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Local inhomogeneity effects on a nucleation process in a high external bias

Takeo Kato
Department of Applied Physics, Osaka City University, Sumiyoshi-ku, Osaka 558-8585, Japan
(Received 21 February 2001; published 11 September)2001

Quantum-nucleation processes in the presence of local moderate inhomogeneities are studied theoretically at
high biases, where the potential of the field can be approximated by a cubic polynomial. The quantum-
nucleation ratd” is calculated for one-dimensional systems in a fdrmA exp(—B/#) by using the “bounce”
method without any reduction to a single-variable problem. The bias dependence of the eBisrigptcally
described a8~ (f.—f)?, wheref andf are an external bias and a classical threshold bias, repectively. The
exponenty changes from 1 to 5/4 as the effective impurity strengihcreases, where depends not only on
the bare impurity strength but also on the bfaFhis change is explained by the reduction of the effective
spatial dimension of the system. By studying the system-size dependence of the prfntocondition for
the appearance of inhomogeneity effects is evaluated. Nucleation rates in thermal activation regimes are also
calculated, and compared with quantum-tunneling regimes. For higher-dimensional systems, it is shown that
the local approximation of inhomogeneity does not hold, and that spatial profiles of inhomogeneity become
important.
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[. INTRODUCTION useful information of the impurity strength, because the
nucleation rates are very sensitive to the impurity strength in
Nucleation process is one of the most universal phenomthis region.
ena found in various areas in physics from cosmology to In this paper, we study how the nucleation process
condensed-matter physics providing the mechanism for thehanges in the presence of local moderate inhomogeneity. As
onset of first-order transitionsBesides classical nucleation a starting point, a highly biased region is investigated where
due to thermal fluctuations, nucleation due to quantum tunthe potential can be expressed by a cubic polynomial. The
neling has attracted interest for many years as macroscopiticleation rate is calculated based on the “bounce”
guantum phenomena. Although quantum nucleation has beenethod’~2° for quantum-tunneling regimes, and on Kram-
studied theoretically in the pioneering issu, is just re-  ers’law for thermal activation regimeés®We concentrate on
cently that observation of quantum nucleation has becomsucleation processes in one-dimensional systems that corre-
possible owing to the progress in experimental techniquesspond to the kink-antikink nucleation. We show that exten-
At present, quantum nucleation has been observed expesion to higher dimensions is not easy since the nucleation
mentally in low-temperature condensed-matter systemgates are affected by details of local inhomogeneity profiles
“He-*He liquid solutions’** cavitation in*He liquid® nucle-  such as an impurity size.
ation of “He solids® Nucleation of magnetic domain in thin The nucleation rate is expressed in the folm=A
films has also been discussed theoreticalfyQuantum cre- X exp(—B/%), whereA andB are called as a prefactor and an
ation of a kink-antikink pair can be regarded as one-exponent, respectively. The expon&depends on the bids
dimensional nucleation, and has been studied both experas
mentally and theoretically in dislocation motion in solids?
and sliding of charge-density wavé8DW's),*>~*"though in
the latter system interpretations of the experimental results
are not settled®?° | believe that long Josephson
junctiong'~2% are also suitable to observe quantum nuclewheref, is a classical threshold bias at which the potential
ation of a soliton pair. barrier disappears. It should be stressed that the valyaf
In many theoretical issues, nucleation processes havaodified by inhomogeneities. The modificationphas first
been restricted to the situation that a stable phase is formdeken discussed in the quantum sliding of CDW’s by Yumoto
in the otherwisehomogeneoudackground of an unstable et al®~*3*They have calculated the nucleation rate by reduc-
phase. In several literatures, the nucleation rates in the presig the model to a single-variable problem with use of path
ence of strong inhomogeneities have also been studied hytegrals, and have reported that the valueydficreases as
using a single-variable mod#&l.In such studies, direct evalu- the impurity strength is enlarged. This method, however, is
ation of the impurity strength from the nucleation rate isso complicated that it is difficult to discuss the origin of the
difficult, because the parameters of the single-variable modelhange ofy clearly, and also to examine the validity of the
cannot be related clearly to the impurity strength. In thisapproximation adopted there. In this paper, we study inho-
paper, we studynoderateinhomogeneities, which can be mogeneity effects without any reduction to a single-variable
controlled by an external parameter from the nearly homoproblem. It is claimed that our results are explained by the
geneous region to the strongly inhomogeneous region. Thi&limensionality” of nucleation, which has been pointed out
crossover region has not been studied in detail, and providdsy the author in Ref. 34.

