
PHYSICAL REVIEW B, VOLUME 64, 134202
Renormalization of quenched randomness in Biot theory
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This is the first of two papers that develop a theory of perturbative acoustic scattering and localization in
fluid-saturated porous solids. The Biot effective-medium theory is used as the general model of porous-medium
acoustics, and replica field functional integrals are introduced to incorporate spatiallyd-function correlated
fluctuations of the Biot parameters. This paper develops the renormalization group and frequency-dependent
definition of the effective medium in the limit of inviscid saturating fluid.~Generalized! density fluctuations are
found to create an RG-relevant effective coupling, which renormalizes to a universal form in an asymptotic
limit of large flow range. A scattering-induced dispersion is also identified, which, in a simple example
assuming superfluid helium as saturant, serves as an experimental probe of heterogeneity in the Biot tortuosity
parameter.
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I. INTRODUCTION: SCATTERING IN POROUS-MEDIUM
ACOUSTICS

Continuum mechanics provides a natural and intuitive
scription of a great many fluids and solids, because th
atomic or molecular granularity is not resolved by commo
achievable wavelengths. The linear acoustics and elast
of such materials is often describable at leading order
Helmholtz equations with homogeneous parameters, and
well understood how to compute scattering from local flu
tuations in these parameters perturbatively. When techniq
such as the renormalization group~RG! are used to organize
the leading asymptotics of large perturbative orders,1 it can
be found that coherence effects cause dispersion, and tha
aggregation of multiple scattering can be considerably str
ger or weaker than would be expected by naive summa
of Born-approximation cross sections. A surprising con
quence of this is the possibility of acoustic localization,2–4

whereby solutions to the Helmholtz equation are transform
from extended traveling waves to modes spatially confin
by coherent backscatter.

The acoustics of fluid-saturated porous solids also ha
continuum description, known as Biot theory.5,6 It directly
generalizes linear elasticity to the symmetries of interp
etrating, independent, fluid and solid deformational degr
of freedom, and all of its salient predictions have been qu
titatively confirmed in experiments. Biot theory is often us
to describe granular solids with macroscopic grain sizes,
which it is easy to produce acoustic wavelengths from m
down to one times the grain or pore diameters. As increas
frequency successively resolves heterogeneities in grain
rangements and ultimately individual grain boundaries, i
clear that homogeneous Biot theory must continue to so
strong multiple-scattering theory, but not even a perturba
theory of porous-medium acoustic scattering analogous
the elastic case has yet been developed. Consequently
relation of multiple to Born-approximation scatterin
strengths, and the possibility of acoustic localization, ha
not been studied for porous media at all.

This is the first of two papers on acoustic scattering
heterogeneous porous media, where the heterogeneitie
0163-1829/2001/64~13!/134202~25!/$20.00 64 1342
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described by parameter fluctuations about a homogene
Biot-theory background. Its concern is RG organization
arbitrary-order perturbative effects, and the definition
frequency-dependent effective medium parameters and s
tering operators. A companion paper7 will use these results to
study acoustic localization in porous media, and in particu
the differences from elastic localization that arise from B
theory’s richer spectrum of wave types.

A. The universality of Biot theory

The theory developed here is the first step in the conti
ation from homogeneous Biot theory toward a grain-sc
description of strong multiple scattering. It can be carried
entirely within a Biot framework because Biot theory is
complete effective field theory~EFT! in the sense of
Weinberg:8 Its conservative sector, at lowest order in deriv
tives, is the most general form following from analyticit
and the symmetries of co-present liquid and solid degree
freedom.9 In other words, if the mean properties of any p
rous medium have an approximate Biot description at so
frequency, arbitrary small alterations in the medium comp
sition or arrangement can be represented by fluctuation
some combinations of the Biot parameters.

A description of heterogeneous porous media based
renormalized Biot theory is appealing for two reasons. Fi
it incorporates frequency dependence into the Biot effec
medium in a logically consistent way. The constitutive re
tions of Biot theory10 ~discussed in more detail below! are
usually derived by homogenization9,11 or volume
averaging,12 either of which assumes a large separation
scales between wavelength and grain or pore diameters
for many frequencies of interest to resolve statistical fluct
tions in grain or pore configuration, a homogenization v
ume is not cleanly defined. If instead the effective medium
assumed defined by its symmetries, the RG can be use
relate dispersion or frequency-dependent scattering stre
to the magnitude and scale of effective parameter fluct
tions, whose low-frequency average corresponds to the
mogenization result.
©2001 The American Physical Society02-1
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Second, keeping explicit the ‘‘most general form cons
tent with the symmetries’’8 embeds homogeneous Bio
theory as the lowest nontrivial order in a spatial and tempo
derivative expansion, and provides classical scaling e
mates for when the coefficients of higher derivatives beco
important. In principle, it is by successive inclusion of the
higher-order derivatives that one performs the complete c
tinuation to the theory that resolves individual grains.

Even without going beyond the linear wave equatio
though, the RG can have interesting consequences. Prec
because it is a complete EFT, Biot theory is generally
pected to be theuniversaldescription of homogenized po
rous media.9 The possibility of coherent backscatter and
calization at strong coupling, however, suggestphase
transitions from the Biot effective medium into somethin
which has no analog in acoustic or elastic theory. The f
tures of such a localization transition will be discussed
detail in the companion paper.

The universal nature of Biot theory is thus important
two respects. First, it shows that Biot-parameter perturba
theory is not only well-defined butgeneric as a long-
wavelength description of porous-medium heterogene
Second, the only way one expects it to be violated at
order of the Helmholtz equation is by a phase transition
may be induced by localization.

B. Goals of this work

One purpose of the present paper is to show how to c
pute and organize arbitrary orders of perturbative acou
scattering from spatially delta-function correlated fluctu
tions in porous-medium properties. No such general form
lation currently exists, but there is a natural way to create
by extending the replica-field representation of quenc
randomness already applied successfully to acoustic
elastic media.3 Replica acoustics provides a single, coher
framework for organizing all-orders perturbative scattering13

and perturbative3 and nonperturbative4 descriptions of local-
ization. However, it provides no way to incorporate intrins
dissipation~due to its reliance on analyticity!, and this re-
quires that all derivations assume ideal fluids.

A second purpose is to derive dispersion and enhan
scattering effects that can be used to estimate the inte
heterogeneity of porous solids experimentally. If superfl
helium is used as a saturant, the inviscid calculations in
and the next paper can be applied directly to laboratory
periments. The strongly temperature-dependent viscosit
liquid helium has already been used14 to measure bulk-
averaged properties of the dynamic tortuosity of the p
space, through a boundary-layer dispersion mechanis15

similar to one first derived by Biot.5 The present paper de
rives a scattering-induced dispersion in the inviscid lim
which may be used to estimate the fluctuations of local
tuosity around the mean value.

It is also a well-understood property of~homogeneous!
porous-medium acoustics that fluid-driven dissipation a
dispersion have qualitatively distinct low-frequency a
high-frequency forms, between which a transition occ
when the fluid’s viscous boundary layer thickness is com
13420
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rable to a characteristic pore radius.15,16Therefore, scattering
signatures derived here for inviscid fluids may persist
nonideal fluids at sufficiently high frequencies, though t
relation is not quantitatively developed in these papers.

A third, explicit object of the RG flow in this paper is th
wavelength-scale effective theory, a necessary input for
calization calculations in the companion paper. It will b
found that the porous-medium RG asymptotically collapse
large range of small-scale heterogeneities onto a single f
of the long-wavelength effective scattering operator, and
this regard porous-medium localization is qualitatively rich
than its elastic counterpart.

In the elastic problem, a single, scalar source of scatte
~density perturbations! could be assumed without loss o
generality,3 and whether it was defined at a microscopic
wavelength scale was indifferent up to specification of
scattering strength. Yet in forming the sigma model to d
scribe localization, it is explicitly the scattering vertex an
density of states at the physical pole that determines the
tial coupling strength~see Ref. 3 for the role of on-she
scattering!. The asymptotic form of the porous-medium sca
tering operator couples very differently to different Bi
wave types, and this is the origin of qualitative differenc
between Biot and elastic localizing transitions.

The parameter space for Biot backgrounds and poten
scattering operators is extremely large, so the universal c
acteristics of the Biot RG will be emphasized for the form
simplicity they provide, specifically the ability to identify
preferred type of localizing transition. In the practical e
amples treated quantitatively, it will turn out that strong co
pling and the breakdown of perturbation theory are of
encountered before this asymptotic regime is reached, so
degree of simplification provided by universal asymptotics
a given application is unclear. On the other hand, in the sa
examples, the most natural sources of scattering are nea
asymptotic forms even before renormalization, so the ‘‘u
versal’’ results remain appropriate.

C. Organization and audience

It is expected that some elements of this work will
unfamiliar to readers in either the porous-medium acous
or replica-field/localization audiences. Because every as
of the inviscid quenched-random scattering problem in
rous media directly extends the form for linear elasticity, t
replica methods commonly used to treat acoustic localiza
will be followed closely. Since Biot theory is usually applie
at the level of classical wave equations, the first step in
construction will be to recast these in a variational form am
nable to replica treatment. Notation will be chosen so t
matrix-valued Biot parameters naturally generalize the La´
parameters of elasticity, and the rest of the replica const
tion in terms of these will be as in Refs. 3, 4, and 13.

Important features of Biot theory that may be unfamili
to localization audiences are the spectrum and propertie
its wave types, and the constitutive relations between
matrix-valued Lame´ parameters and the densities and mod
most readily measured in the laboratory. Therefore, Sec
2-2
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RENORMALIZATION OF QUENCHED RANDOMNESS IN . . . PHYSICAL REVIEW B64 134202
which gives the defining relations, will open with a bri
summary of the phenomenology of homogeneous B
theory.

Section II then proceeds with the variational constructi
the definition of Biot Green’s functions in terms of function
integrals, and the replica average over background fluc
tions. Section III organizes the naive power counting a
perturbation theory of the RG for the compressional sec
as a starting point. It shows that only density fluctuations
classically relevant, and introduces graphs for the verti
involving only longitudinal excitations. Section IV derive
the perturbative RG corrections in this naive version of
so-called ‘‘poroacoustic’’ sector,17 in which transverse wave
are simply ignored. Section V analyzes the RG flow for fix
points. Since flow is toward strong coupling, there are
fixed points as in the example of Ref. 1. There are, howe
stationary rays, representing fixed forms of the interactio
vertex, which are studied for the flow of their one-parame
coupling.

A powerful consequence of assembling the Biot para
eters into 232 matrices is that the wave equations they
duce have an intuitive geometric interpretation, which a
pears not to have been presented before, and is develop
Sec. VI. These matrix-valued equations have a simple th
dimensional vector structure, from which all of the main fe
tures of Biot theory described in Sec. II become immediat
apparent. Though it is hoped that this description will ren
Biot theory simple and intuitive, its primary purpose is
enable conclusions about the universal features of renor
ization corrections, independent of detailed specification
initial conditions of the RG flow.

Section VII examines a limited class of shear wave
fects. First the naive poroacoustic limit is related to the m
complicated treatment of the limit of vanishing shear mod
lus. Then, the degenerate, finite shear modulus is conside
The complicated nature of scattering into shear excitation
this problem seems to preclude a unified treatment of
various approximate limits just listed. Therefore, two e
amples are elaborated in Sec. VIII, both to show how
disjoint pieces fit together and to give a laboratory exam
where dispersion provides an estimate for heterogeneity.
section contains the ‘‘experimental applications’’ of the p
per. Finally, Sec. IX closes with conclusions and implic
tions.

II. BIOT THEORY AND REPLICA FIELDS

A. The Biot spectrum and constitutive relations

Biot’s effective-medium theory of the acoustics of flui
saturated porous solids has two essential components.
first is a prediction of three wave types based entirely on
symmetries of homogeneous, interpenetrating, indepen
fluid and solid deformation degrees of freedom.5,6 The sec-
ond is a set of constitutive relations between the parame
in a given Biot model and the various elastic moduli a
densities that characterize the solid frame and satura
fluid.10

Biot theory predicts the existence of two independ
compressional waves and one shear wave. The first comp
13420
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sional wave, or ‘‘fast wave,’’ propagates in-phase compr
sion and displacement of the fluid and solid, and has
fastest wave speed in the medium. The second compress
wave, or ‘‘slow wave,’’ propagates out-of-phase compress
and displacement of fluid and solid, and has a slower sp
In both the fast wave~unless a special matching condition
fine tuned by choice of materials! and the slow wave~al-
ways!, there is local fluid motion relative to the solid, and f
viscous fluids this results in an intrinsic dissipation and d
persion. For many common combinations of nonideal flu
and solids, the fast wave dissipation is small, but the s
wave dissipation can be so large that the wave is essent
diffusive.18 Because dissipation in shearing fluid bounda
layers is always higher than in bulk fluid compression, t
saturant viscosity is generally a more important factor
either Biot compressional wave than for simple acoustics
the same fluid. The Biot shear wave is a straightforwa
generalization of the elastic shear wave, only having
hanced dissipation for nonideal fluids, due again to relat
fluid/solid displacements. The existence of all three wa
types relies on consolidation of the porous solid frame19

which in general results in two different bulk compression
moduli for the frame and the elastic solid~say, grain mate-
rial! of which it is composed.

