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Local inhomogeneity effects on a nucleation process in a high external bias

Takeo Kato*

Department of Applied Physics, Osaka City University, Sumiyoshi-ku, Osaka 558-8585, Japan
~Received 21 February 2001; published 11 September 2001!

Quantum-nucleation processes in the presence of local moderate inhomogeneities are studied theoretically at
high biases, where the potential of the field can be approximated by a cubic polynomial. The quantum-
nucleation rateG is calculated for one-dimensional systems in a formG5A exp(2B/\) by using the ‘‘bounce’’
method without any reduction to a single-variable problem. The bias dependence of the exponentB is typically
described asB;( f c2 f )g, wheref and f c are an external bias and a classical threshold bias, repectively. The

exponentg changes from 1 to 5/4 as the effective impurity strength«̃ increases, where«̃ depends not only on
the bare impurity strength but also on the biasf. This change is explained by the reduction of the effective
spatial dimension of the system. By studying the system-size dependence of the prefactorA, the condition for
the appearance of inhomogeneity effects is evaluated. Nucleation rates in thermal activation regimes are also
calculated, and compared with quantum-tunneling regimes. For higher-dimensional systems, it is shown that
the local approximation of inhomogeneity does not hold, and that spatial profiles of inhomogeneity become
important.

DOI: 10.1103/PhysRevB.64.134106 PACS number~s!: 64.60.Qb, 03.65.Sq, 73.40.Gk
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I. INTRODUCTION

Nucleation process is one of the most universal phen
ena found in various areas in physics from cosmology
condensed-matter physics providing the mechanism for
onset of first-order transitions.1 Besides classical nucleatio
due to thermal fluctuations, nucleation due to quantum t
neling has attracted interest for many years as macrosc
quantum phenomena. Although quantum nucleation has b
studied theoretically in the pioneering issue,2 it is just re-
cently that observation of quantum nucleation has beco
possible owing to the progress in experimental techniqu
At present, quantum nucleation has been observed ex
mentally in low-temperature condensed-matter syste
4He-3He liquid solutions,3,4 cavitation in 4He liquid,5 nucle-
ation of 4He solids.6 Nucleation of magnetic domain in thi
films has also been discussed theoretically.7–9 Quantum cre-
ation of a kink-antikink pair can be regarded as on
dimensional nucleation, and has been studied both exp
mentally and theoretically in dislocation motion in solids,10,11

and sliding of charge-density waves~CDW’s!,12–17though in
the latter system interpretations of the experimental res
are not settled.18–20 I believe that long Josephso
junctions21–25 are also suitable to observe quantum nuc
ation of a soliton pair.

In many theoretical issues, nucleation processes h
been restricted to the situation that a stable phase is for
in the otherwisehomogeneousbackground of an unstabl
phase. In several literatures, the nucleation rates in the p
ence of strong inhomogeneities have also been studied
using a single-variable model.26 In such studies, direct evalu
ation of the impurity strength from the nucleation rate
difficult, because the parameters of the single-variable mo
cannot be related clearly to the impurity strength. In t
paper, we studymoderateinhomogeneities, which can b
controlled by an external parameter from the nearly hom
geneous region to the strongly inhomogeneous region. T
crossover region has not been studied in detail, and prov
0163-1829/2001/64~13!/134106~10!/$20.00 64 1341
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useful information of the impurity strength, because t
nucleation rates are very sensitive to the impurity strength
this region.

In this paper, we study how the nucleation proce
changes in the presence of local moderate inhomogeneity
a starting point, a highly biased region is investigated wh
the potential can be expressed by a cubic polynomial. T
nucleation rate is calculated based on the ‘‘bounc
method27–29 for quantum-tunneling regimes, and on Kram
ers’ law for thermal activation regimes.1,30We concentrate on
nucleation processes in one-dimensional systems that c
spond to the kink-antikink nucleation. We show that exte
sion to higher dimensions is not easy since the nuclea
rates are affected by details of local inhomogeneity profi
such as an impurity size.

The nucleation rate is expressed in the formG5A
3exp(2B/\), whereA andB are called as a prefactor and a
exponent, respectively. The exponentB depends on the biasf
as

B}~ f c2 f !g, ~1.1!

