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Resonant scattering and localization in heterogeneous Biot media
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This is the second of a pair of papers considering acoustic multiple scattering and localization in fluid-
saturated porous solids. Such systems are represented by the Biot effective medium, and &gatiatipn
correlated disorder is incorporated by replica-field methods. In the companion paper it was shown that a
preferred form of the wavelength-scale scattering operator, coupling primarily to slow waves, is selected by a
universal renormalization-group flow toward strong coupling. The simplification afforded by a single scattering
interaction is used here to define both Ginzburg-Landau and coherent-potential descriptions of the localized
density of states. It is found that, as long as the Biot medium is the appropriate background, a description of
localized slow and extended fast waves is possible, but that fast waves may not localize within the weak-
coupling limits of the models. Further, coupling between slow and fast waves contributes an apparent dissi-
pation that can inhibit slow wave localization. Finally, relations are found between fast-wave coherence length
and the slow noise spectrum, which make fast waves a potential probe of a slow-localized volume.
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I. INTRODUCTION with different wave speeds and wavelengths. The Rayleigh
cross section is generically larger for the one with the shorter

The possibility of acoustic Anderson localizatiohas ~ Wavelength, and a relevanenormalization groupRG) flow
been studied for heterogeneous elastic media, using tools &Nds to select this wave for strong coupling. It was also
effective medium theory and multiple-scattering perturbatiorSNoWn in Ref. 7 that, even when the asymptotic RG is not

theory? In three dimensions, the conditions for localization €2¢€d. common examples yield scattering operators that

invariably require a medium with dense, strong discontinui-2"€ near the universal form even in the bare theory. It would

. . . then naturally be expected that the slower wave would be
ties on small scales, and models with dense granular inse

. . . . fore susceptible to localization than the faster.
tions in a resin or fluid background are usually proposed as

potential realizations. A. Goals and limitations
An important distinction arises for such models, though, _ : . L
d This paper studies the localizing transition in heteroge-

between granular insertions that do not make contact an - i . .
those that do, if the surrounding saturant is a fluid. In the €US Biot theory, with the aim of extracting general charac-
' i eristics. The simplified universal form of the scattering op-

fo.rmer case, the maFerllal IS a suspension, aﬂd elastic theoéfator from Ref. 7 will be used to represent the generally
with sometimes-vanishing shear modulus is an adequatg

. . . nhanced coupling of the slower wave type. Both nonpertur-
model. In the latter, the insertions form a percolating clusterbative (Ginzburg-Landa)i® and perturbativecoherent po-
and the medium is a fluid-saturated porous solid. The imporggniig) approximation?® approaches to localization will be

tance of percolation is well appreciated in the similar prob-qnsidered, to derive a difference of treatments of densities
lem of classical electromagnetic localization, where bulkof states for the fast and slow wave types, when they expe-

conductivity of connected dielectric spheres would screenjence scattering interconversion, which has no exact analog
the medium entirely. In the acoustic case, the situation is in acoustic or elastic systems.

somewhat different. Solid stress percolation does not screen As in Ref. 7, the methods used will require an assumption
sound from the interior, but rather creates another effectivef inviscid fluids, so the results will only apply directly to
medium, with a richer set of wave types and descriptive pasaturants such as sufficiently cold superfluid helium. One
rameters than elasticity. The acoustic description of this effeature of wave interconversion that will be derived is a co-
fective medium is called Biot theofy.® herence loss that mimics dissipation in the critical RG flow
In a companion articlé it was argued that Biot theory is for diffusivity® and inhibits localization, even in the idealized
the universal generalization of linear elasticity appropriaténviscid limit. Any intrinsic absorption due to fluid viscosity
for a porous-medium perturbation expansion, and further thatvould then add to this inhibiting effect.
a” the methods for representing quenched parameter ran- Another result W|” be that Biot me(;lia have an inCOherer_]t
domness can be applied to the two cases in the same form./&Sonance effect like that in nonuniformly rough acoustic
main result of that work was that the complicated set offnedia;” but Biot media preserve it into the uniform limit.
possible Biot scattering operatdrsyhich in the bare theory The incoherent resonance of nearly-localized slow wave
would be an obstacle to saying anything general about it§§at§s WI|| arise fror_n_ the same interconversion that mimics
localizing properties, flow to a universal, fairly simple form, dissipation in the critical RG flow.
in the long-range renormalized theory. With appropriate ca-
veats about when this universality is useful, the main idea is
physically simple: In keeping both fluid and solid degrees of There are two fairly different ways to study localization
freedom, Biot theory predicts two compressional wave typesvithin the replica formalism: a semiclassical Ginzburg-

B. Approaches to localization
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Landau(GL) treatment, and the perturbative renormalizationleigh cross sections that scale as large powers of the respec-
of the coherent potential approximatié@PA) sigma model. tive wave numbers. In an imaginable opposite limit, where
The GL method is intrinsically nonperturbatian instanton all wave speeds are comparable and all scattering mecha-
expansiol, and gives an explicit representation of the den-nismsa priori equivalent, presumably some rapid-mixing ar-
sity of localized states. This is important because the RG ogument like that in Ref. 2 should be used. No ideas are
Ref. 7neveridentifies such states, due to a divergence of th@?resented here, however, about how to tame the unbridled
perturbation series, which in fact requires the semiclassicgtharchy of forms possible in that limit.

stationary point expansion to be stabilized in the localizing
regime!® The GL expansion can also be applied to statisti-
cally nonuniform heterogeneity, and in fact this was the key
to discovering how instantons could arise to stabilize the The derivation below reflects the dichotomy and logical
acoustic problem at alf On the other hand, the GL expan- precedence of the GL and CPA descriptions. New calcula-
sion is intrinsically nonrenormalized, and cannot be appliedions will almost entirely follow the instanton methods of
close to the mobility edge, whenever such exists. Ref. 10, which rely on a statistically nonuniform scattering

The critical CPA sigma-model renormalization is exactly strength, to identify the different treatment of localized states
complementary. It, like the free-field RG, makes no explicitnear the fast and slow wave numbers. Once this has been
identification of localized states, and furthermore inherentlyobtained, it will be used to define CPA field theories for fast
assumes uniform heterogeneity. All states in a uniform syser slow sectors in the uniform limit, by selective integration
tem lie on the allowed wave number for propagation, and theut of fields. The resulting effective theories, though, will no
entire density of states at a given frequency is only identifiedonger have the full Biot spectrum of wave types, and so will
as localized or extended as the scale-dependent diffusivithe described by the scalar sigma models treated elsewhere.
either remains finite or goes to zero at large distances. In th&hus, no new critical scaling arguments will be computed,
latter case, the length where the diffusivity goes throughand results will simply be applied from the scalar case as
some characteristic value becomes identified as the localizareeded. In particular, it will follow that when there is a mo-
tion length, whose scaling with frequency may then be obubility edge w** (relevant only in three dimensionghe lo-
tained in arbitrary neighborhoods of the mobility edge. calization length scales in a neighborhood of it as in the

Inputs from both approaches will be used here, to try toacoustic problemt,.~|w—w*| 1.
piece together a picture of localization in heterogeneous Biot The language and notation will closely follow the replica
media. A result from the GL expansion will be that, as longadaptation of Biot theory used in the companion pap&e-
as the two wave types have scattering interconversion due tause it is assumed that some aspects of Biot theory may be
polarization overlap, there iso instanton representation of unfamiliar to localization audiences, canonical results from
localized states at the allowédn-shel) fast wave number, homogeneous Biot theory are first reviewed in Sec. Il. The
as there would be in a simple acoustic medium with the fashotation and relations defining replica Green’s functions are
wave speed. On the other hand, there are instantons near ttheen presented, using the simplified scattering operator of
slow-wave number, which correspond to the simple acoustiRef. 7.
case, but have small admixtures of fast-wave polarizations. The instanton expansion is derived in Sec. Ill, and the
The ordering of this species dependence is due precisely twave number dependence, polarization, and spatial distribu-
the ordering of wave speeds, and is interpreted to mean théibn of localized states computed using nonuniform rough-
the slow wave localizes first and most strongly, and that ifness as a regulator. The incoherent resonance effect corre-
the fast wave localizes at all, it must do so as a secondargponding to the acoustic cdSés also derived in this section.
transition in the effective theory after slow waves have been The relation to the CPA is developed in Sec. IV, which
integrated out. contains the main results of the paper. The coherent attenu-

A further consequence of the interspecies coupling is deation and noise spectrum are related using the instanton
duced from comparison of the GL result with the CPA. Ar- Green’s functions, and are then interpreted in passing to the
guing that only the density of states represented by instaniniform CPA in terms of the free fast and slow densities of
tons should be renormalized coherently in the slow-wavestates. The proportionality between the fast and slow coher-
CPA, the additional coherence attenuation from scatteringnce lengths is derived, thus relating the fast coherence
into fast waves is treated as an apparent intrinsic slow-wavkength to the slow noise spectruihe only noise spectrum in
dissipation. The resulting effective theory for slow wavesthe medium. The argument for different treatment of fast
becomes indistinguishable from the scalar-acoustic problerand slow scattering is then made, and the resulting dissipa-
with intrinsic absorption, for which the critical properties tive CPA for the slow wave sector obtained. Results from
have already been derivédin upper bound on the dissipa- Ref. 3 are used to derive the slow-wave loffe-Regel criterion,
tion, to allow coherence-induced localization, becomes irand also to quantify a condition that coherence loss from
this application a bound on the coupling strength between thslow-fast wave conversion not eliminate slow wave localiza-
wave types. tion.

