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This is the first of two papers that develop a theory of perturbative acoustic scattering and localization in
fluid-saturated porous solids. The Biot effective-medium theory is used as the general model of porous-medium
acoustics, and replica field functional integrals are introduced to incorporate spatiaihction correlated
fluctuations of the Biot parameters. This paper develops the renormalization group and frequency-dependent
definition of the effective medium in the limit of inviscid saturating flui@eneralizefidensity fluctuations are
found to create an RG-relevant effective coupling, which renormalizes to a universal form in an asymptotic
limit of large flow range. A scattering-induced dispersion is also identified, which, in a simple example
assuming superfluid helium as saturant, serves as an experimental probe of heterogeneity in the Biot tortuosity

parameter.
DOI: 10.1103/PhysRevB.64.134202 PACS nuntder63.50:+x, 61.43.Gt, 62.30td, 61.43—]
[. INTRODUCTION: SCATTERING IN POROUS-MEDIUM described by parameter fluctuations about a homogeneous
ACOUSTICS Biot-theory background. Its concern is RG organization of

arbitrary-order perturbative effects, and the definition of

Continuum mechanics provides a natural and intuitive defrequency-dependent effective medium parameters and scat-
scription of a great many fluids and solids, because theitering operators. A companion papeill use these results to
atomic or molecular granularity is not resolved by commonlystudy acoustic localization in porous media, and in particular
achievable wavelengths. The linear acoustics and elasticitthe differences from elastic localization that arise from Biot
of such materials is often describable at leading order byheory’s richer spectrum of wave types.
Helmholtz equations with homogeneous parameters, and it is
well understood how to compute scattering from local fluc-
tuations in these parameters perturbatively. When techniques A. The universality of Biot theory
,[S#:T eZ?jitr?ge ;esg(r;rgg'::cz:ztlgfnlgrg)g?)(é)rtirri autisveed (;(r)d(;rt%él;;ze _The theory developed her_e is the first step in the (_:ontinu-
be found that coherence effects cause dispersion, and that t fon _frqm homogeneous_ Biot theo_ry toward a graln—scale
aggregation of multiple scattering can be considerably strond€SCription of strong multiple scattering. It can be carried out
ger or weaker than would be expected by naive summatioﬁ”t'rely within a Blot.framework becau.se Biot theory is a
of Born-approximation cross sections. A surprising conse-CorTm'e"e8 effective field theoryEFT) in the sense of
quence of this is the possibility of acoustic localizatfoft, Weinberg? Its conservative sector, at lowest order in deriva-
whereby solutions to the Helmholtz equation are transformedives, is the most general form following from analyticity
from extended traveling waves to modes spatially confined@nd the symmetries of co-present liquid and solid degrees of
by coherent backscatter. freedom® In other words, if the mean properties of any po-

The acoustics of fluid-saturated porous solids also has gpus medium have an approximate Biot description at some
continuum description, known as Biot thed®.It directly ~ frequency, arbitrary small alterations in the medium compo-
generalizes linear elasticity to the symmetries of interpensition or arrangement can be represented by fluctuations in
etrating, independent, fluid and solid deformational degreesome combinations of the Biot parameters.
of freedom, and all of its salient predictions have been quan- A description of heterogeneous porous media based on
titatively confirmed in experiments. Biot theory is often usedrenormalized Biot theory is appealing for two reasons. First,
to describe granular solids with macroscopic grain sizes, foit incorporates frequency dependence into the Biot effective
which it is easy to produce acoustic wavelengths from manynedium in a logically consistent way. The constitutive rela-
down to one times the grain or pore diameters. As increasingons of Biot theory? (discussed in more detail belpvare
frequency successively resolves heterogeneities in grain awsually derived by homogenizatidh or volume
rangements and ultimately individual grain boundaries, it isaveraging'® either of which assumes a large separation of
clear that homogeneous Biot theory must continue to somsecales between wavelength and grain or pore diameters. Yet
strong multiple-scattering theory, but not even a perturbativéor many frequencies of interest to resolve statistical fluctua-
theory of porous-medium acoustic scattering analogous ttions in grain or pore configuration, a homogenization vol-
the elastic case has yet been developed. Consequently, thee is not cleanly defined. If instead the effective medium is
relation of multiple to Born-approximation scattering assumed defined by its symmetries, the RG can be used to
strengths, and the possibility of acoustic localization, haveelate dispersion or frequency-dependent scattering strength
not been studied for porous media at all. to the magnitude and scale of effective parameter fluctua-

This is the first of two papers on acoustic scattering intions, whose low-frequency average corresponds to the ho-
heterogeneous porous media, where the heterogeneities amdgenization result.
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Second, keeping explicit the “most general form consis-rable to a characteristic pore raditis® Therefore, scattering
tent with the symmetrie¥ embeds homogeneous Biot signatures derived here for inviscid fluids may persist for
theory as the lowest nontrivial order in a spatial and temporahonideal fluids at sufficiently high frequencies, though the
derivative expansion, and provides classical scaling estirelation is not quantitatively developed in these papers.
mates for when the coefficients of higher derivatives become A third, explicit object of the RG flow in this paper is the
important. In principle, it is by successive inclusion of theseyayelength-scale effective theory, a necessary input for lo-
higher-order derivatives that one performs the complete COoregjization calculations in the companion paper. It will be
tinuation to the theory that resolves individual grains.  found that the porous-medium RG asymptotically collapses a

Even without going beyond the linear wave equation,orge range of small-scale heterogeneities onto a single form

though, the RG can have interesting consequences. Precisgly ie |ong.wavelength effective scattering operator, and in
because it is a complete EFT, Biot theory is generally exs

pected to be themniversal description of homogenized po- this r(_agard pqrous—medlum localization is qualitatively richer
. o than its elastic counterpart.
rous medi&. The possibility of coherent backscatter and lo- In the elasti bl inal | f scatteri
calization at strong coupling, however, sugggstase n e efastic problem, a single, scalar source ot scattering
transitions from the Biot effective medium into something (densny perturbatlor)scogld be as;umed W'th.OUt IOSS’. of
which has no analog in acoustic or elastic theory. The feagenerallt)ﬁ and whether. It was defined at a mICroscopic or
tures of such a localization transition will be discussed inWavelength scale was indifferent up to specification of the
detail in the companion paper. scqtterlng s_trer_lgth._Y_et in fqrmlng the sigma model to de-
The universal nature of Biot theory is thus important in Scribe localization, it is explicitly the scattering vertex and
two respects. First, it shows that Biot-parameter perturbatiofensity of states at the physical pole that determines the ini-
theory is not on|y well-defined bugeneric as a |0ng- tial coupling strength(see Ref. 3 for the role of on-shell
wavelength description of porous-medium heterogeneityscattering. The asymptotic form of the porous-medium scat-
Second, the only way one expects it to be violated at théering operator couples very differently to different Biot
order of the Helmholtz equation is by a phase transition, agvave types, and this is the origin of qualitative differences
may be induced by localization. between Biot and elastic localizing transitions.
The parameter space for Biot backgrounds and potential
scattering operators is extremely large, so the universal char-
B. Goals of this work acteristics of the Biot RG will be emphasized for the formal

One purpose of the present paper is to show how to comsimplicity they provide,_s_pecifically. the ability to identify a
pute and organize arbitrary orders of perturbative acoustiréferred type of localizing transition. In the practical ex-
scattering from spatially delta-function correlated fluctua-&MPles treated quantitatively, it will turn out that strong cou-
tions in porous-medium properties. No such general formuPling and the breakdown of perturbation theory are often
lation currently exists, but there is a natural way to create ongncountered before this asymptotic regime is reached, so the
by extending the replica-field representation of quenched€dree of simplification provided by universal asymptotics in
randomness already applied successfully to acoustic arfd9iven application is unclear. On the other hand, in the same
elastic medid. Replica acoustics provides a single, coheren€Xa@mPples, the most natural sources of scattering are near the
framework for organizing all-orders perturbative scattefihg, asymptotic forms even before renormalization, so the “uni-
and perturbativeand nonperturbatiedescriptions of local- Versal” results remain appropriate.
ization. However, it provides no way to incorporate intrinsic
dissipation(due to its reliance on analyticityand this re-
quires that all derivations assume ideal fluids.

A second purpose is to derive dispersion and enhanced- It is expected that some elements of this work will be
scattering effects that can be used to estimate the internahfamiliar to readers in either the porous-medium acoustics
heterogeneity of porous solids experimentally. If superfluidor replica-field/localization audiences. Because every aspect
helium is used as a saturant, the inviscid calculations in thisf the inviscid quenched-random scattering problem in po-
and the next paper can be applied directly to laboratory exrous media directly extends the form for linear elasticity, the
periments. The strongly temperature-dependent viscosity akplica methods commonly used to treat acoustic localization
liquid helium has already been usédo measure bulk- will be followed closely. Since Biot theory is usually applied
averaged properties of the dynamic tortuosity of the poreat the level of classical wave equations, the first step in this
space, through a boundary-layer dispersion mechanismconstruction will be to recast these in a variational form ame-
similar to one first derived by Bict.The present paper de- nable to replica treatment. Notation will be chosen so that
rives a scattering-induced dispersion in the inviscid limit, matrix-valued Biot parameters naturally generalize the Lame
which may be used to estimate the fluctuations of local torparameters of elasticity, and the rest of the replica construc-
tuosity around the mean value. tion in terms of these will be as in Refs. 3, 4, and 13.

It is also a well-understood property dfiomogeneoys Important features of Biot theory that may be unfamiliar
porous-medium acoustics that fluid-driven dissipation ando localization audiences are the spectrum and properties of
dispersion have qualitatively distinct low-frequency andits wave types, and the constitutive relations between its
high-frequency forms, between which a transition occursmatrix-valued Lamegarameters and the densities and moduli
when the fluid’s viscous boundary layer thickness is compamost readily measured in the laboratory. Therefore, Sec. Il,

C. Organization and audience
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which gives the defining relations, will open with a brief sional wave, or “fast wave,” propagates in-phase compres-
summary of the phenomenology of homogeneous Biosion and displacement of the fluid and solid, and has the
theory. fastest wave speed in the medium. The second compressional
Section Il then proceeds with the variational constructionwave, or “slow wave,” propagates out-of-phase compression
the definition of Biot Green’s functions in terms of functional and displacement of fluid and solid, and has a slower speed.
integrals, and the replica average over background fluctudn both the fast wavéunless a special matching condition is
tions. Section Ill organizes the naive power counting andine tuned by choice of materialand the slow wavdal-
perturbation theory of the RG for the compressional sectowvays, there is local fluid motion relative to the solid, and for
as a starting point. It shows that only density fluctuations areriscous fluids this results in an intrinsic dissipation and dis-
classically relevant, and introduces graphs for the verticepersion. For many common combinations of nonideal fluids
involving only longitudinal excitations. Section IV derives and solids, the fast wave dissipation is small, but the slow
the perturbative RG corrections in this naive version of thewave dissipation can be so large that the wave is essentially
so-called “poroacoustic” sectdr,in which transverse waves diffusive!® Because dissipation in shearing fluid boundary
are simply ignored. Section V analyzes the RG flow for fixedlayers is always higher than in bulk fluid compression, the
points. Since flow is toward strong coupling, there are nosaturant viscosity is generally a more important factor for
fixed points as in the example of Ref. 1. There are, howeverither Biot compressional wave than for simple acoustics in
stationary rays representing fixed forms of the interaction the same fluid. The Biot shear wave is a straightforward
vertex, which are studied for the flow of their one-parametegeneralization of the elastic shear wave, only having en-
coupling. hanced dissipation for nonideal fluids, due again to relative
A powerful consequence of assembling the Biot param{fluid/solid displacements. The existence of all three wave
eters into 2 2 matrices is that the wave equations they in-types relies on consolidation of the porous solid frdthe,
duce have an intuitive geometric interpretation, which ap-which in general results in two different bulk compressional
pears not to have been presented before, and is developedrmoduli for the frame and the elastic soligay, grain mate-
Sec. VI. These matrix-valued equations have a simple threetal) of which it is composed.
dimensional vector structure, from which all of the main fea- All three Biot waves have been observed in laboratory
tures of Biot theory described in Sec. Il become immediatelyexperiments, with both viscousvatep (Ref. 19 and near-
apparent. Though it is hoped that this description will rendeideal (superfluid helium (Ref. 14 saturating fluids. Wave
Biot theory simple and intuitive, its primary purpose is to speeds predicted from independent measurements of solid
enable conclusions about the universal features of renormalrame and fluid properties have shown excellent quantitative
ization corrections, independent of detailed specification ofits to experiment, when one internal pore propédynamic
initial conditions of the RG flow. tortuosity is unknown!*'® and in comparisons using two
Section VII examines a limited class of shear wave ef-fluids (water and liquid heliury fits obtained with one fluid
fects. First the naive poroacoustic limit is related to the moreyield predictions for the other fluid that match data with no
complicated treatment of the limit of vanishing shear modu-adjustable parametet$2°
lus. Then, the degenerate, finite shear modulus is considered. To understand the constitutive relations of Biot theory, it
The complicated nature of scattering into shear excitations ifs necessary first to define its deformational degrees of free-
this problem seems to preclude a unified treatment of thelom. Following the notation of Stotf?'the locally volume
various approximate limits just listed. Therefore, two ex-averaged displacement of the solid from a reference rest po-
amples are elaborated in Sec. VIII, both to show how thesition is denotedu. The corresponding averaged fluid dis-
disjoint pieces fit together and to give a laboratory examplelacement is called). The porosity3 of the frame is the
where dispersion provides an estimate for heterogeneity. Thigverage fraction of any macroscopic enclosed volume which
section contains the “experimental applications” of the pa-is pore space. It is generally convenient to work with the
per. Finally, Sec. IX closes with conclusions and implica-volume-weighted displacement of the fluid relative to the