All three Biot waves have been observed in laborato
experiments, with both viscous~water! ~Ref. 19! and near-
ideal ~superfluid helium! ~Ref. 14! saturating fluids. Wave
speeds predicted from independent measurements of
frame and fluid properties have shown excellent quantita
fits to experiment, when one internal pore property~dynamic
tortuosity! is unknown,14,19 and in comparisons using tw
fluids ~water and liquid helium!, fits obtained with one fluid
yield predictions for the other fluid that match data with
adjustable parameters.14,20

To understand the constitutive relations of Biot theory
is necessary first to define its deformational degrees of f
dom. Following the notation of Stoll,16,21 the locally volume
averaged displacement of the solid from a reference rest
sition is denotedu. The corresponding averaged fluid di
placement is calledU. The porosityb of the frame is the
average fraction of any macroscopic enclosed volume wh
is pore space. It is generally convenient to work with t
volume-weighted displacement of the fluid relative to t
solid, denotedw[b(u2U).

The derivation below will be carried out in general spat
dimensiond, for reference to similar problems,1,2,13 though
d53 will be used in evaluation of some final quantitie
Spatial indices for vectors and gradients will be deno
u,w,¹5@ui ,wi ,¹ i # i 51, . . . ,d , spatial differentiation denoted
by a comma where this simplifies notation, and the summ
tion convention adopted for repeated indices.

A strain tensor is defined, to linear order in derivative
for each displacement field,

e i j [ 1
2 ~ui , j1uj ,i !, ~1!

« i j [ 1
2 ~wi , j1wj ,i !, ~2!

and the traces of the strain tensors are denoted
2-3



re

t
x-

y-

ar
ea

lus

is
h
c
a
a
as

ters

u-

er-

to
o
m

on

d

, and
spect
re

r-
ies
, is
of

ing
d-

de-
m

s
ions
n
l

ERIC SMITH PHYSICAL REVIEW B 64 134202
e[¹•u5Tr~e![e i i , ~3!

z[¹•w5Tr~«![« i i . ~4!

z is the so-called ‘‘increment of fluid content.’’6,16

In homogeneous systems, the equations relating st
gradients to accelerations ofu andw are, with] t( )[( ˙ ),

rüi2r f ẅ
i5¹ i@~H22m!e2Cz#1¹ j~2me i j !, ~5!

r f ü
i2mẅi5¹ i@Ce2Mz#. ~6!

The parametersr, r f , m, H, C, M, andm are a natural se
for defining Biot theory variationally, for reasons to be e
plained below. On the other hand, the natural densities
measure in the laboratory arer r of the solid grain material (r
for ‘‘rock’’ ! andr f of the fluid. An additional parametera`

is needed to fix the independent coefficientm. a` is the
high-frequency, real-valued limit of a complex-valued d
namic tortuosity~in the frequency domain!, which also ac-
counts for the interaction of pore walls and viscous bound
layers, and can be derived from electrical conductivity m
surements and fluid viscosity. In terms of these,18

r[~12b!r r1br f ~7!

is the mean density of the system, and

m[
a`r f

b
. ~8!

The two familiar moduli to measure are the bulk modu
Kr of the homogeneous frame material~the ‘‘grains’’! andK f
of the fluid. A different bulk modulus,Kb , is defined by
compression of the free-draining frame, andm is the corre-
sponding frame shear modulus.16 In terms of these, the
moduli in Eqs.~5! and ~6! are defined by18

D[Kr@~12b!1bKr /K f # ~9!

~a convenient aggregate!, and

H[Kb1
4

3
m1

~Kr2Kb!2

D2Kb
, ~10!

C[
Kr~Kr2kb!

D2Kb
, ~11!

and

M[
Kr

2

D2Kb
. ~12!

A useful rule of thumb for the examples treated below
that the speed of the Biot slow wave is controlled by whic
ever of the fluid or solid-frame is more compressible. Sin
the frame compressional and shear modulus are typic
similar, in the latter case the slow and shear speeds will h
comparable order of magnitude, while in the former, the f
and shear waves will be more similar.
13420
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B. Variational formulation

The correspondence between Eqs.~5! and ~6! and linear
elasticity becomes transparent when the density parame
are assembled into a matrix

@r#[F r 2r f

2r f m G , ~13!

andH, C, M into a matrix generalizing the scalar bulk mod
lus:

@K#[F H 2C

2C M G . ~14!

The shear modulus is the only parameter in a matrix gen
alization

@m#[Fm 0

0 0G , ~15!

and in terms of these the Lame´ parameterl generalizes to

@l#[@K#22@m#. ~16!

@r#, like its scalar counterpart, relates velocitiesu̇ and ẇ to
their conjugate momenta, from which it is straightforward
define the kinetic energy. Similarly,@l# relates pressures t
dilational strains, and@m# shear stress to shear strain, fro
which the stress energy follows by integration. Equations~5!
and~6! are thus naturally obtained by variation of the acti
functional

S5E dtE ddxH 1

2
@ u̇ ẇ# i

@r#F u̇

ẇ
G i

2
1

2
@e z#@l#Fe

z
G2m~e i j e i j !J , ~17!

in which two dimensional matrix multiplication is indicate
by juxtaposition of matrices, row and column vectors.

The sense in which the Biot parameters of Eqs.~5! and~6!
are natural is now apparent: Matrix@m# of Eq. ~15! identifies
uniquely the degree of freedom supporting a shear stress
the Biot displacements and parameters are chosen to re
this diagonalization. The remaining freedom in the admixtu
of u and U in w is fixed by makingr f the fluid inertia
parameter in Eq.~5!, and thus the off-diagonal density coo
dinate. This symmetry-based definition, which appl
equally to the renormalized effective theory at any scale
actually more fundamental than the constitutive relations
the last section. This will be seen in Sec. VII when scatter
induces entrainment of part of the fluid with the frame, lea
ing to a frequency-dependent rotation of the effective
grees of freedom away from the definitions obtained fro
zero-frequency homogenization.

The action~17!, when used with piecewise continuou
parameters, produces the conventional interface condit
for permeable boundaries.22 When the parameters are give
arbitrary, d-function correlated fluctuations below, it wil
2-4
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RENORMALIZATION OF QUENCHED RANDOMNESS IN . . . PHYSICAL REVIEW B64 134202
produce the corresponding continuity conditions as sca
ing perturbations to the homogeneous equations of moti

The notion ofd-function parameter fluctuations, like tha
of locally defined fieldsu, w, is of necessity band limited
and there will be some fundamental lengthl 0, called the
natural scale, such that wave number components*2p/ l 0
[L0 are considered excluded from Fourier transforms
fields and parameters. For granular media,l 0 is typically ex-
pected to be one to several times a grain or pore diam
and the description in which all wave numbers up toL0
define ‘‘local’’ excitations is called the bare theory.

A final simplification in Biot media, as in linear elasticity
will be to work not with the displacement fields themselve
but with their scalar and vector potentials.r f and l 0 will be
used to give these dimensions that simplify notation in w
follows. Potentials are defined by the relations

u[Ar f l 0
(d/211)~¹fR1¹3AR!, ~18!

w[Ar f l 0
(d/211)~¹wR1¹3aR!, ~19!

where in components (¹3AR) i[e i jkAR
k, j , (¹3aR) i

[e i jkaR
k, j , ande i jk is the totally antisymmetric symbol. Th

shear potential need not be gauged~though that is certainly
admissible! to remove the longitudinal component, becau
this automatically decouples from all physical quantities.
13420
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C. Green’s functions, statistics, and replicas

The regular properties of acoustic propagation in ra
domly heterogeneous media are captured by the dyadi
Green’s functions between componentsi and j of either dis-
placement field, averaged over statistical variations of
densities and moduli. For homogeneous media, individ
components of this dyadic have been computed in a var
of cases. Far-field solutions for sources coupling only to
solid frame were considered in Ref. 23. Solutions with co
stant modulus and dissipation parameters ind53 ~Ref. 24!
and general frequency dependence ind52 ~Ref. 25! were
subsequently computed.~Reference 25 also gives a metho
whereby thermoelastic solutions, already computed
d53,26 may be mapped to Biot problems.!

In all of these, the response to a point force in either
fluid or solid was considered, and closed-form spatial so
tions sought. Below, since all scattering operators follow
rectly from parameter variations in the action~17!, symmet-
ric Green’s functions of displacement potentials will be mo
useful in expanding perturbation theory. Further, the ren
malization group is most easily implemented for this pro
lem in wave number variables. In the inviscid limit, the
simplifications will admit compact, closed-form solution
that immediately generalize those of conservative elastic

Green’s functions in a single parameter realization will
denoted as expectation values~for reasons to become appa
ent shortly!. It is most convenient to convert time-doma
correlations to the the frequency domain, as
@G i j ~ t8,x8;t,x!#[K F u

wG
t8,x8

i
@u w# t,x

j L [E dv8

2p E dv

2p
e2 i (v8t82vt)K F u

wG
2v8,x8

i
@u w#v,x

j L ~20!

~note thatuv,x has dimensions of length3time).
Because backgrounds are time-independent, frequency Green’s functions have the form

K F u

wG
2v8,x8

i
@u w#v,x

j L [
c0

l 0
2pd~v82v!K F u

wG
x8

i
@u w#x

j L
v

. ~21!

A reference speedc0 has been inserted, to preserve the dimensions of fields in the correlation. As Diracd functions are
expected to become Kroneckerd ’s of domains of orderl 0, finite time resolution is expected to placec0;cf ~fluid speed!, or
whatever speed characterizes transmission of information across such a domain.~Nothing below depends on the choice ofc0.!

Green’s functions for equations of motion~5! and~6! may be obtained directly from the Lagrangian in Eq.~17! by defining
weight function

Z[E DfRDwRDARDaRe2L, ~22!

and evaluating the Gaussian integral

K F u

wG
x8

i
@u w#x

j L
v

5
1

ZE DfRDwRDARDaRe2LF u

wG
x8

i
@u w#x

j

~23!

~which motivates the notation as expectation values!. The fluctuations replace the dyadic in Eq.~23! with the operator inverse
of the wave equation kernel. Nondimensionalized, the Lagrangian in Eqs.~22! and ~23! is
2-5
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L5
1

r f l 0
(d12)E ddxH 1

2
v2@u w# i

@r#F u

wG i

2
1

2
@e z#@l#Fe

z
G2m~e i j e i j !J . ~24!

Equation~23! is not directly suitable for averaging over backgrounds, because the Green’s function is not itself a fun
integral. This problem is overcome with the replica-field trick,27 which begins with the observation that Eq.~23! may trivially
be written

K F u

wG
x8

i
@u w#x

j L
v

5 lim
n→0

Zn21E DfRDwRDARDaRe2LF u

wG
x8

i
@u w#x

j
. ~25!

The argument of the limit may be obtained at integern by promoting each spatial displacement field to a vector on
replicas: ui→@um

i #m51, . . . ,n , wi→@wm
i #m51, . . . ,n . Biot matrix products go to replica sums,

@u w# i
@r#F u

wG i

→@u w#m
i
@r#F u

wG
m

i

, ~26!

in which the replica index will be left implicit below, to avoid overloading notation. In fluctuation integrals, the symbolsui and
wi will also continue to be used, but will now represent whole replica vectors except where explicitly indexed.n
independent displacement fields, the weight functionZ→Zn. If one computes only Green’s functions of a single~say them
51) component, one factor ofZ contributes the numerator in Eq.~23!, and the othern21 components remain untouche
leaving the same formal limit as Eq.~25!:

K F u

wG
x8

i
@u w#x

j L
v

5 lim
n→0

E DfRDwRDARDaRe2LF u

wG
(1),x8

i
@u w# (1),x

j
. ~27!

