F @r0#

2@r0#
G J FF1

F2G
R

1R→I . ~63!

Its important difference from the one-particle Lagrangian~37! is the term}(dv12ih). This term prevents theO(n1)
symmetry ofF1 ~a bounded group! from continuing to anO(n1 ,n2) symmetry for (F1,F2) fluctuations. The unbounde
generators of the latter are regulated by the opposite-sign blocks in@r0#, and their finite value asdv passes through zero i
responsible for the pole term that creates resonancelike incoherent scattering. The corresponding interaction term coF1

andF2, as well asf6 andw6 :

L int52
g

8E ddk

~2p!d
~k2!2H S @F1T F2T

#RFs*

s* GFF1

F2G
R

2@F1T F2T
# IFs*

s* GFF1

F2G
I
D 2

14S @F1T F2T
#RFs*

s* GFF1

F2G
I
D 2J . ~64!

Corresponding to the notation~25!, it is convenient to define

F f 1

f 2
G

R,I

~k![FR,I~k!. ~65!

For the two-particle function, it becomes necessary to distinguish the causal and anticausal solutions to the classical
of motion. These have frequency eigenvalues differing by an imaginary part determined by the tunneling barrier,
Im(vC), which remains finite atdv12ih→0. The causal classical solution will be denoted

FR,I
cl ~k!→FR,I

1cl~k!, ~66!

and the anticausal solution obtained by complex conjugation:F k
2cl[(F k

1cl* ).
F 1cl will always be chosen for stationary points in the causal Green’s function. Reduction of the determinant

identical to that for the one-particle function~62!. However, the lowest-eigenvalue fluctuation forF2 now has two solutions,
3-10
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corresponding toF 1cl andF 2cl, separated by exponentially small imaginary eigenvalues. Normalizing these fluctuatio
terms of the classical solution, and solving for a two-particle normalization constant

C2[C1Y S 2E ddṽ

~2p!d
F R

clTF R
clD , ~67!

the squared Green’s function~28! of wave number arguments evaluates as in the scalar acoustic problem:10

G 1~2k8,k,v1!G 2~2k8,k,v2!5G free~2k8,k,v11 ih!G free~2k8,k,v22 ih!

1 iC2v̄E
k̃2.ks

2

ddk̃

~2p!d

~DAl2!2d

l2
S 1

g0
D (d11)/2

e2ad /g0
„R2k8

T F R
1cl~k8!F R

1clT~k!Rk…

3S R2k8
T F R

1cl~k8!F R
1clT~k!Rk

dv12ih
1

R2k8
T F R

2cl~k8!F R
2clT~k!Rk

dv22Im~vC!12ih
D 1R→I . ~68!

Both fluctuations are not relevant to evaluating the causal incoherent tail of impulse responses. That tail, which wil
again in calculations of the incoherent noise spectrum, is obtained by integrating over the frequency difference,
contour integral selects only causal components:

E d~v12v2!

2p
e2 i (v12v2)tG 1~2k8,k,v1!G 2~2k8,k,v2!

5C2v̄E
k̃2.ks

2

ddk̃

~2p!d

~DAl2!2d

l2
S 1

g0
D (d11)/2

e2ad /g0
„R2k8

T F R
1cl~k8!F R

1clT~k!Rk…

3„R2k8
T F R

2cl~k8!F R
2clT~k!Rk…e

2 Im vCt1R→I . ~69!
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Both Im(vC) and the magnitude ofF R
6cl are determined

by the tunneling barrier between the well of the instan
and the allowed regionk2,ks

2 . At large v̄, the correction
from dimension-dependent lensing effects on the o
dimensional WKB approximation goes to a constant,10 so
that toO(a0),

2
Im~vC!

v̄
}l2ASWKBe2SWKB

, ~70!

where

SWKB}~l2!3/2S Dv̄

cs
D . ~71!

In a stationary-point estimate of the maximum amplitude,
factors ofl2 in the exponential of2SWKB balance positive
polynomials atSWKB;const. Hence the scaling of the dec
constant in Eq.~69!, at the stationary point of maximum
amplitude, satisfies

2
Im~vC!

v̄
;S cs

Dv̄
D 2/3

, ~72!

as in the acoustic case.10

Scattering couples generalk andk8, because the solution
F 6 describe tunneling from a nearly spherically symmet
instanton well through the hyper-planar wall of the oscilla
13420
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potential to the allowed region. In general, the angular
pendence of this tunneling solution is complicated, but co
be found numerically.

Looking through the factors ofRk to the fast and slow
eigenvectorsf 6 , the content of Eq.~69! is that slow waves,
excited in the classically allowed region, couple to instan
fluctuations in the forbidden region with exponentially su
pressed amplitude. These excitations then decay inco
ently, with time constant 2p/vC , integrated over instanton

at all k̃. The fluctuations are resonances in the instan
background, but the phenomenon differs from conventio
resonance in that nonlinear coupling creates that backgro
Also unlike resonance from discrete features, the decay
Eq. ~69! has a continuous spectrum of time constants.