where f c is a classical threshold bias at which the poten
barrier disappears. It should be stressed that the value ofg is
modified by inhomogeneities. The modification ofg has first
been discussed in the quantum sliding of CDW’s by Yumo
et al.31–33They have calculated the nucleation rate by red
ing the model to a single-variable problem with use of pa
integrals, and have reported that the value ofg increases as
the impurity strength is enlarged. This method, however
so complicated that it is difficult to discuss the origin of th
change ofg clearly, and also to examine the validity of th
approximation adopted there. In this paper, we study in
mogeneity effects without any reduction to a single-varia
problem. It is claimed that our results are explained by
‘‘dimensionality’’ of nucleation, which has been pointed o
by the author in Ref. 34.
©2001 The American Physical Society06-1
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TAKEO KATO PHYSICAL REVIEW B 64 134106
We consider one isolated impurity in a system with t
sizeL. The results obtained in this paper are also applica
to systems with the dilute impurities by taking the avera
impurity distance asL. In the limit L→`, nucleation occurs
dominantly in homogeneous regions of the samples, and
impurity effects appear. The inhomogeneity effects app
only when L is below a crossover valueLcr . Within the
bounce method,Lcr is shown to be obtained by calculatin
the prefactorA. Here, we should note that the validity of th
bounce method is not guaranteed generally for the ma
body problems. We also discuss the validity of the boun
method when it is applied to the nucleation problem in
presence of the impurities.

This paper is organized as follows. The model Ham
tonian is given in Sec. II. The quantum-tunneling rate is f
mulated and calculated for one-dimensional systems in S
III. We study the thermal regime in Sec. IV briefly, and th
extension to higher-dimensional systems and justification
the bounce method are discussed in Sec. V. Finally, res
are summarized in Sec. VI.

II. MODEL

In this paper, nucleation rates are calculated based on
equation of motion

f tt2¹2f1
]V

]f
50. ~2.1!

Here,f(xW ,t) is a (d11)-dimensional field, andx and t are
scaled by the characteristic length and time, respectiv
Dissipation is assumed to be weak enough, but not extrem
weak so that the system is in a thermal equilibrium in
metastable well. We concentrate on one-dimensional syst
described by the equation

f tt2fxx1
]V

]f
50, ~2.2!

and the higher-dimensional systems are discussed onl
Sec. V. The potential energy is assumed to consist of
parts asV(f,x)5V0(f)1Vimp(f,x), whereV0(f) is a ho-
mogeneous part andVimp(f,x) describes an inhomogeneit

As for the homogeneous partV0(f), we assume:~1! the
potential has at least one metastable pointf0; ~2! the energy
barrier inV0(f) is controlled by an external parameter su
as an external field. One typical example forV0(f) is a tilted
cosine potential

V0~f!5~12cosf!2 f f. ~2.3!

Another example is thef4 model with a bias

V0~f!52
f2

2
1

f4

4!
2 f f. ~2.4!

The type in Eq.~2.3! has been used for long Josephson ju
tions, dislocation in solids, and CDW systems, while the ty
in Eq. ~2.4! describes an effective model for nucleation o
stable phase from an unstable background.
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In this paper, the characteristic action of the systems
assumed to be large as compared with the Planck constan
such situations, the quantum nucleation appears only w
the bias f is controlled near the classical thresholdf c at
which the metastable state of the potentialV0(f) disappears.
Note that f c,051 for the tilted cosine potential andf c,0

52A2/3 for thef4 model in the absence of impurities. Ne
f 5 f c,0, the potentials in Eqs.~2.3! and ~2.4! form can be
approximated commonly by quadratic-plus-cubic polynom
als around a metastable pointf5f0 as

V0~f!2V0~f0!.
a~ f c,02 f !1/2

2
~f2f0!22

b

6
~f2f0!3.

~2.5!

Here a5O(1) andb5O(1). To beexplicit, a521/2, b51
for the tilted cosine potential~2.3!, while a523/4, b521/2 for
the f4 model ~2.4!.

The equation of motion~2.2! describes dynamics of a
string in the potentialV(f) shown in Fig. 1. When the string
is initially located in a metastable well, it stays there for
while, and then begins to move towards lower-energy sta
If the system size is large enough, the transition from me
stable states to moving states occurs through local defor
tion of the string accompanied with the creation of one kin
antikink pair. This transition can be regarded as ‘‘nucleatio
when the metastable~stable! state is related to the metast
ble~stable! phase.

The local inhomogeneity is introduced byVimp(f) as

Vimp~f,x!5d~x!h~f!, ~2.6!

whered(x) is a delta function, andh(f) is a function de-
fined around the metastable point. This type of impurity p
tentials has been studied theoretically in CDW systems31–33

and long Josephson junctions.35,36 The potential form~2.6!
can be obtained not only for impurities but also for inhom
geneities of external forces, modulation of barrier heigh
and edge effects.~Details are summarized in the Appendix!
At high biases, since the impurity effect is determined by
small modulation off around the metastable pointf0, the
inhomogeneity potential can be approximated as

Vimp~f,x!;2«d~x!~f2f0!. ~2.7!

FIG. 1. String motion in the potentialV0(f). The impurity ef-
fect is described by a local force for this string atx50.
6-2
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LOCAL INHOMOGENEITY EFFECTS ON A NUCLEATION . . . PHYSICAL REVIEW B64 134106
Here,« describes the impurity strength. This local potent
can be regarded as a local force on a string atx50 as shown
in Fig. 1. For«.0 («,0), the string is attracted towards th
positive~negative! direction off. As a result, the nucleation
is enhanced aroundx50 for «.0, and suppressed for«
,0.