tions. solid, denotedv=B(u—U).
The derivation below will be carried out in general spatial
IL. BIOT THEORY AND REPLICA EIELDS dimensiond, for reference to similar problen'Jrsz;13 though
. o . d=3 will be used in evaluation of some final quantities.
A. The Biot spectrum and constitutive relations Spatial indices for vectors and gradients will be denoted

Biot's effective-medium theory of the acoustics of fluid- U:W.V=[u",W',V']i_1 4, spatial differentiation denoted
saturated porous solids has two essential components. TiRY @& comma where this simplifies notation, and the summa-
first is a prediction of three wave types based entirely on thdion convention adopted for repeated indices. o
symmetries of homogeneous, interpenetrating, independent A stram_ tensor is defmed, to linear order in derivatives,
fluid and solid deformation degrees of freeddfiThe sec- for each displacement field,
ond is a set of constitutive relations between the parameters

in a given Biot model and the various elastic moduli and =3 +ul), 1)
densities that characterize the solid frame and saturating
fluid.2° el=F(whi+wl), 2

Biot theory predicts the existence of two independent
compressional waves and one shear wave. The first compresnd the traces of the strain tensors are denoted
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e=V.-u=Tr(e)=¢€", ©) B. Variational formulation

" The correspondence between E(®.and (6) and linear
(=V-w=Tr(e)=e (4 elasticity becomes transparent when the density parameters

¢ is the so-called “increment of fluid contenf:® are assembled into a matrix

In homogeneous systems, the equations relating stress

. . . . ~ Ps
gradients to accelerations aofandw are, withd,( )=( ), [p]=

—pr M

: (13

pU'—pW'=V'[(H-2u)e—C{]+V!(2ue’), (5)  andH, C, M into a matrix generalizing the scalar bulk modu-
lus:
piU —mw=V[Ce—M{]. (6)
H -cC

c M (14)

The parameters, ps, m, H, C, M, andu are a natural set [K]=
for defining Biot theory variationally, for reasons to be ex-
plained below. On the other hand, the natural densities tdhe shear modulus is the only parameter in a matrix gener-
measure in the laboratory ape of the solid grain materialr(  alization
for “rock” ) and p; of the fluid. An additional parameter.,
is needed to fix the independent coefficient a.. is the .
high-frequency, real-valued limit of a complex-valued dy- [n]=
namic tortuosity(in the frequency domajnwhich also ac-
counts for the interaction of pore walls and viscous boundarfnd in terms of these the Lanparameten generalizes to
layers, and can be derived from electrical conductivity mea-
surements and fluid viscosity. In terms of théZe, [M=[K]=2[p]. (16)

[p], like its scalar counterpart, relates velocitiesndw to

=(1- + 7 ; . e .
p=(1=B)pct Bps @ their conjugate momenta, from which it is straightforward to
is the mean density of the system, and define the kinetic energy. Similarlj\] relates pressures to
dilational strains, anflx] shear stress to shear strain, from

n 0

0 o) (19

_ P ®) which the stress energy follows by integration. Equati@s
B and(6) are thus naturally obtained by variation of the action
functional
The two familiar moduli to measure are the bulk modulus .
K, of the homogeneous frame matef(gide “grains”) andK 1r: i ul'
of the fluid. A different bulk modulusK,, is defined by S f dt f d¢ I—[“ W1 p]
compression of the free-draining frame, guds the corre-
sponding frame shear modultfsIn terms of these, the
moduli in Egs.(5) and (6) are defined b¥? [e é][)\] e”e”)] (17)
D=K[(1-B)+BK,/Ki] o _ _ _ e
) in which two dimensional matrix multiplication is indicated
(a convenient aggregateand by juxtaposition of matrices, row and column vectors.
4 K K2 The sense in which the Biot parameters of E§sand(6)
H=K,+ —M+( r~Kb) , 10 ae natural is now apparent: Matfix ] of Eq. (15) identifies
3 D—Kp uniquely the degree of freedom supporting a shear stress, and
the Biot displacements and parameters are chosen to respect
K, (K;—kp) this diagonalization. The remaining freedom in the admixture
C="D—x, (1) of uand U in w is fixed by makingp; the fluid inertia
parameter in Eq5), and thus the off-diagonal density coor-
and dinate. This symmetry-based definition, which applies
) equally to the renormalized effective theory at any scale, is
M = Kt (12) actually more fundamental than the constitutive relations of
" D—Ky’ the last section. This will be seen in Sec. VIl when scattering

induces entrainment of part of the fluid with the frame, lead-

A useful rule of thumb for the examples treated below ising to a frequency-dependent rotation of the effective de-
that the speed of the Biot slow wave is controlled by which-grees of freedom away from the definitions obtained from
ever of the fluid or solid-frame is more compressible. Sincezero-frequency homogenization.
the frame compressional and shear modulus are typically The action(17), when used with piecewise continuous
similar, in the latter case the slow and shear speeds will havearameters, produces the conventional interface conditions
comparable order of magnitude, while in the former, the fasfor permeable boundari€éWhen the parameters are given
and shear waves will be more similar. arbitrary, 6-function correlated fluctuations below, it will
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produce the corresponding continuity conditions as scatter- C. Green's functions, statistics, and replicas

ing perturpations to thg homogeneous equati.ons of motion.  The regular properties of acoustic propagation in ran-

The notion ofé-function parameter fluctuations, like that gomly heterogeneous media are captured by the dyadic of
of |Oca”y defined f|8|d3,|, W, is of neceSSity band ||m|ted, Green’s functions between Componehmdj of either dis-
and there will be some fundamental lend# called the placement field, averaged over statistical variations of the
natural scale such that wave number componerst27/l,  densities and moduli. For homogeneous media, individual
=A, are considered excluded from Fourier transforms ofcomponents of this dyadic have been computed in a variety
fields and parameters. For granular metiids typically ex-  of cases. Far-field solutions for sources coupling only to the
pected to be one to several times a grain or pore diametesplid frame were considered in Ref. 23. Solutions with con-
and the description in which all wave numbers upAg  stant modulus and dissipation parametersiin3 (Ref. 24
define “local” excitations is called the bare theory. and general frequency dependencedin2 (Ref. 25 were

A final simplification in Biot media, as in linear elasticity, subsequently computedReference 25 also gives a method
will be to work not with the displacement fields themselves,Wher‘gE’y thermoelastic solutions, already computed in
but with their scalar and vector potentiajs. andl, will be ~ d=3,” may be mapped to Biot problems.

used to give these dimensions that simplify notation in Wha% In all of these, the response to a point force in either the
follows. Potentials are defined by the relations luid or solid was considered, and closed-form spatial solu-

tions sought. Below, since all scattering operators follow di-
rectly from parameter variations in the acti¢tv), symmet-
u=1pe {2Vt VX Ag), (18)  ric Green's functions of displacement potentials will be more
useful in expanding perturbation theory. Further, the renor-
malization group is most easily implemented for this prob-
lem in wave number variables. In the inviscid limit, these
o _ simplifications will admit compact, closed-form solutions
where in components W(xAg)'=€*A%), (Vxagr)'  that immediately generalize those of conservative elasticity.
=ekal!, and€X is the totally antisymmetric symbol. The  Green’s functions in a single parameter realization will be
shear potential need not be gaugétbugh that is certainly denoted as expectation valugsr reasons to become appar-
admissible to remove the longitudinal component, becauseent shortly. It is most convenient to convert time-domain
this automatically decouples from all physical quantities. correlations to the the frequency domain, as

w=p( " D(Ver+V xag), (19

|
[Q”(t’,x’;t,x)]5< \tjv (v W]{,X>Ef(12% :—iei(“'t"”t)“:\l}

_w/’x/

j
[u W]w,X> (20)
t’,x’
(note thatu,, , has dimensions of lengtitime).
Because backgrounds are time-independent, frequency Green’s functions have the form

(o

A reference speed, has been inserted, to preserve the dimensions of fields in the correlation. As Ditections are
expected to become Kroneck&s of domains of ordet,, finite time resolution is expected to placg~ c; (fluid speed, or
whatever speed characterizes transmission of information across such a ddio#img below depends on the choiceogf)

Green'’s functions for equations of moti¢b) and(6) may be obtained directly from the Lagrangian in ELj7) by defining
weight function

[u W]jﬂ"x> = T—OZﬂ'ﬁ(w’ —w)<

0

\u [u W]L> _ (22)

—w' X' X'

Z= f DprDerDARDage -, (22)
and evaluating the Gaussian integral
u i . 1 u i [ ]j
[ W =—fD DerDArDage - U wh 23
< WL' 7 | PorDerDARDaRE w, (23

w

(which motivates the notation as expectation valu€ke fluctuations replace the dyadic in EB3) with the operator inverse
of the wave equation kernel. Nondimensionalized, the Lagrangian in(Eg)jsand(23) is
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L b fddX[%wz[U W]i[p][u

T+
pil 2 w

T ;
_E[ ][)\]

e .
— (e e”)] ) (24
{
Equation(23) is not directly suitable for averaging over backgrounds, because the Green’s function is not itself a functional

integral. This problem is overcome with the replica-field t#ékyhich begins with the observation that Eg3) may trivially
be written

The argument of the limit may be obtained at integeby promoting each spatial displacement field to a vecton of
replicas u'—[u,],-1,. n, W—[W,],-1 . .. Biot matrix products go to replica sums,

ul’ i u
[ W]x> =|imz“*1f DgrDerDARDaRE Y|

n—0

| [u W]i_ (25)

w

X' x'

..........

d , (26)

n

i u
“p] w

N

in which the replica index will be left implicit below, to avoid overloading notation. In fluctuation integrals, the symikaig

w' will also continue to be used, but will now represent whole replica vectors except where explicitly indexed. For
independent displacement fields, the weight funclenZ". If one computes only Green’s functions of a singgay theu

=1) component, one factor & contributes the numerator in E(R3), and the othen—1 components remain untouched,
leaving the same formal limit as E(Q5):

|

It is now possible to decompose the densities and moduli into mean and variable[ p&et$po]+[p’ 1, [N]=[Ao]
+[N'], []=[mol+[w'], and evaluate the averaged Green’s function as the limit of a single functional integral. Another
weight function is introduced to normalize the measure over background fluctuations,

u ull

(U Wl 27)

i .
J
[u W]x> = I|m f D¢RDQDRDARDaRe_L

w n—0

x’ (1),x’