The range of validity of the solutions~62!, ~68!, and~69!
requires comment. Use of the stationary form~18! for the
interaction is only implied in an effective theory with a cu
off close aboveks , and a long scaling range betweenks and

the grain scale. Thus the integral onk̃ cannot extend above
l2'1. On the other hand, while the weak coupling expa
sion for the instantons is valid forg0.1, g0@1 give expo-
nentially small contribution. Only the rangeg0*1 contrib-
utes significantly. Using Eq.~54!, D→` at fixed couplingG

is inconsistent with the bound onk̃ at finiteg0. Therefore the
explicit form of these results can only be used for a stro
scattering region of finite size, immersed in a larger we
scattering background.
3-11
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D. Spatial dependence

For finite D, the coherent Green’s function~62! can be
used to estimate the density of localized states. Atk825k2

.ks
2 , the only contribution comes from (k2 k̃)2 small, sog0

and l2 may be written as functions ofk in the weak-
coupling regime~because the instantons are narrow!. The
remaining integral overk̃ can be nondimensionalized, to giv

G~2k,k,v!→2
iC1

l2
S 1

g0
D (d11)/2

e2ad /g0R2k8
T

3S E ddṽ

~2p!dF f 1

f 2
G

R

cl

~v !@
f 1 f 2#R

cl~v !D
3Rk1R→I . ~73!

It is first interesting to check whether localized states
indeed arise in the center of thespatialpotential, where scat
tering is strongest. To answer this, it is convenient to fi
define a characteristic length from the coupling,

x0[Fg

2

D4cos4j

K2
2 ks

4 G 1/(42d)

5g0
1/(42d)~DAl2!, ~74!

and then to decompose the symmetrized components fok2

.ks
2 into classical solutions with only one well aroundṽ,

F f 1

f 2
G

I
R

cl

~v ![F f 1

f 2
G1

~v2 ṽ !6F f 1

f 2
G1

~v1 ṽ !. ~75!

The dimensionless Fourier transforms off 6
1 are denoted

F f 1

f 2
G1

~v2 ṽ ![E ddz e2 i (v2 ṽ)•zF f̃ 1

f̃ 2

G
z

. ~76!

Using the definition ~31! of the transform ofG, the
Green’s function may be expressed in terms of the w
number volume of the allowed region,ks

d , x0, theK compo-
nents inRk , and dimensionless functions, as

G~x,x,v!→2
4iC1ks

d

~42d!
E dd21V

~2p!d E0

`

dS 1

g0
D

3S 1

g0
D (d21)/2

e2ad /g0S g0
1/(42d)

x0
D d

R2ks

T

3S F f̃ 1

f̃ 2

G @ f̃ 1 f̃ u2# D U
xg0

1/(42d)/x0

Rks
.

~77!

Here*dd21V is the area of the unitd sphere, from the inte-
gral over instanton centersk̃. Oscillatory interference term
arising from symmetrizedf 6 have cancelled underR→I ,
leaving a smooth, radially symmetric envelope in the h
monic well.
13420
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The fact that thev instantons are regular atṽ ~Ref. 27!
implies exponential decay off̃ 6 at large argument. The in
tegral ~77! is a sum over this canonical function, with arg
ment scaled byg0 and a weight function ofg0. The density
of localized states is largest atx→0, as expected physically
and dies off exponentially forx@x0. Unfortunately, the inte-
gral cannot be evaluated atx→0 in d.2, because the domi
nant weight comes from smallg0. In this region, the weak
coupling expansion becomes invalid, and the form of
instantons is not well-defined in the effective theory, beca
it depends on arbitrarily large values ofk which lie above the
running cutoff. The form forx*x0, however, should be
valid.

A curious prediction of Eq.~77! is that the localized den
sity of states has a spatially varying admixture of fast a
slow polarizations, as diagonalized in the propagating w
equation. The approximationf 1(k)}„f 2(k)…3, with f 2

regular atk→ k̃, implies anf 1 with three times the curvature
at its center. Transforming tox, the long-range1 exponen-
tial decay must have 1/A3 times the2 spatial decay con-
stant. Thus, while the fast-wave component starts with
smaller coefficient (}a), it decays more slowly, and th
wings of the localized distribution are characterized by
relatively greater fast-wave polarization.

IV. THE UNIFORM LIMIT AND CPA RENORMALIZATION

The semiclassical Ginzburg-Landau expansion for n
uniform systems, and the self-consistent CPA ansatz for
form systems, provide rather different-looking descriptio
of the density of localized states. This is true in the electro
case, and even more so in the acoustic, because of
subtlety of wave-number-diagonal instantons. Yet it has b
shown,11 in a way that applies equally to electronic or acou
tic problems, that the perturbation theory in the wrong-s
four-field interaction that gave the relevant RG~Ref. 7!
cannot converge in the region of localized states, and se
classical configurations arenecessaryto stabilize it. In the
acoustic problem, the two descriptions are connected by
lations between the attenuation length for the coher
Green’s function, and the incoherent noise spectrum follo
ing impulse excitation,10 both of which are recovered in th
uniform limit.