The appearance of the impurity effect is explained in
itively as follows. The nucleation rateG is expected to con-
sist of two parts asG5Gbulk1G imp . Here,Gbulk is the nucle-
ation rate in the homogeneous region far from an impur
andG imp is a contribution near the impurity. Using the sy
tem sizeL, the bulk part is estimated asGbulk;G0L, where
G0 is the nucleation rate per unit length in the absence of
impurities. The impurity partG imp is independent ofL, and is
estimated asG imp;G0 exp(DU/\v0), whereDU is the energy
gain at the impurity site, andv0 is an attempt frequency
around the metastable state. If the system sizeL is large
enough, the bulk partGbulk dominates the impurity partG imp ,
and no impurity effects appear. However, by controllingDU,
G imp can dominateGbulk . The inequalityG imp@Gbulk leads

DU@\v0 ln L. ~2.8!

Since the condition~2.8! shows a weak system-size depe
dence through the logarithmic function ofL, it is expected to
be feasible in experimental systems. The inequality~2.8!,
which can be derived more accurately in Sec. III D, will
assumed in the following section.

In this paper, we further assume«.0 in Eq. ~2.7!, be-
causeG imp never dominates the bulk partGbulk in case
of «,0.

III. QUANTUM-TUNNELING REGIME

A. Formulation and scaling analysis

The quantum nucleation rate in the presence of the im
rity is formulated by a semiclassical method as follows. T
partition function of the system is expressed in terms of p
integrals as

Z5E Df~x,t!expS 2
S@f~x,t!#

\ D , ~3.1!

S@f~x,t!#5E
2L/2

L/2

dxE
0

\b

dtF1

2
fx

21
1

2
ft

21V0~f!

1Vimp~x,f!G , ~3.2!

where\ is a dimensionless Planck constant normalized
the characteristic frequency, length, and energy of the
tem,t5 i t is an imaginary time, andb51/kBT is an inverse
temperature. The potential forms are given by Eqs.~2.5! and
~2.7!. By rescaling the variables as

x5x8~aAf c,02 f !21/2, ~3.3!

t5t8~aAf c,02 f !21/2, ~3.4!
13410
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aAf c,02 f

b
w1f0 , ~3.5!

the action is rewritten as

S@w~x,t!#5
a2~ f c,02 f !

b2 E
2L̃/2

L̃/2
dx8E

0

\b̃
dt8

3F1

2
wx

21
1

2
wt

21
1

2
w22

1

3!
w32 «̃d~x8!w G .

~3.6!

Here, L̃5La1/2( f c,02 f )1/4 and b̃5ba1/2( f c,02 f )1/4 is a
scaled length and inverse temperature, respectively. The
purity effect is described only through an effective impur
strength«̃ defined by

«̃5«a23/2b~ f c,02 f !23/4. ~3.7!

This effective impurity strength depends on both the b
impurity strength« and external biasf. Even if« is fixed, we
can control the strength of the impurity effect by changi
the external current; the impurity effect is enhanced by c
trolling the external current near the threshold currentf c .

The partition function given in Eqs.~3.1! and ~3.2! is
evaluated by integrating the partition function around s
tionary solutions up to second-order fluctuations. The s
tionary solutions are determined by

dS

dw
52wt8t82wx8x81w2

w2

2
2 «̃d~x8!50. ~3.8!

There exist two types of solutions for this equation. One i
stable solutionw0(x8) independent oft8, and the other is a
‘‘bounce’’ solution wB(x8,t8). Since the system has a met
stable state, the free energyF52b21 ln Z gains an imagi-
nary part. Then, the decay rates are given byG52 ImF.
This formula, derived through the ‘‘bounce’’ method, wa
first applied to the thermal-activation regime,39,40 and ex-
tended to the quantum-tunneling regime.2,27–29 The nucle-
ation rate is now written in the form

G5A exp~2B/\!, ~3.9!

and the exponentB and prefactorA are given as

B5S@wB~x8,t8!#2S@w0~x8!#, ~3.10!

A5
ā~T!

b\ )
i 51

` S ul i
(B)u

l i
(0) D 21/2

. ~3.11!

Here,ā(T) is a temperature-dependent factor, and takes 1
T,T0, andT0 /T for T.T0

41, andl i
(B)s (l i

(0)s! are the fre-
quencies of eigenmodes around the bounce~stable! solution
determined by the equation

@2]t8t82]x8x8112fB,0~x8,t8!#c i
(B,0)~x8,t8!

5l i
(B,0)c i

(B,0)~x8,t8!. ~3.12!