ZEJ DPIIZ))\"Dlu‘,eil_weightpr’}\I’MI]7 (28)

and the statistically averaged Green'’s function, denoted with an overbar, is defined as

5

where the replica forni27) is to be used on the right-hand side, andrike0 limit is takenafter evaluation of the background
integral.
Transforming from position to wave number representation of fields, and suppressing the sub$miptnow on,

i[U W]jX — d¥’ d’k i(—k-x+k'-x")
< > f<2w>dJ<2w>de

XI
The free action, which has constant coefficidmg], [No], [ 1o], diagonalizes simply in terms of compressional and shear
potentials:

i )
1 .
[U W]; E_J ' ’ ’ _LWEIgth/’)\/‘M/]
Z Dp'DN'Du'e "

X'

ull [u W];> ’ (29)

X/

u ull

w w

—k’

[u W]{<>_ (30)

n

free__ T d% [drR PRI k(.27 - 1_ 12 2[¢R
L] o @ilpol KKK 7|

Ar

+lAe ""R]Tk(wz[po]—kz[uo]xkzam”—kmk“){aR
k

(31)

Though experimentally one might be inclined to express fluctuations in terms of the laboratory parameters of Sec. Il, a great
simplification is obtained in understanding both the free Biot theory and its renormalization group flow by choosing a different
basis, which of course represents all the same information. The decomposition used here follows the observation that general,
symmetric 2X 2 matrices may be expanded[gs |=p.c%, [N 1=\, [n' 1=, 0% ae(0,...,2)summed, where
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1

1

— 2
’ 0- =

) o

! 32
1 4 (32
In the o-matrix basis, determinants have the simple expresgitin=p’3—p’'2—p'3, showing that the coefficienis;, (etc)
are coordinates in a three-dimensional space, on which the determinant defines an SO(2,1) norm.
The remaining terms in Eq24), after subtraction of Eq.31), may be written as

1 ( d% d%’ szg
Lpert="_ SRE R Py N Malow| — L,% (33
2 (2,”_)2(1 !
- MCRV kK’

with the definitions of moments in the potentials:

¢ n
gk,k'E{[qﬁR PRl kg (k-k"6M—k'™k") ¢,

(|(~k’)+2[¢R (‘DR]—kU“{AR

" Ar ag]m AR
6]|nkjk/|+[ R R]_ko.a

PR k’ ar K’ ar K’
(34
¢
Lgk'krz[[% Pl o] (kzk'z)}’ (35
PR K’
2Abr @r]_y a PR (b or]_y o AR]" .
Mo =1 2LOR PRIzkgel 71 (kek)24+ 4l PR PRI-kgel T (k) ek
PR K’ agR K’
[Ar ag]™ Ar|" I -
+L7R Rl—kga . [k,k!(k.klamn_k!mkn)_Elkmklk!kejlnkjkrl] . (36)
R k/

The spectrum of background fluctuations is defined by the weight function i2By. The simplest choice, and one
representing the generic leading-order terms in a replica expahsisra Gaussian distribution wit-function position
correlations, obtained when

Pp
) 1 ddk A ! ’
megmzzf(zT)d[pa o Hal-pas]| Ay . (37)
ppl

The kerne[ D*?] in Eq. (37) determines the autocorrelation matrix of the fluctuation coordinates, which may be expressed
as the pure statistical average

pp| [Pa Mo Rl
v :ad(xf—x)eﬁfad(
mpl,

X' —X
lo

Gga

q
lo

(39

in which Gg,D*7=45}.

In the second expression on the right-hand side of(B§), the nondimensionalized-function becomes the Kroneckér
on patches at the natural scale, so the combina(’f?.gg;/lf)j may be assigned a physical magnitude from the mean-square
parameter fluctuations, in the approximation of spatially uncorrelated heterogeneity.

Completing the square in E¢R9) by shifting the fieldsp),, A/,, x., and cancelling thénow constantGaussian integral
againstZ, gives the standafd® replica representation of the averaged Green’s function in the presence of quenched white-
noise randomness:

in which the interaction Lagrangian

al B Wl i, (39)

(1),-k'

j ree. in u
[u W]k>=lim f DrDorDAgDage -1 ‘M

w n—0

_k/
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die. 49K dd ©’R
o1 | TadledM Ry —Lk ~Mi kg, | L8 (40)
8 (2,”)3d ap F;
~Mkg Ks .k,

is now quartic in the fields, anid,=k; — k,+ k. The same construction, with somewhat more work but no change in form, can
readily be generalized to model spatially correlated disorder. To dpGg;] is given explicit wave number dependence, as
in Ref. 28 for spatially power-law correlated fluctuations.

The negative-semidefinite interactiof0) renders the functional integrgB9) divergent, if the fields are integrated along
real hypercontours. Equatiof39) is therefore definéd by introducing single-component fields=\—i¢r, ©=\—i¢Rg,
A=\-iAg, a=\/—iag, and rotating®, ¢, A, anda to be integrated along real hypercontours. The free action is expressed
in terms of rotated fields as

i [ d% él A am Al
Liree— f i[9 ‘p]k(ﬁ)z[Po]_kz[Ko])kz[ +L a]k(wz[po]—kz[uoD(kZam”—kmk“)[ } A
2 (2’77) (P Kk a K
giving free propagators for compressional and shear potentials of
¢ free _j(2m)9s89(k’ — k)
< . [¢ ‘P]-k> - - (0%[po]— K2 Ko]) (42)
k!
and
Alm A an free —i(277)d5d(k’—k) (k25mn_kmkn)
<ak/[ ]k> - o (@0l =Ko . 43
The formally positive-semidefinite interaction term
»’RP
dy, qdp,_qd @ @ @
oL [ GKadked ko’ R —LY =M e s (44)
8 (27r)3%d o 8 ,
—-M Ks.k,

now gives a convergent functional integral, wif, M¢, out”), which are finally nondimensionalized with respect to
and L%, defined as in Eqs(34)—(36), but using ¢pr— ¢, A — SA to begin the next iteration. The iterated map gener-
or— ¢, AR—A, andag—a. ates a flow of nondimensionalized coefficients, which is fol-
lowed until either perturbation theory breaks downAolies
just above the experimental wave numbers of interest. The
IIl. THE RENORMALIZATION GROUP MAP effective fields and coefficients are then redimensionalized to

Equation (39) defines the ensemble-averaged Green'dnaich the bare fields of Ed39). The resulting effective
function in terms of bare displacement fieldsw, the bare perturbation theory gives, at low orders, realistic estimates of
interaction (44), and an implicit wave number cutoth, the strength of scattering corrections, because the volume of
=27ll,, representing the fact that no fields are defined withiwave number integration is small, and all relevant informa-
Fourier components higher thaky, (spatial resolution finer tion about the natural scale is contained in the coupling
thanl,). The Green’s function for wavelengths much longerstrengths themselves.
than |, is not a priori well approximated by a low-order The RG map thus intertwines classical and perturbative
perturbative expansion, because of the large domain of wavécaling corrections. The leading order of relevance of bare
number integration in scattering loop integrals. This domaircouplings is estimated from their classical scaling
is reduced, and in the process, high orders of perturbatiodimensions® which are catalogued in this section. The
theory are summed, by iterating a Wilsonian renormalizatiormethod will be demonstrated using a truncation of the Biot
group map" theory to a single compressional potential, which carries the

The RG transformation begins by nondimensionalizingdimensional information of the full compressional sector in a
wave numbers in each iteration at the largest scale that apeduced notation. Considering only compression leads to a
pears in loop integrals, a running label denotedPerturba- naive implementation of the so-called “poroacoustic” limit,
tive corrections from wave numbers betweer SA and A usually associated with vanishing of the shear modtfius.
are then incorporated in corrected coefficieffistegrated  While not valid by itself, this limit illustrates many features
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of the more general case, in a tractable form. Transverse 1 ( d%,d%,d%s
excitations will be considered in Sec. VII, as inducing modi- Lpngf _

AL - ) (¢7k1' ¢k2)(k1' kz)w4GSP(k3~ ka)
fications to the scaling derived here.

(277_)3d

X( iy bi,), 47
A. Classical dimensions: A scale model
; ; . : 1 [ d9%,;d%,d%;
The truncation of free actio(#1) to the ¢-compressional pr:_f b - di)
sector may be written 4 (27r)3 TP
i d9 ) 2~pA2L,2 )
L¢:§f (zw)d¢(w2p0_k2K0)k2¢' 45 X (ks ko) 2GR b1 i) (49
. . . and
The autocorrelation matripfG] may be schematically decom- d ad
posed as anlf d*kid"k,d"ks b b
GPP GPN  GPH 8 (27-,)30' —ky " Tk
A AN A
[Gl=| &7 &° G| (46) X Kik5Go k3K (k- i), (49)

GHrP GHN  GHH
for a singlea-component, where the dots between fields de-

The wave number content of scattering term&jra is the note replica contractio(_since Bi(_)t two-vectors are no longer
same as that ob, ¢ at nonvanishing shear modulus, so the2vailable to carry that information , o
scaling dimensions deduced here fbmill carry over to ¢ Starting fromA ¢, the initial values of nondlmenilonallzed
and shear in the general case. It will further be shown belovields and couplings are introduced gs\ 3" ?="b,/¢,,
that when shear modulus vanishes, interactions involhng w2p0/A§= ap. In order to reexpress the theory as one of the
a are always less relevant than thosedgre. Therefore itis  same form in which the maximal wave number is reduced
sufficient to consider only thp-\ sector of Eq.(46) to de- from Ag—Ay— A=A, the four stages of an infinitesimal
duce all relevant scaling dimensions. RG map are carried out on the action. The first iteration of

Without loss of generalityG*?=G**, so from Eq.(44) it  this map, acting on the free action defined with, takes the
is sufficient to consider only the three classes of interactiorform (omitting unneeded wave number indices on figlds

|_¢_if d’k [?ﬁorkz
2 (2mAy) Lol A2

i [ d%
=3 ot ko)

k2

_A_SKO

Qg

i d’
-5/ i 4K oo )= KeK+ 3K

_if ddk 2
" 2) (2mA)¢

2
k2
JI+5K/K, N . (50)

2’0 A di2+2
é_o( A_o)

(Ao

agt da sz
1+ 6K/Ky A2 0

A2

The first line of Eq.(50) identifies the nondimensional- by any multiple ofSA. As SA — 0, infinitely many iterations
ized coefficientsxg, (o, and is simply reexpressed in terms are required to shift the cutoff by any finite amount, so a
of physical fields in the second line. Transformation to thecontinuous reduction in cutoff may be associated with a con-
third line is by integration out of high-wave-number field tinuous flow in the nondimensionalized parameter space. It is
components, which leads to the perturbative correcti®ms thus possible to define one-parameter familiesa, with

and 6K (computed explicitly below In order to leave the /(A )=¢,, a(Ay)=ay, and to resolve the transformation
wave-number-dominated free propagator in canonical form¢s) to the differential iteration rules

the modulus is coerced to remain lgf, and the shift ab-

sorbed in field renormalization, after which the integral is SA | d2+2 ¢

renondimensionalized to arrive at the fourth line. {—| 1+ — _ (51
Equation(50) defines a map of coefficients that depends A V(1+ 8K/K)

only on the ratio \ + SA)/A and the initial values of the )

parameters appearing in the free and interaction Lagrangians. aﬁ( 1+ OA T atba (52)

This map may be iterated to reduce the wave number cutoff A ] 1+68K/K'
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Application of the same sequence of operations to Egs. 4-d
(47)—(49) gives initial values of the nondimensionalized cou- ros—| 1+ e Lo+ orhh. (57

pling parameters:FP”(Ao)E(l/8)w4G’5”Ag’4, PN (Ag)
=(1/8)w?GE*AY ™2, T™(Ag)=(1/8)w’GH*Ad, and the
corresponding flow equations

B. Graph expansion of the relevant sector

The perturbative corrections in Eq&6) and (57) are
computed by splittinggp=do+ @', o=¢pg+ @', A=Ay