It is now possible to decompose the densities and moduli into mean and variable parts,@r#5@r0#1@r8#, @l#5@l0#
1@l8#, @m#5@m0#1@m8#, and evaluate the averaged Green’s function as the limit of a single functional integral. An
weight function is introduced to normalize the measure over background fluctuations,

Z[E Dr8Dl8Dm8e2Lweight[r8,l8,m8] , ~28!

and the statistically averaged Green’s function, denoted with an overbar, is defined as

K F u

wG
x8

i
[u w] x

j L
v

[
1

ZE Dr8Dl8Dm8e2Lweight[r8,l8,m8] K F u

wG
x8

i
@u w#x

j L
v

, ~29!

where the replica form~27! is to be used on the right-hand side, and then→0 limit is takenafter evaluation of the background
integral.

Transforming from position to wave number representation of fields, and suppressing the subscriptv from now on,

K F u

wG
x8

i
@u w#x

j L
v

[E ddk8

~2p!dE ddk

~2p!d
ei (2k•x1k8•x8)K F u

wG
2k8

i
@u w#k

j L . ~30!

The free action, which has constant coefficients@r0#, @l0#, @m0#, diagonalizes simply in terms of compressional and sh
potentials:

L free5
1

2E ddk

~2p!d H @fR wR#2k~v2@r0#2k2@K0# !k2FfR

wR
G

k

1@AR aR#2k
m

~v2@r0#2k2@m0# !~k2dmn2kmkn!FAR

aR
G

k

nJ .

~31!

Though experimentally one might be inclined to express fluctuations in terms of the laboratory parameters of Sec. II
simplification is obtained in understanding both the free Biot theory and its renormalization group flow by choosing a d
basis, which of course represents all the same information. The decomposition used here follows the observation tha
symmetric 232 matrices may be expanded as@r8#5ra8sa, @l8#5la8sa, @m8#5ma8sa, aP(0, . . . ,2) summed, where
134202-6
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s0[F1

1G , s1[F 1

1 G , s2[F1

21G . ~32!

In the s-matrix basis, determinants have the simple expressionur8u5r80
22r81

22r82
2, showing that the coefficientsra8 ~etc.!

are coordinates in a three-dimensional space, on which the determinant defines an SO(2,1) norm.
The remaining terms in Eq.~24!, after subtraction of Eq.~31!, may be written as

Lpert[
1

2E ddk ddk8

~2p!2d
@ra8 la8 ma8 #k2k8F v2RR

a

2LR
a

2MR
a
G

k,k8

, ~33!

with the definitions of moments in the potentials:

RR
a

k,k8[H @fR wR#2ksaFfR

wR
G

k8

~k•k8!12@fR wR#2ksaFAR

aR
G

k8

n

e j lnkjk8 l1@AR aR#2k
m

saFAR

aR
G

k8

n

~k•k8dmn2k8mkn!J ,

~34!

LR
a

k,k8[H @fR wR#2ksaFfR

wR
G

k8

~k2k82!J , ~35!

MR
a

k,k8[H 2@fR wR#2ksaFfR

wR
G

k8

~k•k8!214@fR wR#2ksaFAR

aR
G

k8

n

~k•k8!e j lnkjk8 l

1@AR aR#2k
m

saFAR

aR
G

k8

n

@k•k8~k•k8dmn2k8mkn!2e ikmkik8ke j lnkjk8 l #J . ~36!

The spectrum of background fluctuations is defined by the weight function in Eq.~28!. The simplest choice, and on
representing the generic leading-order terms in a replica expansion,13 is a Gaussian distribution withd-function position
correlations, obtained when

Lweight[
1

2E ddk

~2p!d
@ra8 La8 ma8 #2k@Dab#F rb8

Lb8

mb8
G

k

. ~37!

The kernel@Dab# in Eq. ~37! determines the autocorrelation matrix of the fluctuation coordinates, which may be exp
as the pure statistical average

F rb8

lb8

mb8
G

x8

@ra8 la8 ma8 #x

5dd~x82x!Gba5ddS x82x

l 0
DGba

l 0
d

, ~38!

in which GbaDag[db
g .

In the second expression on the right-hand side of Eq.~38!, the nondimensionalizedd-function becomes the Kroneckerd
on patches at the natural scale, so the combinationGba / l 0

d may be assigned a physical magnitude from the mean-sq
parameter fluctuations, in the approximation of spatially uncorrelated heterogeneity.

Completing the square in Eq.~29! by shifting the fieldsra8 , la8 , ma8 , and cancelling the~now constant! Gaussian integra
againstZ, gives the standard2,13 replica representation of the averaged Green’s function in the presence of quenched
noise randomness:

K F u

wG
2k8

i
@u w#k

j L 5 lim
n→0

E DfRDwRDARDaRe2L free2L intF u

wG
(1),2k8

i
@u w# (1),k

j
, ~39!

in which the interaction Lagrangian
134202-7
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L int[2
1

8E ddk1ddk2ddk3

~2p!3d

@v2RR
a 2LR

a 2MR
a
#k1 ,k2@Gab#F v2RR

b

2LR
b

2MR
b
G

k3 ,k4

~40!

is now quartic in the fields, andk4[k12k21k3. The same construction, with somewhat more work but no change in form
readily be generalized to model spatially correlated disorder. To do so,@Gab# is given explicit wave number dependence,
in Ref. 28 for spatially power-law correlated fluctuations.

The negative-semidefinite interaction~40! renders the functional integral~39! divergent, if the fields are integrated alon
real hypercontours. Equation~39! is therefore defined13 by introducing single-component fieldsf[A2 ifR , w[A2 iwR ,
A[A2 iAR , a[A2 iaR , and rotatingf, w, A, anda to be integrated along real hypercontours. The free action is expre
in terms of rotated fields as

L free5
i

2E ddk

~2p!d H @f w#2k~v2@r0#2k2@K0# !k2Ff

w
G

k

1@A a#2k
m

~v2@r0#2k2@m0# !~k2dmn2kmkn!FA

aG
k

nJ , ~41!

giving free propagators for compressional and shear potentials of

K Ff

w
G

k8

@f w#2kL free

5
2 i ~2p!ddd~k82k!

k2
~v2@r0#2k2@K0# !21 ~42!

and

K FA

aG
k8

m
@A a#2k

n L free

5
2 i ~2p!ddd~k82k!

k2
~v2@r0#2k2@m0# !21

~k2dmn2kmkn!

k2
. ~43!

The formally positive-semidefinite interaction term

L int5
1

8E ddk1ddk2ddk3

~2p!3d

@v2Ra 2La 2Ma
#k1 ,k2@Gab#F v2Rb

2Lb

2Mb
G

k3 ,k4

, ~44!
n
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now gives a convergent functional integral, withRa, Ma,
and La, defined as in Eqs.~34!–~36!, but usingfR→f,
wR→w, AR→A, andaR→a.

III. THE RENORMALIZATION GROUP MAP

Equation ~39! defines the ensemble-averaged Gree
function in terms of bare displacement fieldsu, w, the bare
interaction ~44!, and an implicit wave number cutoffL0
[2p/ l 0, representing the fact that no fields are defined w
Fourier components higher thanL0 ~spatial resolution finer
than l 0). The Green’s function for wavelengths much long
than l 0 is not a priori well approximated by a low-orde
perturbative expansion, because of the large domain of w
number integration in scattering loop integrals. This dom
is reduced, and in the process, high orders of perturba
theory are summed, by iterating a Wilsonian renormalizat
group map.1

The RG transformation begins by nondimensionaliz
wave numbers in each iteration at the largest scale that
pears in loop integrals, a running label denotedL. Perturba-
tive corrections from wave numbers betweenL2dL andL
are then incorporated in corrected coefficients~‘‘integrated
13420
’s

h

r

ve
n
n

n

p-

out’’ !, which are finally nondimensionalized with respect
L2dL to begin the next iteration. The iterated map gen
ates a flow of nondimensionalized coefficients, which is f
lowed until either perturbation theory breaks down, orL lies
just above the experimental wave numbers of interest.
effective fields and coefficients are then redimensionalize
match the bare fields of Eq.~39!. The resulting effective
perturbation theory gives, at low orders, realistic estimate
the strength of scattering corrections, because the volum
wave number integration is small, and all relevant inform
tion about the natural scale is contained in the coupl
strengths themselves.

The RG map thus intertwines classical and perturba
scaling corrections. The leading order of relevance of b
couplings is estimated from their classical scali
dimensions,29 which are catalogued in this section. Th
method will be demonstrated using a truncation of the B
theory to a single compressional potential, which carries
dimensional information of the full compressional sector in
reduced notation. Considering only compression leads
naive implementation of the so-called ‘‘poroacoustic’’ limi
usually associated with vanishing of the shear modulu17

While not valid by itself, this limit illustrates many feature
2-8
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of the more general case, in a tractable form. Transve
excitations will be considered in Sec. VII, as inducing mo
fications to the scaling derived here.

A. Classical dimensions: A scale model

The truncation of free action~41! to thef-compressional
sector may be written

Lf5
i

2E ddk

~2p!d
f~v2r02k2K0!k2f. ~45!

The autocorrelation matrix@G# may be schematically decom
posed as

@G#[F Grr Grl Grm

Glr Gll Glm

Gmr Gml GmmG . ~46!

The wave number content of scattering terms inA, a is the
same as that off, w at nonvanishing shear modulus, so t
scaling dimensions deduced here forf will carry over tow
and shear in the general case. It will further be shown be
that when shear modulus vanishes, interactions involvingA,
a are always less relevant than those forf, w. Therefore it is
sufficient to consider only ther-l sector of Eq.~46! to de-
duce all relevant scaling dimensions.

Without loss of generality,Glr5Grl, so from Eq.~44! it
is sufficient to consider only the three classes of interact
l-
s
h
ld

rm

is

d

ia
to

13420
se
-

w

n

Lrr5
1

8E ddk1ddk2ddk3

~2p!3d
~f2k1

•fk2
!~k1•k2!v4G0

rr~k3•k4!

3~f2k3
•fk4

!, ~47!

Lrl5
1

4E ddk1ddk2ddk3

~2p!3d
~f2k1

•fk2
!

3~k1•k2!v2G0
rlk3

2k4
2~f2k3

•fk4
!, ~48!

and

Lll5
1

8E ddk1ddk2ddk3

~2p!3d
~f2k1

•fk2
!

3k1
2k2

2G0
llk3

2k4
2~f2k3

•fk4
!, ~49!

for a singles-component, where the dots between fields d
note replica contraction~since Biot two-vectors are no longe
available to carry that information!.

Starting fromL0, the initial values of nondimensionalize
fields and couplings are introduced asfL0

d/212[f̃0 /z0 ,
v2r0 /L0

25a0. In order to reexpress the theory as one of t
same form in which the maximal wave number is reduc
from L0→L02dL[L, the four stages of an infinitesima
RG map are carried out on the action. The first iteration
this map, acting on the free action defined withL0, takes the
form ~omitting unneeded wave number indices on fields!
Lf5
i

2E ddk

~2pL0!d
F f̃0

z0
G2

k2

L0
2 Fa02

k2

L0
2

K0G
5

i

2E ddk

~2p!d
f2k2@v2r02k2K0#

→ i

2E ddk

~2p!d
f2k2@v2~r01dr!2k2~K01dK !#

5
i

2E ddk

~2pL!d
F f̃0

z0
S L

L0
D d/212

A11dK/K0G2
k2

L2 F S L0

L D 2S a01da

11dK/K0
D2

k2

L2
K0G . ~50!
a
on-
It is

n

The first line of Eq.~50! identifies the nondimensiona
ized coefficientsa0 , z0, and is simply reexpressed in term
of physical fields in the second line. Transformation to t
third line is by integration out of high-wave-number fie
components, which leads to the perturbative correctionsdr
and dK ~computed explicitly below!. In order to leave the
wave-number-dominated free propagator in canonical fo
the modulus is coerced to remain atK0, and the shift ab-
sorbed in field renormalization, after which the integral
renondimensionalized to arrive at the fourth line.