All the eigenvalues around the stable solution are posi
(l i

(0)>1). The lowest eigenvaluel1
(B) is negative due to the
6-3
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TAKEO KATO PHYSICAL REVIEW B 64 134106
metastability of the bounce solutionwB . The second-lowes
eigenvaluel2

(B) is always zero due to the translational sym
metry ofwB in thet direction. This mode must be treated b
the Fadeev-Popov method, and the expression of the pre
tor is modified as28,38

1

Al2
(B)

→A B

2p\E0

\b̃
dt08 , ~3.13!

wheret08 denotes the center position of the bounce. For
weak impurity, the third eigenvaluel3

(B) also approaches
zero due to the translational symmetry ofwB in the x direc-
tion. We study this mode in Sec. III D in detail.

B. Dimensional crossover

The bias dependence of the exponentB can be discussed
from the viewpoint of the ‘‘dimensional crossover.’’ Thi
viewpoint has been discussed in several physical syst
such as CDW’s,17 and long Josephson junctions37 in the con-
text of the system-size dependences. The application to
purity problems has been discussed recently in Ref. 34. H
we briefly summarize this viewpoint.

For the weak impurity«̃!1, the bias dependence of th
exponentB is obtained as

B}~ f c,02 f !3/22(d11)/4. ~3.14!

Note that the exponent of (f c,02 f ) depends crucially on the
spatial dimensiond. The factor 3/2 comes from the bias d
pendence of the barrier heightDU}( f c,02 f )3/2, while the
factor2(d11)/4 comes from the fact that the typical size
the bounce solution in the spatial~temporal! coordinates is
given by (f c,02 f )21/4 for each of original coordinates (x, t).
@See Eqs.~3.3! and ~3.4!.#

The impurity effect can be explained by the change in
dimension: the strong impurity changes the spatial dim
sionalityd to zero. The classical threshold bias is also mo
fied from f c,0 to f c . As a result, the bias dependence ofB
becomes

B}~ f c2 f !3/221/45~ f c2 f !5/4 ~3.15!

in the presence of strong impurities. In this region, the nuc
ation process is well described by a local deformation of
field, and is reduced to a one-variable problem.

This viewpoint is valid in the one-dimensional case
shown in the subsequent sections. In thed>2 case, however
the viewpoint of the dimensional crossover in this paper c
not be discussed, since the impurity potential cannot be
scribed by the delta function in Eq.~2.7!, as will be dis-
cussed in Sec. V.

C. Exponent

For one-dimensional systems, the exponentB is calcu-
lated in a formB5sB̃( «̃). The factors5a2( f c2 f )/b2 de-
scribes the bias dependence in the absence of the impur
while the scaled exponentB̃(«) is calculated as
13410
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B̃~ «̃ !5S̃@wB~x8,t8!#2S̃@w0~x8!#, ~3.16!

S̃@w~x8,t8!#5E
2L̃/2

L̃/2
dx8E

0

\b̃
dt8F1

2
wx8

2
1

1

2
wt8

2
1

1

2
w2

2
1

6
w32 «̃d~x8!w G . ~3.17!

The impurity effect appears only throughB̃( «̃). In the homo-
geneous case,B̃( «̃) is obtained as

B̃~0!5S̃@wB~x8,t8; «̃50!#531.00, ~3.18!

and the exponent behaves asB5B̃(0)s}( f c2 f )1. As the
effective impurity strength«̃ increases,B̃( «̃) is suppressed
and the tunneling rate is enhanced. At a critical value«̃cl

54/A3.2.31, the potential barrier disappears, and the ex
nent B is reduced to zero. Note that before the exponenB
becomes zero, the bounce method becomes invalid becau
is justified only in the semiclassical conditionB/\@1. How-
ever, the region where the bounce method is broken dow
narrow since the normalized Planck constant\ is assumed to
be small enough.

We calculate the functionB̃( «̃) by solving the equation
~3.8! numerically. The Newton method is used by dividin
thex8-t8 (x8.0, t8.0) space into 64364 cells. The result
is shown in Fig. 2 by square dots.

Analytical expressions ofB̃( «̃) can be obtained in the
limiting cases.34 For the weak impurity («̃!1), B̃( «̃) is
evaluated by using the bounce solution in the homogene
case«̃50 as

B̃~ «̃ !5S̃02 «̃E
2`

`

dt8wB~0,t8; «̃50!1O~ «̃2!

531.00216.43«̃1O~ «̃2!. ~3.19!