SA\479 Tre sTPP
ree—| 1+ — B — (533 +tA’, anda=ap+a’, where ( } components have only
A (1+ SK/K)? wave numbers less thaft— A, and () only those be-
tween A—SA and A. The interaction exponential is ex-
SA\2-d e sper panded as a power series,
FP)\_> 1+_ T T o (54) 0 i i
A (14 8KIK)? S (=L
e t=> ——, (58
and i—o !
SAL 0 A4 5T and ( )’-Green’s functions are evaluated at one-loop order.
™14+ 22 ' (55) Since only pp interactions are relevant, coupling notation
A (14 8KIK)? will be simplified by takingG#%— G,z

At this point, attention will be restricted to the naive in-

In d=3, I'" andT* are classically irrelevant, so any terpretation of the “poroacoustic” sectdf,in which trans-
perturbative corrections to the dispersion relation are contribverse excitations are simply ignored. This limit is often as-
uted only in a close neighborhood of the natural scale. Isumed (more correctly in sea floor sediment scattering
these corrections are assumed to already be taken into agrocesses. It will be shown in Sec. VII that, in the limit
count in the initial values ofp, and K,, the couplings —0, corrections from the shear propagator are classically
I'PM ™ can simply be ignored in computing the low wave irrelevant, making it look like these may be incorporated
number RG flow. A further great simplification is obtained if Consistently in initial conditions like effects fromi”*, I}
pp corrections tq K] can be ignored_ In the scalar case, thisabove. This limit is aCtUa.”y not valid as an eXtrapOla:t|0n all
holds for RG flow at all wave numbers much larger than thethe way from the natural scale, though, because while trans-
experimental wave number, because the small paramet¥f'Se excitations may have irrelevant couplings, they are ini-

(w/cA)<1 is the ratio of fractional corrections torelative

to those ofa. It will be assumed for the matrix-valued flow

here, as long ad > w/c (the slow wave speedThen, the
irrelevancel '™ — 0= 6K —0.

The resulting, greatly simplified RG equations can imme-

diately be mapped to the full compressional sector, with
—[a], I'"P—T'%f. Correct to leading order iaA/A, which
will later be taken to zero,

SA\?
1+T) [a]+][a], (56)

[a]—

|nt3

1 f dk;d%,d%;
= — - W

¢ 0% .
8 (277)3d Gaﬁ{z[ (P] ‘o

¢

¢
@

[ Qo]gksa.ﬁ ¢

ka

+4[¢ (‘D]gklo.a

Ky

¢ 0 [¢ (P]/_kso_ﬁ

tially larger than longitudinal ones.

The naive poroacoustic limit is nevertheless a very inter-
esting starting point, because it appears to be the largest sec-
tor about which anything general can be said based on scal-
ing dimensions alone. It also can emerge as the appropriate
scaling theory in the propet—0 analysis, at some scale
well below the natural scale. These issues will be addressed
Sec. VII.

The only terms appearing in connected, one-loop
[¢° ¢°] graphs come from the second-order expansion in
primes. These terms ih™ will be considered in slightly
more general form than appears in the bare interacddhn

¢ !
¢

Ky

}{(kl'kz)(ka'k4)+§[(k1'k3)(k2'k4)+(k1‘k4)(k2'k3)]}- (59

£=0 gives the bare vertex, while the most general interacout introducing the full complexity of the most general

tions can in principle generate different valuesédir each

component ofG,;. [Note, however, that because the two

terms in Eq.(59) at a single component @,z come from

form.
Figure 1 represents the interactions in E§9) graphi-
cally. Replica-index contraction is denoted by continuity of

division of a single field arbitrarily by wave number, the solid lines; this is what makes replica-field RG flow different

value of ¢ for both terms must be the samE&quation(59) is

from the canonicas* model? In a model with spatially cor-

sufficient for analysis of stationary rays of the RG flow, with- related roughness,the autocorrelatio .5, indicated by a
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a) b) a). b)
1 ; ,
9o LN
2X ay - 4x 1
) BN
4 4 3
FIG. 1. Vertices associated with the decompositi68). Solid FIG. 2. Two graphs thoat renormalize density mal[rd'»ﬂ at finite
lines connected through points indicate replica-field contractionsh- Direct graph(a) is O(n”); bubble graphb) is O(n%), and van-
dashed line indicates couplir@, . ishes ain—0.

dashed line, would resemble a conventional dynamical !f RG flow is assumed to keep the componentszofio-

propagator in having nontrivial wave number dependence. Mogeneous i, the propagator correction may be evaluated
without further approximation. Usind=3 to simplify inte-

IV. PERTURBATIVE RENORMALIZATION OF THE grals like [ ;\d/(2m) = A" 6A/27?, the graph in
NAIVE POROACOUSTIC SECTOR Fig. 2a) gives
The vertices in Fig. 1 define a graph expansion of the 41 48
compressional propagator and interactions. Straight lines de- [5a]:ﬁraﬁaa[KO] of 3t3¢|3 - (60

note the full Biot-vector field ¢° ¢°]. The two graphs that
correct the propagator at genernaére shown in Fig. 2. The
second graph i€)(n?), becausen replica fields are free to
propagate around the bubble. The first graplO®°) be-
cause of replica contraction with the external index. Thu
only the direct graph, incorporating the vertex in Figb)1

The three types of graph that correct the interaction vertex
at generaln are shown in Fig. 3. These become very com-
licated if the most general vertex is input, so they will be
omputed here from the simpler form of E&9). By con-
. vention, the wave numbers of fields connected by replica
contributes an—0. o . . contraction will be paired askg,k,) and (K3,k;). Once
Because the RG is intended to identify the general feaégain, the bubble graph vanishesras 0, which is the rep-

tures of the most dg)mmant iclatterln%corricg:l, thle PrOP%ca manifestation that roughness renormalizes the acoustic
gator at wave numbers much larger than physia values aractions, but sound does not renormalize the roughness
will be replaced by th&, terms only, and inner products of jistribution. indicated by the dashed line.

loop with external wave numbers will be kept only to leading Evaluati;lg the graphs in Fig. 3 as iterationdip; and ¢

prder n the(large loop wave numbers. Higher-order terms is easiest if one introduces explicit indices to tracknatri-
in the ratio of external to internal wave numbers generate .

higher-derivative corrections to the dispersion relation,

which are classically irrelevant compared to the terms that c*=[0% lapo12- (61)
are kept. This approximation is necessary because the RG o

cannot make all the complexity of higher order graphs gdDenoting bydI', 5 the change in coefficient of the replica-
away; it simply enables one to organize it and extract theeespecting wave number dot products, the evaluation at
leading dependence. —0 andd=3 is

T g By= o T g ol (0 TK o] 07l 0 TK ] L) | bt 22
aﬁo'aba'cd_z,n.z apl ys (0“[Ko] "0 ap(0[Ko] 707)cq 15" 15 15§

1 11 2 SA
+[o:b<ay[l<o]1aﬁ[Ko]1oﬁ>cd+<aa[KoJ107[Ko]1aﬁ>aba§d](g+l—5§+g§2)]x. (62

By an abuse of notation, the evolution of the remaining coefficient, of replica-violating wave number products, is

1.7 9 . @y -1 8 -1 5
i Eéteé +ogn(a Kol "0 Kol "0°)cq

16
5(§raﬁ>ogbo€d=z—wzrwry,s[(aa[Ko]1oy>ab(oﬁ[Ko]1aﬁ>cd
1 1 oA
+<oa[Ko]loy[Ko]loﬁ)aboﬁd](E§+E§2) ]7. (63)
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1 2 1 2 Further,¢ andI” separate, so Eq63), with Eq. (62), implies
I\ that
S = |
1 1
/3\ /5\ 5—16F21+1 17 , 13 ,|6A 6
4 3 4 3 o558 300 A 67
1 \V’\y/z
+ 16x I I a). Evolution equation(67) for positive ¢ has a unique, stable
M fixed point (5¢é=0) at é=£*~0.86, so the asymptotic per-
4 8 turbative corrections may be evaluated in term& pf\, and
&.
! o 2 1 a_ 2 With these simplifications, it becomes convenient to com-
\|/ bine classical and perturbative RG corrections into one-
+  8x ' + 8 i b). parameter flow equatiorithe so-called “beta functiong™for
5/ B \y o~ each dimensionless coefficient. The scale-change increment
4 3 4 3 — 6A is reduced to a differential of the logarithm of scale,
1 5 SA/A— —dlog(A), and Egs(57) and(66) are combined to
T~ read

2.8, .13,
5 gé 1—55 ,
(68)

P 4+ Srae
4 ° 3 dlogia) AT+ 21x

FIG. 3. Three graphs that renormali&,; at finite n. Box (a)
and penguinb) are O(n°); bubble(c) is O(n'), and vanishes at
n—0. where the combinatio(i2/5+ 8¢£* /5+ 13£*2/15)~2.42.

Flow equation(68) has solution
V. STATIONARY RAYS OF THE EFFECTIVE

INTERACTION
. Ao\ 4@
For general matrix products @f® and[K,] %, Eq. (63) FO(—O)
does not resolve to a separable evolutionéoand I .4, _ A
because replica-respecting and replica-violating dot products 8 , (2 8 13, (Ag/A)* %=1 ’
are mixed with different interaction matrices in different 1-—«°Ty §+§§*+E§* I —
n

ways. Further, at any fixed value éf the form of the inter-
action vertices is not generally preserved, so the full RG flow
is very complicated to analyze.

One exception to this complexity, which corresponds towhered (here 3 is left explicit for contact with the conven-
the fixed points in stable systems, occurs when the startintional e expansior:*®

(69

interaction is a dyadic of certain matrices: The notational reduction and dyadic fokg¥), in terms of
the dimensional coupling, a@’}o4,05— Gohyosy. Redi-
T, z08% 02 =To% 0%, (64) ionalizi ' i ina i
ap%ab%cd ab%cd mensionalizingI’, the effective coupling appearing in a

The condition that the box diagrafiig. 3(a), which auto- renormalized interactiofd4) is

matically produces dyadic correctignsreate shifts propor-

tional to Eq.(64) implies that, for a scalak, Go—G°(A)

O'*[Ko]_la'*:KO'*, (65) GO
which may be checked to imply in turn that is degener- - 8 , (2 8 13, (Ag/A)*+ -1 '
ate, or lightlike in the SO(2,1) descriptidh Condition (65) 1-—«Ty §+§§* +1—5§* ) 7 —
also ensures that the penguin diagrdifg. 3(b)] are pro- m
portional to the same dyadic, because acts on[K,]~* by (70)
projection.

The conditiong64) and(65) definestationary raysof the

2F 2, 4~ Ad—4jg - - i
poroacoustic RG flow. Along these rays at genér&q.(62) - To=1 ©"GoAg 78 is the dimensionless small param

eter in the bare theory that controls whe®&™ becomes

reduces to large. For dimensions near four, the term in square brackets
16 5 8 13 \sA in the denominator re_duces to a logarithm, so there is a po-
5F=—F2K2(—+—§+—§2)—. (66)  tentially large separation of scales between the natural scale

272 5 57 157 JA and the wavelength of strong coupling. d+3, however,
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this separation is of order &fI",, which may be only a few
orders of magnitude even for small bare couplingd#3, it
is convenient to define a critical scale as

8 or 2 8 13 ,
;K 0 §+§§ +E§
Ac=A , (77
) O1+ T 2 8 B
< To|gt5¢ T gt
and reexpress E@70) as
1-Ac/A
eff _ C 0
G®"(A) Go—l—AC/A' (72
Equation(69) may be substituted into the corresponding ®2[po] - k2[Kg]

flow equationg56) and (60) for the density matrix, _
FIG. 4. SO(2,1) structure of the compressional and shear deter-

d[ ] 4 1 4 minants. Basis vectolsxes are the matrices of E¢32). Cones are
————=2[a]+—Tko* ( —+=¢&F ) , (73 the set of all zero-determinant matrices. Solid arrows are the three
dlog(A) ? 3 3 matrix components of any Biot wave equatiat{p], —[K,], and
—[ ol ki and kg are respectively fast and slow compressional
wave numbers, ankiy, is shear wave number. Dots represent solu-
tions to the wave equation, where wave kernels have zero-
eff _ K. 2 d-2 eigenvalue eigenvectors; there are always two for the compressional
[pol—Lp ](A)_[p0]+2 27 (@"GoAg ) kernel, because of how the cones divide the space. Degeneracy of
the shear modulus matrix precludes entry into the lower light cone;

and solved exactly in=3 to give

1 4 Ac hence, there is only one shear solution.
*1373¢ |17 1,
o exits the upper light cone and enters the lower one. Similarly,
<|1- A+£I Ao—Ac 24 because the shear modulus mafrir] is lightlike, the shear
Ao Ag o9 A—Ac) | (74) kernel has exactly one propagating solution. These disper-

sion relations are diagrammed in Fig. 4.
where(1/3+4&*/3)~1.5.