The piecing together of limited descriptions in this way is  The picture that emerges is dominated by the form of the
likely to be a good approximation when there is a large sepaeffective coupling. For the generic form of Ref. 7, there is a
ration between slow and fast wave speéals there often is clear ascending scattering-strength hierarchy: fast-fast, fast-
experimentally, simply because of the difference of Ray- slow=slow-fast, slow-slow. As a result, slow waves can lo-

C. Methods and organization
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calize with sufficiently strong self-scattering, with slow-fast It was shown in Ref. 7 that both the bulk Biot equations
scattering being only a weaker coherence inhibitor. In conof motion, and the correct boundary conditions for perme-
trast, fast wave coherence attenuation is dominated by fastble interfaces, are obtained from a simple variational prin-
slow scattering, so both it and the resulting noise spectrurngiple directly extending that for linear elasticity. This varia-
are controlled by slow wave properties at leading order.  tional principle is the basis for the definition of scattering
Localization in Biot media thus has one more importantoperators from formally pointlike fluctuations in the Biot pa-
difference from the acoustic or elastic cases. In the latter, theameters. From the argument that Biot theory isnéversal
noise spectrum could not be probed remotely, and was rehomogenized description of porous metfia then follows
lated only to the coherence length of the localized excitationshat this set of parameter fluctuations is atsmmpletefor
that it comprised. Here, weakly scattered, extended fasiescribing arbitrary medium heterogeneities at the order of
waves remain a probe of the bulk medium, and can couple tthe wave equation in derivatives.
localized slow waves, as to a distribution of resonators dis-

persed throughout the medium. B. Defining relations

Homogeneous Biot theory is defined in terms of two co-
present displacement degrees of freedamwhich will de-

To study localization in porous media with conventional scribe a solid, antll, a fluid. 8 is the porositymean volume
perturbative methods, it is necessary to have a smootheétaction occupied by the flujd and the volume-weighted
effective-medium description that accounts for all of the in-relative fluid displacement iw=8(u—U).*° In general, the
dependent large-scale degrees of freedom. However, sineweraging procedure defining each of these in terms of the
many porous media are granular on scales approaching tteero-frequency, grain-scale solid and fluid volumes and dis-
acoustic wavelengths of interest, this description must be deglacements will be scale and frequency dependent. The per-
fined by its symmetries, so as not to rely on a particulaturbative RG(Ref. 7) is used to transform among the de-
homogenization scheme to have a sensible meaning. Biaicriptions at different scales.
theory, with the coefficients considered as renormalized ef- The solid has first-order strain tensor
fective parameters, satisfies both of these requirements.

1. HETEROGENEOUS BIOT THEORY

el=3(u+u), (1)
A. Biot phenomenology

and the fluid displacement
The Biot effective medium theoty® is the generic ho- P

mogenized descriptidA®® of acoustic excitations in fluid-
saturated porous solids. It directly extends the form and gen-

erality of linear elasticity to media with two locally-defined, where commas denote partial differentiation with respect to

independent, interpenetrating deformational degrees of fregpatial positionc in d dimensions. The trace of solid strain is
dom, one supporting a shear stress and one not. From collo-

cation of two independent compressible media, Biot theory e=V.u=Tr(e)=é", 3)
predicts two independent compressional solutions to a

Helmholtz-type equation, with different speeds and relativeyhere repeated indices are summed, and thataéfines the
fluid-solid motions(called here “polarizations;” see below  sg-called “increment of fluid content:”

The fast compressional wave will be called here simply the

“fast wave,” and the slow compressional wave the “slow (=V.-w=Tr(e)=¢l. (4)
wave.” A shear wave is also predicted, which is a direct
extension of the elastic shear wave in the porous solid frame.
The theory also includes a set of constitutive relatihse-
dicting wave speeds, polarizations, and dissipations fro

material properties of the frame and saturating fluid that arg, < .an be related to grain and fluid densities, porosity,

readily measured in the laboratory. . tortuosity of fluid paths, and compressibilities and stiffness
All three predicted Biot waves have been measured i grains, fluid, and the composite grain framew&HRo-22

laboratory experlme.ntSJ_nl?consoI|dated, statistically h_omc_)— These parameters specify canonical equations of nfgtidn
geneous porous solig¥ " and found to have properties in

excellent agreement with those predicted by the constitutive - L . i.

relations. Because the assumption of inviscid flow is so cen- pu' —pW =V'[(H-2u)e—C]+V(2ue") ®)

tral to the methods used in this paper and Ref. 7, it is sig-

nificant that Biot theory has been applied to solids saturateand

with superfluid heliunt®%7and indeed, when the same sol- S

ids are saturated with liquid helium or water, the wave prop- piu'—mw=V'[Ce-M{]. (6)
erties in the two cases agree with the predictions, with no

adjustable parametet5The Biot parameter set and consti-  Biot theory is the most general possible to second order in
tutive relations are discussed in somewhat greater detail iderivatives, because Eq$) and(6) are obtained by varying
the first papef. the action

el =1(whi+wi), @

To lowest order in derivatives, Biot theory assumes the
existence of three density parametersp;, andm, and four
Mhodulus parametersl, C, M, and u. At zero frequency,
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< i i .
1, oni u U u wy
szfdtf dixt Z[u Wl < x
[2 W W X, w
e ul'® (1)
ol g[Sl eent, @ ~ lim f DgDeDADae ™| | 4 W
2 g n—0 w X/
which is the most general form for two degrees of freedom (13

patial subscripts here denote the arguments of the fields,
nd subscripiw on the expectation value denotes the fre-
quency used in the Lagrangi@ah?). The outer productl3)
gives the general correlation of solid and fluid motions in an

matrix-valued parameters are straightforward extensions

with the respective symmetries of solid and fluid. Theog
the Lameparameters for density

[p]= P (8) arbitrary fixed background of parameters, not necessarily
—ps M uniform.
and compressibility The functional measure in Eq13) has been written in
terms of compressional and shear potentials, conveniently
IN=[K]—2[u], (9) defined from bare theory scale factors, for the solid as
where u=pd 2DV p+VXA), (14
H -C and for the fluid increment as
[K]= c M (10)
w=\p{ D (Veo+Vxa). (15)
and
Vector potentialsA and a include only transverse compo-
u 0 nents, so no gauge condition is needed to fix redundant de-
[u]= o ol (11)  grees of freedom.

The conclusion of Ref. 7 was that the dominant long-
The term in Eq(7) involving u could also have been written wavelength scattering operator decouples from vector poten-
as a contraction with the matrig1), whose form identifiess  tials. Therefore, to simplify this treatment, shear coupling

as the unique effective solid degree of freedom. will be ignored from the start, and only compressional cor-
relation functions will be considered. Because-0, the
C. Green’s functions, replicas, and ensembles functional measure foA anda in Eq. (13) is unity, and shear

. , . .__terms in the action may simply be factored out and dropped.
A variety of Green’s functions have been solved for BiotThe convenient order in derivatives to consider ds

ieon i varous approatons ad calbtor e fom | pSE N (= VR, 0 e canonica
; 9 : ' € aceq Breen’s function computed below will be defined as

work in the frequency domain, and the full acti6f is not

needed. Starting at the grain scale, it is convenient to form a

. ; 2 . 1 e
nondimensionalized Lagrangian W< (e 5]x> =G(x' X,0). (16)
pilo ¢ x! ©
1 d 1 z[U W]i ul' . . . . . ..
LZW dx| s [p] W With these simplifications, Eq16) has the replica definition
pPilo
_Z _ ij ij X" X,w)=——=Ilim | DpDepe” X,
5 D\]L m(ele )} (12 972, g y
: . . . 17
with p¢, the fluid density, and,, a smallest correlation
length on which homogenization is sensibly definggis For piecewise-uniform parameters, the Lagrangi&®
generally expected to be a few grain diameters, and formmay be checked to produce the correct boundary conditions
the “natural scale” for the perturbative RG flolw. for abutting Biot medi&2 The corresponding, correct bound-

Quenched randomness with Gaussian fluctuations is mocry conditions are automatically generated for pointlike scat-
eled by the replica trick? directly following Ref. 7. First, tering perturbations by dividing the Biot matrices into uni-
each displacement degree of freedom is promoted to a vectérm and fluctuating parts{p]=[po]+[p'], [N]=[\o]
of n replicas (given parenthesized superscripts here whem-[\'], [ u]=[ ol +[ ']
neededl Properly normalized Green’s functions for physical |t was shown in Ref. 7 that the fixed ray of the long-
displacements in a given background may be written aglistance RG flow contains only one relevant fluctuation of
functional-integral expectation values of single replica  the form
component[e.g., index(1)] in the n-dimensional theory,
whenn is taken to zero afterward: [p']—p*c*, (18
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with ¢* a fixed, degenerate matrikAn explicit evaluation  function renormalization is irrelevant, and addition 1 ]

of * will be given in Eq.(46), when the necessary notation small untilG approaches diverging, so these corrections will
has been definefThis form will therefore be assumed from be ignored below.

the start, and only the parameter renormalized in relating the
bare to the long-wavelength effective theory.