FIG. 2. The scaled exponentB̃( «̃) as a function of the effective

impurity «̃. The numerical result is shown by the square do
Dashed and solid lines corresponds to the analytical results for
weak impurities~3.19! and for the strong impurities~3.28!, respec-
tively.
6-4
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This result is shown in Fig. 2 by the dashed line.
For the strong impurity«̃;«̃cl , the local modulation of

the field becomes relevant, and a one-mode approximatio
effective. We first evaluate the solutions of Eq.~3.8! for «̃

5 «̃cl . The bounce solutionwB(x8) agrees with the stable
solutionw0(x8), and is obtained analytically as

wB~x8; «̃cl!5
3

cosh2@~x81acl!/2#
, ~3.20!

where tanh(acl/2)51/A3. At the critical point«̃5 «̃cl , there
appears the zero-frequency mode (l1

(B)50) around the solu-

tion wB(x; «̃cl). The eigenfunction of this mode is obtaine
from Eq. ~3.12! as

c1
(B)~x8; «̃ !5

C sinh@~x81acl!/2#

cosh3@~x81acl!/2#
, ~3.21!

where C is a normalization factor determined from
* uc1

(B)u2dx851, and is given by

C5A 135

8~922A3!
.1.746. ~3.22!

When «̃ is slightly smaller than«̃cl , this mode describes
slow dynamics of the system, and is related to the tunne
process. Hence, we can approximate the bounce solutio

wB~x8,t8; «̃ !.wB~x8; «̃cl!1X~t8!c1
(B)~x8!, ~3.23!

whereX(t8) is a tunneling variable denoting the dynami
of the local deformation at the impurity site. By substitutin
Eq. ~3.23! into the action~3.17!, we obtain the action in
terms ofX(t8) as

S̃@X~t8!#5E
0

\b̃
dt8F1

2 S dX

dt8
D 2

1V~X!G ~3.24!

V~X!5
2A3

9
~ «̃cl2 «̃ !CX2

4

243
~CX!3. ~3.25!

This action corresponds to one-particle dynamics in a cu
potentialV(X). The potential barrierDU and frequency of
small oscillation around the metastable statev0 are given as

DU525/23325/4~ «̃cl2 «̃ !3/2 ~3.26!

v0525/433211/8C~ «̃cl2 «̃ !1/4. ~3.27!

By applying the standard bounce technique27,29 to this poten-
tial, the functionB̃( «̃) is obtained

B̃~ «̃ !5
36DU

5\v0
.11.25~ «̃cl2 «̃ !5/4. ~3.28!

This result, shown in Fig. 2 by a solid line, agrees with t
numerical result for the strong impurity strength, and give
good estimate even for the weak impurity. The express
~3.28! may be useful to analyze experimental data.
13410
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In order to analyze experimental results, it is conveni
to draw the graph ofB̃( «̃). The feature of impurity effects
can be obtained by this analysis. Concerning the highly
ased region, this plot is universal in the sense that it does
depend on the bare impurity strength«.

In order to apply the viewpoint of the dimensional cros
over, the bias dependence of the exponentB̃ is discussed. For
simplicity, the cosine potential with a bias term~2.3! is con-
sidered with a notationf c,051, @see above Eq.~2.5!# a
5A2, b51 @see below Eq.~2.5!#. We use the bias paramete
h5( f c,02 f )/( f c,02 f c). It takes 0 and 1 corresponding th
classical threshold (f 5 f c,051) in the absence of the impu
rities and to the critical bias (f 5 f c) in the presence of the
impurities, respectively. Here,f c is defined by «̃cl54/A3
5«„2(12 f c)…

23/4. The graph ofB̃ as a function ofh is
shown in Fig. 3. The numerical result is shown by squ
dots. Analytical results for the weak and strong impuriti
are also shown by the dashed and solid curves, respecti

The dimensional crossover discussed in Sec. III B can
clarified in this figure. In the regionh@1 where the effective
impurity strength«̃ becomes small,B̃ becomes almost inde
pendent of the bias as seen in Fig. 3, and the exponeB
behaves asB}( f c,02 f )1 as expected in Eq.~3.14!. As h
approaches the critical thresholdh51, the effective impurity
strength is enhanced, and the exponent is suppressed.
analytical expression nearh51 is obtained from Eq.~3.28!
as

B.22.36~h21!5/4. ~3.29!

Hence, the exponent behaves asB}( f c2 f )5/4 as expected in
Eq. ~3.15!. We show the bias dependences nearh51 in the
inset of Fig. 3. The exponent, thus, behaves asB}( f c
2 f )3/22(d11)/4, and the spatial dimensiond seems to be re-

FIG. 3. The scaled exponentB̃ versus the bias parameterh
5( f c,02 f )/( f c,02 f c). The numerical results are shown by squar
Dashed and solid curves correspond to the analytical result for
weak impurity ~3.19! and for the strong impurity~3.28!, respec-
tively. The horizontal dotted line shows the homogeneous cas«
50. The solid and dashed curves in the inset show the behavio

B̃ near the threshold biash51, and the asymptotic form~3.29!
aroundh51, respectively.
6-5
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TAKEO KATO PHYSICAL REVIEW B 64 134106
duced to zero by the strong impurities accompanied with
change of the classical thresholdf c .