The same relations all exist for Biot theory. Howeve
unlike the acoustic problem, where the noise spectr
cannot be remotely probed unless the medium has an
posed interface~or equivalent!, Biot media with localized
slow waves imprint this spectrum perturbatively on fa
wave impulses. The relation between coherent attenua
and the resulting spectrum of fast-wave coda is a signa
by which to distinguish the presence of extra Biot degrees
freedom from purely dissipative attenuation.

A. The noise spectrum

The noise spectrum in the acoustic problem was origina
defined for seismic displacements, withd51 and a purely
reflecting interface representing the exposed surface of
Earth.28 In randomly-layered media, broadband energy de
3-12
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ered to the interface was trapped between perfect reflec
at the surface and localization in the interior, leading to
stationary spectrum of incoherent noise at late times. To
tend that definition to the Biot problem in generald, it is
necessary to express the canonical Green’s functionG in
terms of a displacement Green’s functionG i j between spatia
componentsi and j, as

G~x8,x,v![¹x8
i ¹x

j G i j ~x8,x,v!. ~78!
13420
on
a
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If Biot polarization indices are explicitly represented,
on the matrix

s* [@s* #mn , ~79!

with the convention that repeated indices are summed,
ensemble-averaged coherent and incoherent Green’s f
tions are related by a Schwinger-Dyson equation equiva
to the acoustic form,10
ctly
e.

y

Green’s
uct

in terms

f
m
ected
@s* G i j 1~x8,x,v1!s* #lm@s* Gkl2~x8,x,v2!s* #nr

5@s* G i j 1~x8,x,v1!s* #lm@s* Gkl2~x8,x,v2!s* #nr1Gv̄4E ddx̃@s* G im1~x8,x̃,v1!s* #la

3@s* Gkn2~x8,x̃,v2!s* #nb@s* Gm j1~ x̃,x,v1!s* #am@s* Gnl2~ x̃,x,v2!s* #br . ~80!

Equation~80! admits an interpretation ind51,10 that the first term on the right-hand side propagates excitations dire
from x to x8, while the second propagates them to an arbitrary pointx0 nearx, which may be viewed as a reflecting interfac
Reflection at the interface is represented by the cumulative effect of the two-particle Green’s function atx̃ in the integral, and
the coupled coherent Green’s functions propagate this reflected signal back tox8. This description may be generalized b
considering an arbitrary pointx0 a source of internal ‘‘reflection,’’ and defining the paired reflection coefficient

@s* #lm@s* #nr

d ikd j l

d2
R~v1!R* ~v2!5Gv̄4E ddx̃@s* G i j 1~ x̃,x,v1!s* #lm@s* Gkl2~ x̃,x,v2!s* #nr . ~81!

In Eq. ~81!, three symmetries have been used. At late times, high-order scattering must be isotropic, so the paired
functions are uncorrelated betweeni andj, or k andl. However, due to replica symmetry, the two-particle function is a prod
of uncorrelated, coherent Green’s functions, and hence vanishes, unlessi 5k and j 5 l . Finally, becauses* is a projector,
sandwiching Green’s functions betweens* pairs must give a matrix proportional tos* . Because localized states at largeD
come from a neighborhoodk2'ks

2 , contraction of Eq.~81! with d ik andd j l may be used to reduce

R~v1!R* ~v2!5Gcs
4E ddx̃ Tr„s* G 1~ x̃,x,v1!…Tr„s* G 2~ x̃,x,v2!…. ~82!

The total energy at the ‘‘interface’’~equivalently, at a probe located atx0) is the integral of this reflection overv1 andv2 .
Therefore, the noise spectrum is defined as

N~ t,v̄ ![E d~v12v2!

2p
e2 i (v12v2)tR~v1!R* ~v2!. ~83!

Omitting the model of the reflection coefficient, it becomes apparent that the noise spectrum may be defined directly
of the two-point function in generald as

@s* #lm@s* #nr

d ikd j l

d2
N~ t,v̄ !5Gv̄4E d~v12v2!

2p
e2 i (v12v2)tE ddx̃@s* G i j 1~ x̃,x,v1!s* #lm@s* Gkl2~ x̃,x,v2!s* #nr .

~84!

~Physically, the picture of reflection from a smalld-dimensional volume, or point atx0, corresponds to the derivation o
localization from coherent backscatter: Rays sent out fromx0 may be viewed as having been sent ‘‘through’’ this point fro
its far side. These are primarily reflected back tox0 by coherent backscatter, and appear on the far side to have been refl
‘‘through’’ x0, as if it were a perfectly reflecting interface, but one having definite spectral characteristics.!

Following the results of the previous sections, traces ofG with s* are proportional to contractions ofF R,I
cl with the vector

@a1#. Because the fast-wave component is itselfO(a), these contractions can be ignored atO(a1), and to that order Eq.~83!
evaluates to
3-13
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N~ t,v̄ !5
2Gcs

4ks
d

K2
2

C2

E ddx
S E ddṽ

~2p!d
F R

clTF R
clD 2

v̄

~42d!
E dd21V

~2p!d E0

`

dS 1

g0
D S 1

g0
D (d21)/2

e2ad /g0e2 Im vCt. ~85!