Arbitrary Green’s functions are then averaged over the
ensemble of instances, by simply averaging the replica func- One-particle Green’s functions will always be implicitly
tional integrals. A weight function is introduced for fluctua- assumed causal, to allow explicit representation of Biot
tions, fields, while minimizing notation. This is sufficient to com-

pute the averaged density of states, but incoherent scattering

D. Averaging squared Green'’s functions

ZEJ Dp* o LWeisht (19 computations require averaging squared Green’s functions,
’ so a supercondensed notation is unavoidable. Causal fre-

i quencies will be denoted +i », and the fields indexed by

and the average defined by them ¢(w+in)=¢~, o(w+in)=¢*. Single-instance

1 Lagrangians such as E(l2), computed with= fields, will
—Q(X’,X,w)E—J’ Dp* efu_weighlg(x,,x@)_ (20) be+denoted_i.. Similarly, Green’s functions will be denoted
z G~, and the imaginary regulator on the frequency not writ-
ten. The Biot column vector of displacement potentials will

A choice then be written
) 1
weight— _— dy %2 "
L °G f dxp (21 nE .
=d-, (25
gives Gaussian-random, spatialiyfunction correlated den- ¢
sity fluctuations:
and its transpose

prpr =G x —x). (22)

In the bare theory, thé-function is regulated as a Kronecker [¢ ¢]"=D"". (26)

delta on patches of volumg, which defines the fluctuation

magnitudeG||OEGO. In passing from the bare to the effec-  The time dependence of resonant scattering effects will be

tive theory later,G will be evaluated at the renormalized of interest, so Green’s functions and their conjugates must be

value, and thes-function softened to include only wave evaluated at different real frequencies.. The mean and

nurgbersllet_ss tt?]a” the run_nlrég %“tOﬁ-d ling the f difference frequencies will be denoted=(w, +w_)/2,
ompleting the square in ER0), and cancelling the fac- 5 _ ' 'y o0 thate, +i 9= w (sw0+2i 7)/2.

tor Z, leaves an averaged Green’s function defined entirely In this notation, Eq(17) is written

in terms of replica fields ' =

_— 1 ave S (1) + . + 1 * + +
g(xl'x*“’):W'imJQﬁDQDG_L 6{ (e €, G* (X' X,w.)=lim fD(Ire LV, o0 v2p T,
pilg “n—o X! n.—0
(23 (27)
where and it follows thatG ~(x’,x,w)=(G " (x',x,w))*. Carrying
1 , out the same averaging steps as for the coherent Green’s
Lavezif dix V'[P @] (2] o]+ V[ Kyo]) &' function yields the two-particle ensemble average
4 i — !
Gl g ?|vie @]U*)V;M 24 G X0 )G (X X0 )
4 @ @

= lim fDd)*DCD*e*(Lg*LE*Lim)

now contains a quartic coupling of strengéh Contraction 0ono
4+ ,N_—

of Biot fields is indicated by standard two-vector notation.
Further, replica contraction is between the same field pairs as x V2,0V 2ENTY2 oUv2ep T,

Biot contraction, so replica indices may be suppressed,

though all fields ¢,¢,e,{) now represent full replica (28)
n-vectors. The form$23) and(24) remain valid under renor-

malization because™ lies on a fixed ray, so the renormal- The homogeneous Lagrangians can be combined into a
ized value ofG, and restricted wave number domains, will block-diagonal matrix form mirroring that for the acoustic
be assumed from now ofit was shown in Ref. 7 that wave case®
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matrices from Ref. 7. The coherent Green’s function will be
treated first in explicit Biot notation, to give some physical
sense of the structure of the instantons. The two-particle

1 +T -T1/ —.|[pol

[pol

[Ko] . Green’s function will then be derived in condensed notation,
+V?2 (K, ] +w(dw+2i7n) to make contact with the similar replica divergence structure
0 of the acoustic problem.
[po] @7
[po] v o (29 A. Structure of semiclassical Green'’s functions
~LpPo

] ) ) Green’s functions must first be transformed to the dual
and the interaction term includes productsiofand — rep-  (wave numberrepresentation:

licas:
di,r d
_ Go* iro*T @ T Q(X’,X,w)EJ — f — e X FRXG— K K w),
Lint— _ f ddXV [ ] (2m)4) (2m)d
8 (31
a* i o vi[eT @ T and likewise for products like Eq28). The wave number
X o* v b representation of the causal-frequency actif) becomes
a* o 10 d% g é
X i i Lavez—J [ (P]fk w2 —k¥K )kZ[
o |V o- (30 2) (2m) (07Lpol =KTKoDKT )
Replica contraction, as before, follows Biot contraction, and Go? [ dik,d%,d%s,
now also the+/— two-vector contraction o>~ The forms ) f 2d (k1-ks)
(28)—(30) are direct extensions of those used in acoustfics, (2m)

with scalar potentials replaced by two-component Biot vec- b b
tors. The term “polarization” will apply to these two-vectors X (Kz- k4)[¢ (P]_klo'* (6 (P]_k3o'* ,
(not spatial directionality, to describe the relative amplitude ®lk, ®lk,
and phasing of a collocated deformation of the effective solid
and fluid components. (32
in which k,=k; —ky+Kks.
IIl. STATISTICALLY NONUNIFORM HETEROGENEITY As in the acoustic problem, the only channel for coopera-
AND INSTANTONS tive semiclassical effects is diagonal in wave number, so it is

) N convenient to transform to a symmetric basi&;=k—k’,
A self-consistency condition relates the nearly-freey,=k+k’, —ks=—k—k”, andk,=—k+k”, with the Jaco-

Green's function to the ensemble-averaged scattering attengean of the measure simply carried along via notation
ation in the coherent potential approximati@PA) for uni-
form elastic system%,and a similar derivation has been d%,d%,d%s=Ad%d%’ d". (33

given in quite different form for Biot medict However, the The resulting directional inner produdidensity fluctuations
CPA cannot identify the semiclassical configurations that are 9 P y

H _ 12_ 1,2 .
neededf to regulate perturbation theory in the regime of lo- are dipole scattererdecome Ky -k;) =(k'*~k), (ks ky)

calized states. Therefore it was of mathematical, as well a:(kﬂz_kz)' The self—consjstent ansatz of.Ref. 10 was th‘f"t
' the product of these contains the same weight as two positive

physical, interest to study statistically nonuniform scatteringd lta-function terms. and a negative-semidefinite remainder-
in acoustic problem¥’ The magnitude and scaling of the elta-function terms, and a negative-semidetinite remainder.

density of Iocah;e_d states could then be directly carried over (K2—K'2)(K2—Kk"2)=p,(k?)2(2m)2989(Kk") 69(K")
to the uniform limit and CPA treatment.

Because of the essential use of the effective scattering +0v,k"?k"2(27)95%K) = Viem-
vertex in the current derivation, the applicability of the

S . : . (34

weak-coupling instanton expansion will be more limited, to
strictly nonvanishing nonuniformity. However, as the scalingBecause of the wrong sign of the interaction teisae Ref.
of the density of states exactly follows that in the acousticll for this usagke the positive operatoV,.,, simply contrib-
case, and their contribution to the CPA background is deterites perturbative corrections, which are small in any weak-
mined by a projection matrix that does not depend on theoupling, low-cutoff effective theory. The term in Eq. (34)
instanton expansion, the continuation of these results to theenormalizes the dispersion at perturbative order if there are
uniform-limit CPA is expected to hold for Biot theory as instantons, but because it only appears integrated, cannot
well. create them. Only the; term can lead to classical coopera-

The formal structure of coherent and incoherémto- tive effects, so the others will be dropped or implicitly ab-
particle Green'’s functions will first be presented, and thensorbed into weakly renormalized coefficients.
explicit forms and existence arguments for semiclassical sta- The rescaled coupling of the wave-number-diagonal inter-
tionary points given, using the decomposition of the Biotaction is
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yEAMG;A_ (35) components with respect to th_e harmonic oscil!ator potential
formed by the dispersion relation and the spatial regulator:
Rather than make position dependent, nonuniformity will

be introduced as in Ref. 10, by giving a parabolic profile to 1) 1/ ¢ 1)
the density parameters, (k=3 + : (38)
R Pl Lel_
[][](1 Xz)[]lvﬁ (36) ¢ o] [¢
— -=|= +—. —i
Po Po D2 Po DZ |: (k)E_<{ _ (39)
Pl 2 \lel Lol

Though not intended to represent particular physical param-
eters, this varies the wavelength, and thus regulates th@he explicit wave number argument will be suppressed
strength of the Rayleigh cross section spatially. Because ivhen not needed.

contains the lowest order in derivatives in the dual basis, it The R and | components at eack are then split into
should represent any effects not explicitly dependent on reslassical backgrounds and fluctuations,

fraction in the simpler acoustic case, up to local rescaling of

fields. In the Biot case it is less general, because the three ¢ | Tl
components ofpy can certainly vary independently. How- ol e + ol (40
ever, as a representation of nonuniformity of a single scatter- Rl Rl R
ing coefficienty, the form(36) is appropriate, and will there- so that the action has the expansion
fore be kept. The resulting effective action, with
appropriately symmetrized factors kf, is _ 1 d% / ol
Lnonunlf:LcI_i__J' [d) (‘D]RMR
1 d [ w2 v2 2) (2m) R
Lnonunlf:_f (kZ)[¢ ()D]_kkl _[pO] 14—
2) (2m)" k? D? [¢ o], |?|
+ 'M, . (41
®l