Be(f.—1)?, (1.2)
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We consider one isolated impurity in a system with the
sizeL. The results obtained in this paper are also applicable
to systems with the dilute impurities by taking the average-
impurity distance a&. In the limit L — o0, nucleation occurs
dominantly in homogeneous regions of the samples, and no
impurity effects appear. The inhomogeneity effects appear
only whenL is below a crossover valuk.. Within the
bounce method..., is shown to be obtained by calculating
the prefactorA. Here, we should note that the validity of the
bounce method is not guaranteed generally for the many-
body problems. We also discuss the validity of the bounce
method when it is applied to the nucleation problem in the
presence of the impurities.

This paper is organized as follows. The model Hamil-  F|G. 1. String motion in the potentialy(¢). The impurity ef-
tonian is given in Sec. Il. The quantum-tunneling rate is for-fect is described by a local force for this stringxat 0.
mulated and calculated for one-dimensional systems in Sec.

lll. We study the thermal regime in Sec. IV briefly, and the |n this paper, the characteristic action of the systems is
extension to higher-dimensional systems and justification ohssumed to be large as compared with the Planck constant. In
the bounce method are discussed in Sec. V. Finally, resulisuch situations, the guantum nucleation appears only when

are summarized in Sec. VI. the biasf is controlled near the classical threshdid at
which the metastable state of the potentig{ ¢) disappears.
Il. MODEL Note thatf.,=1 for the tilted cosine potential and. g

=2./2/3 for the* model in the absence of impurities. Near
=f.0, the potentials in Eqs2.3) and (2.4) form can be
approximated commonly by quadratic-plus-cubic polynomi-

In this paper, nucleation rates are calculated based on t
equation of motion

N als around a metastable point= ¢, as
-V2¢p+—=0. 2.1
¢tt ¢ a(ﬁ ( ) a(fcvo_ f)l/Z , b ,
. Vo(¢)_Vo(¢o)ZT(¢_¢o) _g(¢_¢o) :
Here, #(x,t) is a (d+ 1)-dimensional field, and andt are 2.5
scaled by the characteristic length and time, respectively. '

Dissipation is assumed to be weak enough, but not extremelderea=0(1) andb=0(1). To beexplicit, a=22 b=1
weak so that the system is in a thermal equilibrium in afor the tilted cosine potentid®.3), while a=2%4 b=22for
metastable well. We concentrate on one-dimensional systemise ¢* model (2.4).

described by the equation The equation of motion(2.2) describes dynamics of a
string in the potential/( ¢) shown in Fig. 1. When the string
v is initially located in a metastable well, it stays there for a
P~ Puoct 3 =0, (2.2 while, and then begins to move towards lower-energy states.

If the system size is large enough, the transition from meta-
and the higher-dimensional systems are discussed only i§able states to moving states occurs through local deforma-
Sec. V. The potential energy is assumed to consist of tWeion of the string accompanied with the creation of one kink-
parts asv(¢,x) =Vo($) +Vins($,X), whereVo(4) is a ho-  antikink pair. This transition can be regarded as “nucleation”

mogeneous part and;,,(¢,x) describes an inhomogeneity. when the metastaligtable state is related to the metasta-
As for the homogeneous pa¥(¢), we assume(l) the  ple(stable phase.

potential has at least one metastable pdigit(2) the energy The local inhomogeneity is introduced M (¢) as
barrier inVy(¢) is controlled by an external parameter such
as an external field. One typical example Y§( ¢) is a tilted Vimp( ¢,X)= 6(x)h(¢), (2.6

cosine potential . . . .
P where §(x) is a delta function, anth(¢) is a function de-

_(1_ _ fined around the metastable point. This type of impurity po-
Vo($)=(1-cosg)~f¢. @3 tentials has been studied theoretically in CDW sysfénid
Another example is thes* model with a bias and long Josephson junctioffs>® The potential form(2.6)
can be obtained not only for impurities but also for inhomo-
N geneities of external forces, modulation of barrier heights,
Vol(¢)=— 7+ a4 —fo. (2.4 and edge effectgDetails are summarized in the Appendlix.