Equation(74) shows that strong coupling leads to strong
correction of the dispersion relation, in which the density
diverges by a term proportional t¢* . The relation ofs* to The stationary rays solving E¢65 can immediately be
the eigenvaluec of Eq. (65) will show how this isolates the characterized by decomposiré,] into lightlike compo-
slow wave, while leaving the fast wave finitely perturbed. nents. General

B. Dominant stationary ray and the slow wave

_ T T
V1. EFFECTIVE DISPERSION AND THE SLOW WAVE [Ko]=K(vivy) +K_(v_v>), (75

A. Biot solutions and the light cone wherev ;. andv _ are eigenvectors with eigenvaluiés and

K_, respectively, superscript T denotes transpose, and for
positive determinantK,=K_>0. The inverse matrix is
then

The SO(2,1) structure of 22 real, symmetric matrices
with determinant norm proves very useful in visualizing Biot
solutions, both in the free theory and with renormalization
corrections. The fundamental observation is that matrices 1 1
with a zero eigenvalue form “light cone$® in the Kol t=— (00 )+ (v_vT), (76)
(0% 01,0?) basis, which separate the space into three con- Ky K-
nected components.

The number of Biot solutions, in terms of modulus and
density determinants, can immediately be understood. Con- T Ty_1_ 0
ventional values of Biot parameters for fluids in granular Wvi)+(vvo)=1=0, ()

solids’®*! give [Ko|>0, |po|>0. The matrixw?[po] thus  pecause dyadic matrices are degenefiaghtlike). [Ko] thus
lies in the upper light conéaxis +¢°), and —[Ko] lies in  defines a plane, witklongitudina) spacelike axis

the lower light cone. Biot compressional waves are eigenvec-

tors of w?[ po] — k?[ K] with zero eigenvalue. Since this ker- o=, )= (v_vT). (78)

nel starts ak?=0 in the upper light cone, and adds an arbi-

trarily large negative timelike componefproportional to If a third, spacelike unit matrixs" (transversgis chosen
—[Ko]), there are exactly two solutions, where the kernelorthogonal tao® andat, (¢, 0", 0 ") replace ¢°,ot,0?) as

and the completeness relation may be written
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oo wherek2(A )= w?/cZ(A,). Recalling Eq(38), the coupling
term Gollgpz, is simply the fractional squared fluctuation of
the density component that participates in the slow wave, on
a fundamental patch at the natural scale.

The complementary case, /K_<p_, /p_, which can be
chosen with suitable initial conditions, has a more compli-
cated description, but is not “natural” in the sense of being
stable under renormalization. [Ipo] lies in the same quad-
rant as[K,] and is “more lightlike,” k? occurs where the
Biot kernel pierces the upper left light cone, akfdwhere it
pierces the lower left. In this case, addition @f initially
rapidly increase&?, leaving kg unchanged. However, at fi-

\ nite RG flow there is a cusp, where both solutions transition
w2[pef] - k2[Ko] to piercing the right-hand light cones, and the description
FIG. 5. Renormalization of a density matrix starting in the planerevertzs t,o the_ natural case, Wlklﬁ asymptotically unaltered,

of [Kp], for the caseK, /K_>p, /p_. Solid diagonal lines are andkg d'Verg_'ng_' .
again the set of all zero-determinant matrices, and dotted lines show Renormalization of generdlp,] (not in the[Ko]-plang
null basis elements . of [K,] (and also of po] for this case ~ has the same asymptotics as in Fig. 5. Fe] given “un-
Heavy dashed line indicates correction &y to [p,] from renor- natural” initial conditions, the cusp to natural behavior is
malization. Light dashed lines show compressional kernel matricesoftened, because it does not pass through the vertex of the
as functions ofk?, as in Fig. 4. Dots are again zero determinantlight cone. It may also easily be checked, for small out-of-
solutionsk? (which does not changandk? (which diverges for ~ plane component, that the fast wave speed is reduced slightly
three successive values [(fqg]. by renormalization, as expected for a scattering correction to
the acoustic index of refraction, while the slow wave speed
a basis. For uniformity of notation, the outer products ap-goes to zero slightly more slowly than in the in-plane case.
pearing in Eq.(77) will be given namesr.=(c°*d"%)/2, In all this discussion, it is important to keep in mind that
with || =0. the singular points of RG flows are significant because they

General lightlikea* may now be expressed simply as  assign a specific number to critical coupling strengths and

1 renormalization scales, and give the signs of corrections on

x_",0 L, o T the approach to the critical value. However, they come from

7 _2(0 Feogf)o+sin(f)a), (79) a set of flow equations that remain integrable far beyond the

point where the perturbation theory leading to them becomes

invalid. The divergence of Eq(72) is linear in A—Ag,

1-cog6) 1+cog0) while the same inergence in I_E(ﬁl) is Iogarithmic.. Thus,

+ (80 strong coupling is reached while the renormalization of the

2K 2K+ slow wave speed is of order unity, and perturbation theory

Not surprisingly, the stationary ray of largest eigenvalue cordoes not reliably indicate the degree or direction of further

responds t=1, o*=0_, andk=1/K_ . corrections from further scaling. In other words, one never

The simplest renormalization corrections to visualize in-has reason to expect slow wave speed renormalization by
volve this largest eigenray afig,] in the plane of Ky]: that ~ more than order unity in the poroacoustic limit of the pertur-
is, [po]l=p o +p_o_. The “natural” case K,/K_  bative RG. . o N
>p, lp_=c2=K_/p_ is diagrammed in Fig. 5. Because Fine tuning is required to place the initial conditions of
[po] lies to the right of K], addition ofc* causeg p°] to the R_G flow _exactly on any stationary ray. Th_erefore, the
migrateparallel to the light cone pierced a\cf resulting in generic case is gxpected to be ponstanonary, \{wth the largest
no changen ¢, . Migration is orthogonal to, and away from, basin of attraction correspondln_g to the stationary ray of
the light cone pierced aﬁ however, driving the slow wave largest elgenvalu_e. For Iar_ge_ d|ﬁerence betwden and
number to infinity and: to zero. This only happens asymp- K_, all fast-growing rays lie in a neighborhood @f=,

totically, though: at no finite integration range does the denf”md asymptotic flow for general initial conditions is expected

siy become lighlie. or the number of Biot soluions & * AT ISR Ve, ML T Y mpied
change. Equatiofi74) diagonalizes simply in this case, and cases(Appendix A su ytort tr}:i,s concll}J/sion y P
the slow wave speed is given relative to its initial value by PP PP :

0[Pl

and plugging into Eq(65) gives

K=

2 2 d
ci(A Ks(A Gy/l 1 4 A

s(Ao) ), Kol [ Gollo o ||1-=5 VIl. SHEAR

c3(A) A5\ p% J\3 3 Ao

A. Problems with the naive poroacoustic limit
_A ﬁ| Ao~ Ac Evaluation of the critical scal€71) in the range of valid-
X1 +-—log , 81y | ‘ _
Ao Ao TV A-Ac ity of perturbation theory gives
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d 3 ; d ~ o~
Accs(Ao) 87 Go/lg ( w ) . (82) Lfreezl_f d’k (§¢)—2[¢ ®] -k
¢ p? |\ AoCs(Ao) 2) (2mA)¢
If we ask, when is strong coupling achieved just above the % ( [a]_k_z[K])k_z ¢ N (gA)—z["A E]Tk
on-shell wave number, this amounts to assuming the wave A2 A2
speed is weakly renormalized, and setting-=k,(w) K
~wl/cg(Ay). For this to happen at frequencies where the K2 K2 Kk [A]"
effective medium is sensibly defined, we must also have X([a]——[,u] —oM"— -l (8D
wl Agcs(Ag)=<1, so that A? A? A% ]|a k}

Graphs are always evaluatedkdt= A 2. Because longitu-
(83) dinal excitations are assumed dominated[By|, scale in-
variance of graphs is maintained by constructiikg to be
classically marginal. I1fu=0, however, classical scaling of
In other words, strong coupling is reached within the homo/ & is controlled by the density terrhe]. This remains
genization regime only when classically marginal if a “separatg’«]* from the compres-
sional[ ] matrix is associated with tH&A a] fields, and the
scaling of Eq.(56) replaced with

Go /18

p

AoCa(Ag)\ 3
1s(M) <87

w

Go/lg) 1
P B T (84) [a]A—[alA+[sa]” (88)
The induced scaling of longitudinal fields is as before:
(This will be demonstrated in the next sectipn. /22
Equation(83) has a simple scaling explanation. The com- | 1+ %) 1% (89)
binationI'(A)/K?2, at anyA, is just the size of the fous A ’

term at the Gaussian excursions permitted&khy. When it is . .
. . while that for shear is
=1 the coupling term, rather than the free wave equation,

controls fluctuations, and the perturbation expansion be- SA | d2+1

comes invalid. The classically scaled form of this ratio is gA—>( 1+ T) A (90)
T'(A) (2m)% [ Go/Id o 40 A\ Scattering vertices likewise must be scaled differently, ac-
K2 =73 o2 (ACS(Ao)) (A_o> (85 cording to the number of compressional and shear fields they

couple. Because displacements are related to compressional
) 5 o and shear potentials by the same number of spatial deriva-
Equation(83), up to a factor 8 in d=3, is just the con- tjyes, the wave number contribution to the dimensionality of

dition that Eq.(85) reach unity atA ~ks(w). ~ density-driven scattering interactions involving shear is the
The same coupling strength for all-transverse excitationsame as in Eq(47). If one considers a term coupling
at zero shear modulus, using the scalifg) for [«], is $9A*~9 fields, and denotes its nondimensionalized coeffi-
cient T'9, it follows that 9%/ ("% 9 must have
T(A 24 Ga/19\ [ A D g-independent scaling under the sequence of transformations
(2 ) :( ) 02 0 (_) . (86) leading from Eq.(50) to Eq. (53). Then, from the results
a8 | p? [lAg (53), (88), and(90),
L . ~d
In the real poroacoustic limit, E¢86) is larger than Eq(85) q SN\ q q
at all A between the natural scale akg{w), and cannot be =15 e (D

ignored. There is a way to regulate the perturbation theory

controlled by Eq.(86), and in some special cases this can Only the all-compressionalf*) sector ind=3 is classi-
even be extended into the region of nonvanishing sheatally relevant, and vertices with one shear excitation are clas-
modulus. sically marginal. All other shear interactions are classically
irrelevant. From Eqs(54) and (55), it follows that all shear
interactions, like the compressional sector, are irrelevant for
nondensity-driven scattering.

A natural way to analyze the relation between longitudinal The vertices contributing to renormalization of the rel-
and transverse scattering at—0 follows from the nondi- evant interaction are shown in Fig. 6. The very assumption
mensionalized form of Eq41). Using tildes, as before, to that (in the sense of the relevant eigenvalugk|>[ «],
indicate nondimensionalized fields, and introducing separatesed in evaluating the compressional sector, implies that ver-
wave function normalizations? andZ” for compression and tices involving the transverse Green’s function dominate near
shear, respectively, the natural scale dsv]~>[K] 1. The comparison of Egs.

