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The electronic transport properties through junctions connecting nanographite ribbons of different or same
width are investigated by means of the LandauéttiBer approach using a tight binding model. Graphite
ribbon with zigzag boundary has a single conducting channel of edge states in the low-energy regime. The
electrical conductance as a function of the chemical potential shows a rich structure with sharp dips of zero
conductance. This perfect reflectivity originates from twofold degenerate resonant levels, i.e., flux states visible
in the formation of strong current-current correlation with a Kékike vortex pattern. At each energy of
conductance-zeros, this degeneracy yields the formation of standing waves in the scattering region of the
junctions. The origin of zero-conductance resonances is also discussed by the standard scattering matrix
approach, and the similarities between the nanographite ribbon junctions and the asymmetric Aharanov-Bohm
ring connected to current leads are pointed out. Since the zero-conductance resonances are connected with the
time-reversal symmetry of the system, the application of a magnetic field removes these zero-conductance dips,
yielding a pronounced negative magnetoresistance.
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[. INTRODUCTION sess localized edge states with energies close to the Fermi
level?1=2>These edge states correspond to the non-bonding
Electron transport through nanometer-sized structures ismolecular orbital as can be seen by examining the analytic
one of the recent fundamental issues in the mesoscopic armblution for semi-infinite graphite with a zigzag edge. In con-
nanoscopic physicsThe motivation for this type of study is trast, edge states are completely absent for ribbons with arm-
the development of atomic or molecular scale electronic deehair edges. The edge states were analyzed in terms of
vices, which not only could increase the device density in amearest-neighbor tight binding mod&ig®>and density func-
integrated circuit enormously, but also the operation printional approaci® We have also pointed out that the edge
ciples of a transistor could be fundamentally different fromstates play important roles in magnetic properties in
ordinary electronic devicésRecently, nanometer-sized car- nanometer-sized graphite systems, because of their relatively
bon systems such as carbon nanotdiBeave attracted much large contribution to the density of states at the Fermi
attention for the possibilities as carbon-based molecularenergy?'=2>27
electronic devices. In nanometer-sized carbon systems, the In this paper, we present the electron transport properties
geometry ofsp? carbon networks has much influence on thethrough nanographite ribbon junctions, in which we find that
electronic states near the Fermi level. Studies with scanninthe edge states play important roles not only for magnetic
tunneling microscopy and spectroscopy have confirmed thproperties, but also for electron transport phenomena. Be-
connection between the electronic states of the single waltause of the nonbonding character of edge states, a single
carbon nanotubesSWCN'’s) and their geometryRecent ex- edge state cannot contribute to the electron transport. How-
periments can provide the electrical transport measurememiver, in zigzag ribbons, the edge states can provide a single-
of individual SWCN's®~1°the observation of quantized con- channel for electron conduction in the low-energy region,
ductance of multi-walled carbon nanotubdésnd the fabri-  due to the bonding and antibonding interaction between two
cation of SWCN junctions sandwiched by magnetic or superedge states which overlap from both edges. In order to ana-
conducting material$**® These experiments initiated lyze the electronic transport properties responsible for edge
theoretical studies devoted to effects of nonmagnetictates, we consider the nanographite ribbon junction systems
impurity,}*  electron  correlatio®> and topological which connect two zigzag ribbons with different or same
defects'6-2° width. The electrical conductance of the junctions is calcu-
Not only the closed carbon molecules such as carbotated through the Landauer-Biker formula based on a
nanotubes and fullerene molecules, but also systems witsimple tight binding model, in which the conductance is
open boundaries also display unusual features connectegtitten in terms of the transmission coefficiér ~3®we cal-
with their shape. Fujita and co-workers have pointed out thatulate the transmission coefficient through the junctions in
the existence of graphite edges strongly affects theerms of the recursive Green’s function method which pro-
m-electronic states in nanometer-sized graphite fragmentgides high efficiency and accuracy for numerical
(nanographites’ There are two basic edge shapes in graphcalculations’®4°
ite, armchair and zigzag. For the model of graphite ribbons, Conductance of nanographite ribbon junctions as a func-
one-dimensional graphite lattices of finite width>*it was  tion of the Fermi energy shows rich structures in the energy
shown that ribbons with zigzag edgésgzag ribbon pos-  region corresponding to single channel transpoft.The re-
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markable feature in the behavior of the conductance is the
appearance of sharp zero-conductance dip structures corre-
sponding to total reflection resonances. These conductance
zeros are associated with the presence of resonant localized
states in the junction region which resemble flux states in the
sense that they show a strong current-current correlation with
a Kekulelike vortex pattern. The resonant state is a standing
wave resulting from the superposition of two flux states
which are the time reversed of each other. We also show that
zero-conductance dips can be well interpreted in terms of the
result of an asymmetric Aharanov-Boh(#B) ring con-
nected to current leads. Since these resonances are intimately
connected with the time-reversal symmetry of the system, Left
the application of a magnetic field removes the conductance lead line

zeros, yielding a pronounced negative magnetoresistance. In g, 1. An example configuration of nanographite ribbon junc-

this paper, we emphasize that edge states in nanographi{gns. The shaded central region is the scatter. Lead liniggag
ribbons lead to electronic transport properties distinctivelyribbong are attached on the both of the scatter.