At high biases, since the impurity effect is determined by a
The type in Eq(2.3) has been used for long Josephson junc-small modulation of¢ around the metastable poig, the
tions, dislocation in solids, and CDW systems, while the typenhomogeneity potential can be approximated as
in Eq. (2.4) describes an effective model for nucleation of a
stable phase from an unstable background. Vimp( ¢,X) ~ —£8(X)(p— ¢bo)- (2.7
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Here,e describes the impurity strength. This local potential a /fco_f
can be regarded as a local force on a string=a0 as shown = T’<p+ bq, (3.5

in Fig. 1. Fore >0 (£<0), the string is attracted towards the

positivelnegative direction of ¢. As a result, the nucleation the action is rewritten as

is enhanced around=0 for e>0, and suppressed far ) _ _

0. as(feo=F) (L2 | (nB
The appearance of the impurity effect is explained intu- Se(xm]= b2 f—t/zdx fo dr

itively as follows. The nucleation raté is expected to con-

sist of two parts a$' =Tyt ['imp - Here, 'y is the nucle-

ation rate in the homogeneous region far from an impurity,

andl'jy, is a contribution near the impurity. Using the sys- 3.6

tem sizeL, the bulk part is estimated d3,,,~1" oL, where :

Iy is the nucleation rate per unit length in the absence of thejere, L=LaY¥(f.,—f)¥* and B=BaY¥(f.,—f)¥* is a

impurities. The impurity part'j,,, is independent of, and is  scaled length and inverse temperature, respectively. The im-

estimated a$',,~I"o exp@QU/fiayp), whereAU is the energy  purity effect is described only through an effective impurity

gain at the impurity site, and, is an attempt frequency gyengthe defined by

around the metastable state. If the system &izis large

enough, the bulk paity,,, dominates the impurity pafti,, e=ga Y(f o~ 1) ¥4 (3.7

and no impurity effects appear. However, by controllixg,

I'imp can dominatdp,, . The inequalityl’j,,> 'y leads

1, 1

|ipzrtpz loa 1 3_%8(x))

This effective impurity strength depends on both the bare

impurity strengthe and external bias Even if¢ is fixed, we

2.8 can control the strength of the impurity effect by changing
the external current; the impurity effect is enhanced by con-

Since the conditior(2.8) shows a weak system-size depen-trolling the external current near the threshold current
dence through the logarithmic function bfit is expected to The partition function given in Eqsi3.1) and (3.2) is

be feasible in experimental systems. The inequaliyd), evaluated by integrating the partition function around sta-
which can be derived more accurately in Sec. Ill D, will betionary solutions up to second-order fluctuations. The sta-

AU haglnL.

assumed in the following section. tionary solutions are determined by
In this paper, we further assume>0 in Eq. (2.7), be- 2
. h Ik . 8S o~
causel'i,, never dominates the bulk paft,,, in case 5—=—¢T,T,—<px,x,+<p—7—85(x )=0. (3.9
of £<0. ¢

There exist two types of solutions for this equation. One is a

Il. QUANTUM-TUNNELING REGIME stable solutionpy(x’) independent of’, and the other is a
“bounce” solution pg(x’,7"). Since the system has a meta-
stable state, the free ener§y=—8"1InZ gains an imagi-

The quantum nucleation rate in the presence of the impunary part. Then, the decay rates are givenlby2 ImF.
rity is formulated by a semiclassical method as follows. TheThis formula, derived through the “bounce” method, was
partition function of the system is expressed in terms of pattiirst applied to the thermal-activation reginf!® and ex-
integrals as tended to the quantum-tunneling regiffé ?° The nucle-

ation rate is now written in the form
sz Dq&(x,r)exp( — w , (3.2 I'=Aexp —B/#h), (3.9

and the exponerB and prefactoA are given as

A. Formulation and scaling analysis

L/2 B [1 1 _ D e ,
S[d)(x’T)]:f—L/deJo dr §¢)2<+ §¢E+Vo(¢) B= (X', 7")]—F eo(x")], (3.10
LEmn et

+ Vimp(X, &) |, (3.2 Bh =1 | A ' -

. . . . HereE(T) is a temperature-dependent factor, and takes 1 for
where# is a dimensionless Planck constant normalized byl_<.|_ andTo /T for T>Tg*L, andA®s () are the fre
0s 0 0 i i B

the characteristic frequency, length, and energy of the sys- . . .
tem, r=it is an imaginary time, ang=1/kgT is an inverse quencies of eigenmodes around the boystedle solution

temperature. The potential forms are given by Egs) and determined by the equation