Equation~50! defines a map of coefficients that depen
only on the ratio (L1dL)/L and the initial values of the
parameters appearing in the free and interaction Lagrang
This map may be iterated to reduce the wave number cu
e

,

s

ns.
ff

by any multiple ofdL. As dL→0, infinitely many iterations
are required to shift the cutoff by any finite amount, so
continuous reduction in cutoff may be associated with a c
tinuous flow in the nondimensionalized parameter space.
thus possible to define one-parameter familiesz, a, with
z(L0)[z0 , a(L0)[a0, and to resolve the transformatio
~50! to the differential iteration rules

z→S 11
dL

L D d/212 z

A~11dK/K !
, ~51!

a→S 11
dL

L D 2 a1da

11dK/K
. ~52!
2-9
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Application of the same sequence of operations to E
~47!–~49! gives initial values of the nondimensionalized co
pling parameters:Grr(L0)[(1/8)v4G0

rrL0
d24, Grl(L0)

[(1/8)v2G0
rlL0

d22, Gll(L0)[(1/8)v2G0
llL0

d , and the
corresponding flow equations

Grr→S 11
dL

L D 42d Grr1dGrr

~11dK/K !2
, ~53!

Grl→S 11
dL

L D 22d Grl1dGrl

~11dK/K !2
, ~54!

and

Gll→S 11
dL

L D 2d Gll1dGll

~11dK/K !2
. ~55!

In d53, Grl and Gll are classically irrelevant, so an
perturbative corrections to the dispersion relation are cont
uted only in a close neighborhood of the natural scale
these corrections are assumed to already be taken into
count in the initial values ofr0 and K0, the couplings
Grl,Gll can simply be ignored in computing the low wav
number RG flow. A further great simplification is obtained
rr corrections to@K# can be ignored. In the scalar case, th
holds for RG flow at all wave numbers much larger than
experimental wave number, because the small param
(v/cL)!1 is the ratio of fractional corrections toK relative
to those ofa. It will be assumed for the matrix-valued flow
here, as long asL@v/cs ~the slow wave speed!. Then, the
irrelevanceGrl,Gll→0⇒dK→0.

The resulting, greatly simplified RG equations can imm
diately be mapped to the full compressional sector, witha
→@a#, Grr→Gab

rr . Correct to leading order indL/L, which
will later be taken to zero,

@a#→S 11
dL

L D 2

@a#1@da#, ~56!
ac

o

e

h-

13420
s.

-
If
ac-

e
ter

-

Gab
rr →S 11

dL

L D 42d

Gab
rr 1dGab

rr . ~57!

B. Graph expansion of the relevant sector

The perturbative corrections in Eqs.~56! and ~57! are
computed by splittingf5f01f8, w5w01w8, A5A0
1A8, and a5a01a8, where ( )0 components have only
wave numbers less thanL2dL, and ( )8 only those be-
tween L2dL and L. The interaction exponential is ex
panded as a power series,

e2L int
5(

i 50

`
~2L int! i

i !
, ~58!

and ( )8-Green’s functions are evaluated at one-loop ord
Since onlyrr interactions are relevant, coupling notatio
will be simplified by takingGab

rr →Gab .
At this point, attention will be restricted to the naive in

terpretation of the ‘‘poroacoustic’’ sector,17 in which trans-
verse excitations are simply ignored. This limit is often a
sumed ~more correctly! in sea floor sediment scatterin
processes. It will be shown in Sec. VII that, in the limitm
→0, corrections from the shear propagator are classic
irrelevant, making it look like these may be incorporat
consistently in initial conditions like effects fromGrl,Gll

above. This limit is actually not valid as an extrapolation
the way from the natural scale, though, because while tra
verse excitations may have irrelevant couplings, they are
tially larger than longitudinal ones.

The naive poroacoustic limit is nevertheless a very int
esting starting point, because it appears to be the largest
tor about which anything general can be said based on s
ing dimensions alone. It also can emerge as the approp
scaling theory in the properm→0 analysis, at some scal
well below the natural scale. These issues will be addres
Sec. VII.

The only terms appearing in connected, one-lo
@f0 w0# graphs come from the second-order expansion
primes. These terms inL int will be considered in slightly
more general form than appears in the bare interaction~44!:
L int{
1

8E ddk1ddk2ddk3

~2p!3d
v4GabH 2

@f w#2k1

0

saFf

w
G

k2

0
@f w#2k3

8
sbFf

w
G

k4

8

14
@f w#2k1

0

saFf

w
G

k2

8 @f w#2k3

0

sbFf

w
G

k4

8 J $~k1•k2!~k3•k4!1j@~k1•k3!~k2•k4!1~k1•k4!~k2•k3!#%. ~59!
al

of
nt
j50 gives the bare vertex, while the most general inter
tions can in principle generate different values ofj for each
component ofGab . @Note, however, that because the tw
terms in Eq.~59! at a single component ofGab come from
division of a single field arbitrarily by wave number, th
value ofj for both terms must be the same.# Equation~59! is
sufficient for analysis of stationary rays of the RG flow, wit
-out introducing the full complexity of the most gener
form.

Figure 1 represents the interactions in Eq.~59! graphi-
cally. Replica-index contraction is denoted by continuity
solid lines; this is what makes replica-field RG flow differe
from the canonicals4 model.1 In a model with spatially cor-
related roughness,28 the autocorrelationGab , indicated by a
2-10
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dashed line, would resemble a conventional dynam
propagator in having nontrivial wave number dependenc

IV. PERTURBATIVE RENORMALIZATION OF THE
NAIVE POROACOUSTIC SECTOR

The vertices in Fig. 1 define a graph expansion of
compressional propagator and interactions. Straight lines
note the full Biot-vector field@f0 w0#. The two graphs tha
correct the propagator at generaln are shown in Fig. 2. The
second graph isO(n1), becausen replica fields are free to
propagate around the bubble. The first graph isO(n0) be-
cause of replica contraction with the external index. Th
only the direct graph, incorporating the vertex in Fig. 1~b!,
contributes asn→0.

Because the RG is intended to identify the general f
tures of the most dominant scattering corrections, the pro
gator at wave numbers much larger than physicalv/c values
will be replaced by theK0 terms only, and inner products o
loop with external wave numbers will be kept only to leadi
order in the~large! loop wave numbers. Higher-order term
in the ratio of external to internal wave numbers gener
higher-derivative corrections to the dispersion relatio
which are classically irrelevant compared to the terms t
are kept. This approximation is necessary because the
cannot make all the complexity of higher order graphs
away; it simply enables one to organize it and extract
leading dependence.

FIG. 1. Vertices associated with the decomposition~59!. Solid
lines connected through points indicate replica-field contractio
dashed line indicates couplingGab .
13420
al

e
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e
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If RG flow is assumed to keep the components ofG ho-
mogeneous inj, the propagator correction may be evaluat
without further approximation. Usingd53 to simplify inte-
grals like *L2dL

L ddk/(2p)d5Ld21dL/2p2, the graph in
Fig. 2~a! gives

@da#5
8

2p2
Gabsa@K0#21sbS 1

3
1

4

3
j D dL

L
. ~60!

The three types of graph that correct the interaction ver
at generaln are shown in Fig. 3. These become very co
plicated if the most general vertex is input, so they will
computed here from the simpler form of Eq.~59!. By con-
vention, the wave numbers of fields connected by rep
contraction will be paired as (k1 ,k2) and (k3 ,k4). Once
again, the bubble graph vanishes asn→0, which is the rep-
lica manifestation that roughness renormalizes the acou
interactions, but sound does not renormalize the roughn
distribution, indicated by the dashed line.

Evaluating the graphs in Fig. 3 as iterations inGab andj
is easiest if one introduces explicit indices to tracks matri-
ces:

sa[@sab
a #a,b51,2. ~61!

Denoting bydGab the change in coefficient of the replica
respecting wave number dot products, the evaluation an
→0 andd53 is

FIG. 2. Two graphs that renormalize density matrix@a# at finite
n. Direct graph~a! is O(n0); bubble graph~b! is O(n1), and van-
ishes atn→0.

s;
dGabsab
a scd

b 5
16

2p2
GabGgdH ~sa@K0#21sg!ab~sd@K0#21sb!cdS 1

15
1

2

15
j1

1

15
j2D

1†sab
a ~sg@K0#21sb@K0#21sd!cd1~sa@K0#21sg@K0#21sb!abscd

d
‡S 1

6
1

11

15
j1

2

5
j2D J dL

L
. ~62!

By an abuse of notation, the evolution of the remaining coefficient, of replica-violating wave number products, is

d~jGab!sab
a scd

b 5
16

2p2
GabGgdH ~sa@K0#21sg!ab~sd@K0#21sb!cdS 1

15
1

7

15
j1

9

10
j2D1†sab

a ~sg@K0#21sb@K0#21sd!cd

1~sa@K0#21sg@K0#21sb!abscd
d
‡S 1

15
j1

1

15
j2D J dL

L
. ~63!
2-11
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V. STATIONARY RAYS OF THE EFFECTIVE
INTERACTION

For general matrix products ofsa and @K0#21, Eq. ~63!
does not resolve to a separable evolution ofj and Gab ,
because replica-respecting and replica-violating dot prod
are mixed with different interaction matrices in differe
ways. Further, at any fixed value ofj, the form of the inter-
action vertices is not generally preserved, so the full RG fl
is very complicated to analyze.

One exception to this complexity, which corresponds
the fixed points in stable systems, occurs when the star
interaction is a dyadic of certain matrices:

Gabsab
a scd

b 5Gsab* scd* . ~64!

The condition that the box diagram@Fig. 3~a!, which auto-
matically produces dyadic corrections# create shifts propor-
tional to Eq.~64! implies that, for a scalark,

s* @K0#21s* 5ks* , ~65!

which may be checked to imply in turn thats* is degener-
ate, or lightlike in the SO(2,1) description.30 Condition ~65!
also ensures that the penguin diagrams@Fig. 3~b!# are pro-
portional to the same dyadic, becauses* acts on@K0#21 by
projection.

The conditions~64! and~65! definestationary raysof the
poroacoustic RG flow. Along these rays at generalj, Eq.~62!
reduces to

dG5
16

2p2
G2k2S 2

5
1

8

5
j1

13

15
j2D dL

L
. ~66!

FIG. 3. Three graphs that renormalizeGab at finite n. Box ~a!
and penguin~b! are O(n0); bubble ~c! is O(n1), and vanishes a
n→0.
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Further,j andG separate, so Eq.~63!, with Eq. ~62!, implies
that

dj5
16

2p2
Gk2S 1

15
1

1

5
j2

17

30
j22

13

15
j3D dL

L
. ~67!

Evolution equation~67! for positive j has a unique, stable
fixed point (dj50) at j5j* '0.86, so the asymptotic per
turbative corrections may be evaluated in terms ofG, L, and
j* .

With these simplifications, it becomes convenient to co
bine classical and perturbative RG corrections into o
parameter flow equations~the so-called ‘‘beta functions’’! for
each dimensionless coefficient. The scale-change increm
2dL is reduced to a differential of the logarithm of scal
dL/L→2d log(L), and Eqs.~57! and~66! are combined to
read

2
dG

d log~L!
5~42d!G1

8

p2
G2k2S 2

5
1

8

5
j* 1

13

15
j* 2D ,

~68!

where the combination(2/518j* /5113j* 2/15)'2.42.
Flow equation~68! has solution

G5

G0S L0

L D 42d

12
8

p2
k2G0S 2

5
1

8

5
j* 1

13

15
j* 2D F ~L0 /L!42d21

42d G ,

~69!

whered ~here 3! is left explicit for contact with the conven
tional e expansion.1,13

The notational reduction and dyadic form~64!, in terms of
the dimensional coupling, areGab

rr sab
a scd

b →Gsab* scd* . Redi-
mensionalizingG, the effective coupling appearing in
renormalized interaction~44! is

G0→Geff~L!

5
G0

12
8

p2
k2G0S 2

5
1

8

5
j* 1

13

15
j* 2D F ~L0 /L!42d21

42d G .

~70!

k2G05k2v4G0L0
d24/8 is the dimensionless small param

eter in the bare theory that controls whereGeff becomes
large. For dimensions near four, the term in square brac
in the denominator reduces to a logarithm, so there is a
tentially large separation of scales between the natural s
and the wavelength of strong coupling. Ind53, however,
2-12
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this separation is of order 1/k2G0, which may be only a few
orders of magnitude even for small bare coupling. Ind53, it
is convenient to define a critical scale as

LC5L0

8

p2
k2G0S 2

5
1

8

5
j* 1

13

15
j* 2D

11
8

p2
k2G0S 2

5
1

8

5
j* 1

13

15
j* 2D , ~71!

and reexpress Eq.~70! as

Geff~L!5G0

12LC /L0

12LC /L
. ~72!

Equation~69! may be substituted into the correspondi
flow equations~56! and ~60! for the density matrix,

2
d@a#

d log~L!
52@a#1

4

p2
Gks* S 1

3
1

4

3
j* D , ~73!

and solved exactly ind53 to give

@r0#→@reff#~L!5@r0#1
k

2p2
s* ~v2G0L0

d22!