different from those found in usual quantum wires or carbon

nanotubes. e (]
We organize this paper as follows. In Sec. II, we briefly Hi,jzﬁf dl-A. (2.2

introduce our model for the calculation for the electrical con- !

ductance of nanographite ribbon junctions. In Sec. Ill, WeThe magnetic flux through the aréin units of the flux

analyze the problem of the nanographite ribbon junctiongyantumd,=ch/e is

and their zero-conductance resonances from the behavior of

electron waves and electric currents. The response of the flux 1 e

di-A= 2 6. (2.3

states to the net current through the junctions is also dis- =

cussed. In Sec. IV, we show the connection between the

transport properties of nanographite ribbon junctions and th&Ve define the magnitude of the magnetic flux passing
asymmetric AB ring connected to current leads, on the basithrough a single hexagon ring of graphite in the unit of the
of the standard scattering matrix approach. The summary amguantum flux asf. The 6 is given asf=B S,/ Py, where
discussion are given in Sec. V. The conclusions are presentdi=|B| and S,..=31/3a3/2. The S.e, is the single hexagon

in Sec. VL. ring has the area, ana,=1.42 A is the lattice constant of
graphite. Therd=1 corresponds to 7:910* T. The cyclo-
tron radius( magnetic length |, is given by

IIl. MODEL
We use the Landauer-Biker formula-®*~*in order to | ch (2.4
evaluate the conductance through nanographite junctions. In m eB '

order to describe the-electronic states of nanographite rib- _ _ _
bon and junctions, we use a nearest-neighbor tight-binding In ribbon-shaped systems, the ratio between the width of a

model, which is successfully used in the studies of fullerengibbon and cyclotron diameter effectively characterizes the
molecules, carbon nanotubes, and carbon-relate@lectronic states of ribbon in a magnetic field. Therefore, we

materials*>~#4The tight-binding Hamiltonian is defined by define the ratio between the ribbon width and the cyclotron
diameter as the effective magnetic fi@dfor a convenience,
which is given by
H:iE,j ti 511, 2.0 w2
wheret; ; is transfer integral anfl) is a localized orbital on ) o .
sitei. Throughout this paper, the transfer integrals are set tyhered=2l, andW means the ribbon width in the units of
t between all the nearest neighbor sites and otherwise to 0 fdhe lattice constant defined for zigzag ribbong®4s W
a simplicity, because we aim at the intrinsic difference in the= 3Nao/2—ao, whereN is the number of zigzag lines in
transport properties originating from the topological naturezigzag ribbons. Note thd is proportional toB.
of systems. The transfer integrials used as the unit of the An example of the nanographite ribbon junctions is de-
energy, and estimated about 3.03%8V. picted in Fig. 1. The shaded central region corresponds to the
The magnetic field perpendicular to the graphite plane scattering region, and the zigzag ribbons of the left and right
is incorporated in the transfer integrig) by means of the parts correspond to lead lines. We assume that the electron
Peierls phag® defined asijﬂtije'z”ai,i, whereg, ; is given  wave comes in out of theth channel of the left lead line and
by the line integral of the vector potential from site transmit, passing through the scatter of central region, to the
to sitej, pth channel of the right lead line with the transmission co-
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(a) (b) dispersion depends on the ribbon witNHnumber of zigzag
E lines from one side to the otherand can be approximated by

\7

Ab* E=0 for k close tom/ay, whereD =2 coskay/2). Thus the over-

k
Ek=i2tND,’2'_1[1— cos(%o”, (3.2

} j_ . lap of the two edge states gives rise to a single conduction
channel for energies close o= 0. Only at exactlye=0 the
/\ vanishing group velocity yields no conducting channel.
Apart from theE=0, there are many higher energy states
providing multichannel conductance. We define the single-

on ko 2T channel energy region as the energy gap to the lowest of
" 3a, " 3a multichannel stated? in Fig. 2(a)
FIG. 2. The band structure neBr=0 of (a) zigzag ribbons and
(b) bearded ribbons. AS=4t co N-1 . 3.2
z 2N+1 7| '

efficientt,,,. Since the transmission probabiliy,, is the
square of transmission coefficients, i.'éﬂ,V:lth , electri-  In the following our main interest lies in the single-channel
cal conductance can be evaluated by the Landau#ikBu  region.
formula Next let us introduce the so-called bearded ribbon. This

corresponds to a zigzag ribbon where on one side additional
bonds (beard is attached to edge. Also the bearded edge
possesses a zero-energy nonbonding state. The main differ-
5 . . ence to the ordinary zigzag ribbon lies in the fact that here
Here e/ i is quantum conductance. In this paper, we usguqo edge states on both sid@se zigzag and one bearded
the quantum conductance as the unit of conductance. T gé are now located on the same sublattice. Hence, their
transmission coefficients and the electron waves in the Scanerlap will not mix them and we do not end up with a

terer are calculated in terms of the the recursive Green funcbonding and antibonding configuration. As shown in Fig.
tion method, which provides high efficiency and accuracy fory ) e edge state provide an entirely flat band. This band