(2.7). By rescaling the variables as [ =0 — Oy + 1= g (X', 7)) BOX',7)
x=x"(a\foo—1) 2 3.3 =\EOYEO X, 7). (3.12
All the eigenvalues around the stable solution are positive
r=7"(a\feo— ) 2 (3.4 (A\9=1). The lowest eigenvalue{®) is negative due to the
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metastability of the bounce solutiaps . The second-lowest 35

eigenvalue)\(zB) is always zero due to the translational sym- 30 I

metry of ¢g in the 7 direction. This mode must be treated by E %

the Fadeev-Popov method, and the expression of the prefac- 25 pom

tor is modified a&® 20 F \
B

1 B B - 15 | \
B N2an), T (313 10 f

where 7} denotes the center position of the bounce. For the : UK ]
weak impurity, the third eigenvalua'?) also approaches 1Y) S IS BN DR T A
zero due to the translational symmetry @f in the x direc- 0 0.5 1 1.5 2 2.5

tion. We study this mode in Sec. Il D in detail. €

FIG. 2. The scaled exponeB(z) as a function of the effective
impurity =. The numerical result is shown by the square dots.
The bias dependence of the exponBrtan be discussed Dashed and solid lines corresponds to the analytical results for the
from the viewpoint of the “dimensional crossover.” This weak impurities(3.19 and for the strong impuritie€3.29), respec-
viewpoint has been discussed in several physical systemively.
such as CDW’s/ and long Josephson juncticfsn the con-
text of the system-size dependences. The application to im- BTy T A - ,
purity problems has been discussed recently in Ref. 34. Here, B(e)=H ¢p(x’,7")] =S eo(x")], (3.1
we briefly summarize this viewpoint. hn . 1 1 1
For the weak impuritg <1, the bias dependence of the ~ Fo(x’,7/)]=| . dx’f ﬁdr’ —<pi,+—cpf,+ = ¢?
exponentB is obtained as - 0 2 2 2

B. Dimensional crossover

B (f o )32 (4714 (3.14 R s)

6 Q. (3.17)

Note that the exponent off { ,— f) depends crucially on the o

spatial dimensionl. The factor 3/2 comes from the bias de- The impurity effect appears only througt{z). In the homo-
pendence of the barrier heightU«(f.,—f)%? while the  geneous cas@®(z) is obtained as

factor — (d+ 1)/4 comes from the fact that the typical size of

the bounce solution in the spati@mporal coordinates is B(0)=Y pg(x’,7";5=0)]=31.00, (3.18
given by (f.o— f) ~Y*for each of original coordinates( 7).
[See Egs(3.3 and(3.4).] and the exponent behaves Bs-B(0)oo(f.—f)!. As the

The impurity effect can be explained by the change in the . . ~ =~
dimension: the strong impurity changes the spatial dimen-eﬁecnve impurity strength increasesB(e) is suppressed,

sionality d to zero. The classical threshold bias is also mod;-2nd the tunneling rate is enhanced. At a critical vaiye

fied from f., to f.. As a result, the bias dependenceBf =4/,/3=2.31, the potential barrier disappears, and the expo-
becomes nentB is reduced to zero. Note that before the exporint

becomes zero, the bounce method becomes invalid because it
Boc(f,—f)32 VA= (f — )54 (3.15 isjustified only in the semiclassical conditi@is>1. How-
ever, the region where the bounce method is broken down is
in the presence of strong impurities. In this region, the nuclenarrow since the normalized Planck constans assumed to
ation process is well described by a local deformation of thébe small enough.

field, and is reduced to a one-variable problem. We calculate the functio(z) by solving the equation

This viewpoint is valid in the one-dimensional case as(3.g) numerically. The Newton method is used by dividing
shown in the subsequent sections. Indive2 case, however, thex’-7' (x'>0, r'>0) space into 64 64 cells. The result

the viewpoint of the dimensional crossover in this paper cans shown in Fig. 2 by square dots.
not be discussed, since the impurity potential cannot be de-
scribed by the delta function in Eq2.7), as will be dis-
cussed in Sec. V.

Analytical expressions oB(z) can be obtained in the
limiting cases* For the weak impurity §<1), B(z) is
evaluated by using the bounce solution in the homogeneous

C. Exponent cases=0 as
For one-dimensional systems, the exponBnis calcu- (> _ -
lated in a formB=oB(z). The factoro=a?(f.— f)/b? de- B(S):So_sf_de/‘PB(o’T/;8:0)+O(82)
scribes the bias dependence in the absence of the impurities,
while the scaled exponef(¢) is calculated as =31.00-16.4% + O(&?). (3.19
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This result is shown in Fig. 2 by the dashed line. 35 .
For the strong impurit ~z, the local modulation of Y ZETET: YRS SN U SR
the field becomes relevant, and a one-mode approximation is . 3
effective. We first evaluate the solutions of E.8) for P 25
=¢,. The bounce solutionog(x') agrees with the stable o 20
solution ¢(x"), and is obtained analytically as B 15 F
- 3 10 £
X";eq)= , 3.2 ;
ea(x’iea) cosH[(x’ +ag)/2] (320 3
where tanhd./2)=1/\/3. At the critical points =<, there