The noise spectrum at early times, like the Rayleigh cross section, scales asvd11. Further, using the fact thatC2}*ddx ~as
the functional determinant must be! it is finite. At t→0, the integral over the couplingg0 becomes independent of bothG and
D, and reduces to the constantG(d11)/ad

d11 . Thus the only dependence on coupling is through the direct perturbative f
of G. The finite time constants 1/ImvC , however, cause the noise spectrum to decay in a way that is sensitive tog0. To
identify the behavior in the uniform limit, the back reaction of fast-wave scattering on slow waves must be taken into a
which is most easily done through the CPA itself.

B. Coherent attenuation

Normally, the coherent-potential approximation is solved self-consistently in a bare theory and then renormalized
nonlinear sigma model.2 The coherent attenuation that defines the initial coupling in the sigma-model renormalization
flow is due to the density of scattering states, but in the CPA these are never seen as explicitly localized. Rather, loc
is only inferred from the absence of renormalized diffusion.

In nonuniform systems, where there is effectively a position-dependent band edge, this seems paradoxical; the G
Landau treatment gives an explicitly localized description of the density of states sufficiently deep within the forbidden
where the instanton expansion is valid,11 and such a description is equivalent in electronic or acoustic systems. The para
resolved by considering uniform systems as the limits of nonuniform ones and using the instanton density of states to
effective CPA action directly from the replica-field generating functional.10

The generating functional is the functional integral responsible for ensemble-averaged Green’s functions, like E~28!,
without the field insertions. Splitting fields into classical and fluctuating parts, and summing over instanton backgro
before, the leading quadratic action for coherent propagation can be formed as in Ref. 10:

LCPA5
1

2E ddk

~2p!d
k2@F1T F2T

#2kH Fv1
2@r0#

v2
2@r0#

G2k2F @K0#

@K0#
G

2
Gv̄4

*ddx
E ddk8

~2p!d

~k•k8!2

k2~k82!2 Fs* G 1~2k8,k8,v1!s*

s* G 2~2k8,k8,v2!s*
G J FF1

F2G
k

. ~86!

It has been assumed in Eq.~86! that a uniform limit exists, which leads to the correct normalization of the free-fluctua
Green’s function,10 and the factor of*ddx.

It is very important that only the tensor component of the second variation has been kept explicitly in this semic
expansion. The corresponding scalar component contributes a sum overG 1 andG 2, which has no imaginary part, and at mo
perturbatively renormalizes the dispersion relation to orders that are already implicitly absorbed in the effective coup

Using the contraction of the projection operator withG

s* G~2k8,k8,v!s* 5s* Tr„s* G~2k8,k8,v!…, ~87!

Eq. ~86! reduces to a simple matrix form for Biot polarizations, multiplying a Green’s function trace proportional to the d
of states:

LCPA5
1

2E ddk

~2p!d
k2@F1T F2T

#2kH Fv1
2 @r0#

v2
2 @r0#

G2k2F @K0#

@K0#
G2

Gv̄2cs
2

*ddx
Fs*

s* G
3S *dd21V cos2u

*dd21V
D E ddk8

~2p!d FTr„s* G 1~2k8,k8,v1!…

Tr„s* G 2~2k8,k8,v2!…
G J FF1

F2G
k

. ~88!

This CPA form transforms easily to the position basis, which will then be generalizable to nonuniform systems:
134203-14



RESONANT SCATTERING AND LOCALIZATION IN . . . PHYSICAL REVIEW B64 134203
LCPA5
1

2E ddx ¹ i @F1T F2T
#H Fv1

2@r0#

v2
2@r0#

G1¹2F @K0#

@K0#
G2Gv̄2cs

2Fs*

s* G
3S *dd21V cos2u

*dd21V
D 1

*ddx8
E ddx8FTr„s* G 1~x8,x8,v1!…

Tr„s* G 2~x8,x8,v2!…
G J ¹ iFF1

F2G . ~89!
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This rather roundabout way of arriving at the positio
basis correction for the CPA was used to isolate the ang
integral of cos2u[(k•k8)2/(k2k82), expressing the fact tha
density perturbations are dipole scatterers. This symm
factor appears only as an overall weight function. It is s
nificant, though, that spatiallyd-correlated perturbation
couple all wave numbers, so fast waves are attenuated
scattering into localized slow waves, withD-invariant
weight, at leading perturbative order inG.

The CPA correction in Eq.~88! may be understood as a
imaginary addition to the matrix blocks of density comp
nents forF6, which remains finite ath→0,

@r0#6→@r0#62s* Gcs
2S *dd21V cos2u

*dd21V
D

3
1

*ddx
E ddx Tr„s* G 6~x,x,v!…. ~90!