. ¢
o n &7 L= Lnomnif ¢¢l o€, and the notation for the second varia-
tion is introduced."oMNt= | o4 ",
The fields actually independent in the semiclassical ex- Choosing classical solutions of the equations of motion

pansion are not eigenvectors kf but their symmetrized ensures vanishing of terms linear in fluctuations:

_[Ko]—%(f* ﬂ [¢ QD]kO'*
—K

cl

2 2 cl cl cl
AT (PRI BRIP4 Y RS -3 [ [ S Y I B B I S O AR
k2 D? 2 ?ls el el ®ln
(42)
or likewise forR«< I. The solutions are further restricted to have the appropkiaign symmetr} implied by the splitg38)
and(39).
With these conditions, the kernel for real fluctuationd.ihbecomes
2 2 d’ cl | cl |
M= (k207 Looll 1425 | [Kko1—2 | 20+(| 7| [# TR+ |?[ 1o 1) 5o
k? D2 2 ?ls ?J,
cl cl
+o* [¢ QD](F:QIO_* ¢ _[d’ ‘P]flo_* ¢ (43)
¢ R ® |

with a symmetric form forR—1. A single stationary point vice versa do not have identically zero eigenvalue, and do
never has both real and imaginary backgrounds nonvanishrot fall within the class of zero modes considered below.
ing, because the apparef{2) symmetry that would allow The semiclassical Green’s function is now expanded in a
this arises only as an artifact of the harmonic-oscillator formsum over stationary points. Unlike the case of uniform elec-
of the regulator, and is broken correspondingly by non-tronic systems! where the only density of states comes from
degeneracy of the oscillator stat@sAs a result, the kernel instantons, the potential in this problem preserves the free
for cross terms irR and |, though formally defined, always Green’s function in the harmonic oscillator well as the term
vanishes. SimilarlyR fluctuations in thel background(or  with no instantons. Single-instanton solutions are then pa-
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rametrized by a center position in the forbidden region of the ac*=(v_v"). (46)
well. The sum over these stationary points is written formally o )
as Thus[K,] is diagonalized as
1 vi K,
TR k@) =G K k) +—grlim > e i S
pilo” “n—di>i2
" and
. e ol(1)
foqS'Dgo’e*L } (e ™ vl 0
é’ —k’ T (]'*[U+ U_]: i (48)
v_ 1
(44)

Parameters fofpg] may be specified in the same basis by
representing a dimensionless measure that will be evaluatefkfining
in the next section.

In Eq. (44), k, is the maximal slow wave number allowed
in the noninteracting well. Because by assumptiap- k¢
(the maximal fast wave numbeait any fixed frequency, both
slow and fast waves are classically forbiddenkér-k2. In  In this notation, it then follows that* in Eq. (22) is just the
this range only, both Biot components can form semiclassicdiuctuationdp _, and that in the unrenormalized theory,
solutions of finite action, independent of the valueDofFor g
k$< k< kg, though the fast component might be expected to Go/lo _
form bounded instantons, the slow component employs the pg B
propagating(extendedl Green’s function. The amplitude of
instantons is set by the coupling, so the magnitude of a slogvaluated on uncorre!ated patches at the natural .scale. In Eq.
component coupled to fast waves by the classical equatiori€2 G (the only coupling actually used in calculations here
of motion is fixed independent of well width. As the regulat- 'epresents the renormalized effective coupling at the wave-
ing well is widened D increasell such solutions have di- length scale, _denote@e“ in Ref. 7. _ _ .
verging action and make zero contribution. Even at finite, The free Biot wave equation may be diagonalized by first
large D (soft regulator or slow variation of coupling rescaling the components multiplying. , and then intro-
strength, possible solutions a¢2<k§ have large action, and ducing orthogonal matrices to diagonalize the combination

T
v

+
T
v

P+ PT
T P-

[pollv+ v-]= : (49

5p_)2
p_

(50

so will be ignored. 2[ K12 K12

This approximation will be justified by weak overlap of L s P PT]| B+ R
fast and slow waves in the effective theory, anywhere that  °k2 K=Y pr p_ K270
slow wave localization can be calculated with a weak- .
coupling RG. As shown in Ref. 7 and recalled in the next _ (A +1) 1
section, the matrix form of the enhanced effective scattering = (A_+1)7 1) (5D)
vertex comes from that part of the compressibility matrix
that couples principally to the slow wave combination of Where
fluid and solid motions. Thus presumably, in systems with cosé  sing
strong enough fast-wave scattering to localize the fast sector, Ro= ) . (52)
slow wave coupling is already so strong that the Biot effec- —sing cos¢

tive medium is of questionable validity, and conventional

elastic models are as appropriate. The degree of overlap between slow and fast wave polar-

izations is determined by the off-diagonal compongptof
[po] in Eq. (49), and encapsulated in the dimensionless angle
¢, given by
The structure of instantons distinguishes between slow

B. Particular solutions

and fast waves, so extracting it requires identifying these tan(26) = 2pTVK LK 53
components in terms of the background Biot parameters. The o p K —p_K,®

perturbative RG was controlled by the modulus majtkxy],

which was divided in terms of its eigenvalues and eigenvecé Will be assumed small in what follows, and checked quan-
tors in Ref. 7 as titatively in Appendix A. In this notation, agr— 0, the com-

pressional sector of Biot theory degenerates to two decou-
; ; 2
[Kol=K (v ) +K_(v_v"). (45) pled2 acoustic waves, with speels /p+—.>cf andK_/p_
—Cg. In the more general case, the eigenvalues produced
(v is a unit-normalized column Biot polarization, anll is ~ under  diagonalization (51) define (. +1)=Kk¥k?

its transpose.With notation chosen so that_ <K, , the =k?cHw? and (\ -+ 1)=k?/kZ=k?cZ/ w?.
maximal stationary ray for fluctuationd.8) lies along the The harmonic oscillator potential created by findehas
projector its slowest speed at the spatial center, leading to branch
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points wherek? attains the maximal values for either slow or V2 ~f_ —f3. (59
fast waves. These correspond to the limits of the wave num-

ber potential, where instantons first appear. Specifically, thd hroughO(«?), . may be expressed in terms of the homo-
maximal allowed fast and slow wave numbers are defined bgeneousf _,
the vanishing conditions+|kf50 and)\_|ksEO.

As in previous treatments;'°the magnitude of instantons Ay
centered at each value &f is determined by a dimension- A

less coupling strength, here given by which may be solved in terms of the exponentially bounded
4 + Green’s function. Within the approximation of

_Y b COé‘g(D\/h_)d% (54) v-translation invariance of Eq57) (i.e., ignoring the slope

9= 73 K2 k& N ’ of the harmonic oscillator potentjalit is straightforward to

show ind=1 that the continuation of this small-parameter
The magnitude ofj, can be estimated from the definitions expansion converges to bounded instantons for all values of

(35 and(22). In the bare theory with the Kroneckérregu-  a, proving existence of backgrounds of finite action. A simi-

larization of fluctuationg,the bare coupling has approximate lar result should be valid for spherically-symmetric solutions

magnitudeG,O~Ig<(5p_)2),0, where subscript, indicates  in highe.rd.27 _ .

the mean square fluctuation on patches of correlation length N uniform media, the solutions of Eq59) and(60) are

o, assumed discrete and mutually independent. Using thiormed by evaluating a single dimensionlessor — func-

fact that the approximate measure for the positive-definitdion Offset from a continuous range of center points. Letting
central region of the vertex operator in Eg4) should scale context indicate whether this function is being evaluated at

as v~k as 0, 20,/A GDYp2)(Jx )d-41 its dimensionalk) or scale-free ¢) argument, the classical
+OU(1§2)).5 620, 20/4=(vs PRI solution will be variously denoted

-V, 24— |f,~afd, (60)

To conveniently express the Green’s function in terms of i ecl I (k=Ty)=f¢ ~
nondimensionalized functional forms for the instantons, it is FL=f) (D VA (k=K)=f¢ ) (v —v)=fZ(v).

necessary to introduce one more transformation matrix, de- (61)
fined in terms ofRy: f€l. is the canonical form, and the center point will always
1k, K12 o7 be implicitly k o_rE. . _ 3
Ri= K2 }Ro ol 11 (55 The harmonic oscillator potential modifies the exact

1/ks K- - from the approximate uniform solution to E§9) exactly as

in the acoustic cas¥.Coexistence of propagating solutions

in the allowed regiork?<kZ and instantons arourkf>k?,
makes the well of the instanton a leaky potential. Solutions
to the wave equation in this well, including that of the in-
stanton itself, continue through a tunneling barrier to allowed
states of the free oscillator, and have eigenvalues with finite

Because the solutions of interest will all lie in a close neigh-
borhoodk?=kZ, it will often be acceptable to skf—kZ, so
that R, becomes a constant.