appears the zero-frequency modéf@zO) around the solu- 0

tion pg(X;£¢). The eigenfunction of this mode is obtained
from Eq.(3.12 as

FIG. 3. The scaled exponefft versus the bias parameter
CsinH (x" +ag)/2] =(fco—f)/(feo—fc). The numerical results are shown by squares.
Bl (x’ ) (3.2 Dashed and solid curves correspond to the analytical result for the
cosh (x'+a)/2] weak impurity (3.19 and for the strong impurity3.28), respec-

where C is a normalization factor determined from tively. The horizontal dotted line shows the homogeneous ease
S| ¢(18)|2er =1, and is given by =0. The solid and dashed curves in the inset show the behavior of

B near the threshold biag=1, and the asymptotic forn(3.29

135 aroundn=1, respectively.
C=\/—==1.746. (3.22
8(9—24/3)

In order to analyze experimental results, it is convenient

When s is slightly smaller thane, this mode describes to draw the graph OE(;‘)- The feature of impurity effects
slow dynamics of the system, and is related to the tunnelingan be obtained by this analysis. Concerning the highly bi-

process. Hence, we can approximate the bounce solution ggsed region, this p|0t is universal in the sense that it does not
depend on the bare impurity strength

ea(X',78)=pg(X;eq) + X(7) P (x'), (3.23 In order to apply the viewpoint of the dimensional cross-
over, the bias dependence of the exporit discussed. For
simplicity, the cosine potential with a bias tef@3) is con-
sidered with a notatiorf.,=1, [see above Eq(2.5] a
=2, b=1 [see below Eq(2.5]. We use the bias parameter
n=(fco—f)/(fco—fo). It takes O and 1 corresponding the

PP (X' 5)=

where X(7") is a tunneling variable denoting the dynamics
of the local deformation at the impurity site. By substituting
Eqg. (3.23 into the action(3.17), we obtain the action in
terms ofX(7') as

B 1B 1(dx\? c_I:_;\ssicaI thresholdf(_zfcyoz_ 1) in the_ absence of the impu-
S[X(r’)]=f d7r’ 5(_' +V(X) (3.29 rities and to the critical biasf& f,) in the presence of the
0 dr impurities, respectively. Heref, is defined bye,=4/\/3
NI 4 =£(2(1-1))"¥* The graph ofB as a function ofy is
V(X)= T(sd—g)cx— 27r3(CX)3. (3.2 shown in Fig. 3. The numerical result is shown by square

dots. Analytical results for the weak and strong impurities
This action corresponds to one-particle dynamics in a cubi@re also shown by the dashed and solid curves, respectively.
potential V(X). The potential barrieAU and frequency of The dimensional crossover discussed in Sec. Il B can be
small oscillation around the metastable staeare given as  clarified in this figure. In the region>1 where the effective
impurity strengthe becomes smalB becomes almost inde-

AU=252x 3754 ,—5)%2 (3.260  pendent of the bias as seen in Fig. 3, and the expoBent
o behaves aBox(f.,—f)! as expected in Eq(3.14. As 7
wo=2%*x 37 (g— &) Y4 (3.27  approaches the critical threshajd- 1, the effective impurity

strength is enhanced, and the exponent is suppressed. The

By applying the standard bounce technifiigto this poten- analytical expression neay=1 is obtained from Eq(3.28

tial, the functionB(¢) is obtained as
R 36AU - \5/4 5/4
B(e)= 5T g =11.25¢eqy—¢)>" (3.28 B=22.36 n—1)>" (3.29

This result, shown in Fig. 2 by a solid line, agrees with theHence, the exponent behavesBas(f.— f)%* as expected in

numerical result for the strong impurity strength, and gives &g. (3.15. We show the bias dependences ngarl in the
good estimate even for the weak impurity. The expressioiinset of Fig. 3. The exponent, thus, behaves Bas(f,
(3.28 may be useful to analyze experimental data. —£)32-(d+1)/4 and the spatial dimensich seems to be re-
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The prefactor is formulated in Eq3.11) with the im-
provement(3.13 due to the zero moden(?)=0). In the
absence of the impurities, not only the second but also the
third-lowest modes become the zero mode${=0), which
need to be treated by the Fadeev-Popov method as

1 oB(0) (i |
—— _dxg, (3.30
WP 2w ) -ip

wherexg denotes a position of the bounce center. This treat-
ment gives the correct system-size dependehied, .