The explicit evaluation of the averaged Green’s funct
trace, again correct toO(a1), is

1

*ddx
E ddx Tr„s* G 1~x,x,v1!…

52
2iks

d

K2

C1

*ddx
S E ddṽ

~2p!d
F R

clTF R
clD

3
1

~42d!
E dd21V

~2p!d E0

`

dS 1

g0
D S 1

g0
D (d21)/2

e2ad /g0.

~91!

Recalling the relation~67! of C1 to C2, and the expression
for the noise spectrum~91!, the CPA density blocks becom

@r0#6→@r0#66 is*
2K2

cs
2 S *dd21V cos2u

*dd21V
D N~ t→0,v̄ !

v̄
.

~92!

To O(a0), @r0# ands* can be simultaneously diagona
ized and used to understand the correction to the on-s
slow wave number,

ks→ksF11
iK 2

cs
2r2

S *dd21V cos2u

*dd21V
D

3
N~ t→0,v̄ !

v̄
„11O~a2!…G. ~93!
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Recognizing thatK2 /(cs
2r2)511O(a2), and defining the

coherent attenuation lengthl coh in terms of the imaginary
part of ks , gives the desired relation between coherent
tenuation and the noise spectrum to this order ina:

Im~ks![
1

l coh
'S *dd21V cos2u

*dd21V
D N~ t→0,v̄ !

cs
;v̄d11.

~94!

One difference of the true definition of the intrinsic noi
spectrum from the model of interface reflection now b
comes apparent. Interface reflection causes coherent
placement doubling, and so multiplies noise very near
interface by a factor of four relative to Eq.~94!.10,28The fact
that the intrinsic noise spectrum is due to weak localizat
is emphasized by the lack of coherence between the in
and reflected waves through an apparent reflection pointx0,
causing the extra factor of four not to appear. Up to t
coherence factor, Eq.~94! agrees ind51 ~where cos2u[1)
with the localization result obtained from stochastic differe
tial equations,28 and it agrees identically with the homoge
neous acoustic result.10

Because waves localized in a sufficiently weakly nonu
form medium are still compact with respect to the dime
sions of the nonuniformity, the uniform CPA must have
limited generalization to the case of spatially varying scatt
ing strength, obtained by replacing

1

*ddx
E ddxG~x,x,v!→G~x,x,v! ~95!

in Eq. ~90!. In the regions of the potential where the insta
ton expansion can be used, the form~77! then predicts the
form of anomalous spatial attenuation associated with
onset of spatially limited localization.

C. Relating instantons to the free-field CPA

The result~92! made explicit use of the instanton expa
sion through the solution~91!, and so distinguished betwee
slow and fast wave contributions only through the form a
wave number dependence of the instantons. Due to abs
constants likeC1, though, it is difficult to apply to the usua
perturbative construction of the CPA, in which the ent
density of statesat the propagating wave numberdefines the
initial diffusivity to be renormalized.2,3 It will be argued here
that, if there is a large ratiocf /cs , and small overlap anglej,
the instanton expansion indicates how to carry the acou
CPA construction over into the Biot problem.
3-15
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The essential semiclassical result was that there are
instantons in the narrow shell around the allowed~propagat-
ing! value of the fast wave number, while there are arou
the allowed value of the slow wave number. Further, in
large-D limit, only states within a vanishingly small distanc
of the allowed wave numbers make nonvanishing contri
tions ~these have the small values ofg0).

Now, the CPA creates an imaginary correction to the m
trix @r0#, from the Green’s function in Eq.~90!, and in the
uniform limit, the spatial average is simply replaced with t
uniform Green’s function as in Eq.~95!, whose imaginary
part comes from the on-shell densities of states. The diffe
instanton treatment of fast and slow wave numbers sugg
that the fields be split into polarization components

F6[F f
61Fs

6 , ~96!

where F f
6 is the component corresponding tof 1 in the

frequency-dependent diagonalization~56!, and Fs
6 to f 2 .

Separate integrations over the fast and slow components
give different CPA field theories, whose physical interpre
tions are given below.

D. The fast coherence length

The first interesting CPA is obtained by integrating o
Fs

6 , and leavingF f
6 explicit. Becauses* couples at order

j0 to the slow wave andj2 to the fast wave, the result~90!
holds, withG 6 replaced at leading order inj2 by the uni-
form, free-field,Fs

6Fs
6 Green’s function. This is, of course

exactly the same correction as determines the slow w
coherence length, so that the two are proportional.

Working through the diagonalizations~51! and ~52!, cor-
recting @r0# with the fixed term of Eq.~90!, and using the
fact that to leading order inj2,

sin2j'S rT
2

r1r2
D S cs

cf
D 2

, ~97!

it follows that
13420
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Im~kf !5
cf

cs
tan2jIm~ks!'S rT

2

r1r2
D cs

cf
Im~ks!. ~98!

Equation~98!, with Eq. ~94!, is the advertised relation be
tween the fast and slow coherence lengths, and the s
wave noise spectrum. Since fast-wave attenuation thro
conversion to slow waves is a local effect, the relation b
tween the fast and slow coherence lengths does not de
on whether the slow waves are localized. The relation
tween the slow-wave coherence length and the noise s
trum relies essentially on the approximation that fast-wa
coupling is small, which can now be quantified.