3S 1

3
1

4

3
j* D S 12

LC

L0
D

3F12
L

L0
1

LC

L0
logS L02LC

L2LC
D G , ~74!

where(1/314j* /3)'1.5.
Equation~74! shows that strong coupling leads to stro

correction of the dispersion relation, in which the dens
diverges by a term proportional tos* . The relation ofs* to
the eigenvaluek of Eq. ~65! will show how this isolates the
slow wave, while leaving the fast wave finitely perturbed

VI. EFFECTIVE DISPERSION AND THE SLOW WAVE

A. Biot solutions and the light cone

The SO(2,1) structure of 232 real, symmetric matrices
with determinant norm proves very useful in visualizing B
solutions, both in the free theory and with renormalizati
corrections. The fundamental observation is that matri
with a zero eigenvalue form ‘‘light cones’’30 in the
(s0,s1,s2) basis, which separate the space into three c
nected components.

The number of Biot solutions, in terms of modulus a
density determinants, can immediately be understood. C
ventional values of Biot parameters for fluids in granu
solids18,31 give uK0u.0, ur0u.0. The matrixv2@r0# thus
lies in the upper light cone~axis 1s0), and2@K0# lies in
the lower light cone. Biot compressional waves are eigenv
tors ofv2@r0#2k2@K0# with zero eigenvalue. Since this ke
nel starts atk250 in the upper light cone, and adds an ar
trarily large negative timelike component~proportional to
2@K0#), there are exactly two solutions, where the ker
13420
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exits the upper light cone and enters the lower one. Simila
because the shear modulus matrix@m0# is lightlike, the shear
kernel has exactly one propagating solution. These dis
sion relations are diagrammed in Fig. 4.

B. Dominant stationary ray and the slow wave

The stationary rays solving Eq.~65! can immediately be
characterized by decomposing@K0# into lightlike compo-
nents. General

@K0#[K1~v1v1
T !1K2~v2v2

T !, ~75!

wherev1 andv2 are eigenvectors with eigenvaluesK1 and
K2 , respectively, superscript T denotes transpose, and
positive determinant,K1>K2.0. The inverse matrix is
then

@K0#21[
1

K1
~v1v1

T !1
1

K2
~v2v2

T !, ~76!

and the completeness relation may be written

~v1v1
T !1~v2v2

T !51[s0, ~77!

because dyadic matrices are degenerate~lightlike!. @K0# thus
defines a plane, with~longitudinal! spacelike axis

sL[~v1v1
T !2~v2v2

T !. ~78!

If a third, spacelike unit matrixsT ~transverse! is chosen
orthogonal tos0 andsL, (s0,sL,sT) replace (s0,s1,s2) as

FIG. 4. SO(2,1) structure of the compressional and shear de
minants. Basis vectors~axes! are the matrices of Eq.~32!. Cones are
the set of all zero-determinant matrices. Solid arrows are the th
matrix components of any Biot wave equation:v2@r#, 2@K0#, and
2@m0#, kf and ks are respectively fast and slow compression
wave numbers, andksh is shear wave number. Dots represent so
tions to the wave equation, where wave kernels have ze
eigenvalue eigenvectors; there are always two for the compress
kernel, because of how the cones divide the space. Degenera
the shear modulus matrix precludes entry into the lower light co
hence, there is only one shear solution.
2-13
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a basis. For uniformity of notation, the outer products a
pearing in Eq.~77! will be given namess6[(s06sL)/2,
with us6u50.

General lightlikes* may now be expressed simply as

s* 5
1

2
„s01cos~u!sL1sin~u!sT

…, ~79!

and plugging into Eq.~65! gives

k5S 12cos~u!

2K2
1

11cos~u!

2K1
D . ~80!

Not surprisingly, the stationary ray of largest eigenvalue c
responds tou5p, s* 5s2 , andk51/K2 .

The simplest renormalization corrections to visualize
volve this largest eigenray and@r0# in the plane of@K0#: that
is, @r0#5r1s11r2s2 . The ‘‘natural’’ case K1 /K2

.r1 /r2⇒cs
25K2 /r2 is diagrammed in Fig. 5. Becaus

@r0# lies to the right of@K0#, addition ofs* causes@reff# to
migrateparallel to the light cone pierced atkf

2 , resulting in
no changein cf . Migration is orthogonal to, and away from
the light cone pierced atks

2 , however, driving the slow wave
number to infinity andcs to zero. This only happens asymp
totically, though; at no finite integration range does the d
sity become lightlike, or the number of Biot solution
change. Equation~74! diagonalizes simply in this case, an
the slow wave speed is given relative to its initial value b

cs
2~L0!

cs
2~L!

5114p
ks

2~L0!

L0
2 S G0 / l 0

d

r2
2 D S 1

3
1

4

3
j* D S 12

LC

L0
D

3F12
L

L0
1

LC

L0
logS L02LC

L2LC
D G , ~81!

FIG. 5. Renormalization of a density matrix starting in the pla
of @K0#, for the caseK1 /K2.r1 /r2 . Solid diagonal lines are
again the set of all zero-determinant matrices, and dotted lines s
null basis elementss6 of @K0# ~and also of@r0# for this case!.
Heavy dashed line indicates correction bys2 to @r0# from renor-
malization. Light dashed lines show compressional kernel matr
as functions ofk2, as in Fig. 4. Dots are again zero determina
solutionskf

2 ~which does not change! andks
2 ~which diverges!, for

three successive values of@reff#.
13420
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whereks
2(L0)[v2/cs

2(L0). Recalling Eq.~38!, the coupling
termG0 / l 0

dr2
2 is simply the fractional squared fluctuation o

the density component that participates in the slow wave
a fundamental patch at the natural scale.

The complementary caseK1 /K2,r1 /r2 , which can be
chosen with suitable initial conditions, has a more comp
cated description, but is not ‘‘natural’’ in the sense of bei
stable under renormalization. If@r0# lies in the same quad
rant as@K0# and is ‘‘more lightlike,’’ kf

2 occurs where the
Biot kernel pierces the upper left light cone, andks

2 where it
pierces the lower left. In this case, addition ofs1 initially
rapidly increaseskf

2 , leavingks
2 unchanged. However, at fi

nite RG flow there is a cusp, where both solutions transit
to piercing the right-hand light cones, and the descript
reverts to the natural case, withkf

2 asymptotically unaltered
andks

2 diverging.
Renormalization of general@r0# ~not in the @K0#-plane!

has the same asymptotics as in Fig. 5. For@r0# given ‘‘un-
natural’’ initial conditions, the cusp to natural behavior
softened, because it does not pass through the vertex o
light cone. It may also easily be checked, for small out-
plane component, that the fast wave speed is reduced slig
by renormalization, as expected for a scattering correctio
the acoustic index of refraction, while the slow wave spe
goes to zero slightly more slowly than in the in-plane cas

In all this discussion, it is important to keep in mind th
the singular points of RG flows are significant because t
assign a specific number to critical coupling strengths a
renormalization scales, and give the signs of corrections
the approach to the critical value. However, they come fr
a set of flow equations that remain integrable far beyond
point where the perturbation theory leading to them becom
invalid. The divergence of Eq.~72! is linear in L2LC ,
while the same divergence in Eq.~81! is logarithmic. Thus,
strong coupling is reached while the renormalization of
slow wave speed is of order unity, and perturbation the
does not reliably indicate the degree or direction of furth
corrections from further scaling. In other words, one ne
has reason to expect slow wave speed renormalization
more than order unity in the poroacoustic limit of the pertu
bative RG.

Fine tuning is required to place the initial conditions
the RG flow exactly on any stationary ray. Therefore, t
generic case is expected to be nonstationary, with the lar
basin of attraction corresponding to the stationary ray
largest eigenvalue. For large difference betweenK1 and
K2 , all fast-growing rays lie in a neighborhood ofu5p,
and asymptotic flow for general initial conditions is expect
to be toward these rays. Though a full stability analy
seems intractable analytically, stability analyses of simplifi
cases~Appendix A! support this conclusion.

VII. SHEAR

A. Problems with the naive poroacoustic limit

Evaluation of the critical scale~71! in the range of valid-
ity of perturbation theory gives

w

s
t
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LCcs~L0!

v
;8pS G0 / l 0

d

r2
2 D S v

L0cs~L0! D
3

. ~82!

If we ask, when is strong coupling achieved just above
on-shell wave number, this amounts to assuming the w
speed is weakly renormalized, and settingLC>ks(v)
'v/cs(L0). For this to happen at frequencies where t
effective medium is sensibly defined, we must also ha
v/L0cs(L0)<1, so that

1<S L0cs~L0!

v D 3

&8pS G0 / l 0
d

r2
2 D . ~83!

In other words, strong coupling is reached within the hom
genization regime only when

S G0 / l 0
d

r2
2 D *

1

8p
'0.04. ~84!

~This will be demonstrated in the next section.!
Equation~83! has a simple scaling explanation. The co

bination G(L)/K2
2 , at anyL, is just the size of the four-f

term at the Gaussian excursions permitted byK2 . When it is
>1 the coupling term, rather than the free wave equat
controls fluctuations, and the perturbation expansion
comes invalid. The classically scaled form of this ratio is

G~L!

K2
2

5
~2p!d

8 S G0 / l 0
d

r2
2 D S v

Lcs~L0! D
4S L

L0
D d

. ~85!

Equation~83!, up to a factor 8/p2 in d53, is just the con-
dition that Eq.~85! reach unity atL'ks(v).

The same coupling strength for all-transverse excitati
at zero shear modulus, using the scaling~56! for @a#, is

G~L!

a2
2

5
~2p!d

8 S G0 / l 0
d

r2
2 D S L

L0
D d

. ~86!

In the real poroacoustic limit, Eq.~86! is larger than Eq.~85!
at all L between the natural scale andks(v), and cannot be
ignored. There is a way to regulate the perturbation the
controlled by Eq.~86!, and in some special cases this c
even be extended into the region of nonvanishing sh
modulus.

B. Proper poroacoustic scaling

A natural way to analyze the relation between longitudi
and transverse scattering atm→0 follows from the nondi-
mensionalized form of Eq.~41!. Using tildes, as before, to
indicate nondimensionalized fields, and introducing sepa
wave function normalizationszf andzA for compression and
shear, respectively,
13420
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te

L free5
i

2E ddk

~2pL!d H ~zf!22@f̃ w̃#2k

3S @a#2
k2

L2
@K# D k2

L2 F f̃

w̃
G

k

1~zA!22@Ã ã#2k
m

3S @a#2
k2

L2
@m# D S k2

L2
dmn2

kmkn

L2 D F Ã

ã
G

k

nJ . ~87!

Graphs are always evaluated atk2'L2. Because longitu-
dinal excitations are assumed dominated by@K#, scale in-
variance of graphs is maintained by constructing@K# to be
classically marginal. Ifm50, however, classical scaling o
A, a is controlled by the density term@a#. This remains
classically marginal if a ‘‘separate’’@a#A from the compres-
sional@a# matrix is associated with the@A a# fields, and the
scaling of Eq.~56! replaced with

@a#A→@a#A1@da#A. ~88!

The induced scaling of longitudinal fields is as before:

zf→S 11
dL

L D d/212

zf, ~89!

while that for shear is

zA→S 11
dL

L D d/211

zA. ~90!

Scattering vertices likewise must be scaled differently,
cording to the number of compressional and shear fields t
couple. Because displacements are related to compress
and shear potentials by the same number of spatial der
tives, the wave number contribution to the dimensionality
density-driven scattering interactions involving shear is
same as in Eq.~47!. If one considers a term couplin
fqA42q fields, and denotes its nondimensionalized coe
cient Gq, it follows that Gq(zf/zA)42q must have
q-independent scaling under the sequence of transformat
leading from Eq.~50! to Eq. ~53!. Then, from the results
~53!, ~88!, and~90!,

Gq→S 11
dL

L D q2d

Gq1dGq. ~91!

Only the all-compressional (f4) sector ind53 is classi-
cally relevant, and vertices with one shear excitation are c
sically marginal. All other shear interactions are classica
irrelevant. From Eqs.~54! and ~55!, it follows that all shear
interactions, like the compressional sector, are irrelevant
nondensity-driven scattering.