B. Proper poroacoustic scaling
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\/ \/ not enhanced in the similar graph expansions with one or
_ . more external shear legs. There thus exists the possibility of
? h ! a perturbative range where the scalar-only graphs gradually

/\ /\ come to dominate even thoud@la] *=[K] 1. If this hap-

pens sufficiently early in the RG flow over a large range of

~ ~ scales, the characteristics of the naive poroacoustic limit will
+8X( ' + ' be recovered.
LN S The classical suppression of vertices higher order in shear
makes it possible to approximate all shear vertices in Fig. 6
V \1'_:_‘;/ by their classically-scaled forms, which can be evaluated in
+ ] + : closed form at least in a neighborhood of the natural scale.
e~ This evaluation, though less complete than was possible for
the naive poroacoustic limit, indicates the form of stationary
rays selected by the flow, and provides a starting point for
+16x( \./\./Jr W analysis of the nontrivial shear sector.
VA T N N N Introducing a notation for the components[af],
o -
NN W [a]= _;f af, (92
m

the small-shear limit is defined asa,,/|a|—0. Recalling
FIG. 6. Diagrams renormalizing the all-scalar interaction vertex.thatk?~ A2 in RG graphs, the shear propagator appearing in
Only the box graphs involving single shear propagatwavy Eq. (43) becomes
lineg) are classically marginal. All other graphs involving shear are
classically irrelevant. Penguin graphs generate only wave number o
contractions respecting the replica structure, while box graphs also ([n]-[a]) 1= —[a]_l——2
generate isotropic contractions @(1/d?). |l

m [¥m af]+...

At
(93

(with the second term kept mostly for the interesting fact that

(85) and (86) shows that if classical scaling were the only it is degenerate, likgu]).
consideration, the power-law suppression of vertices would Defining an abbreviated notation for inverses of kernels,
compensate for the different initial magnitudeg aj~[K], [K=al=(K]-[a]), [u—al=(u]—[«]), and this time
which is of course where the roots lie and this evaluatiorkeeping terms of)(«), the graphs of Fig. 6 may be evalu-
must be replaced with the sigma-model renormalization ohted, starting from the bare form. In bare vertices, only wave
Ref. 3. number contractions respecting the replica pairing appear.

In Fig. 6, however, perturbative enhancements are ampliThe contribution of box and penguin diagrams to this
fied by classical scaling in the* vertex, whereas they are replica-preserving sector is written as in E62)

1- %) o p— a]lUB[M—a]lv‘s)

1
5 Ugb(aoy[K—a]lo"B[K— a] tod+

., 16 1
5Fa,30-aba-cdzﬁraﬁr'y§ Py
T cd

1
+ aoﬂ[K—a]_l(r"[K—a]_la'B-i-

1
1- a) UQ[M—Q]_lUY[M—a]_lﬂﬁ) o2
ab

+(1— g)w“m—a]107>ab<aﬁ[u—a]1aﬁ>cd+§[<oa[u—a]107>ab(aﬁ[r<—a]1aﬂ>cd
+<a“[K—a]1a?>ab<oﬁm—a]laﬂ>cd]]% (94

Only the box diagrams contribute contractions violating the replica pairing, and the counterpart (@3)Etarting até
=0) becomes

16 T, SA
N ap) Tt~ 5 gy (O (1= @l = TK=al o ap(o (= a] =[K=al NPy (95)
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The dimensiord has been kept explicit in Eq$94) and In the more general case, since two out of three matrix
(95), because replica-violating terms are generated aglements in the shear Green’s function are controllegkby
O(1/d?), while T" grows at©®(1/d) for compression, and the best one can do may be to revert scalinghoé to the
O(1) for shear. Any stationary ratig* of replica-violating  same as that foep:
terms must therefore havé ~O(1/d) or & ~O(1/d?), de-
pending on which sector dominates the RG, sbid/a regu-
lator preserving the wave vector structure of the bare inter- SA\d2+2
action. Larged formally allows the nonrespecting terms to be ZA—>( 1+ T)
ignored, though the qualitative behavior of the RG flow is
not expected to differ at finité, as in the naive poroacoustic

limit it did not. . . _ » while [a] returns to the scaling of Eq56). Formally, this
At p—0,d=2, andla] ">[K] ™", EQ.(94) is positive-  areq all density fluctuation-induced scattering terms rel-

g(uegm;eti’vggli;?ir;]gtrt]zatn('Ti\c/;e flli?;:\iltiSTthogv;SjnStt):eocrl)gmfeosuslrigg’r-evam' though the scaling p&] in Green’s functions causes
tain near a]~[K], because of cross terms irr] and[K], corrections involving the first term in E§96) to have fixed

C ! " - magnitude in successive RG iterations. Qualitatively, the RG
but this is also the region where the positive-definite scalar];IOW near the natural scale should resemble that of the po-
only graphs are expected to start to dominate. Thus, while i}oacoustic limit, but with Eq(96) replacing Eq(93) in Eqs
is not possible to make universal statements about the prop?é4) and (95) ' '
poroacoustic RG flow, it does not look like general param- :
eters will lead to nontrivial fixed points. Rather, an initial
[ a]-driven flow toward strong coupling should either include
the whole range above the experimental scale, or lead into
subsequenfK]-driven flow that enhances scattering of the

slow wave, as in the naive analysis.

A 97)

The interesting feature of the large-shear limit is that the
first term in Eq.(96) focuses scattering on the fluid-fluid
Green’s function. The strongest stationary ray selected by
fhis term, by inspection, is

0
C. Inversion at finite shear modulus (T:l_mz[ 1}- (98)

Scattering in the full Biot theory at finitg is in general
very complicated. The problem is not so much the single- ) ) _ o
scattering process, which has been considered even fdihis matrix couples entirely to fluid, so it will generally scat-
finite-sized obstacle¥;®? as that iteration generates an RG ter the slow wave more strongly than the fast, since the
flow with multiple intertwined behaviors. Even scattering in- former generally involves a larger component of fluid mo-
duced by density fluctuations alone leads to all possible wav#on. Dominance of this term may thus lead qualitatively to
number and polarization contractions consistent with transthe same phenomenon that will be achieved by choice of the
versality of the shear potentials. Unless there is some simplisource of scattering in the examples below:[ar-driven
fying restriction on the initial form of the scattering operator, €arly RG that couples smoothly to a laféf]-driven flow
it is also not generally possible to isolate a single scalingi€ar the stationary ray of Sec. VI.
dimension for shear fields that provides a natural separation
of classical and anomalous scaling, because of the degen- o _ o
eracy of the shear modulus matrix. However, the form of the D Fluid inertia and wave function renormalization

shear propagator &ju]~[K]>[a] is interesting, and sug-  Renormalization corrections in simple elasticiat finite

gests that some features of the poroacoustic limit may yesheay generically reduce the effective sound speed, qualita-

remain. tively because they increase the average path length by scat-
The large-shear limit, defined Qyap,/|a|—, produces  tering. The sign of the first term in E(96), by contrast, may

the inverse kernel be expected teeducethe eigenvalues dfa], thus leading to

increased sound speeds. Further, vanishing fluid shear modu-
lus implies zero propagation distance, so a qualitative under-
[@m ], standing in terms of changed path length makes no sense.
The physical basis of thex]-driven renormalization near
(96)  the natural scale may be understood by computing the first
perturbative correction below, (where the interactions are
The first term on the right-hand side of E§6) scales clas- still simple), and then performing a wave function renormal-
sically as[ a] %, while the second scales as [ «]°. Thus, ization to leave the form dfa] invariant, as in naive poro-
the appropriate classical scaling of transverse fields can decoustic scaling. This is reasonable, because although classi-
pend on which terms from E¢96) have nonzero projection cal scaling forbids assigning a single dimension to shear
under the scattering operator. Section VIII will focus on ex-fields, it does not significantly impact the early perturbative
amples where the poroacoustic scaling can be used becaugerations.
the scattering vertex couples only to the first term in Eq. The extension of Eq(60) to include shear, af=0 and
(96). usingd= 3 to simplify prefactors, is

1
t—
My

Om

. 1[0
(VA ) le—a—m[ )

ag
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8 1) 1[0 ~ n[ . (1-B) prr}

= — a -] = ={1+-|1+—— | B- (105
e |<1 il J o L L IR PN
The relation(7) may be preserved in terms of the new effec-
—{1= 1)1 |om [@m af]_E[K]—l O.ﬁ% tive porosity, too, by defining
d/ wa? | a; d A

m ~ o~ ~

©9) (1-B)pi+Bpi=(1-B)p+Bpr, (109

d has been left explicit as in Eq¢94) and (95), to show which gives the renormalized effective grain density

which terms survive ag* ~1/d—0. The correction td o] ~

for transverse waves replaces<{1/d) with 2/d in Eq. (99). D=p _'B_B(p —p0). (107)

In the particular cased=3, this admits a homogeneous o 1-B8 e

renormalization of scalar and vector potentials, which will be

exploited below in physical interpretations. In formally large  The effect of fluid-controlled renormalization may be un-

d, transverséa] does not renormalize, but corrects the com-derstood as an inertial confinement, somewhat resembling

pressional dispersion relation in fixed form, causing the efthat proposed in Ref. 33. A<0, B< . After short wave-

fective dispersion to depend only on the renormalization ofengths are integrated out, the effective grain dengiy?)

the effective interaction vertex. therefore becomes an average of the bare grain and fluid
Again considering stationary solutiot&4) for simplicity,  densities, as if some fluid is now incorporated into the effec-

along the maximal ray98), the leading density correction tive solid matrix. Furthermore, the diagonal component of

becomegqusingd=3) solid self-inertia, obtained by multiplying the central matri-
ces in EQ.(102), is less sensitive t@; and m, because of
_ i L 0 % smaller. Thus the reduction in effective porosity does ap-
[Sa]— . (100 .
372 anm 1| A pear physical.

. . . _ o The reason such entrainment of fluid in the solid matrix
Redimensionalized, the only fractional correction is to thearises from the transverse scattering corrections is that, at

componentm, and will be denoted vanishing shear modulus, fluid shear relieves stresses by
flowing around(or through local regions of higher imped-
om 8m | Gy | SA ance, such as higher tortuosity. At nonvanishing frequency,
= m- 3 I%? A (109 such flow is inertially hindered, so part of the fluid can no

longer move separately from the frame.

A consequence of this interpretation is that a new compo-
transverse propagator at this scale, may be returned to ¢ _ept of frame stres; should be tranfsmitted by the entrgined
nonical form, while preserving the definition of the relative uid Com_poﬂe”E it'ﬁ'inmg the eﬁectlvg moduli. Ir_ltrodum.ng
fluid displacement in terms of an effective porosity, by de-the notatiorw= g(u—U) to return to Biot's canonical vari-
manding that ables, the associated transverse potentials are renormalized
by the same matrix as restorgs] to canonical form:

The kinetic term in the free action, which dominates the

@ ot 2 SAP % iz O]
0 -8 [A agm# _[A a]m# (108
o 0 O0]la 0 3
p —pt (|1 O |lu
_ B : The importance of retaining the effective porosity matrix
pr Mt milp Allu] structure in Eq.102 is that this defines the unique wave
. - . - function renormalization preserving tiferm of the shear
E[u ulll B[ p —pft Oju modulus matrix in Eq.(108), keepingu the well-defined
0 -Bll—pt m | B —-B O ' solid degree of freedom.
The resulting scaling of is
(102 )
The required rescalings of displacement fields are n=|1- |pf|),u. (109
p
2
T= 1+2 Pt u (103 Since, trivially, the shear modulus matrix is simply rescaled,
2 |pl) the correction to the shear velocity is immediate from Fig. 4:
2
~ 7 (1-B) PfPr) ~2 _ 2 ( Pf)
U=|1-- ———|U, 10 Csh="Csn| L= 777/ (110
( 276 Il (109 sh=Conl A
and the effective porosity becomes and indeed¢c?,>cZ,.
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Renormalization of the compressional potentials defines TABLE I. Parameters for Ridgefield Sandstofieom Ref. 20.
the effective compressibility matrix: I, was chosen as grain size from Ref. 14, which is roughly ten times
the dynamically connected pore si@ef. 20.