As for the weak impurity, the frequency of the third-
lowest mode is lifted to a small positive frequency. Also in
this case, the replacement in Eg§.30 is needed in order to
obtain the correct system-size dependence. As a result, the
tunneling rate is calculated as

~ E/2 - ’
r=r, L+f _ dxj(essT o) —1) |, (3.30
—L/2

wherel’ is the nucleation rate per unit length in the absence
OISk of the impurities, and the functiof(x;) is defined by
\\\ R

f(x(’))zficdr’qoB(xé,T’;E=O). (3.32

From this expression, the tunneling rate can be divided into
two parts as

Tpu=ToL, (3.33

FIG. 4. Bounce solution fofa) e =0, (b) e=1.24,(c) ==1.98. Fimpzrojuz dxé(eazf(xé)_l)_ (3.34
The critical value at the threshold biasas: 4/\3=2.31. -Lr2

duced to zero by the strong impurities accompanied with th-’;rh(_e bulk ,partFPU'k IS propqrtlgnal to the system size,
change of the classical threshdig. while th~e impurity partl’y, is independent of the system
Finally, we show the bounce solutigns(x,7) in Fig. 4in  size forL>1.
the regionx>0, >0. Note that the bounce solution has a  Within the bounce method, thHe dependence is naturally
reversal symmetrypg(X, )= ¢g(—X,7)=¢g(x,— 7). The described as follows. For large, I'y,x alway dominates
bounce solution is expected to describe the feature of thEimp, @nd no impurity effects appear. Asis reduced, the
nucleation processp(x,7) describes the shape of the field bulk part is suppressed, and below a crossover lehgth
variableg at the imaginary timer. As the effective impurity  the impurity part may overcome the bulk part. Only in this
strength increases, the boundary condition for the bounceegion, the impurity effect is clearly observed experimen-
solution gg(x, =) = @o(x) is modified at the impurity site. tally. The ratiol’j,,/I",y is determined by the scaled length
As seen in Fig. 4, the nucleation process occurs only at th and the impurity factoioe in Eq. (3.34. For L>1, the
small region near the impurity site for the strong impurities.CrOSSOVer lengtfi., can be obtained as a function oF by

;I'hlsth changl]_e .Of éhf? nucle:i\)non prochess ISk resgonsml?aking the ratio ad’jp/I'puk=1. Thus, the phase diagram is

or (.a.qualtatlve ifference between the weak and strong,aineq by Fig. 5, where the crossover length is shown by

impurities. the solid curve. In the upper region of the phase diagram, the

nucleation occurs dominantly in the bulk region, while in the
D. Prefactor lower region, the impurity part dominates the bulk part, and
The prefacto is ordinarily a minor factor that is hard to inhomogeneity effects appear clearly.

be measured experimentally. However, it describes the The intuitive discussion about the appearance of the im-

system-size. dependence of the nucleation rate, which mayPurity effect in Sec. Il can be now clarified in detail. The

be observed. Here, we study the prefacdoanalytically in  asymptotic form of the crossover length, for ce>1 is

the limiting cases within the bounce method, and discuss thebtained analytically by applying the stationary method to

L dependence of the nucleation rate. the integral(3.34) as
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0 0.5 1 1.5 2 N
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FIG. 5. Crossover length =L aY¥(f.—f)"* versuszo 0 05 1 5 1.5 2 25
=eal(f.—f)Y4b. In the regionL >L,,, nucleation occurs in the
bulk region, while in the regioh. <L, the impurity contribution FIG. 6. The normalized barrier heightU versus the effective

[imp becomes domi.nant. The _solid and d_as.hed Iine§ ?ho‘i" the resyfhpurity strengthe. The numerical results are shown by square,
and, the asymptotic expressi@8.39 valid in the limit ce>1,  while analytical results in the limiting casé4.6) and (4.7), are

respectively. shown by the dashed and solid curves, respectively.
InL,=16.430¢)—0.211- }In(oe).  (3.35 AU=U[gg(x")]-U[po(x")], (4.2)
This result is shown in Fig. 5 by the dashed curve. The
predominant term in Eq(3.39 can be related to the en- a“(f,— )% (i
hancement of the exponenB defined by Ule(x")]= o2 th/z '
AB=aEf d7’ @g(x=0,;2=0),  (3.39 X (3o + bo?— L —Ea(X )e(X)).