The vertices contributing to renormalization of the re
evant interaction are shown in Fig. 6. The very assumpt
that ~in the sense of the relevant eigenvalues! @K#@@a#,
used in evaluating the compressional sector, implies that
tices involving the transverse Green’s function dominate n
the natural scale as@a#21@@K#21. The comparison of Eqs
2-15
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~85! and ~86! shows that if classical scaling were the on
consideration, the power-law suppression of vertices wo
compensate for the different initial magnitudes at@a#;@K#,
which is of course where the roots lie and this evaluat
must be replaced with the sigma-model renormalization
Ref. 3.

In Fig. 6, however, perturbative enhancements are am
fied by classical scaling in thef4 vertex, whereas they ar

FIG. 6. Diagrams renormalizing the all-scalar interaction vert
Only the box graphs involving single shear propagators~wavy
lines! are classically marginal. All other graphs involving shear a
classically irrelevant. Penguin graphs generate only wave num
contractions respecting the replica structure, while box graphs
generate isotropic contractions atO(1/d2).
13420
ld

n
f

li-

not enhanced in the similar graph expansions with one
more external shear legs. There thus exists the possibilit
a perturbative range where the scalar-only graphs gradu
come to dominate even though@a#21>@K#21. If this hap-
pens sufficiently early in the RG flow over a large range
scales, the characteristics of the naive poroacoustic limit
be recovered.

The classical suppression of vertices higher order in sh
makes it possible to approximate all shear vertices in Fig
by their classically-scaled forms, which can be evaluated
closed form at least in a neighborhood of the natural sc
This evaluation, though less complete than was possible
the naive poroacoustic limit, indicates the form of stationa
rays selected by the flow, and provides a starting point
analysis of the nontrivial shear sector.

Introducing a notation for the components of@a#,

@a#[F ar 2a f

2a f am
G , ~92!

the small-shear limit is defined asmam /uau→0. Recalling
thatk2'L2 in RG graphs, the shear propagator appearing
Eq. ~43! becomes

~@m#2@a#!21→2@a#212
m

uau2 Fam

a f
G @am a f #1•••

~93!

~with the second term kept mostly for the interesting fact t
it is degenerate, like@m#).

Defining an abbreviated notation for inverses of kerne
@K2a#[(@K#2@a#), @m2a#[(@m#2@a#), and this time
keeping terms ofO(a), the graphs of Fig. 6 may be evalu
ated, starting from the bare form. In bare vertices, only wa
number contractions respecting the replica pairing app
The contribution of box and penguin diagrams to th
replica-preserving sector is written as in Eq.~62!

.

er
so
dGabsab
a scd

b 5
16

2p2
GabGgdH 1

2 Fsab
a S 1

d
sg@K2a#21sb@K2a#21sd1S 12

1

dDsg@m2a#21sb@m2a#21sdD
cd

1S 1

d
sa@K2a#21sg@K2a#21sb1S 12

1

dDsa@m2a#21sg@m2a#21sbD
ab

scd
d G

1S 12
2

dD ~sa@m2a#21sg!ab~sd@m2a#21sb!cd1
1

d
@~sa@m2a#21sg!ab~sd@K2a#21sb!cd

1~sa@K2a#21sg!ab~sd@m2a#21sb!cd#J dL

L
. ~94!

Only the box diagrams contribute contractions violating the replica pairing, and the counterpart to Eq.~63! ~starting atj
50) becomes

d~jGab!sab
a scd

b 5
16

2p2

GabGgd

d~d12!
„sa~@m2a#212@K2a#21!sg

…ab„s
d~@m2a#212@K2a#21!sb

…cd

dL

L
. ~95!
2-16



te
e
is

c

g,
er

la
le
op
m
al
de
to
he

le

G
n-
av
n
p
r

in
tio
ge
th
-
y

d

x
a
q

trix

rel-
s

RG
po-

the
d

by

t-
the
o-
to
the

ita-
scat-

odu-
der-
e.

r
first
e
l-

assi-
ear
ve

RENORMALIZATION OF QUENCHED RANDOMNESS IN . . . PHYSICAL REVIEW B64 134202
The dimensiond has been kept explicit in Eqs.~94! and
~95!, because replica-violating terms are generated
O(1/d2), while G grows atO(1/d) for compression, and
O(1) for shear. Any stationary ratioj* of replica-violating
terms must therefore havej* ;O(1/d) or j* ;O(1/d2), de-
pending on which sector dominates the RG, so 1/d is a regu-
lator preserving the wave vector structure of the bare in
action. Larged formally allows the nonrespecting terms to b
ignored, though the qualitative behavior of the RG flow
not expected to differ at finitej, as in the naive poroacousti
limit it did not.

At m→0, d>2, and@a#21@@K#21, Eq. ~94! is positive-
definite, indicating that RG flow is toward strong couplin
qualitatively as in the naive limit. The sign becomes unc
tain near@a#;@K#, because of cross terms in@a# and @K#,
but this is also the region where the positive-definite sca
only graphs are expected to start to dominate. Thus, whi
is not possible to make universal statements about the pr
poroacoustic RG flow, it does not look like general para
eters will lead to nontrivial fixed points. Rather, an initi
@a#-driven flow toward strong coupling should either inclu
the whole range above the experimental scale, or lead in
subsequent@K#-driven flow that enhances scattering of t
slow wave, as in the naive analysis.

C. Inversion at finite shear modulus

Scattering in the full Biot theory at finitem is in general
very complicated. The problem is not so much the sing
scattering process, which has been considered even
finite-sized obstacles,24,32 as that iteration generates an R
flow with multiple intertwined behaviors. Even scattering i
duced by density fluctuations alone leads to all possible w
number and polarization contractions consistent with tra
versality of the shear potentials. Unless there is some sim
fying restriction on the initial form of the scattering operato
it is also not generally possible to isolate a single scal
dimension for shear fields that provides a natural separa
of classical and anomalous scaling, because of the de
eracy of the shear modulus matrix. However, the form of
shear propagator at@m#;@K#@@a# is interesting, and sug
gests that some features of the poroacoustic limit may
remain.

The large-shear limit, defined bymam /uau→`, produces
the inverse kernel

~@m#2@a#!21→2
1

am
F0

1G1
1

mam
2 Fam

a f
G @am a f #1•••.

~96!

The first term on the right-hand side of Eq.~96! scales clas-
sically as@a#21, while the second scales asm21@a#0. Thus,
the appropriate classical scaling of transverse fields can
pend on which terms from Eq.~96! have nonzero projection
under the scattering operator. Section VIII will focus on e
amples where the poroacoustic scaling can be used bec
the scattering vertex couples only to the first term in E
~96!.
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In the more general case, since two out of three ma
elements in the shear Green’s function are controlled bym,
the best one can do may be to revert scaling ofA, a to the
same as that forf:

zA→S 11
dL

L D d/212

zA, ~97!

while @a# returns to the scaling of Eq.~56!. Formally, this
makes all density fluctuation-induced scattering terms
evant, though the scaling of@a# in Green’s functions cause
corrections involving the first term in Eq.~96! to have fixed
magnitude in successive RG iterations. Qualitatively, the
flow near the natural scale should resemble that of the
roacoustic limit, but with Eq.~96! replacing Eq.~93! in Eqs.
~94! and ~95!.

The interesting feature of the large-shear limit is that
first term in Eq. ~96! focuses scattering on the fluid-flui
Green’s function. The strongest stationary ray selected
this term, by inspection, is

sm→`* [F0

1G . ~98!

This matrix couples entirely to fluid, so it will generally sca
ter the slow wave more strongly than the fast, since
former generally involves a larger component of fluid m
tion. Dominance of this term may thus lead qualitatively
the same phenomenon that will be achieved by choice of
source of scattering in the examples below: an@a#-driven
early RG that couples smoothly to a later@K#-driven flow
near the stationary ray of Sec. VI.

D. Fluid inertia and wave function renormalization

Renormalization corrections in simple elasticity~at finite
shear! generically reduce the effective sound speed, qual
tively because they increase the average path length by
tering. The sign of the first term in Eq.~96!, by contrast, may
be expected toreducethe eigenvalues of@a#, thus leading to
increased sound speeds. Further, vanishing fluid shear m
lus implies zero propagation distance, so a qualitative un
standing in terms of changed path length makes no sens

The physical basis of the@a#-driven renormalization nea
the natural scale may be understood by computing the
perturbative correction belowL0 ~where the interactions ar
still simple!, and then performing a wave function renorma
ization to leave the form of@a# invariant, as in naive poro-
acoustic scaling. This is reasonable, because although cl
cal scaling forbids assigning a single dimension to sh
fields, it does not significantly impact the early perturbati
iterations.

The extension of Eq.~60! to include shear, atj50 and
usingd53 to simplify prefactors, is
2-17
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@da#52
8

2p2
GabsaH S 12

1

dD 1

am
F0

1G
2S 12

1

dD 1

mam
2 Fam

a f
G @am a f #2

1

d
@K#21J sb

dL

L
.

~99!

d has been left explicit as in Eqs.~94! and ~95!, to show
which terms survive asj* ;1/d→0. The correction to@a#
for transverse waves replaces (121/d) with 2/d in Eq. ~99!.
In the particular cased53, this admits a homogeneou
renormalization of scalar and vector potentials, which will
exploited below in physical interpretations. In formally larg
d, transverse@a# does not renormalize, but corrects the co
pressional dispersion relation in fixed form, causing the
fective dispersion to depend only on the renormalization
the effective interaction vertex.

Again considering stationary solutions~64! for simplicity,
along the maximal ray~98!, the leading density correctio
becomes~usingd53)

@da#→2
8

3p2

G

am
F0

1GdL

L
. ~100!

Redimensionalized, the only fractional correction is to t
componentm, and will be denoted

h[
dm

m
52

8p

3 S G0

l 0
dm2D dL

L
. ~101!

The kinetic term in the free action, which dominates t
transverse propagator at this scale, may be returned to
nonical form, while preserving the definition of the relativ
fluid displacement in terms of an effective porosity, by d
manding that

@ u̇ U̇#F1 b

0 2bG
3F r 2r f

2r f m1hmGF 1 0

b 2bGF u̇

U̇
G

[
@ u̇̃ U̇̃#F1 b̃

0 2b̃
G F r 2r f

2r f m GF 1 0

b̃ 2b̃
GF u̇̃

U̇̃
G .

~102!

The required rescalings of displacement fields are

ũ5S 11
h

2

r f
2

uru Du, ~103!

Ũ5S 12
h

2

~12b!

b

r fr r

uru DU, ~104!

and the effective porosity becomes
13420
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b̃5H 11
h

2 F11
~12b!

b

r fr r

uru G J b. ~105!

The relation~7! may be preserved in terms of the new effe
tive porosity, too, by defining

~12b!r r1br f[~12b̃ !r̃ r1b̃r f , ~106!

which gives the renormalized effective grain density

r̃ r5r r2
b2b̃

12b̃
~r r2r f !. ~107!

The effect of fluid-controlled renormalization may be u
derstood as an inertial confinement, somewhat resemb
that proposed in Ref. 33. Ash,0, b̃,b. After short wave-
lengths are integrated out, the effective grain density~107!
therefore becomes an average of the bare grain and
densities, as if some fluid is now incorporated into the eff
tive solid matrix. Furthermore, the diagonal component
solid self-inertia, obtained by multiplying the central mat
ces in Eq.~102!, is less sensitive tor f and m, because of
smallerb̃. Thus the reduction in effective porosity does a
pear physical.

The reason such entrainment of fluid in the solid mat
arises from the transverse scattering corrections is tha
vanishing shear modulus, fluid shear relieves stresses
flowing around~or through! local regions of higher imped
ance, such as higher tortuosity. At nonvanishing frequen
such flow is inertially hindered, so part of the fluid can n
longer move separately from the frame.

A consequence of this interpretation is that a new com
nent of frame stress should be transmitted by the entra
fluid component, stiffening the effective moduli. Introducin
the notationw̃[b̃(ũ2Ũ) to return to Biot’s canonical vari-
ables, the associated transverse potentials are renorma
by the same matrix as restores@r# to canonical form:

@A a#mFm 0

0 0GFA

aGn

5@Ã ã#mF m̃ 0

0 0
GF Ã

ã
G n

. ~108!

The importance of retaining the effective porosity mat
structure in Eq.~102! is that this defines the unique wav
function renormalization preserving theform of the shear
modulus matrix in Eq.~108!, keeping ũ the well-defined
solid degree of freedom.

The resulting scaling ofm is

m̃5S 12h
r f

2

uru Dm. ~109!