The dilationse, ¢ are then used to define two nondimen-
sionalized, and as it will turn out, scale-free fields, f_:

1 el (DJr_)92 f. imaginary parts dependent ag. Such resonances do not
=D Ei—RI{ . (56) actually appear in the spectrum (dppropriately symme-
\/ﬂé ¢ VL@ f_ trized) eigenvectors at finit®. Rather, at larg®, the dense

. . . . _ sets of oscillator states approximate a branch cut looking
Rescaling the coordinate differentiaD (/A _)dk=dv, and  y,,,gh to unphysical sheets, and the unstable states appear

- - 71 _ .
the corresponding gradienDG/A ) "V =V, , it becomes 55 holes on these unphysical sheets, collectively represented
possible to write the classical equations of moti@d) ap- i, the residues of the actual spectrum.

proximately, in the region wher®,(In yA )<1, as For quite common parametérs:’ A /\_>1 over the
whole range ok? contained in the effective field theory, and

(—V 2+{)\+/)\ ) e ¢ (af,+f )3 (57) the Green’s function solution to E¢60) becomes approxi-
Y 1/1f-] [1 T mately f&,)— (N /N, e(f(L )% This result will be impor-
The constant tant below, becausé_ is regular at small{—7v), and de-
cays exponentially in largev(-v), toward the turning point
Ne+1 Ct to allowed propagation. Within the range of validity of the
a=1\/ N 1tan§=c—stan§ (58)  weak-coupling expansion, this exponential is already smaller

than perturbative terms that have been dropped, but creates
is the small parameter that determines the coupling strengtine leading nonzero terms in the localized density of states
of slow and fast components of the instanton. and resonant tunneling amplitude. However, direct coupling
By inspection of Eq(57), f _ is even, and , odd, ina. of f, through the turning points will be the cube of this
Thus for smalla and\ . >\_>0, throughO(«a?), f_ sat-  small exponential, and much smaller than allowed fast waves
isfies the conventional equation for instantons in a homogeperturbatively coupled to the classical slow-wave back-
neous medium: ground. Finally, motivating the choice of dimensionless cou-
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pling g, it can be shown that the classical action for a singletion, a zero mode of Eq@43) (or its counterpart whemR
instanton reduces th®=(ay/go)(1+ O(a)), whereagisa —1). This translational Jacobean contributes a factor of
constant depending only ah'**° (1/g9)%2. n—1 rotational replica zero modes contribute a
The formal sum over semiclassical backgrounds in Eqpower ofg(l)/2 whenn—0. The rotational zero modes, and a
(44) may now be defined. It is proportional to the integral single negative eigenvalue proportional+o\ _, contribute

fd% over the center positions of the instantons. The Jacoeancelling powers of/\ _ and a single factor af. All other
bean from the measu®¢D¢ is proportional tad/2 powers  scale factors are from the normalizatids6). Combining
of the integrated square of the gradient of the classical soluhese factors, the coherent Green’s function becomes

- ddR (D /_)\,)d 1 (d+1)/2
0 _ ofreer _ 1 —j | A “rale
g( k ,kyw) g e( k ,k,w) Iclf12>k§(zw)d )\— (g()) © o
; f+ cl , [f+ f_]d(k)
% R_k, f (k ) R Rk +R*>| (62)

The matrix-valued resuli62) directly extends its acoustic counterpdrThe constan€; is proportional to the volume of the
physical systenyd’, and is otherwise only formally defined at-0. It can be specified physically in terms of the CPA
attenuatiort® as will be done below.

C. Resonant scattering

The ensemble average of the squared Green’s function may now be computed without introducing additional machinery.
Incorporating the parabolic regulat(86) and symmetrizing fields as in Eq®8) and (39), the free action(29) becomes

+ - nonunif:E d’ K2 2[(I)+T (I)_T]R E [po] V_ﬁ B [Ko] }
(Lg+Lg) ZJ—(zw)d( ) 2 po] =~ K]
o(8w+2in)[[po] D
T —[poll| | P~ R+R_>|' (63

Its important difference from the one-particle Lagrangi@?) is the termoc(Sw+2i 7). This term prevents th©(n,)
symmetry of® " (a bounded groupfrom continuing to arO(n, ,n_) symmetry for (6 *,® ™) fluctuations. The unbounded
generators of the latter are regulated by the opposite-sign blodks,Jnand their finite value asw passes through zero is
responsible for the pole term that creates resonancelike incoherent scattering. The corresponding interaction terin‘couples
and®, as well as¢.. and .. :
2
R | )

i

Corresponding to the notatig5), it is convenient to define

¢)+
®

0_*

CD+
-

o* . _[(D+T q)—T]l

o *

(oa

m_ Y[ 9% @2 [[277 7T,

*

o b

o

+4 [(I)+T (I)—T]R .
ag

(k)E]:R,I(k)- (65)

R,

f_

For the two-particle function, it becomes necessary to distinguish the causal and anticausal solutions to the classical equations
of motion. These have frequency eigenvalues differing by an imaginary part determined by the tunneling barrier, denoted
Im(wc), which remains finite abw + 2i 7— 0. The causal classical solution will be denoted

F2 (k) — FrS(k), (66)

and the anticausal solution obtained by complex conjugaﬂqﬁ.'z(]—',ﬁd*).
F*e will always be chosen for stationary points in the causal Green’s function. Reduction of the determinant is then
identical to that for the one-particle functig62). However, the lowest-eigenvalue fluctuation for now has two solutions,
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corresponding toF "¢ and F ¢, separated by exponentially small imaginary eigenvalues. Normalizing these fluctuations in
terms of the classical solution, and solving for a two-particle normalization constant

dd; cIT cl
C,=C,; 2 on FarFa], (67)

the squared Green’s functid@8) of wave number arguments evaluates as in the scalar acoustic préblem:
G (—kK kw )G (k' ko )=G"™(—k" ko, +inG™(—k' kw_ —in)

. d%k (DR )2 1)|@rDr2
+| 20)va _)
ei22m? A lgo

e 2R FRAk ) FLIT(KRY)

,R:E ,erCl(k’)erCIT(k)R RI ,ffcl(kr)ffclT(k)R
( K R R Ky DKo R R “|+R-1. (69)

- + -
Sw+2in Sw—2IM(wc)+2iny
Both fluctuations are not relevant to evaluating the causal incoherent tail of impulse responses. That tail, which will appear

again in calculations of the incoherent noise spectrum, is obtained by integrating over the frequency difference, where a
contour integral selects only causal components:

dwo,—w_) .
f ;—We—l(er—w,)tg-P(_kl’k’w+)g—(_kl’k,w_)

_J< ddT(' (D\/E)Zd/ 1 (d+1)/2

~C L e omd A g e 2R, Fro(k) LT (k) Ry

X(RL FrK ) FrT(k)Ry)e? Mect+ R—1. (69

Both Im(wc) and the magnitude of ;@ are determined potential to the allowed region. In general, the angular de-
by the tunneling barrier between the well of the instantonpendence of this tunneling solution is complicated, but could
and the allowed regiok®<k?. At large w, the correction be found numerically.
from dimension-dependent lensing effects on the one- Looking through the factors oRy to the fast and slow
dimensional WKB approximation goes to a constdnso  eigenvectors ., the content of Eq(69) is that slow waves,
that to O(aY), excited in the classically allowed region, couple to instanton

fluctuations in the forbidden region with exponentially sup-

IM(wc) pressed amplitude. These excitations then decay incoher-
- c o _\SVBe™ SWKB, (70 ently, with time constant 2/ w¢, integrated over instantons
@ at all k. The fluctuations are resonances in the instanton
where background, but the phenomenon differs from conventional
resonance in that nonlinear coupling creates that background.
SWKBL, (\ )3,2<D_5> 71 Also unlike resonance from discrete features, the decay of
- cs | Eqg. (69 has a continuous spectrum of time constants.

The range of validity of the solution$2), (68), and(69)
erequires: comment. Use of the stationary fo(h®) for the
interaction is only implied in an effective theory with a cut-
off close abovekg, and a long scaling range betwelenand

In a stationary-point estimate of the maximum amplitude, th
factors of\ _ in the exponential of- S"XB balance positive
polynomials atS"“E~ const. Hence the scaling of the decay
constant in Eq.(69), at the stationary point of maximum

amplitude, satisfies the grain scale. Thus the integ_ral &rcannot exten_d above
N_=~1. On the other hand, while the weak coupling expan-
Im(we) c. | sion for the instantons is valid fay,>1, go>1 give expo-
= Dal (72 nentially small contribution. Only the rangg=1 contrib-
w w

utes significantly. Using Eq54), D—« at fixed couplingG

as in the acoustic cas@. is inconsistent with the bound dnat finite g,. Therefore the

Scattering couples genefabndk’, because the solutions explicit form of these results can only be used for a strong-
F* describe tunneling from a nearly spherically symmetricscattering region of finite size, immersed in a larger weak-
instanton well through the hyper-planar wall of the oscillatorscattering background.
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D. Spatial dependence The fact that thes instantons are regular at (Ref. 27
For finite D, the coherent Green's functioi®2) can be implies exponential decay df. at large argument. The in-
used to estimate the density of localized statesk/ &=k  tegral(77) is a sum over this canonical function, with argu-
>kZ, the only contribution comes fronk(-k)? small, sog, ~ ment scaled by, and a weight function of,. The density
and A_ may be written as functions ok in the weak- Of localized states is largest &t 0, as expected physically,
coupling regime(because the instantons are narrowhe and dies off exponentially fox>X,. Unfortunately, the inte-

remaining integral ovek can be nondimensionalized, to give 97! cannot be evaluatedt-0 in d>2, because the domi-
nant weight comes from smatj,. In this region, the weak