E. Corrections to the slow-wave CPA

The acoustic CPA~Ref. 2! essentially assumes that fluc
tuations are not severe enough to invalidate the effective
dium obtained by integrating the Green’s function in the s
lar equivalent to Eq.~90!. Thus, the fields left dynamical, an
those contributing the averaged density of states are
same. In particular, all states associated with the dynam
fields are either localized or not, and renormalization of
diffusivity tells which.

When there is coherence loss due to both fast and s
scattering in a Biot CPA, there arises the possibility that o
should contribute the initial value to the renormalized diff
sivity, and the other appear merely dissipative. The lack of
instanton contribution atk2;kf

2 suggests that ifF f
6 is inte-

grated out to form an effective slow wave theory, its fr
field density of states should contribute to the latter. Phy
cally this makes perfect sense: it is coherent backscatter f
strongly coupled slow waves that leads to their localizati
more weakly coupled fast waves should simply carry aw
coherence information, when viewed on the same scale.

To obtain the effective slow-wave theory, the interacti
Lagrangian is again split as for semiclassical backgroun
except that the binomial expansion is performed in fast a
slow components. Slow components are kept explicit,
interaction exponential expanded as a power series, and
wave products are averaged with the free Green’s funct
The first nonvanishing term in this series is
L int{2
Gv̄4

2 E ddk1ddk2ddk3

~2p!3d

~k1•k2!

k2
2

~k3•k4!

k3
2

3
@Fs

1T Fs
2T

#2k1Fs* Tr~s* G f
1~k2 ,2k3 ,v1!!

s* Tr„s* G f
2~k2 ,2k3 ,v2!…

GFFs
1

Fs
2G

k4

. ~99!

The fast-wave Green’s function is denotedG f
6 , and only the tensor component has been kept, as in Eq.~86!, because only the

imaginary part is of interest.
At large D, the perturbing kernel in Eq.~99! has imaginary part

ImS E ddk2ddk3

~2p!2d

~k1•k2!

k2
2

~k3•k4!

k3
2

Tr„s* G f
1~k2 ,2k3 ,v1!…D 52p

a2cos2j

K2
k2kf

d22S *dd21V cos2u

*dd21V
D CSHO, ~100!
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whereCSHO is a constant of order unity defined by the de
sity of states of the nondimensionalized, simple harmo
oscillator. In the uniform limit,CSHO is replaced by

CSHO→E dd21V

~2p!d
. ~101!

Recalling the definition~58! of a, the density parameters fo
slow waves are modified by a term interpreted as dissipat

@r0#s
6→@r0#s

66 ips*
Gcs

2ks
d

K2
sin2jS cf

cs
D 42d

3S *dd21V cos2u

*dd21V
D CSHO. ~102!

Making use of the density parametrization introduced
Eq. ~49! and the definition~50! ~and dropping the subscrip
s), Eq. ~102! simply shifts the scalarr2 , as

r2
6→r2

6H 16 ipS dr2

r2
D 2S ksl 0

2p D dS Geff

G0
D

3S E dd21V cos2u D3sin2jS cf

cs
D 42dJ .

~103!

The effective slow wave theory that remains is essenti
just the scalar acoustic theory of Ref. 3, withr2 a complex
constant given by Eq.~103!. In particular, the scattering
terms quartic inFs

6 have still been left explicit during the
above integrations. If they are now approximated by the
fusive CPA, the on-shell density of free slow states is u
for the Green’s function in Eq.~91!, and slow-slow scattering
makes an additional coherence-loss correction

r2
6→r2

6H 16 ipS dr2

r2
D 2S ksl 0

2p D dS Geff

G0
D S E dd21V cos2u D J .

~104!

There is thus a simple relation between the apparent diss
tion of slow waves induced by fast wave scattering, and
coherent attenuation from self-scattering.

Two relations can now be obtained directly from the s
lar CPA of Ref. 3. The first is the classic Ioffe-Reg
condition29 in the nondissipative limit, from Eq.~23! of that
work:

2p~d22!&S cs

v l coh
D d21

, ~105!

from the condition that the initial coupling strength be suf
cient to overcome the classical scaling dimension. The s
ond relation is a weakness condition on dissipation obtai
from Ref. 3, Eq.~22!, necessary to allow flow to strong cou
pling from any initial value:

Imv (s)

v
&

1

2p~d22!S cs

v l coh
D d

. ~106!
13420
-
ic

n:

y

f-
d

a-
e

-

c-
d

The coherence length in both equations~105! and~106! is
obtained from

cs

v l coh
5

1

2 S Im r2

r2
D , ~107!

using the shift in Eq.~104!, while the apparent dissipation i
Eq. ~106! is given by

Im v (s)

v
5

1

2 S Im r2

r2
D , ~108!

using the shift in Eq.~103!.
The more general relation, that strong coupling be atta

able from any combination of initial parameters, defin
quantitatively the meaning of weak overlap. Making use
Ref. 3, Eq.~22!, the definitions~107! and ~108!, and their
relations implied by Eqs.~103! and ~104!, gives

sin2jS cs

cf
D d24

'S rT
2

r1r2
D S cs

cf
D d22

&
1

2p~d22!S cs

v l coh
D d21

21. ~109!