Since, trivially, the shear modulus matrix is simply rescale
the correction to the shear velocity is immediate from Fig.

c̃sh
2 5csh

2 S 12h
r f

2

uru D , ~110!

and indeed,c̃sh
2 .csh

2 .
2-18
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Renormalization of the compressional potentials defi
the effective compressibility matrix:

@f w#F H 2C

2C M GFf

w
G5

@f̃ w̃#F H̃ 2C̃

2C̃ M̃
GF f̃

w̃
G , ~111!

in which

H̃5H1h
r f~rC2r fH !

uru
, ~112!

C̃5C2
h

2

r~mC2r fM !

uru
, ~113!

M̃5M2hM , ~114!

and so

uK̃u5S 12h
rm

uru D uKu. ~115!

To the extent that@r# and @K# are coplanar, as in the
examples above, Eq.~115! implies that at least one of th
compressional wave speeds must increase, because the
uct of the relevant modulus eigenvalues increases. Unlike
shear case, however, the independent impact of scaling
fast and slow wave speeds appears to depend on rel
matrix coefficients, and cannot be inferred universally.

One interesting case that will appear below, however,
volves nearly coplanar@r# and @K#, with 2C;(H1M )
@(H2M )@(M2C). An analysis of the effects on Fig. 5
together with Eqs.~112!–~114!, gives

c̃f
2'cf

2S 12
h

2

r~m2r f !

uru D ~116!

and

c̃s
2'cs

2S 12h
r f

2

uru D . ~117!

Equation~116! is probably qualitatively robust, as it resul
from a homogeneous scaling of both eigenvalues, and
transverse piercing of the upper light cone, analogously
the shear case. Equation~117! is less obviously so, because
involves the interplay of a rescaling, and an angle cha
that renders@K# more or less null. Since the slow wave spe
is a sensitive function of the sliver angle between@K# and
the light cone, the combined influence of scaling and an
changes is not obviously universal. A general increase in
fast wave speed, however, would be expected from the
trainment arguments above.

VIII. EXAMPLES

There is a wide variety of possible relations between
longitudinal and transverse Biot wave equations, so it w
impossible in the preceding sections to derive the transitio
behaviors of RG flows affected by both, in any general for
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Two examples will be developed here, for different ‘‘typica
Biot parameter sets, to show how the pieces of the previ
discussion fit together. In both examples, tortuosity fluct
tions will be chosen as the source of scattering, because
leads to poroacoustic classical scaling independently of
value of the shear modulus, removing the need to renorm
ize the whole transverse scattering sector.

The first example, liquid4He in a sintered glass bea
pack, is intended as a realistic laboratory application of th
results. The inviscid approximation can be made arbitra
good, and the system lies near a ‘‘rigid-frame’’ limit, i
which the Biot equations reduce to a scalar acoustic probl
The fluid-inertial ‘‘stiffening’’ of the last section will be
clearly seen, and its frequency dependence is derived
diagnostic for the magnitude of tortuosity fluctuations in t
medium. In this example, the transition to naive poroacou
scaling will not be seen within valid perturbation theory,
growth of the effective coupling will never significantly re
duce the slow wave speed.

The second example uses parameters for naturally oc
ring water-saturated sediments, but ignores the real visco
of water. This model was chosen because it has a shear w
even slower than the Biot slow wave, and thus admits
weak-shear limit near the end of the RG flow. The change
form of the transverse propagator in this range leads to
coupling from the slow-wave dispersion not seen in the l
example, suggesting that naive poroacoustic scaling ma
recovered in the late stages of this RG flow. Because visc
ity is ignored, though, the results at best place upper bou
on the importance of coherence effects, which may h
some relevance at very short wavelengths.

A. A rigid-frame limit

The obvious direct application of the inviscid RG is
superfluid4He ~He II!. The fluid excitations extending bulk
first and second sound to porous media have been stu
both theoretically15 and experimentally14 in the rigid-frame
limit, with excellent agreement. Because the normal flu
fraction is less than 1% and decaying asT4 below 1.2 K,
second sound modes may be excluded, and He II descr
as an inviscid simple fluid, to arbitrary accuracy, at suita
low but readily achievable temperatures.

Parameters for the solid matrix corresponding to sinte
glass beads~Ridgefield Sandstone! are shown in Table I.14,20

The fluid compressibility and density vary with temperatu

TABLE I. Parameters for Ridgefield Sandstone~from Ref. 20!.
l 0 was chosen as grain size from Ref. 14, which is roughly ten tim
the dynamically connected pore size~Ref. 20!.

l 0 200 mm
b 0.366
Kr 4.9931010 Pa
Kb 5.243109 Pa
m 3.263109 Pa
r r 2.48 g/cm3

a` 1.58
2-19
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ERIC SMITH PHYSICAL REVIEW B 64 134202
along the saturated vapor pressure~SVP! line,34 but bulk
first sound speed is bounded above by;238 m/s, giving
K f!Kr at all temperatures. The expressions~9!–~12!
then give H.m@C;M , so that for practical purpose
K25M5K f /b,

~v2v2
T !'F0

1G , ~118!

and the diagonalization of the wave equation is dominated
@K# at all frequencies and givesr25m5a`r f /b.

In the absence of viscosity,a` is the tortuosity at all
frequencies, and the most important parameter for scatte
of slow waves. If tortuosity alone is varied in the underlyin
medium, the only matrix component of the scattering ver
becomes the dominant stationary ray of Eq.~98!. In such a
medium, the only component of the transverse propag
scattered atany m is the first term in Eq.~96!, and the po-
roacoustic scalings of Eqs.~88!–~91!, which leave@a# clas-
sically invariant, are the correct ones to use. While
spherical grains tortuosity is a function of porosity, it will b
assumed here that by appropriate variations of grain sh
and arrangement,a` has been varied at constantb, to
achieve this simplification.~The next example shows tha
even if the origin of tortuosity fluctuations is taken to b
porosity change, this is not a bad approximation.!

In the limit thus adopted, Biot theory reduces to a sca
acoustic theory, with nondimensionalized scattering stren
at the natural scale defined as in Eq.~38!, with G0 /( l 0

dm0
2)

5(dm/m0)25(da` /a`0)2. The RG flow defines distinct ef
fective longitudinal and transverse densitiesam

f and am
A ,

renormalized by Eq.~56! and Eq.~88! respectively. There are
five dimensionless couplingsGq, qP$0, . . . ,4%, renormal-
ized by Eq.~91!, of which only G4 is classically relevant.
Since irrelevant scaling suppresses perturbative correcti

FIG. 7. Geff(L)/G0 versus(dm/m0)2, at L0 /L5ls0(v)/ l 0.
Hatched area, corresponding to strong coupling, is obtai
from Fig. 9.
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for all qP$0, . . . ,3% the classical form Gq(L)
5(L/L0)q2dG0 will be used in RG flows.

The simplest quantities to evaluate as a function of ren
malization scaleL are then

g[
G4

G0
; af[

am
f

am0
; aA[

am
A

am0
. ~119!

In d53, the convenient measure of bare coupling stren
is «[(8p/3)G0 /( l 0

dm0
2). If the range of renormalization is

denoted y[L0 /L, RG flows are integrated fromy
P(1,y1), where ~as long as the effective density is n
renormalized by more than order unity!, y1'L0cs0(v)/v
5ls0(v)/ l 0, andls0(v) is the unrenormalized slow wave
length at frequencyv. In terms of these quantities, the pe
turbative correction~94! ~approximatingj50 as discussed
above! gives forg

dg

d logy
5g1«F 3

~aAy!2
2

2

aAy1
2

1
g2

y1
4 G . ~120!

The corresponding equations foraf, aA, from Eq. ~99!, are

daA

d logy
52«F 1

aAy3
2

1

2yy1
2 G , ~121!

daf

d logy
52af2«F 1

aAy
2

g

2y1
2 G . ~122!

The ratiog(y1)/y1 obtained from Eqs.~120!–~122! by
numerical integration is shown in Fig. 7 as a function
(dm/m0)2, for several values of renormalization scaley1 .
This is the quantityGeff/G0, for Geff as defined in Eq.~70!.
Thus the first claim of the paper can clearly be seen:
resumming of perturbation theory, by renormalization fro
the natural scale to a neighborhood of the on-shell w
d

FIG. 8. Effective tortuositiesmeff(L)/m0 at L0 /L5ls0(v)/ l 0,
for differently renormalizedf ~solid! andA ~dash! sectors. Hatched
region corresponds to strong coupling.
2-20
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number, can give an effective scattering vertex significan
larger than the Born-approximation valueG0. First-order
perturbation theory becomes invalid in the hatched region
Fig. 7 ~obtained by rearranging Fig. 9 below!, due to high-
frequency growth of the bare Rayleigh cross section. Ho
ever, it is clear that the greatest renormalization enhan
ments occur at large(dm/m0)2, where strong coupling is
reached at freqiuencies well below the natural scale~e.g., the
y155 curve.!

A similar plot of the effective longitudinal and transver
tortuosities, normalized by their initial values, is given
Fig. 8. Under all conditions shown here, both effective t
tuosities are renormalized downward, leading toincreasesin
effective sound speed relative to the bare value. This is
example of the fluid-inertia-induced ‘‘stiffening’’ describe
in Sec. VII D.

All terms in square brackets in Eq.~120! remain positive
for all values ofaA generated by this flow, verifying that th
coupling is never weakened during a transition fro
a-dominated tog-dominated flow. It is possible to choos
large enough(dm/m0)2 to cause theg term in Eq.~122! to
eventually dominate, leading formally to the large-y reduc-
tion of the longitudinal slow wave speed described in E
~81!. However, this effect does not appear to lie within t
range of validity of this perturbation expansion for th
model, because large coupling always sets in first.

The coupling strengthsG4/K2
2 of Eq. ~85! andG0/am

2 of
Eq. ~86! are plotted versus naturally scaled frequency in F
10, at several values of(dm/m0)2. The frequency depen
dence of the bare Rayleigh cross section can be clearly s
as strong coupling is encountered at progressively lower
quencies for greater heterogeneities. The weakest varian
which strong coupling is achieved below the natural scal
(dm/m0)2;0.04, as predicted by purely classical scaling
Eq. ~84!.

FIG. 9. Longitudinal~solid! and transverse~dash! absolute cou-
pling strengths, respectivelyG4/K2

2 and G0/(am
A)2, versus

v/L0cs0(v), at several values of(dm/m0)2. Values >1 define
strong coupling, and the hatched region in this figure maps to th
all other plots.
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Figure 9 also shows that there is limit of(dm/m0)2

&0.14 for validity the perturbation theory assumed here.
greater heterogeneity, scattering operators between tr
verse excitations become strong before those for longitu
nal, and transverse-excitation propagation cannot be assu
to take the perturbative form giving Eq.~94!. ~This range of
validity still corresponds to relative standard deviations up
;40% in a` .)

Finally, Fig. 10 shows renormalized tortuosity versus f
quency at relative standard deviations of 20%, 30%, a
40% ina` . The coherence effects from scattering into tran
verse excitations, which increase with heterogeneity, are
severe with increasing frequency due to the shorter renorm
ization range. This appears as a roughly linear slowing ocs
with increased frequency at small heterogeneities@say
dcs /cs0'5% for 20% standard deviation andv/2pP(0.2
21)3cs0 / l 0].

It is clear from these plots that gross deviations from h
mogeneous Biot theory are not predicted for moderate
erogeneities and low frequencies. The largest determinan
strong coupling is still the frequency dependence of the b
Rayleigh scattering cross section, and even for standard
viations in relative tortuosity fluctuations;20%, strong cou-
pling is not encountered until the slow wavelength is co
parable to the grain size. However, there is a predic
; linear decrease of slow wave speed with frequency, w
coefficient proportional to the variance in tortuosity, which
qualitatively distinct from the usual Biot dispersion due
viscous effects. Thus, He II can be used not only to der
mean effective-medium parameters as in Ref. 14, but als
estimate their fluctuations by measuring dispersion in
inviscid limit.

B. A weak-frame limit

An example of a weak-frame Biot model is the descr
tion by Stoll and Kan18 of water-saturated ‘‘unconsolidated

in

FIG. 10. f ~solid! andA ~dash! normalized effective tortuosity
meff(L)/m0 versusv/L0cs(v), at several values of(dm/m0)2.
Hatched region represents strong coupling.
2-21
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ERIC SMITH PHYSICAL REVIEW B 64 134202
quartz sands. Grain size is comparable to the Ridgefi
Sandstone of the last example, and their best-fit modulus
density parameters are given in Table II.Kb andm, though
much smaller than in the last example, are still large eno
that the frame behaves acoustically as if it had some mea
of consolidation. Further, unrenormalizedksh

2 '2ks
2 at anyv,

giving a modest weak-shear condition

mam

uau
5

L2

ksh
2 ~v!