(d+1)/2 coupling expansion becomes invalid, and the form of the
e 2/ gORik, instantons is not well-defined in the effective theory, because
it depends on arbitrarily large valueslotvhich lie above the
fof o running cutoff. The form forx=x,, however, should be
)"+ ]R(U)) valid.
A curious prediction of Eq(77) is that the localized den-
sity of states has a spatially varying admixture of fast and
slow polarizations, as diagonalized in the propagating wave

. . . 3 .
It is first interesting to check whether localized states dg®duation. The approximatiorf., (k) (f_(k))®, with f_
indeed arise in the center of tepatial potential, where scat- regular ak—k, implies anf, with three times the curvature
tering is strongest. To answer this, it is convenient to firs@t its center. Transforming tg the long-ranget+ exponen-

g1
g(_k,k,w)%—r g—o

b=

X R+ R—1. (73

f,]¢
f

define a characteristic length from the coupling, tial decay must have {8 times the— spatial decay con-
stant. Thus, while the fast-wave component starts with a
D4cod¢] Y49 smaller coefficient €a), it decays more slowly, and the
_|7 _ -~ 1/(4—d) . . ;omEe :
X0=|3 Tz b =0o (DVA-), (74 wings of the localized distribution are characterized by a
s relatively greater fast-wave polarization.

and then to decompose the symmetrized components?for
>k?2 into classical solutions with only one well around IV. THE UNIFORM LIMIT AND CPA RENORMALIZATION

The semiclassical Ginzburg-Landau expansion for non-
uniform systems, and the self-consistent CPA ansatz for uni-
form systems, provide rather different-looking descriptions
of the density of localized states. This is true in the electronic
The dimensionless Fourier transformsfdf are denoted case, and even more so in the acoustic, because of the

subtlety of wave-number-diagonal instantons. Yet it has been
shown!!in a way that applies equally to electronic or acous-
(76)  tic problems, that the perturbation theory in the wrong-sign
four-field interaction that gave the relevant R®ef. 7
cannot converge in the region of localized states, and semi-

Using the definition(31) of the transform ofg, the classical configurations ameecessaryto stabilize it. In the
Green’s function may be expressed in terms of the wavecoustic problem, the two descriptions are connected by re-
number volume of the allowed regiok{, xo, theK compo-  lations between the attenuation length for the coherent

cl

(v)=

1

fy ~
(v+v). (75

f_

f
f

fi

1
(v—v)=* ‘¢

+

R
|

f
f

+

! T

~ o~ +

(v—v)Ef diz e'(””)'z{},
-z

nents inR,, and dimensionless functions, as Green’s function, and the incoherent noise spectrum follow-
ing impulse excitatiort? both of which are recovered in the
— gickddit e (1 uniform limit.
Q(X,X,w)—>—(4_d) dJ (— The same relations all exist for Biot theory. However,
(2m)%Jo 190 unlike the acoustic problem, where the noise spectrum
1\ @-1)2 0|9 1/(4—d)\d . cannot_be remotely pr_obed unlgss the_med_ium hag an ex-
X % e QO(X—O) Ry, posed interfacgor equivalen), Biot media with localized

slow waves imprint this spectrum perturbatively on fast
wave impulses. The relation between coherent attenuation
Ry and the resulting spectrum of fast-wave coda is a signature
s by which to distinguish the presence of extra Biot degrees of
freedom from purely dissipative attenuation.

Tl =~
;][n f|])
f xgoH (4= D,

(77)
Here fd9"1Q is the area of the unil sphere, from the inte- A. The noise spectrum
gral over instanton centeks Oscillatory interference terms The noise spectrum in the acoustic problem was originally
arising from symmetrized .. have cancelled undeR—1, defined for seismic displacements, will+=1 and a purely

leaving a smooth, radially symmetric envelope in the har+eflecting interface representing the exposed surface of the
monic well. Earth?® In randomly-layered media, broadband energy deliv-
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ered to the interface was trapped between perfect reflection If Biot polarization indices are explicitly represented, as
at the surface and localization in the interior, leading to aon the matrix

stationary spectrum of incoherent noise at late times. To ex-

tend that definition to the Biot problem in genedlit is o*=[0*],,, (79
necessary to express the canonical Green’s funafion

terms of a displacement Green’s functibh between spatial ~with the convention that repeated indices are summed, the

components andj, as ensemble-averaged coherent and incoherent Green’s func-
) il s tions are related by a Schwinger-Dyson equation equivalent
GX' X @)=V, VI (X' X, ). (78 to the acoustic form?

[o* T (X X,w)0* ], [o*T¥ (X' X, 0_)0*],,

=[(T*Fij+(X’,X,w+)0'*]w[0'*Fk'_(x’,x,w_)o*],,p+G;“f dIX[a*T'™ (X" X, 04)0* |\

X[o* TK" (X" X, 0_)0* 1,5l a* T™" (X,X,0,)0* 1, [* T (X,X,0_)0* 15, . (80)

Equation(80) admits an interpretation id=1,1° that the first term on the right-hand side propagates excitations directly
from x to x’, while the second propagates them to an arbitrary pgimtearx, which may be viewed as a reflecting interface.
Reflection at the interface is represented by the cumulative effect of the two-particle Green’s fungtiartta integral, and
the coupled coherent Green’s functions propagate this reflected signal batkThis description may be generalized by
considering an arbitrary point, a source of internal “reflection,” and defining the paired reflection coefficient

ok —— =
[0'*])\M[0'*],,p?R(w+)R*(w_)=Gw4f dX[o* T (X, X,0,)0* ]\ Lo* TN (X, x,0_)0*],,. (81)

In Eqg. (81), three symmetries have been used. At late times, high-order scattering must be isotropic, so the paired Green’s
functions are uncorrelated betweieandj, or k andl. However, due to replica symmetry, the two-particle function is a product
of uncorrelated, coherent Green'’s functions, and hence vanishes, uslksand j=I. Finally, becauser* is a projector,
sandwiching Green’s functions betweet pairs must give a matrix proportional t8". Because localized states at laige
come from a neighborhookP~k?2, contraction of Eq(81) with 6™ and 8!' may be used to reduce

R(w+)R*(w_):Gc§f dNX Tr(e* G * (X, %, 0, ))Tr(c* G~ (X, X, w_)). (82

The total energy at the “interfacgequivalently, at a probe locatedxy) is the integral of this reflection oves, andw _ .
Therefore, the noise spectrum is defined as

N(t,Z)zf %e”wf“)—ﬁR(M)R*(w,). (83)

Omitting the model of the reflection coefficient, it becomes apparent that the noise spectrum may be defined directly in terms
of the two-point function in general as

5k fd(er—w)

[0*])\#[0'*],,[,?N(t,5)=654 o eﬂ(wrwf)tf dX[o* T (XX, 0,)0* ]\ [o* T (X, x,0_)0*],,.

(84)

(Physically, the picture of reflection from a smaldimensional volume, or point af,, corresponds to the derivation of
localization from coherent backscatter: Rays sent out fxgrmay be viewed as having been sent “through” this point from
its far side. These are primarily reflected backgdy coherent backscatter, and appear on the far side to have been reflected
“through” xgq, as if it were a perfectly reflecting interface, but one having definite spectral characteristics.

Following the results of the previous sections, trace§ wfith o* are proportional to contractions GT,%'J with the vector
[ @1]. Because the fast-wave component is it€&(fx), these contractions can be ignoredXir?), and to that order E¢83)
evaluates to
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4pd a; gd-1 d-1)/2
N(t,Z):ZGCSkS Cs /j d% ]:clT]_—-cI f QJ d(i)<i)( ) - ealsog? Mot .
K2 fddx\ (2m)° (4=d)J 2m)9Jo 190/ 90

The noise spectrum at early times, like the Rayleigh cross section, scasés$ hsFurther, using the fact th&,= [d (as
the functional determinant must Yo¢ s finite. At t—0, the integral over the couplingy becomes independent of bdghand
D, and reduces to the constditd+1)/a5"*. Thus the only dependence on coupling is through the direct perturbative factor
of G. The finite time constants 1/lm:, however, cause the noise spectrum to decay in a way that is sensitiye To
identify the behavior in the uniform limit, the back reaction of fast-wave scattering on slow waves must be taken into account,
which is most easily done through the CPA itself.

B. Coherent attenuation

Normally, the coherent-potential approximation is solved self-consistently in a bare theory and then renormalized with a
nonlinear sigma modélThe coherent attenuation that defines the initial coupling in the sigma-model renormalization group
flow is due to the density of scattering states, but in the CPA these are never seen as explicitly localized. Rather, localization
is only inferred from the absence of renormalized diffusion.

In nonuniform systems, where there is effectively a position-dependent band edge, this seems paradoxical; the Ginzburg-
Landau treatment gives an explicitly localized description of the density of states sufficiently deep within the forbidden region,
where the instanton expansion is validand such a description is equivalent in electronic or acoustic systems. The paradox is
resolved by considering uniform systems as the limits of nonuniform ones and using the instanton density of states to form an
effective CPA action directly from the replica-field generating functidfal.