e nls
S B G ) I 200 pum
-C Ml|e B 0.366
K, 4.99< 10" Pa
Ky 5.24x10° Pa
_ n 3.26x10° Pa
PilpCpiH) (112 oy 2.48 glcm
@ 1.58

[¢ ¢]

H -C
-C M

¢
1]

4 @

o

in which

F|=H+7] |p|

_ 7 p(MC—piM) (113

2 lp] Two examples will be developed here, for different “typical”
_ Biot parameter sets, to show how the pieces of the previous
M=M-—nM, (114  discussion fit together. In both examples, tortuosity fluctua-
tions will be chosen as the source of scattering, because this
leads to poroacoustic classical scaling independently of the
pm value of the shear modulus, removing the need to renormal-
K|= ( 1- ,7—) IK]. (115  ize the whole transverse scattering sector.
el The first example, liquid*He in a sintered glass bead
pack, is intended as a realistic laboratory application of these
results. The inviscid approximation can be made arbitrarily
od, and the system lies near a “rigid-frame” limit, in

c=cC

and so

To the extent thafp] and [K] are coplanar, as in the
examples above, Eq115 implies that at least one of the
compressional wave speeds mustincrease, because the Pr@ffich the Biot equations reduce to a scalar acoustic problem.
uct of the relevant modulus eigenvalues increases. Unlike t

h h the ind dent i ¢ of i he fluid-inertial “stiffening” of the last section will be
shear case, however, e independent impact ot scaling .O(Hearly seen, and its frequency dependence is derived as a
fast and slow wave speeds appears to depend on relati

tri ficient d t be inferred uni I Yﬁagnostic for the magnitude of tortuosity fluctuations in the
maorlx C.Of |C|et_n S, an (t:ﬁntno." ein erreb Iunlvirsa Y- medium. In this example, the transition to naive poroacoustic
volvense Inneg:ﬁls ::rl)gplgar‘lieé ]aar\:\:jl [iﬁpeveirt h ez(éw, (I?Iviel\\/lle)}r' In'scaling will not be seen within valid perturbation theory, so
p ' - rowth of the effective coupling will never significantly re-
>(H-M)>(M—-C). An analysis of the effects on Fig. 5, g ping g Y

. : duce the slow wave speed.
together with Eqs(112—(114), gives The second example uses parameters for naturally occur-

ring water-saturated sediments, but ignores the real viscosity

55%&( 1_2 M) (116  of water. This model was chosen because it has a shear wave
2 ] even slower than the Biot slow wave, and thus admits a
and weak-shear limit near the end of the RG flow. The change in
form of the transverse propagator in this range leads to de-

~ pfz coupling from the.slow—wave. dispersion no; seen _in the last

c§~c§( 1- nm). (117 example, suggesting that naive poroacoustic scaling may be

recovered in the late stages of this RG flow. Because viscos-

Equation(116) is probably qualitatively robust, as it results ity iS ignored, though, the results at best place upper bounds
from a homogeneous scaling of both eigenvalues, and th@" the importance of coherence effects, which may have
transverse piercing of the upper light cone, analogously t§ome relevance at very short wavelengths.

the shear case. Equati¢tl?) is less obviously so, because it
involves the interplay of a rescaling, and an angle change
that render$K] more or less null. Since the slow wave speed
is a sensitive function of the sliver angle betwdéd] and The obvious direct application of the inviscid RG is to
the light cone, the combined influence of scaling and angléuperfluidHe (He 11). The fluid excitations extending bulk
changes is not obviously universal. A general increase in thérst and second sound to porous media have been studied
fast wave speed, however, would be expected from the erboth theoretically> and experimentall§? in the rigid-frame

A. A rigid-frame limit

trainment arguments above. limit, with excellent agreement. Because the normal fluid
fraction is less than 1% and decaying B below 1.2 K,
VIl EXAMPLES second sound modes may be excluded, and He Il described

as an inviscid simple fluid, to arbitrary accuracy, at suitably
There is a wide variety of possible relations between thdow but readily achievable temperatures.
longitudinal and transverse Biot wave equations, so it was Parameters for the solid matrix corresponding to sintered
impossible in the preceding sections to derive the transitionaglass beadéRidgefield Sandstonare shown in Table 1#2°
behaviors of RG flows affected by both, in any general form.The fluid compressibility and density vary with temperature
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along the saturated vapor pressu&VP) line* but bulk
first sound speed is bounded above B®38 m/s, giving
Ki<K, at all temperatures. The expressior8)—(12)
then give H>u>C~M, so that for practical purposes
K_=M=K;/p,

—

0 3
(v_vz)%[ 1}, (118 =]

and the diagonalization of the wave equation is dominated by
[K] at all frequencies and givgs. = m= a..ps /.

In the absence of viscosityy,, is the tortuosity at all
frequencies, and the most important parameter for scatterin
of slow waves. If tortuosity alone is varied in the underlying o

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18

medium, the only matrix component of the scattering vertex

becomes the dominant stationary ray of E®g). In such a (%m)

medium, the only component of the transverse propagator _ N

scattered adny u is the first term in Eq(96), and the po- FIG. 8. Effective tortuositiesn™(A)/mg at Ag/A=Aso(@)/lo,

roacoustic scalings of Eqé88)—(91), which leave ] clas- :Zr fggeég:‘rtez riﬂg;”lzlzsgﬁ (Ss(l)ig) ﬁQdA (dash sectors. Hatched
sically invariant, are the correct ones to use. While for©Y P g coupiing.

spherical grains tortuosity is a function of porosity, it will be . q
assumed here that by appropriate variations of grain shar}c_r( A /?\” )qu?{o\;v-ill. bﬁusetc?ein Rcclza?lzlvcvzl form TH(A)

and arrangementg., has been varied at constag, to N 0/ 0 » ' .

achieve this simplification(The next example shows that m ':'irz1etiS|nmpIeslteEue:nt|ttr|1esnto evaluate as a function of renor-
even if the origin of tortuosity fluctuations is taken to be alization scalei are the

porosity change, this is not a bad approximation. 4 o oA
In the limit thus adopted, Biot theory reduces to a scalar =—: a%=—". gA=—T (119
acoustic theory, with nondimensionalized scattering strength o &mo &mo

at the natural scale defined as in E88), with G,/(I3m3

= (8m/mg)?= (8., | a.,0)*. The RG flow defines distinct ef-
fective longitudinal and transverse densitie§ and a},,
renormalized by Eq56) and Eq.(88) respectively. There are
five dimensionless couplingg?, qe{0,...,4, renormal- ; : ~

ized by Eq.(91), of which onlyI'* is classically relevant. r:e;oor?zsllllzidart:()j/)\moczrj) tihsa[\heo rSr?rreﬁgiawyglizé}jog?gwagve-
Since irrelevant scaling suppresses perturbative correction%ngth at frequencsyo. In terms of these quantities, the per-

turbative correction94) (approximatingé=0 as discussed
above gives forg

In d=3, the convenient measure of bare coupling strength
is SE(BWIS)GOI(Igmg . If the range of renormalization is
denoted y=A,/A, RG flows are integrated fromy
e(ly.), where (as long as the effective density is not

8

7+

dg . 3 2 g° (120
of dlogy 7% (ahy)? afy? vt
sk The corresponding equations faf, a*, from Eq.(99), are
24 da* 101 121
all dlogy ~ “|afy? 2yy? ]’
s da¢’
? —2at—e| |, (122
dlogy aly 2y?

. ‘ ‘ . . . ‘ . The ratiog(y.)/y, obtained from Eqs(120—(122) by
0 002 004 006 008 01 012 014 016 018 numerical integration is shown in Fig. 7 as a function of
(fﬂ) (8m/mg)?, for several values of renormalization scale.
This is the quantityG®™/G,, for G™ as defined in Eq(70).
FIG. 7. G®*(A)/G, versus(dm/mgy)?, at Ag/A=\g(w)/l,.  Thus the first claim of the paper can clearly be seen: the
Hatched area, corresponding to strong coupling, is obtainedesumming of perturbation theory, by renormalization from
from Fig. 9. the natural scale to a neighborhood of the on-shell wave
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B
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®/ AgCs o/ AoCs
FIG. 9. Longitudinal(solid) and transverséash absolute cou- FIG. 10. ¢ (solid) andA (dash normalized effective tortuosity

pling strengths, respectively[“/K? and T%(a2)2, versus ~M(A)/mg versus o/ AqCs(w), at several values of sm/mg)~.
wlAoCe(w), at several values ofSm/my)2. Values =1 define  Hatched region represents strong coupling.
strong coupling, and the hatched region in this figure maps to that in

all other plots. Figure 9 also shows that there is limit ¢Bm/mg)?
=<0.14 for validity the perturbation theory assumed here. For
ygreater heterogeneity, scattering operators between trans-
; . S - erse excitations become strong before those for longitudi-
perturbation theory becomes invalid in the hatched region o al, and transverse-excitation propagation cannot be assumed

Fig. 7 (obtained by rearranging Fig. 9 belavdue to high- 15 1 the perturbative form giving E4). (This range of

frequency growth of the bare Rayleigh cross section. HOWg ity still corresponds to relative standard deviations up to

ever, it is clear that the greatest renormalization enhance;40% ina.,.)
ments occur at largédm/mo)?, where strong coupling is  Finally, Fig. 10 shows renormalized tortuosity versus fre-
reached at freqgiuencies well below the natural s¢alg., the quency at relative standard deviations of 20%, 30%, and
y+=5 curve) _ o 40% ina, . The coherence effects from scattering into trans-
A similar plot of the effective longitudinal and transverse yerse excitations, which increase with heterogeneity, are less
tortuosities, normalized by their initial values, is given in seyere with increasing frequency due to the shorter renormal-
Fig. 8. Under all conditions shown here, both effective tor-j,4tion range. This appears as a roughly linear slowing.of
tuosities are renormalized downward, leadingnioreasesn  \vith increased frequency at small heterogeneitjeay
effective sound speed relative to the bare value. This is a c./Cey=5% for 20% standard deviation and/27 e (0.2
example of the fluid-inertia-induced “stiffening” described —1)Xcg/lg).

in Sec. VII D. , _ - It is clear from these plots that gross deviations from ho-
All terms in square brackets in EqL20) remain positive  ,q4eneous Biot theory are not predicted for moderate het-
for all values ofa™ generated by this flow, verifying that the ¢ ggeneities and low frequencies. The largest determinant of
coupling is never weakened during a transition fromgyong coupling is still the frequency dependence of the bare
a-dominated tog-dominated flow. It is possible to choose Rayieigh scattering cross section, and even for standard de-
large enough{ém/mo)® to cause they term in Eq.(122 to  yiations in relative tortuosity fluctuations20%, strong cou-
eventually dominate, leading formally to the largeeduc-  pling is not encountered until the slow wavelength is com-
tion of the longitudinal slow wave speed described in Eq.parable to the grain size. However, there is a predicted
(81). However, this effect does not appear to lie within the _ jinear decrease of slow wave speed with frequency, with
range of validity of this perturbation expansion for this coefficient proportional to the variance in tortuosity, which is
model, because large coupling always sets in first. qualitatively distinct from the usual Biot dispersion due to
The coupling strengthE*/K2 of Eq. (85) andI'% o, of  viscous effects. Thus, He Il can be used not only to derive
Eq. (86) are plotted versus naturally scaled frequency in Figmean effective-medium parameters as in Ref. 14, but also to
10, at several values dfsm/mg)?. The frequency depen- estimate their fluctuations by measuring dispersion in the
dence of the bare Rayleigh cross section can be clearly seenyiscid limit.
as strong coupling is encountered at progressively lower fre-
guencies for greater heterogeneities. The weakest variance at
which strong coupling is achieved below the natural scale is
(8m/mg)?~0.04, as predicted by purely classical scaling in ~ An example of a weak-frame Biot model is the descrip-
Eq. (84). tion by Stoll and Kaf? of water-saturated “unconsolidated”

number, can give an effective scattering vertex significantl
larger than the Born-approximation valu&,. First-order