~ (4.3
as InL,=AB. SinceAB is estimated by the local suppres-
sion of the potential barriehU and the typical attempt fre- Here,¢o(x’) [ @g(x’)] is the stablgunstable¢ stationary so-
quencyw, asAB~AU/%w,, the expression in E2.8) can  |ution satisfying
be reproduced qualitatively.

Beyond the perturbational analysis of it is difficult to SU o? -
calculate the prefactor, because the low-frequency modes - :—cpx,x,+<p—?—85(x’)zo. (4.9
may couple with each other. It would be a future problem to op(x")

consider the nucleation rates in this regini®ee also Sec. ) )
V B.) Only for strong impurity, the prefactor can be calcu- The same result can be derived by applying the bounce

lated by assumingl<L. and by applying standard method to a finite-temperature regioh*> Within the
procedured 2938 tg one-vaclrriable problen{3.24 with Eq bounce method, the feature at high temperatures is explained

(3.25 as as follows. At high temperatures, the bounce solution be-
' comes independent of , since the interval in the direction
= becomes short. It means that the temporal dimension become
B(0) ) : ; :
A~ /60 - (3.3 irrelevant. Hence, the relevant dimension of the bounce is
a

reduced from ¢+1) to d. Except for the absence of the
temporal dimension, we can discuss the dimensional cross-
over in the same way as Sec. lll B: the energy barrier be-
haves asAUox(f.—f)%* for the weak impurity, while as
AU (f.— )% for the strong impurity.

The barrier height is calculated in a form

although the crossover length, cannot be easily obtained
even in this case.

IV. THERMAL-ACTIVATION REGIME

At high temperatures, nucleation is caused by thermal

fluctuations. Since the nucleation rate has already been stud- a52(f,— )54 _ _
ied in this region in Ref. 34, we only summarize the feature AU= —ZAU(e). (4.5
of the impurity effect. b
In the thermal activation regime, the nucleation rate is ) ) )
evaluated by Kramers’ formula The impurity effects appear only through the normalized po-

tential barrierAU. We showAU as a function of the effec-
I'=Aexp(—AU/kgT). (4.3 tive impurity strengths in Fig. 6 by squares. The critical
The potential barriedU is calculated as impurity strength is given by y=4/\/3 that is the same as
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the quantum-tunneling regime. The exponent is obtained=3 case, the field(r) diverges at =0, since the bounce

analytically for the weak impuritg <1 as

AU(s)=24/53s, (4.6
while for the strong impuritg ~z as
AU(2)=1.433e,—¢)%2 4.7

solution behaves ¢(r)o1/r r=0, where r

= Wy 2,

These results indicate that in the highly biased region, the
system is sensitive to local inhomogeneities. To clarify the
inhomogeneity effects in thd=2 case, it is needed to con-
sider the detailed profiles of the inhomogeneities beyond the
local approximation adopted in this paper.

near

These results are shown in Fig. 6 by the dashed and solid

curves. The feature of the impurity effect is the same as the

zero-temperature case shown in Fig. 2.

V. DISCUSSION

A. Extension to thed=2 case

First, let us discuss the two-dimensional systems. Th

stable solutionpy(x’,y") is determined by

1. -
Pux oy = o= 5 @7 —ed(x)aly), (5.1

B. Validity of the bounce method

In this paper, the nucleation rate is calculated by the
bounce method. Although this method has been applied to
multivariable tunneling problems for many years, we should
be careful of its validity. In principle, the exact tunneling rate

hould be determined by the full information about the action
¢(x')]. The bounce solution can extract important infor-
mations from the action; the exponeBits a difference of the
action between the bounce and stable solutions, while the
prefactorA is determined by the second-order fluctuations
around both the solutions. While the bounce method is a

where the last term describes the impurity located atonvenient method to evaluate the tunneling rate, some in-
(x",y")=0. For the stationary solution having a rotational formations that may affect the tunneling rate are dropped.

symmetry around the originx(,y’)=(0,0), this equation is
reduced, by using the radius coordinate \x'2+y’?, to

1

de _ 5 ~
- Z(P 8g(r)'

19

ror | "ar
Here, g(r) is a modified delta function satisfying(r)=0
for r>0, g(r)=o for r=0, and