As a final comment, it is now clear why a mobility edg
in d53 suggests localized slow and extended fast wav
Using the slow-slow scattering strength of Eq.~104! as a
reference, the dissipative term from scattering to fast wa
is smaller byj2, due to the factor ofs* in the trace ofG. For
even slow waves to localize near the Ioffe-Regel criter
~which is rather strict!, j2 must be small as in Eq.~109!. The
slow-wave correction to fast-wave coherence is of com
rable magnitude to the fast-slow term, this time due to
s* outside the trace, while the fast-fast scattering correct
is orderj4 from boths* factors. Thus, if there is any sepa
ration of scalescs /cf!1, an Ioffe-Regel criterion can neve
be satisfied for the fast wave until slow wave scattering
already so strong that the analysis presented here mus
replaced by something else, in which case the medium p
ably no longer looks much like a Biot system.

F. Quantitative estimates

The Ioffe-Regel criterion can be translated into a requi
absolute heterogeneity, for the simple example like sup
fluid helium scattering by tortuosity fluctuations consider
in Ref. 7. Ind53, Eqs.~104!, ~105!, and~107! can be com-
bined to read

S dr2

r2
D 2S ksl 0

2p D 3S Geff

G0
D>

3

A2p3
'0.38. ~110!

Perhaps not surprisingly, this combination of paramet
turns out not to lie within the weak-coupling regime of pe
turbation theory in Ref. 7, for any initial varianc
(dr2 /r2)2, so the ratioGeff/G0 cannot be obtained from
that calculation. However, one may simply ask wh
strength of variationat the natural scale is sufficient to loca
ize, since there is then no renormalization, andksl 0 /2p and
Geff/G0 both equal unity, in which case the answer is th
3-17
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(dr2 /r2)2*0.38. This rather severe condition for prop
localization is the counterpart of that encountered in
other classical wave problems.3 For the superfluid helium
example of Ref. 7,r2 becomes simply the Biot parameterm,
which is proportional to the inviscid tortuositya` .

V. CONCLUSIONS

The localizing transition in a heterogeneous Biot medi
has been found to be somewhat different qualitatively fr
the similar transition in linear acoustics or elasticity. T
separation of scales between slow and fast wave speeds
to an instanton density of states at the slow wave speed
none at the fast wave speed if the two waves are couple
scattering. Since the instanton density of states was in
preted as the localized part in the acoustic problem,
seems to argue that the fast-wave states remain extende

This semiclassical result, used as physical input in for
ing a CPA description, leads to very different roles for t
fast and slow wave densities in the nonlinear sigma mode
Ref. 3. Whereas in the acoustic case, the coherence loss
all states is subsumed into the initial value for the renorm
ized diffusivity, here the fast-wave states contribute a coh
ence loss equivalent to absorption, and only the slow-w
states are considered diffusive.

Localization, to occur at all, requires both an Ioffe-Reg
like strong scattering condition for slow waves, and a con
tion of sufficiently weak overlap for slow-fast interconve
sion. When these are both satisfied, there is a str
hierarchy of scattering strengths, in which fast-fast scatte
is weakest, slow-fast scattering intermediate, and slow-s
scattering strongest. This result argues from a second d
tion that fast-wave scattering is too weak to localize with
any range where perturbation theory correctly describes s
waves. Thus, if fast waves localize at all, it must be a
secondary transition in an effective theory that takes i
account strong slow wave scattering.

Finally, it may be observed that the slow-localizing tra
sition derived here is the first connection between the B
and elastic effective media by something akin to a ph
transition.30 When Biot theory was first derived, Anderso
localization had not yet been discovered, and the differe
between regular and random small-scale heterogeneity
y
t.
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not yet appreciated.~The small-scale models of pore flow5

were regular lattices, which could have led to Bloch waves
strong coupling, but not to qualitative changes in the pro
gating degrees of freedom.! Biot clearly understood the uni
versality of the effective medium he derived, but did n
consider when it might become equivalent to simple elas
ity, except in trivial cases like vanishing or total porosity,
when extreme heterogeneity caused both models to b
down. This work identifies slow-wave localization as o
transformation in a series potentially leading from the co
solidation transition ultimately to elasticity.
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APPENDIX A: AN ESTIMATE OF a

At high frequencies, viscosity becomes a less severe
turbation than scattering in heterogeneous Biot theo
Therefore, it may be appropriate to use the parameters c
monly accepted for water-saturated sand in the inviscid s
tor alone, to estimate polarization overlap of fast and sl
waves. The parameter set used here will be the same as
used to define the most-relevant effective scattering verte
Ref. 7.