,1 ~123!

asL approachesks
2(v) in RG flows.

Because both slow and shear wave speeds are determ
by frame compressibility in this example, the structure of
Biot matrices remains important to the RG flow, and giv
rise to interesting decoupling effects. These are most ea
seen using the decomposition of Sec. VI.

From Table II and Eqs.~7! and ~8!, r51875 kg/m3 and
m52660 kg/m3, and the dyadic decomposition of@r0# is

@r0#[
r1

2
~s01sr

L!1
r2

2
~s02sr

L!, ~124!

with eigenvaluesr153341 kg/m3 and r251193 kg/m3.
The longitudinal matrixsr

L is related to the basis~32! as

sr
L52sinurs11cosurs2, ~125!

with an angleur50.619p.
Using the relations~9!–~12!, H54.0733109 Pa, C

54.0003109 Pa, M54.0053109 Pa, and m52.6
3107 Pa, and as assumed at the end of Sec. VII D,C
'H1M@H2M@M2C. A decomposition of@K0# as in
Eq. ~124! gives

@K0#[
K1

2
~s01sK

L !1
K2

2
~s02sK

L !, ~126!

whereK158.0393109 Pa, K253.8493107 Pa,

sK
L 52sinuKs11cosuKs2, ~127!

anduK50.497p.
K1 /K2@r1 /r2 , so like the last example, this model

strongly ‘‘natural’’ in the sense of Sec. VI. Further,@r0# and
@K0# are nearly coplanar, andur2uK50.122p is a small

TABLE II. Parameters for water-saturated quartz sands~from
Ref. 18!. l 0 was chosen as grain size, and tortuositya` corresponds
to their ‘‘virtual mass constant’’c.

l 0 200 mm
b 0.47
Kr 3.631010 Pa
Kb 4.363107 Pa
K f 2.03109 Pa
m 2.613107 Pa
r r 2.65 g/cm3

r f 1.0 g/cm3

a` 1.25
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angle that will be ignorable in the approximate discuss
below. In the same notation, the shear modulus matrix
nearly orthogonal to the entire compressional kernel, w
ush[0. This vector decomposition, shown in Fig. 4, is t
feature responsible for shear decoupling.

Mostly to show how it works, in this example porosit
change will be assumed responsible for tortuosity fluct
tions. In a model by Berryman,35 the tortuosity and porosity
are related as

a`[11r S 1

b
21D . ~128!

For the parameters quoted here,r'0.22, while for spheres
r 50.5 is predicted. Variation of@r# with porosity gives

]@r#

] logb
[2F r r2r

m2r f

12b
G , ~129!

in which r r2r5776 kg/m3 and (m2r f)/(12b)
53131 kg/m3. Thus, approximatingGab by the form in Eq.
~64!, with s* as in Eq.~98!, omits terms roughly 25% as
large as those kept. That approximation will be made her
justify the poroacoustic scaling relation in the range ofL not
satisfying Eq.~123!, because the matrix~98! couples only to
the first term in Eq.~96!.

The coupling strength corresponding to Eq.~86! is

G

am
2

5p3~d logb!2S 12r f /m

12b D 2S L

L0
D 3

, ~130!

so strong coupling within the homogenization regime is cl
sically predicted to require(d logb)2>0.03 with these pa-
rameters.

Defining s6K[(s06sK
L )/2, andusing the fact thatuK

differs from p/2 by a fraction of a percent to approximate

s6K'
1

2 F 1 71

71 1 G , ~131!

it follows that s* sK
Ts* 50. The determinant of the com

pressional kernel@K2a# differs from that for purely co-
planar @K# and @a# by terms ofO„(ur2uK)2

…. Since this
difference angle appears linearly only as the coefficient o
matrix (sK

T) projected to zero bys* , it can simply be ig-
nored, and@K# and @a# treated as coplanar, at the level
approximation made here.

Ignoring perturbative corrections to@a# ~which is classi-
cally marginal under poroacoustic scaling! and terms of
O(K2 /K1), and using s* 5s* s* s* 52s* s6Ks* , the
compressional projectors in Eq.~94! evaluate to

s* @K2a#21s* 5
1

~12ks
2/L2!

S s*

2K2
D . ~132!

In the large-L ~large-shear! range, the transverse propa
gators have the same form as in the last example, and
only difference in the RG flow is the factor of two in Eq
2-22



l

e-
e
e

co
m
e
ge

ve
ed
s
on
s
.
di
y
it
d

he
an

m
io

pe

v
ve
, i

to
o

al
rt
n
g

sit
o
in
h

uc
te

o
o

be

or-
ave.
x,

ion
ys-

n-
res-

.
nt
t-

iner-
th
o-
ef-
ear
ed in
c-

tter-
y
n-

e-
au-
of

of
all

ing
w

ry
e.

qs.
t

re-
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~132!. However, forL&A2ks(v), both ofs6K must be kept
in evaluating@a#21 in Eq. ~93!, along with the fact that
r2 /r1'1/3 and 2r2 /m'1. The projection of interna
shear propagators then evaluates to

s* @m2a#21s* '2S L0
2

ks
2 D S 12

4

3
ksh

2 /L2D
~12ksh

2 /L2!
S s*

2K2
D .

~133!

Thus, for L'(8/3)ks
2 , the internal shear propagator b

comes orthogonal to the vertex term it previously enhanc
Meanwhile, the compressional propagator, which becom
large in the slow-wave channel, dominates perturbative
rections. This is roughly equivalent to suppressing all ter
in aA in Eqs. ~120!–~122!, which then recover the naiv
poroacoustic form, albeit only over a very protracted ran

IX. CONCLUSIONS AND IMPLICATIONS

The replica formulation of Biot theory constructed abo
extends much of the technology for handling quench
random scattering in elasticity to porous media. It provide
general definition of the Biot effective medium based
symmetry, and describes a number of qualitative region
the RG flow relating those parameters across frequencies
example has shown another form of scattering-induced
persion that survives in the inviscid-fluid limit, which ma
be used as an experimental probe of volume heterogene

A general result from elastic theory—that quenche
random roughness at small scales is RGrelevant—remains
true for Biot theory, though in a more complicated form. T
RG has two qualitative regions: wave numbers above
wave numbers below the physically allowed~on-shell! val-
ues. Wave numbers above are treated by the real renor
ization of scattering vertex coefficients here; the other reg
must be treated with the methods of localization develo
in the companion article.7 Thoughall fluctuations give rise to
scattering loss that is relevant below the on-shell wa
number,3 only density-induced scattering is relevant abo
This simplification leads to a tractable set of interactions
some limits.

The main universal behavior identified here—a flow
strong coupling that isolates the slow wave—appears p
sible for a range of initial parameters, but not implied for
grain-scale descriptions. It is the generic behavior of an a
ficial truncation of the theory to compressional excitatio
only, but in realistic systems must begin from scatterin
induced corrections depending on the form of the den
matrix. This behavior therefore most likely describes a d
main of attraction, being universal within that domain. As
elastic theory, the initial value of the coupling grows as t
Rayleigh cross section~as v4). Therefore, any qualitative
change from classical Biot theory induced by scattering, s
as localization of one or more wave component, is expec
to occur above a critical frequency.

The asymptotic result of this RG flow is a breakdown
the perturbation theory in which it is defined, and cann
therefore be interpreted directly. Rather, it is interesting
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cause it proposes that some range of initial conditions ren
malize to focus scattering enhancements on the slow w
This gives a limited universal form for the scattering verte
which can be used as input to a localization calculat
equivalent to those performed for acoustic and elastic s
tems. It further illustrates the fragility of the slow wave u
der small-scale randomness, not shared by the fast comp
sional wave to the extent that it has a larger wavelength

An interesting feature of Biot renormalization not prese
in classical elasticity is the strong contribution of fluid sca
tering near the natural scale. It can be interpreted as an
tial entrainment of part of the fluid in the long-waveleng
effective solid matrix. Entrainment reduces the effective p
rosity, averages the bare grain and fluid densities in the
fective grain density, and generically increases the sh
wave speed. It appears also to increase the fast wave spe
a fairly general class of realistic models. Finally, the intera
tion terms rendered large under this RG range focus sca
ing on the fluid-fluid Green’s function, which will generall
couple more strongly to slow than to fast waves in the lo
gitudinally dominated range that follows.
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APPENDIX A: STABILITY AND NONSTATIONARY
SOLUTIONS

The simplest form-preserving, nonstationary evaluation
the compressional RG arises from bare interactions with
sa in the plane of@K0# @defined in Eq.~14!#. Even for this
case, whenjÞ0, Eqs.~62! and~63! do not separate to yield
a single value ofj for all componentsGab. A formally exact
solution of these flow equations may be obtained by lett
j;1/d→0. Alternatively, the qualitative features of the flo
may be seen by treating Eq.~62! as if there remained an
effective j, with values asymptotically near the stationa
value from Eq.~67!. The latter approach will be taken her

In keeping with the approximate treatment ofj, parameter
groups in Eq.~62! will be replaced with formal parameters

8

p2 S 1

15
1

2

15
j1

1

15
j2D→a, ~A1!

8

p2 S 1

6
1

11

15
j1

2

5
j2D→b, ~A2!

wherea andb are expected to remain near the values of E
~A1! and~A2! with j;1/d small and positive, and need no
be more precisely specified. In thes6 basis of Sec. VI B, the
flow equations are nondimensionalized by introducing
scaled coupling coefficients
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g11[
G11

K1
2 S L

L0
D 42d

, ~A3!

g22[
G22

K2
2 S L

L0
D 42d

, ~A4!

g12[
G12

K1K2
S L

L0
D 42d

, ~A5!

and recalling thatG215G12 . A convenient affine coordi-
natez is defined differentially from the dimensionless sca
factor, as

dz[
a12b

42d
dS L0

L D 42d

; ~A6!

whena andb are constant, this amounts to an overall resc
ing.

The flow equation~62! reduces, for the diagonal elemen
of the coupling, to

d logg11

dz
5g11 ~A7!

and

d logg22

dz
5g22 , ~A8!

which are integrated directly to produce solutions of the fo
~69!. For the off-diagonal element, the relation is

d logg12

dz
5

a

a12b
g121

2b

a12b S g111g22

2 D . ~A9!

g11 andg22 , as autocorrelation coefficients, are nec
sarily positive. It follows that, for initialg12,0, ug12u
lags g11 and g22 , so while asymptotically log(g12)→`,
the flow is driven by the maximum ofg11 andg22 . The
other case,g12>0, will now be shown to have the sam
asymptotic behavior. The starting point is the elementary
angle inequality

S g111g22

2 D5Ag11g221S g112g22

2 D 2

>Ag11g22, ~A10!
.
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which, with relations~A7!–~A9! and g12>0, implies the
bound on the evolution of logg12

d logg12

dz
5

2b

a12b H 11
a

2b

2g12

g111g22
J d logAg11g22

dz

<
2b

a12b H 11
a

2b

g12

Ag11g22
J d logAg11g22

dz
,

~A11!

with equality only in the degenerate caseg115g22 . The
ratio in the bounding equation in Eq.~A11! also has a
bounded flow equation:

d log~g12 /Ag11g22!

dz
5

a

a12b H g122S g111g22

2 D J
<

a

a12b
$g122Ag11g22%.

~A12!

The requirement that, for physical correlation function
G12

2 <G11G22⇒g12<Ag11g22 as initial conditions, is
preserved by Eq.~A12!. Any initial difference amongg11 ,
g22 , andg12 results in an amplified logarithmic derivativ
strictly less than zero, so thatg12 /Ag11g22→0. It then
follows from Eq.~A11! that asymptotically

g12}~g11g22!b/(a12b). ~A13!

None of these conclusions is sensitive to the particu
values ofa or b, or how these arise from different truej
values in different graphs, so they should represent the e
case of in-plane initial conditions. The important result
that, except for the highly degenerate caseg115g22

5g12 , the off-diagonal elements always grow as a pow
,0.5 of the larger of the diagonal elements, so the evolut
is always toward the stationary rays of Sec. VI B. Furth
degeneracy ofg11 andg22 divides the basins of attractio
of the basis rays of@K0#. The condition that flow be toward
s2 is that G11<G22(K1

2 /K2
2 ), which for the parameters

quoted above is effectively the whole fluctuation domain.
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