Finally, we show the bounce solutionwB(x,t) in Fig. 4 in
the regionx.0, t.0. Note that the bounce solution has
reversal symmetrywB(x,t)5wB(2x,t)5wB(x,2t). The
bounce solution is expected to describe the feature of
nucleation process;w(x,t) describes the shape of the fie
variablew at the imaginary timet. As the effective impurity
strength increases, the boundary condition for the bou
solutionwB(x,6`)5w0(x) is modified at the impurity site
As seen in Fig. 4, the nucleation process occurs only at
small region near the impurity site for the strong impuritie
This change of the nucleation process is respons
for the qualitative difference between the weak and stro
impurities.

D. Prefactor

The prefactorA is ordinarily a minor factor that is hard t
be measured experimentally. However, it describes
system-sizeL dependence of the nucleation rate, which m
be observed. Here, we study the prefactorA analytically in
the limiting cases within the bounce method, and discuss
L dependence of the nucleation rate.

FIG. 4. Bounce solution for~a! «̃50, ~b! «̃51.24,~c! «̃51.98.

The critical value at the threshold bias is«̃54/A352.31.
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The prefactor is formulated in Eq.~3.11! with the im-
provement~3.13! due to the zero mode (l2

(B)50). In the
absence of the impurities, not only the second but also
third-lowest modes become the zero modes (l3

(B)50), which
need to be treated by the Fadeev-Popov method as

1

Al3
(B)

→AsB̃~0!

2p E
2L̃/2

L̃/2
dx08 , ~3.30!

wherex08 denotes a position of the bounce center. This tre
ment gives the correct system-size dependence,G}L.

As for the weak impurity, the frequency of the third
lowest mode is lifted to a small positive frequency. Also
this case, the replacement in Eq.~3.30! is needed in order to
obtain the correct system-size dependence. As a result
tunneling rate is calculated as

G5G0F L̃1E
2L̃/2

L̃/2
dx08~es«̃ f (x08)21!G , ~3.31!

whereG0 is the nucleation rate per unit length in the absen
of the impurities, and the functionf (x08) is defined by

f ~x08!5E
2`

`

dt8wB~x08 ,t8; «̃50!. ~3.32!

From this expression, the tunneling rate can be divided i
two parts as

Gbulk5G0L̃, ~3.33!

G imp5G0E
2L̃/2

L̃/2
dx08~es«̃ f (x08)21!. ~3.34!

The bulk partGbulk is proportional to the system sizeL̃,
while the impurity partG imp is independent of the system
size for L̃@1.

Within the bounce method, theL dependence is naturall
described as follows. For largeL, Gbulk alway dominates
G imp , and no impurity effects appear. AsL is reduced, the
bulk part is suppressed, and below a crossover lengthL̃cr ,
the impurity part may overcome the bulk part. Only in th
region, the impurity effect is clearly observed experime
tally. The ratioG imp /Gbulk is determined by the scaled leng
L̃ and the impurity factors«̃ in Eq. ~3.34!. For L̃@1, the
crossover lengthL̃cr can be obtained as a function ofs«̃ by
taking the ratio asG imp /Gbulk51. Thus, the phase diagram
obtained by Fig. 5, where the crossover length is shown
the solid curve. In the upper region of the phase diagram,
nucleation occurs dominantly in the bulk region, while in t
lower region, the impurity part dominates the bulk part, a
inhomogeneity effects appear clearly.

The intuitive discussion about the appearance of the
purity effect in Sec. II can be now clarified in detail. Th
asymptotic form of the crossover lengthL̃cr for s«̃@1 is
obtained analytically by applying the stationary method
the integral~3.34! as
6-6
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ln L̃cr.16.43~s«̃ !20.2112 1
2 ln~s«̃ !. ~3.35!

This result is shown in Fig. 5 by the dashed curve. T
predominant term in Eq.~3.35! can be related to the en
hancement of the exponentDB defined by

DB5s«̃E
2`

`

dt8wB~x50,t8; «̃50!, ~3.36!

as lnL̃cr5DB. SinceDB is estimated by the local suppre
sion of the potential barrierDU and the typical attempt fre
quencyv0 asDB;DU/\v0, the expression in Eq.~2.8! can
be reproduced qualitatively.

Beyond the perturbational analysis of«̃, it is difficult to
calculate the prefactor, because the low-frequency mo
may couple with each other. It would be a future problem
consider the nucleation rates in this regime.~See also Sec
V B.! Only for strong impurity, the prefactor can be calc
lated by assumingL̃!L̃cr and by applying standard
procedures27,29,38 to one-variable problem~3.24! with Eq.
~3.25! as

A;A60AB̃~0!

2p
, ~3.37!

although the crossover lengthL̃cr cannot be easily obtaine
even in this case.