(5.2

fde’Z’ﬂl'g(r):l. (5.3
0

From Egs.(5.2) and(5.3), the boundary condition at=0 is
obtained as

- B
limr—=—>—

. (5.9
ro OF 2m

Since the functiom ¢, is a continuous function at>0, if we

take an arbitrary constant(<e/27), there exists a constant

a, and for allr in the range &r=<a

r—<-A

ar (5.5

is satisfied. As a resultp(r) is evaluated for &r<a as

o(r)=Aln ? +¢(a), (5.6

and the value o diverges at =0. Sincep must be finite in

It is expected that the bounce method can be justified in
the following conditions® (1) we can define the tunneling
variable describing slow dynamics among the many degrees
of freedom, and?2) this tunneling variable is well separated
from the other variables with fast dynamics. In these condi-
tions, the system can be reduced to the one-variable tunnel-
ing problem where the bounce method is justified well. Here,
let us consider the model adopted in this paper. For the
strong impurity, it has been shown that the single-mode ap-
proximation gives a good estimate of the exporignin this
region, the bounce method is expected to give correct results
for both the exponent and the prefactor foxL,, though
the crossover length, itself cannot be evaluated. For the
moderate impurity, however, there appears another low-
frequency mode related to the Goldstone mode. This low-
frequency mode is expected to couple with the tunneling
mode. Hence, the bounce method may give an incorrect re-
sult especially for the prefactor determined only by the in-
formation about second-order fluctuations. It is a future prob-
lem to improve the bounce method in this situation.

VI. SUMMARY

The local inhomogeneity effects on nucleation processes
have been studied within the bounce method at high biases.
The nucleation rate has been calculated in a fofim
=Aexp(—B/f). It has been found that the effective impurity
strengthz can be controlled not only by the bare impurity
strengthe but also by the external bidsThe exponenB has
been calculated as a function of the effective impurity

the present model, this divergence means that the local inhgtrengthz without reduction to a single-variable tunneling
mogeneity cannot be described by the delta function in th@roblem. It has been shown that these results are well repro-
two-dimensional systems. In other words, if we approximatejuced for the weak impurity by a perturbational analysis and
the delta function ag(r)=1/7rZ for 0<r<r, and asg(r) for the strong impurity by a one-mode approximation. It has
=0 for ro<r, the value ofe(0) depends crucially on the been clarified that the results can be explained by the reduc-
impurity sizery, and diverges in the limit,— 0. Also in the  tion of the effective dimensionality of the system due to the
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impurity. By calculating the prefactdk, the condition of the not to be uniform but to have a spatial dependence as
appearance of the impurity effects has been discussed ands(x), then we have the potential fortd1). Another ex-
the phase diagram has been obtained. ample is the inhomogeneity of the amplitude of the potential
There remain future problems. One of them is to study théarrier inVy(¢). If we replace, for example, the cosine po-
inhomogeneity effect in higher-dimensional systems. As distential in Eq.(2.3) with [ 1+ &(x)](1—cos¢), then the form
cussed in Sec. V, the local approximation does not hold fo(A1l) is also obtained. As for the Josephson junction systems,
the d=2 case. From this result, it is conjectured that thethe coupling to the derivative of the field, (x) can also be
sample inhomogeneities may become essentially importarihtroduced by applying the magnetic figidlf the coupling
for higher-dimensional systems. | think that the study of theis denoted withb(x) ¢,(X), the potential form(Al) is de-
inhomogeneity effects in high-dimensional systems wouldriived by taking the functiorz(x) as —b,(x).
give an important aspect about the interplay of quantum tun- In addition to the above situations, boundaries play a role

neling and randomness. of local inhomogeneities. The potential barridtJ is re-
duced toAU/2 at open edge. Hence, the nucleation occurs
ACKNOWLEDGMENT dominantly at the boundary. The prefactarof the nucle-

ation rate is always independent of the system size, while the
exponentB is affected by the boundary condition. Assuming
that the fieldp(x') is defined ax’=0, and that the bound-
ary condition is given as

| wish to acknowledge M. Yumoto for suggestions and
helpful discussions.

APPENDIX: RELEVANCE OF THE LOCAL IMPURITY
MODEL TO EXPERIMENTAL SYSTEMS @y (X'=0)=h, (A2)

In this paper, the inhomogeneity effect is described by thet can be shown easily that this boundary effect corresponds

potential to the local inhomogeneity by taking=2h. Thus, the expo-
Vimp(X, ) =£(x)h( ). (A1) nentBegggeis Obtained as

If the functione(x) changes only in a narrow region at the 1 _ -

impurity site compared with the typical length scale Beage=5 0B(e=2h). (A3)

[~a Yqf—1f.) Y4, it can be replaced with the delta func-

tion 8(x) in Eqg. (2.6). The potential form(Al) can be real- By changing the boundary condition at the edge, the impu-
ized in various experimental situations. One typical exampleity effects on the exponent can also be observed. Actually,
is a spatial inhomogeneity of the bias. If the bias is assumethis tendency has been observed in experiménts.
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