The generating functional is the functional integral responsible for ensemble-averaged Green’s functions, (#8, Eq.
without the field insertions. Splitting fields into classical and fluctuating parts, and summing over instanton backgrounds as
before, the leading quadratic action for coherent propagation can be formed as in Ref. 10:

Lo L J d% o T @ T {‘MZ[POJ - 2{[Ko] }
(2w)d ®_*[po] [Ko]
4 dyr RVAYA * 7+ _kr,kr, . * (I)+
_wadk (k-k"2 | a*G™( w)o ] ) @6
fdi9%J (2m)9 k?(k’?)? a*G (K kK o )o* || [P7],

It has been assumed in E@®6) that a uniform limit exists, which leads to the correct normalization of the free-fluctuation
Green's functiort® and the factor off d’x.

It is very important that only the tensor component of the second variation has been kept explicitly in this semiclassical
expansion. The corresponding scalar component contributes a sur@ 6\a1dG —, which has no imaginary part, and at most
perturbatively renormalizes the dispersion relation to orders that are already implicitly absorbed in the effective couplings.

Using the contraction of the projection operator with

a*G(—k' kK',w)o* =c*Tr(c*G(—k' ,k',w)), (87)

Eq. (86) reduces to a simple matrix form for Biot polarizations, multiplying a Green'’s function trace proportional to the density
of states:

Gw?ci[o*

@’ [po] }_
[Kol fd9

0.*

d _
LC"A=1J BLSIFT M
(2m)°

2[[Ko]

w?[pol]

Tr(o_*g+(_kr,kr,w+)) (I)+

d—1 di,r
><(fd Qcos’-e)f d9k .

fdi-10 (2)¢

Tr(c*G (=K' K ,w_)) K

This CPA form transforms easily to the position basis, which will then be generalizable to nonuniform systems:
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2
@ “[po] *

1 it +T -T [Ko] _|o
cra_~ | 4a V'[P ®7 2[ L0 S )
Lo a o_pol [Ko]} S
fdi-tQ cos’-ﬁ) 1 Tr(e*G " (x' X", @) [T
dd ! _ ! . 89
X( [ai o fddx’f X Tr(c*G~ (X' X", w_)) o (89

T_his rathe_r roundabout way of arriving_ at the position- Recognizing tha _ /(cgp_):1+ O(a?), and defining the
basis correction for thG‘ZCPZA was used to isolate the angulagoherent attenuation length,, in terms of the imaginary
integral of cod=(k-k')%(k’k'?), expressing the fact that part of k,, gives the desired relation between coherent at-

density perturbations are dipole scatterers. This symmetrngnyation and the noise spectrum to this ordesin
factor appears only as an overall weight function. It is sig-

nificant, though, that spatiallys-correlated perturbations 1 d9-10) co PR

) ) cos #\N(t—0, —
couple all wave numbers, so fast waves are attenuated by Im(kg E—~(f = ) (t20.0) ~ it
scattering into localized slow waves, witD-invariant lcon Jd® " Q Cs
weight, at leading perturbative order & (94

The CPA correction in Eq88) may be understood as an ] . L )
imaginary addition to the matrix blocks of density compo- One difference of the true definition of the intrinsic noise

nents ford*, which remains finite ay—0, spectrum from the model of interface reflection now be-
comes apparent. Interface reflection causes coherent dis-
. . 5 fd97 10 cog6 placement doubling, and so multiplies noise very near the
[po]™—[po]™ —0*Geg ETE interface by a factor of four relative to E(4).2%?8 The fact

that the intrinsic noise spectrum is due to weak localization
1 is emphasized by the lack of coherence between the input

J d¥% Tr(e* G~ (X, X, w)). (90 and reflected waves through an apparent reflection pgint
Jddx causing the extra factor of four not to appear. Up to this
The explicit evaluation of the averaged Green's functioncoherence factor, Eq94) agrees ind=1 (where coy=1)
trace, again correct t&(at), is with the localization result obtained from stochastic differen-
tial equation€® and it agrees identically with the homoge-
neous acoustic resuf.

X

1 -
Ff d Tr(e*G " (x,X,w.)) Because waves localized in a sufficiently weakly nonuni-
Jd% form medium are still compact with respect to the dimen-
2ik? ¢ 49 sions of the nonuniformity, the uniform CPA must have a
— S 1 VU Tl limi izati i i -
=— ( f g j:R> imited generalization to the case of spatially varying scatter
Ko Jdi\J (2m)¢ ing strength, obtained by replacing
1 dd*lQ s 1 1 (d—-1)/2
A e
(4_d) (27T)d 0 gO gO fd_dX d XQ(X,X,a))—>Q(X,X,w) (95)

() in Eq. (90). In the regions of the potential where the instan-
Recalling the relationi67) of C, to C,, and the expression ton expansion can be used, the fof#Y) then predicts the
for the noise spectrurt®1), the CPA density blocks become form of anomalous spatial attenuation associated with the
a1 2 — onset of spatially limited localization.
el oo io* 25 Jd? "0 co 0>N(t10,w).
Po 0 C§ [di 10

w C. Relating instantons to the free-field CPA

(%2 The result(92) made explicit use of the instanton expan-
To O(a°), [po] ando* can be simultaneously diagonal- sion through the solutiof®1), and so distinguished between
ized and used to understand the correction to the on-shedlow and fast wave contributions only through the form and

slow wave number, wave number dependence of the instantons. Due to abstract
_ 41 constants likeC,, though, it is difficult to apply to the usual
okl 1 iK_ [ fd9 ™) cosd perturbative construction of the CPA, in which the entire
s 0s cﬁp_ [d4-10 density of statest the propagating wave numbédefines the

initial diffusivity to be renormalized:® It will be argued here

N(Ho,;) , that, if there is a large ratio; /cg, and small overlap anglg
X——="—(1+0(a%))|. (93)  the instanton expansion indicates how to carry the acoustic
w CPA construction over into the Biot problem.
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The essential semiclassical result was that there are no c ps
instantons in the narrow shell around the allowptbpagat- Im(kf):—tanzglm(ks)~<
ing) value of the fast wave number, while there are around Cs P+p
the allowed value of the slow wave number. Further, in the ) ) ) i )
largeD limit, only states within a vanishingly small distance £auation(98), with Eq. (94), is the advertised relation be-

of the allowed wave numbers make nonvanishing contribu%l\\’/\/:veen r;[cr;ies Jaiteing rilOvé/irfgg]ef;i?-(\:/sa\llin%t'[?:ﬁuaar;?or:hgrzlﬁwr;
tions (these have the small values gy). P : 9

Now. the CPA creates an imaainary correction to the ma_conversion to slow waves is a local effect, the relation be-
i : ¢ the G s f t.g .ryE 90 din th tween the fast and slow coherence lengths does not depend
X [p°]’. rom the reen's tunction in 430), and in € " on whether the slow waves are localized. The relation be-
uniform limit, the spatial average is simply replaced with theyyeen the slow-wave coherence length and the noise spec-
uniform Green's function as in Eq95), whose imaginary  m relies essentially on the approximation that fast-wave
part comes from the on-shell densities of states. The d|fferergoup|ing is small, which can now be quantified.
instanton treatment of fast and slow wave numbers suggests
that the fields be split into polarization components E. Corrections to the slow-wave CPA

5
C—flm(ks). (99)

PI=DF+ DT, (96) The acoustic CPAREef. 2 essen'tially_ assumes that'fluc-
tuations are not severe enough to invalidate the effective me-
where ®; is the component corresponding fo in the  dium obtained by integrating the Green'’s function in the sca-
frequency-dependent diagonalizatié®6), and ®; to f_ . lar equivaler_1t to Eq(90). Thus, the fields !eft dynamical, and
Separate integrations over the fast and slow components thépose contributing the averaged density of states are the

give different CPA field theories, whose physical interpreta-S@me. In particular, all states associated with the dynamical
tions are given below. fields are either localized or not, and renormalization of the

diffusivity tells which.
When there is coherence loss due to both fast and slow
D. The fast coherence length scattering in a Biot CPA, there arises the possibility that one
The first interesting CPA is obtained by integrating outshould contribute the initial value to the renormalized diffu-
@, and leaving®; explicit. Becausar* couples at order sivity, and the other appear merely dissipative. 'Ehe lack of an
go to the slow wave an@.’z to the fast wave, the reSLﬂgo) instanton contribution d{z""k% SuggeStS that |ﬁ)f_ is inte-

holds, withG = replaced at leading order i by the uni-  grated out to form an effective slow wave theory, its free

form, free-field ®=d= Green’s function. This is, of course, field densny of states should cprjtrlbute to the latter. Physi-

exactly the samé ccSJrrection as determines the slow wav(éaIIy this makes perfect sense: it is coherent bgcksca?ter.from
strongly coupled slow waves that leads to their localization;

coherence length, so that the two are proportional. more weakly coupled fast waves should simply carry away
Working through the diagonalizatiort§1) and (52), cor- coherence information, when viewed on the same scale.

recting [ po] with the fixed term of Eq(90), and using the To obtain the effective slow-wave theory, the interaction