IV. THERMAL-ACTIVATION REGIME

At high temperatures, nucleation is caused by therm
fluctuations. Since the nucleation rate has already been s
ied in this region in Ref. 34, we only summarize the featu
of the impurity effect.

In the thermal activation regime, the nucleation rate
evaluated by Kramers’ formula

G5A exp~2DU/kBT!. ~4.1!

The potential barrierDU is calculated as

FIG. 5. Crossover lengthL̃cr5Lcra
1/2( f c2 f )1/4 versus «̃s

5«a1/2( f c2 f )1/4/b. In the regionL̃.L̃cr , nucleation occurs in the

bulk region, while in the regionL̃,L̃cr , the impurity contribution
G imp becomes dominant. The solid and dashed lines show the r

and, the asymptotic expression~3.35! valid in the limit s«̃@1,
respectively.
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DU5U@wB~x8!#2U@w0~x8!#, ~4.2!

U@w~x8!#5
a5/2~ f c2 f !5/4

b2 E
2L̃/2

L̃/2
dx8

3~ 1
2 wx8

2
1 1

2 w22 1
6 w32 «̃d~x8!w~x8!!.

~4.3!

Here,w0(x8) @wB(x8)# is the stable~unstable! stationary so-
lution satisfying

dU

dw~x8!
52wx8x81w2

w2

2
2 «̃d~x8!50. ~4.4!

The same result can be derived by applying the bou
method to a finite-temperature region.39–43 Within the
bounce method, the feature at high temperatures is expla
as follows. At high temperatures, the bounce solution
comes independent oft8, since the interval in thet direction
becomes short. It means that the temporal dimension bec
irrelevant. Hence, the relevant dimension of the bounce
reduced from (d11) to d. Except for the absence of th
temporal dimension, we can discuss the dimensional cr
over in the same way as Sec. III B: the energy barrier
haves asDU}( f c2 f )5/4 for the weak impurity, while as
DU}( f c2 f )3/2 for the strong impurity.

The barrier height is calculated in a form

DU5
a5/2~ f c2 f !5/4

b2
DŨ~ «̃ !. ~4.5!

The impurity effects appear only through the normalized p
tential barrierDŨ. We showDŨ as a function of the effec-
tive impurity strength«̃ in Fig. 6 by squares. The critica
impurity strength is given by«̃cl54/A3 that is the same a

ult
FIG. 6. The normalized barrier heightDŨ versus the effective

impurity strength«̃. The numerical results are shown by squa
while analytical results in the limiting case,~4.6! and ~4.7!, are
shown by the dashed and solid curves, respectively.
6-7
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the quantum-tunneling regime. The exponent is obtai
analytically for the weak impurity«̃!1 as

DŨ~ «̃ !524/523«̃, ~4.6!

while for the strong impurity«̃;«̃cl as

DŨ~ «̃ !51.433~ «̃cl2 «̃ !3/2. ~4.7!

These results are shown in Fig. 6 by the dashed and s
curves. The feature of the impurity effect is the same as
zero-temperature case shown in Fig. 2.

V. DISCUSSION

A. Extension to thedÐ2 case

First, let us discuss the two-dimensional systems. T
stable solutionw0(x8,y8) is determined by

wx8x81wy8y85w2
1

2
w22 «̃d~x8!d~y8!, ~5.1!

where the last term describes the impurity located
(x8,y8)50. For the stationary solution having a rotation
symmetry around the origin (x8,y8)5(0,0), this equation is
reduced, by using the radius coordinater 5Ax821y82, to

1

r

]

]r S r
]w

]r D5w2
1

2
w22 «̃g~r !. ~5.2!

Here, g(r ) is a modified delta function satisfyingg(r )50
for r .0, g(r )5` for r 50, and

E
0

`

dr2prg~r !51. ~5.3!

From Eqs.~5.2! and~5.3!, the boundary condition atr 50 is
obtained as

lim
r→0

r
]w

]r
52

«̃

2p
. ~5.4!

Since the functionrw r is a continuous function atr .0, if we
take an arbitrary constantA (, «̃/2p), there exists a constan
a, and for allr in the range 0,r<a

r
]w

]r
<2A ~5.5!

is satisfied. As a result,w(r ) is evaluated for 0,r ,a as

w~r !>A ln S a

r D1w~a!, ~5.6!

and the value ofw diverges atr 50. Sincew must be finite in
the present model, this divergence means that the local in
mogeneity cannot be described by the delta function in
two-dimensional systems. In other words, if we approxim
the delta function asg(r )51/pr 0

2 for 0,r ,r 0 and asg(r )
50 for r 0,r , the value ofw(0) depends crucially on the
impurity sizer 0, and diverges in the limitr 0→0. Also in the
13410
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d53 case, the fieldw(r ) diverges atr 50, since the bounce
solution behaves w(r )}1/r near r 50, where r
5Ax821y821z82,

These results indicate that in the highly biased region,
system is sensitive to local inhomogeneities. To clarify t
inhomogeneity effects in thed>2 case, it is needed to con
sider the detailed profiles of the inhomogeneities beyond
local approximation adopted in this paper.