Density parameters are r f51000 kg/m3, r
51875 kg/m3, m52660 kg/m3, and compressibilities are
H54.0733109 Pa, C54.0003109 Pa, and M54.005
3109 Pa. These give eigenvalues for@K0# of K158.039
3109 Pa,K253.93107 Pa. The corresponding paramete
for @r0# in Eq. ~49! are r153264 kg/m3, r2

51271 kg/m3, rT52793 kg/m3.
These parameters give speeds ofcf51706 m/s, cs

5175 m/s, and a rotation anglej50.022 in Eq.~53!. The
resulting estimate for the instanton overlap parameter in
~58! is a'0.21. Sincea2 is the coupling between fast an
slow waves that determines the effective dissipation in
~100!, it is clear that these parameters allow only;4% of
the fast wave density of states to actually contribute to
parent slow wave dissipation.
1P. W. Anderson, Phys. Rev.109, 1492~1968!.
2S. John, H. Sompolinsky, and M. J. Stephen, Phys. Rev. B27,

5592 ~1983!.
3S. John, Phys. Rev. B31, 304 ~1985!.
4M. A. Biot, J. Acoust. Soc. Am.28, 168 ~1956!.
5M. A. Biot, J. Acoust. Soc. Am.28, 179 ~1956!.
6M. A. Biot, J. Acoust. Soc. Am.34, 1254~1962!.
7E. Smith, preceding paper, Phys. Rev. B64, 134202~2001!.
8J. G. Berryman, J. Math. Phys.26, 1408~1985!; B. Gurevich, A.

P. Sadovnichaja, S. L. Lopatnikov, and S. A. Shapiro, Geoph
J. Int. 133, 91 ~1998!; C. Zimmerman and M. Stern, J. Acous
Soc. Am.94, 527 ~1993!.
s.

9K. G. Wilson and J. Kogut, Phys. Rep., Phys. Lett.12C, 101
~1974!.

10E. Smith, Phys. Rev. B58, 5346~1998!.
11J. G. Cardy, J. Phys. C11, L320 ~1978!.
12R. Burridge and J. B. Keller, J. Acoust. Soc. Am.70, 1140~1981!.
13J. L. Auriault, J. Acoust. Soc. Am.77, 1641~1985!; Arch. Mech.

40, 529 ~1988!.
14M. A. Biot and D. G. Willis, J. Appl. Mech.24, 594 ~1957!.
15D. L. Johnson, and T. J. Plona, J. Acoust. Soc. Am.72, 556

~1982!.
16D. L. Johnson, D. L. Hemmick, and H. Kojima, J. Appl. Phys.76,

104 ~1994!.
3-18



e.
it

m

t.

,

ia

RESONANT SCATTERING AND LOCALIZATION IN . . . PHYSICAL REVIEW B64 134203
17D. L. Johnson, T. J. Plona, and H. Kojima, J. Appl. Phys.76, 115
~1994!.

18D. L. Johnson, J. Koplik, and R. Dashen, J. Fluid Mech.176, 379
~1987!.

19The sign ofw is used in two different ways in current literatur
The convention followed here is that of Ref. 22. The oppos
sign is used in Refs. 6, 12, 21, and 23.

20S. R. Pride and J. G. Berryman, J. Mech. Phys. Solids46, 719
~1998!.

21S. R. Pride, A. F. Gangi, and F. D. Morgan, J. Acoust. Soc. A
92, 3278~1992!.

22R. D. Stoll and T.-K. Kan, J. Acoust. Soc. Am.70, 149~1981!; R.
D. Stoll, Sediment Acoustics~Springer-Verlag, New York, 1989!,
pp. 7–11; see also Ref. 10.

23H. Deresiewicz and R. Skalak, Bull. Seismol. Soc. Am.53, 783
~1963!; J. G. Berryman and L. Thigpen, J. Appl. Mech.52, 345
~1985!; M. Stern, A. Bedford, and H. R. Millwater, J. Acous
13420
e

.

Soc. Am. 77, 1781 ~1985!; B. Gurevich and M. Schoenberg
ibid. 105, 2585~1999!.

24R. Burridge and C. A. Vargas, Geophys. J. R. Astron. Soc.58, 69
~1979!; A. N. Norris, J. Acoust. Soc. Am.77, 2012 ~1985!; G.
Bonnet,ibid. 82, 1758~1987!.

25K. H. Fisher and J. A. Hertz,Spin Glasses~Cambridge University
Press, Cambridge, England, 1993!, p. 28.

26J. G. Berryman, J. Acoust. Soc. Am.91, 551 ~1992!.
27S. Coleman, V. Glaser, and A. Martin, Commun. Math. Phys.58,

211 ~1978!.
28P. Sheng, B. White, Z.-Q. Zhang, and G. Papanicolaou, inScat-

tering and Localization of Classical Waves in Random Med,
edited by P. Sheng~World Scientific, Teaneck, NJ, 1990!, pp.
563–619.

29A. F. Ioffe and A. R. Regel, Prog. Semicond.4, 237 ~1960!.
30A. J. McKane and M. Stone, Ann. Phys.~N.Y.! 131, 36 ~1981!.
3-19