; §a2
fact that to leading order ig®, Lagrangian is again split as for semiclassical backgrounds,
except that the binomial expansion is performed in fast and
p? c.\2 slow components. Slow components are kept explicit, the
. T S . . . .
sinfé~ c. 97 interaction exponential expanded as a power series, and fast-
P+P—/ AL wave products are averaged with the free Green’s function.
it follows that The first nonvanishing term in this series is

Lint _G;4f dk;d%,d%; (kg ko) (Ks-Kyg)

2 (27)% k3 k3
N
g

_ * * ot -
X[(I);T @ T]7k1 o*Tr(o* Gy (Ky,—K3,0,)) (99

O'*TT(O'*gf_(kz,_kgyw—)) k4

The fast-wave Green’s function is denot@d , and only the tensor component has been kept, as if@By.because only the
imaginary part is of interest.
At large D, the perturbing kernel in Eq99) has imaginary part

| ( f d9k,d%; (Kq-ky) (Ks-Ky) a2c0§§k2kd_2( [d9710 cogo
m _—

Tr(o*G{ (ky,—Ks, =- Csho, 100
(217)2(1 k% k% ((T f( 2 3 w+)) o K_ f fdd*lﬂ ) SHO ( )
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whereCgy is a constant of order unity defined by the den-  The coherence length in both equatidh85 and(106) is
sity of states of the nondimensionalized, simple harmoni®mbtained from
oscillator. In the uniform limit,Cgyq is replaced by

cs 1({Imp_
d*t0 a2l o) (107
CSHO_>J —d (101) co

(2m) using the shift in Eq(104), while the apparent dissipation in
Recalling the definitior{58) of «, the density parameters for Ed- (106 is given by
slow waves are modified by a term interpreted as dissipation:

Im W(s) 1/Im [
Gc§k§ 4-d 1) :E( p_ )' (108

. b . Cy
[pols —[pols Tima™ K S|n2§(c— ) L
- s using the shift in Eq(103).
The more general relation, that strong coupling be attain-
(102  able from any combination of initial parameters, defines
SHO o ; .
guantitatively the meaning of weak overlap. Making use of
Ref. 3, Eq.(22), the definitions(107) and (108), and their
Making use of the density parametrization introduced inrelations implied by Eqs(103 and (104, gives
Eq. (49) and the definition50) (and dropping the subscript

( fd97 10 cogH
fddflﬂ

s), Eq. (102 simply shifts the scalap_, as 'rng(Cs)dA ( p? )(Cs)dZ 1 ( ce )dl
Si — ~ — S
W kelo d/ geff Cs P+p—)\Cs 2m(d—2)\ wlcop
* + ; - S -
p_ﬂp_{li% p- ) 277) Go) -1 (109

41 . AR As a final comment, it is now clear why a mobility edge
X fd Q cos'g| xsin’é P - in d=3 suggests localized slow and extended fast waves.
° Using the slow-slow scattering strength of E404) as a
(103 reference, the dissipative term from scattering to fast waves

. 2 *
The effective slow wave theory that remains is essentiall))S smaller byZ®, due 1o the factor o&™ in the trace otj. For

- : : even slow waves to localize near the loffe-Regel criterion
just the scalar acoustic theory of Ref. 3, with a complex T s .
constant given by Eq(103. In particular, the scattering (which is rather strigt £* must be small as in Eq109). The

terms quartic ind_ have still been left explicit during the slow-wave correction to fast-wave coherence is of compa-

above intearations. If thev are now anproximated by the dif_rable magnitude to the fast-slow term, this time due to the
X 9 : y . pp yi * outside the trace, while the fast-fast scattering correction
fusive CPA, the on-shell density of free slow states is use

4 * ; i _
for the Green’s function in Eq91), and slow-slow scattering 'S qrderg from both o™ factors. Thus, if therg IS any sepa
- : ration of scalex /c;<1, an loffe-Regel criterion can never
makes an additional coherence-loss correction e . S
be satisfied for the fast wave until slow wave scattering is
760 2/ kd\d/ geff already so strong that the analysis presented here must be
pt_,pi[ 14_477(&) (5_0) (_) ( f di-10 Cogg) ] replaced by something else, in which case the medium prob-
p- 2m ) |\ Go (104 ably no longer looks much like a Biot system.

There is thus a simple relation between the apparent dissipa- F. Quantitative estimates
tion of slow waves induced by fast wave scattering, and the The loffe-Regel criterion can be translated into a required

coherent attenuation from self-scattering. absolute heterogeneity, for the simple example like super-
Two relations can now be obtained directly from the sca-, . : genery, Imp mp Sup
S ) fluid helium scattering by tortuosity fluctuations considered
lar CPA of Ref. 3. The first is the classic loffe-Regel in Ref. 7. Ind=3, Eqs.(104), (105), and(107 can be com-
conditiorf® in the nondissipative limit, from Eq23) of that bined to read . as- : :

work:
cs |97t 5p—)2<kslo)3(Geﬁ) 3 038 (110
_ — —|=—=~0.38.
2m(d 2)s(wlcoh) : (105 p- ) \2m) \ Gy) ™ 23

from the condition that the initial coupling strength be suffi- Perhaps not surprisingly, this combination of parameters
cient to overcome the classical scaling dimension. The seaurns out not to lie within the weak-coupling regime of per-
ond relation is a weakness condition on dissipation obtainecurbation theory in Ref. 7, for any initial variance

from Ref. 3, Eq.(22), necessary to allow flow to strong cou- (s5p_/p_)?, so the ratioG®"/G, cannot be obtained from

pling from any initial value: that calculation. However, one may simply ask what
d strength of variatiorat the natural scale is sufficient to local-
Imas) < 1 / Cs ) (106  iz&, since there is then no renormalization, &gi¢ /27 and
w 27(d—2)| wleon G®™ G, both equal unity, in which case the answer is that
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(8p_1p_)?=0.38. This rather severe condition for proper not yet apprecia}tec{.The_small-scale models of pore fldw
localization is the counterpart of that encountered in thevere regular lattices, which could have led to Bloch waves at
other classical wave problemsFor the superfluid helium Strong coupling, but not to qualitative changes in the propa-

example of Ref. 7p_ becomes simply the Biot parametey ~ 9ating degrees of freedopBiot clearly understood the uni-

consider when it might become equivalent to simple elastic-

ity, except in trivial cases like vanishing or total porosity, or

when extreme heterogeneity caused both models to break
The localizing transition in a heterogeneous Biot mediumdown. This work identifies slow-wave localization as one

has been found to be somewhat different qualitatively fromtransformation in a series potentially leading from the con-

the similar transition in linear acoustics or elasticity. Thesolidation transition ultimately to elasticity.

separation of scales between slow and fast wave speeds leads

to an instanton density of states at the slow wave speed, but ACKNOWLEDGMENTS
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This semiclassical result, used as physical input in form-
ing a CPA description, leads to very different roles for the APPENDIX A: AN ESTIMATE OF a
fast and slow wave densities in the nonlinear sigma model of
Ref. 3. Whereas in the acoustic case, the coherence loss from At high frequencies, viscosity becomes a less severe per-
all states is subsumed into the initial value for the renormalturbation than scattering in heterogeneous Biot theory.
ized diffusivity, here the fast-wave states contribute a coherTherefore, it may be appropriate to use the parameters com-

ence loss equivalent to absorption, and only the slow-wavé&only accepted for water-saturated sand in the inviscid sec-
states are considered diffusive. tor alone, to estimate polarization overlap of fast and slow

Localization, to occur at all, requires both an loffe-Regel-waves. The parameter set used here will be the same as that
like strong scattering condition for slow waves, and a condiused to define the most-relevant effective scattering vertex in
tion of sufficiently weak overlap for slow-fast interconver- Ref. 7.
sion. When these are both satisfied, there is a strong Density — parameters are p;=1000 kg/mi, p
hierarchy of scattering strengths, in which fast-fast scattering= 1875 kg/ni, m=2660 kg/ni, and compressibilities are
is weakest, slow-fast scattering intermediate, and slow-slowl =4.073<10° Pa, C=4.000<10° Pa, and M=4.005
scattering strongest. This result argues from a second dire¢< 10° Pa. These give eigenvalues foK,] of K, =8.039
tion that fast-wave scattering is too weak to localize withinx10° Pa,K_=3.9x10" Pa. The corresponding parameters
any range where perturbation theory correctly describes slofor [po] in Eq. (49 are p,=3264 kg/mi, p_
waves. Thus, if fast waves localize at all, it must be as a=1271 kg/ni, pr=—793 kg/nt.
secondary transition in an effective theory that takes into These parameters give speeds ©f=1706 m/s, cq
account strong slow wave scattering. =175 m/s, and a rotation angf=0.022 in Eq.(53). The

Finally, it may be observed that the slow-localizing tran-resulting estimate for the instanton overlap parameter in Eq.
sition derived here is the first connection between the Bio(58) is a~0.21. Sincea? is the coupling between fast and
and elastic effective media by something akin to a phasslow waves that determines the effective dissipation in Eq.
transition®® When Biot theory was first derived, Anderson (100), it is clear that these parameters allow onh% of
localization had not yet been discovered, and the differencéhe fast wave density of states to actually contribute to ap-
between regular and random small-scale heterogeneity wasarent slow wave dissipation.
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