B. A weak-frame limit
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TABLE II. Parameters for water-saturated quartz saffdsm  angle that will be ignorable in the approximate discussion
Ref. 18. |, was chosen as grain size, and tortuositycorresponds  pelow. In the same notation, the shear modulus matrix is

to their “virtual mass constantt. nearly orthogonal to the entire compressional kernel, with
0sh=0. This vector decomposition, shown in Fig. 4, is the

lo 200 um feature responsible for shear decoupling.
B 0.47 Mostly to show how it works, in this example porosity
Ky 3.6x10" Pa change will be assumed responsible for tortuosity fluctua-
Ky 4.36<10" Pa tions. In a model by Berrymair, the tortuosity and porosity
Ky 2.0x10° Pa are related as
m 2.61x10° Pa L
" i:g%%ﬁf a,=1+r E—l). (128
., 1.25

For the parameters quoted heres0.22, while for spheres
r=0.5 is predicted. Variation dfp] with porosity gives

qguartz sands. Grain size is comparable to the Ridgefield

Sandstone of the last example, and their best-fit modulus and ap] pr=p

density parameters are given in TableKl, and u, though =— m—p; |, (129
: . dlogB

much smaller than in the last example, are still large enough 1-8

that the frame behaves acoustically as if it had some measure ]
of consolidation. Further, unrenormalizkg~2k2 at anyw, N Which  p,—p=776 kg/nf and (M~ p;)/(1-p)

giving a modest weak-shear condition =3131 kg/m. Thus, approximating’, ; by the form in Eq.
(64), with o* as in Eq.(98), omits terms roughly 25% as
pan A2 large as those kept. That approximation will be made here to
Tal == <1 (123 justify the poroacoustic scaling relation in the range\ofiot
Ksh(@) satisfying Eq.(123), because the matri®8) couples only to
asA approache&?(w) in RG flows. the first term in Eq(96).

Because both slow and shear wave speeds are determined T"€ coupling strength corresponding to E86) is
by frame compressibility in this example, the structure of the )
Biot matrices remains important to the RG flow, and gives 1_Pf/m) (A
rise to interesting decoupling effects. These are most easily 1-p Ag
seen using the decomposition of Sec. VI. ) . o o

From Table Il and Eqs(7) and (8), p=1875 kg/nf and SO Strong coupling within the homogenization regime is clas-

m=2660 kg/ni, and the dyadic decomposition pf] is sically predicted to requir¢5log )°=0.03 with these pa-
rameters.

3
: (130

T -
—= w3(5logﬂ)2<

A

. u L .
P+ o L P 0 L Defining o..«=(¢°+ o)/2, andusing the fact tha®y
[pol=7 (07 + o)+ (07— 0yp), 129 jiffers from /2 by a fraction of a percent to approximate
with eigenvaluesp, =3341 kg/mi and p_=1193 kg/ni. 111 71
The longitudinal matrixs}, is related to the basig2) as TS5l -1 q | (139
L_ .
o, ==sin6,c" +cosf,o?, (129 it follows that o* oo* =0. The determinant of the com-
with an angled,=0.619r. pressional kerne]K—«] differs from that for purely co-

Using the relations(9)—(12), H=4.073x10° Pa, ¢  Planar[K] and[«] by terms of O((6,~ 6)®). Since this
—4.000<10° Pa, M=4.005<10° Pa, and u=2.6 difference angle appears linearly only as the coefficient of a
x10' Pa, and as assumed at the end of Sec. VIl D, 2 Matrix (o) projected to zero byr*, it can simply be ig-
~H+M>H-M>M—C. A decomposition of K,] as in nored, andK] and[«] treated as coplanar, at the level of
Eq. (124) gives approximation made here.

Ignoring perturbative corrections far] (which is classi-
Ky K cally marginal under poroacoustic scalingnd terms of
[KO]=7(U +UK)+7(0— — o), (126) O(K_/K}), and usingo™*=c*oc*0c*=20* oo™, the
compressional projectors in E(Q4) evaluate to
whereK , =8.039x 10° Pa,K_=3.849<10" Pa,
*
ok =—sinfcot+coshgo?, (127 o [K—a] to*= ! { 7
(1—k2/A2)\ 2K
and 6= 0.497r.

Ki/K_>p,/p_, so like the last example, this model is  In the largeA (large-shearrange, the transverse propa-
strongly “natural” in the sense of Sec. VI. Furthépg] and  gators have the same form as in the last example, and the
[Ko] are nearly coplanar, and,— 6x=0.1227 is a small  only difference in the RG flow is the factor of two in Eqg.

(132
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(132). However, forA < \2ky(w), both of .« must be kept  cause it proposes that some range of initial conditions renor-
in evaluating[a] ! in Eq. (93), along with the fact that malize to focus scattering enhancements on the slow wave.
p_lp.~1/3 and »_/m~1. The projection of internal This gives a limited universal form for the scattering vertex,
shear propagators then evaluates to which can be used as input to a localization calculation
equivalent to those performed for acoustic and elastic sys-

1 K2 /A2 tems. It further illustrates the fragility of the slow wave un-
L AS 3 = / o* der small-scale randomness, not shared by the fast compres-
o*[u—a] o =— @ (1-12/A2) |2k sional wave to the extent tha_t it has a Iar.ger. wavelength.
s s An interesting feature of Biot renormalization not present

133 in classical elasticity is the strong contribution of fluid scat-

tering near the natural scale. It can be interpreted as an iner-
Gtial entrainment of part of the fluid in the long-wavelength

comes orthogonal to the vertex term it previously enhance sffective solid matrix. Entrainment reduces the effective po-
Meanwhile, the compressional propagator, which become§ < ' : . o P
rosity, averages the bare grain and fluid densities in the ef-

large in the slow-wave channel, dominates perturbative COz tive arain density. and enerically increases the shear
rections. This is roughly equivalent to suppressing all terms 9 Y g y

in a® in Egs. (120—(122), which then recover the naive wave speed. It appears also to increase the fast wave speed in

oroacoustic form. albeit onlv over a very protracted range & fairly general class of realistic models. Finally, the interac-
P ' y yp 9€4ion terms rendered large under this RG range focus scatter-

ing on the fluid-fluid Green’s function, which will generally
IX. CONCLUSIONS AND IMPLICATIONS couple more strongly to slow than to fast waves in the lon-

The replica formulation of Biot theory constructed aboveditudinally dominated range that follows.
extends much of the technology for handling quenched-
random scafttgrjng in elastic!ty to porous medi_a. It provides a ACKNOWLEDGMENTS
general definition of the Biot effective medium based on
symmetry, and describes a number of qualitative regions of This work was supported by the Office of Naval Re-
the RG flow relating those parameters across frequencies. Asearch, Code 3210A, Grant No. N0O0014-98-1-0118. The au-
example has shown another form of scattering-induced dighor also wishes to acknowledge the helpful suggestions of
persion that survives in the inviscid-fluid limit, which may David Johnson.
be used as an experimental probe of volume heterogeneity.
A general result from elastic theory—that quenched-
random roughness at small scales is R&vant—remains
true for Biot theory, though in a more complicated form. The
RG has two qualitative regions: wave numbers above and The simplest form-preserving, nonstationary evaluation of

wave numbers below the physically allowéesh-shel) val-  {he compressional RG arises from bare interactions with all
ues. Wave numbers above are treated by the real renormgle i, the plane of K] [defined in Eq(14)]. Even for this

Thus, forA~(8/3)k§, the internal shear propagator be-

APPENDIX A: STABILITY AND NONSTATIONARY
SOLUTIONS

in the c_ompanion artic_lé.‘l’houghall fluctuations give rise to g4 tion of these flow equations may be obtained by letting
scattering loss that is relevant below the on-shell wave: 1,4 .0 Alternatively, the qualitative features of the flow
number® only density-induced scattering is relevant above.may be seen by treating E¢62) as if there remained an
This simplification leads to a tractable set of interactions, inygactive ¢, with values asymptotically near the stationary
some I|m|ts_. . . . value from Eq.(67). The latter approach will be taken here.
The main universal behavior identified here—a flow to In keeping with the approximate treatmentéofparameter

jroups in Eq.(62) will be replaced with formal parameters
sible for a range of initial parameters, but not implied for aIISg P a(62) P P

grain-scale descriptions. It is the generic behavior of an arti-

ficial truncation of the theory to compressional excitations 8 (1 1,

only, but in realistic systems must begin from scattering- ; E+1_5 +1_5§ —a, (A1)
induced corrections depending on the form of the density

matrix. This behavior therefore most likely describes a do-

main of attraction, being universal within that domain. As in 8/1 11 2

elastic theory, the initial value of the coupling grows as the —2(€+1—5 +§§2) —b, (A2)
Rayleigh cross sectiofias w*). Therefore, any qualitative ™

change from classical Biot theory induced by scattering, such

as localization of one or more wave component, is expectedherea andb are expected to remain near the values of Egs.

to occur above a critical frequency. (A1) and(A2) with ¢~1/d small and positive, and need not
The asymptotic result of this RG flow is a breakdown of be more precisely specified. In the. basis of Sec. VI B, the

the perturbation theory in which it is defined, and cannotflow equations are nondimensionalized by introducing re-

therefore be interpreted directly. Rather, it is interesting bescaled coupling coefficients
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T, (A4 which, with relations(A7)—(A9) and v, _=0, implies the
Yi+="0> (—) , (A3) bound on the evolution of log,

K% Ao

r_ [ A\4d dlogy,- 2b _’_i 2y, |dlogVy. y-—
YEK_(A_O) ) (A4) dz  a+2b 2b yi oty _ dz

r, A \4-d - 2b {1+i Y+ ]leQ NY++Y——

= I el a+2b 2b |/ dz '

Y+- K+K_<A0) ) (A5) Y++7--

and recalling thal’_ , =I", _. A convenient affine coordi- (AL1)

natez is defined differentially from the dimensionless Scalewith equality only in the degenerate cage, =y__. The

factor, as ratio in the bounding equation in EqA1l) also has a
a+2b [Ay\4d bounded flow equation:
dz= yy— (K) ; (A6)
whena andb are constant, this amounts to an overall rescal- dlog(y - INy++y--) __ 2 o (&)
ing. dz a+2b 2
The flow equatior(62) reduces, for the diagonal elements a
of the coupling, to $m{'y+_—\/'y++'y__}.
dlogy
dz =y (AT) (A12)
and The requirement that, for physical correlation functions,
2 _<r,.I'__=vy, <\y,,y__ asinitial conditions, is
dlogy-- y (A8) preserved by EqA12). Any initial difference amongy. . ,
dz - v__, andy, _ results in an amplified logarithmic derivative

which are integrated directly to produce solutions of the form]f’t“‘:ﬂy Ifess tkéan ,ielao, rs]o that, _ /v Y+ +“7“H0' It then
(69). For the off-diagonal element, the relation is ollows from Eq.(A11) that asymptotically

dlogy.- _a o 2b [y tyo - . (A9) yo oy, .y )Pla+2p) (A13)
dz a+2b’ " a+2b 2
Y+ + and Y-—-, as autocorrelation coefficients. are neces- None of these conclusions is sensitive to the particular
sarily positive. It follows that, for initialy, <0, |y, _| values ofa or b, or how these arise from different trug

lags v, , andy__, so while asymptotically log(, _)—o values in different graphs, so they should represent the exact
the flow is driven by the maximum of, , andy__. The Caseé of in-plane initial conditions. The important result is
other casey, =0, will now be shown to have the same that, except for the highly degenerate cape.=y. -
asymptotic behavior. The starting point is the elementary tri-= ¥+ - » the off-diagonal elements always grow as a power

angle inequality < 0.5 of the larger of the diagonal elements, so the evolution
is always toward the stationary rays of Sec. VI B. Further,
Virty__ \/ Yii—v__\? degeneracy of, , andy__ divides the basins of attraction
(T) =\ Y++Y-- +(T) of the basis rays dfK,]. The condition that flow be toward
o_is thatG++sG__(Ki/K2_), which for the parameters
=\Vy,iv__, (A10) quoted above is effectively the whole fluctuation domain.
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