B. Validity of the bounce method

In this paper, the nucleation rate is calculated by
bounce method. Although this method has been applied
multivariable tunneling problems for many years, we sho
be careful of its validity. In principle, the exact tunneling ra
should be determined by the full information about the act
S@f(x8)#. The bounce solution can extract important info
mations from the action; the exponentB is a difference of the
action between the bounce and stable solutions, while
prefactorA is determined by the second-order fluctuatio
around both the solutions. While the bounce method i
convenient method to evaluate the tunneling rate, some
formations that may affect the tunneling rate are dropped

It is expected that the bounce method can be justified
the following conditions:38 ~1! we can define the tunneling
variable describing slow dynamics among the many degr
of freedom, and~2! this tunneling variable is well separate
from the other variables with fast dynamics. In these con
tions, the system can be reduced to the one-variable tun
ing problem where the bounce method is justified well. He
let us consider the model adopted in this paper. For
strong impurity, it has been shown that the single-mode
proximation gives a good estimate of the exponentB. In this
region, the bounce method is expected to give correct res
for both the exponent and the prefactor forL!Lcr , though
the crossover lengthLcr itself cannot be evaluated. For th
moderate impurity, however, there appears another l
frequency mode related to the Goldstone mode. This lo
frequency mode is expected to couple with the tunnel
mode. Hence, the bounce method may give an incorrec
sult especially for the prefactor determined only by the
formation about second-order fluctuations. It is a future pr
lem to improve the bounce method in this situation.

VI. SUMMARY

The local inhomogeneity effects on nucleation proces
have been studied within the bounce method at high bia
The nucleation rate has been calculated in a formG
5A exp(2B/\). It has been found that the effective impuri
strength«̃ can be controlled not only by the bare impuri
strength« but also by the external biasf. The exponentB has
been calculated as a function of the effective impur
strength«̃ without reduction to a single-variable tunnelin
problem. It has been shown that these results are well re
duced for the weak impurity by a perturbational analysis a
for the strong impurity by a one-mode approximation. It h
been clarified that the results can be explained by the red
tion of the effective dimensionality of the system due to t
6-8
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impurity. By calculating the prefactorA, the condition of the
appearance of the impurity effects has been discussed
the phase diagram has been obtained.

There remain future problems. One of them is to study
inhomogeneity effect in higher-dimensional systems. As d
cussed in Sec. V, the local approximation does not hold
the d>2 case. From this result, it is conjectured that t
sample inhomogeneities may become essentially impor
for higher-dimensional systems. I think that the study of t
inhomogeneity effects in high-dimensional systems wo
give an important aspect about the interplay of quantum t
neling and randomness.
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APPENDIX: RELEVANCE OF THE LOCAL IMPURITY
MODEL TO EXPERIMENTAL SYSTEMS

In this paper, the inhomogeneity effect is described by
potential

Vimp~x,f!5«~x!h~f!. ~A1!

If the function«(x) changes only in a narrow region at th
impurity site compared with the typical length sca
@;a21/2( f 2 f c)

21/4#, it can be replaced with the delta func
tion d(x) in Eq. ~2.6!. The potential form~A1! can be real-
ized in various experimental situations. One typical exam
is a spatial inhomogeneity of the bias. If the bias is assum
a

et

-
-
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not to be uniform but to have a spatial dependence af
1«(x), then we have the potential form~A1!. Another ex-
ample is the inhomogeneity of the amplitude of the poten
barrier inV0(f). If we replace, for example, the cosine p
tential in Eq.~2.3! with @11«(x)#(12cosf), then the form
~A1! is also obtained. As for the Josephson junction syste
the coupling to the derivative of the fieldfx(x) can also be
introduced by applying the magnetic field.25 If the coupling
is denoted withb(x)fx(x), the potential form~A1! is de-
rived by taking the function«(x) as2bx(x).

In addition to the above situations, boundaries play a r
of local inhomogeneities. The potential barrierDU is re-
duced toDU/2 at open edge. Hence, the nucleation occ
dominantly at the boundary. The prefactorA of the nucle-
ation rate is always independent of the system size, while
exponentB is affected by the boundary condition. Assumin
that the fieldw(x8) is defined atx8>0, and that the bound
ary condition is given as

wx8~x850!5h, ~A2!

it can be shown easily that this boundary effect correspo
to the local inhomogeneity by taking«̃52h. Thus, the expo-
nentBedge is obtained as

Bedge5
1

2
sB̃~ «̃52h!. ~A3!

By changing the boundary condition at the edge, the im
rity effects on the exponent can also be observed. Actua
this tendency has been observed in experiments.23
da,
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