; ; /40 : : narl
numerical calculation3’ does not contribute to transport, since the group velocity is
zero. We may consider this ribbon as insulating within the

¢ &
GE)=3 2 TuwB)= 7 2 LB 2§

lll. SINGLE-BARRIER NANOGRAPHITE RIBBON energy range defined by the gap
JUNCTIONS
A. Design of single-barrier nanographite ribbon junctions
. . . S . Ap=4tcoSs——5 7|. (3.3
The junctions which we will discuss here are build from 2N+2

nanographite ribbons. We first summarize a few facts of the
basic building blocks of these junctions, the zigzag ribbonNote that the bearded ribbon is not considered as a realistic
and the so-called bearded ribbf3:25:46:47 form of the nanographite ribbons. We will use it in the fol-
The main ribbon structure we will consider is the one withlowing as a unit which will allow us to create a nontrivial
zigzag edges. The zigzag ribbons are metallic for arbitrarytoy junction.”
ribbon width with an energy dispersion ndar0 as shown The main junction we will consider here is made of two
in Fig. 2@). There is a partly flat band &=0 which is a regular zigzag ribbons as lead lines on the (&ftand right
special feature of the zigzag edge in graphite. It originategR) hand side, interrupted by an intermediate bearded ribbon
from edge states which have a nonvanishing amplitude of théM), all of the same width. This device can be viewed as a
wave function on only one of the two sublattices. Conse-metal-insulator-metal junctiohsee Fig. 8a)], and we will
guently it has nonbonding character and would not disperseefer to it as junction | in the following. This junction is
at all. However, in a zigzag ribbon of finite width, the two defined by the width of the leads and the number of at-
edges provide this kind of edges states belonging to differertached bonds$ of the bearded regioM. The other two ex-
sublattices. The finite overlap of the edge state from botlamples which we analyze are junctions connecting lead lines
sides yield a mixing into bonding and antibonding configu-L andR of different width as shown in Figs.(B) and 3c).
ration. Because the overlap depends continuously on the m@he intermediate regioM for junction Il includes a tilted
mentum along the ribbon, it leads to finite dispersion forzigzag edge and for junction IlI a tilted armchair edge. These
these states with the peculiar form shown in Figa)2Note latter two designs may be more feasible as experimental de-
that the overlap is enhanced lasleviates fromr/ag where  vices. Note that the dimensions of the junction region in
the overlap is zero, because the penetration depth of the ed@enction Il and Il is entirely determined by the width of the
states increases and divergeskat2/3a,. Naturally the lead lines N, andNg.
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(a)

FIG. 3. The structure of junc-
tion (a) I, (b) Il, and (c) III.

B. Fermi energy dependence of conductance number of dips increases with increasing the number of the

We would now like to discuss the energy dependence ofttached bonds, and simultaneously _the maximum height of
the conductanc&(E) of the junctions I-IIl. The energy the conductance decreases. Interes_tlngly, even one-attached
may be considered as the chemical potential which could bBond makes a zero conductance dip. We should note that
adjusted by a gate underneath the junction. The enErgy near the bottom of the valence bar(dm top of the conduc-
=0 corresponds to the undoped system which is half-filledtion band$ which is also a single-channel region the dip
As mentioned above we use an iterative Green’s functiostructures of zero conductance does not appear. Since the
scheme to evaluate the transmission probabilities. bottom of the valence bandghe top of the conduction

In Fig. 4a), the Fermi energy dependence of the ballisticbandg has the character of ordinary free electrons, the ap-
conductance for the junction | witN=20 for the whole pearance of the zero-conductance nearO dips is related
energy region, where the number of attached bonds is 0, o the topology of the lattice and the electron spectrum
and 3. Since the system witk=0 is a perfect conductor, the around E=0. We should remark that the conductance of
ballistic conductance is proportional to the number of conjunctions connecting two nanotubes with different circumfer-
ducting channels at the Fermi energy, i.e., the number o&nce does not show this type of dip structues.
subbands at the Fermi energy. The conductance has a clearNext we show the behavior of conductance for junctions
step feature as a function of the Fermi energy. With increasH and IIl in Figs. 5 and 6, respectively. In Fig. 5, the Fermi
ing number of attached bonds, the conductance decreaserergy dependence of the conductance in junction I(dpr
due to the backward scattering. In the multichannel energyhe whole energy rangeb) the single conducting channel
region the structure of the functiogB(E) is rather smooth, region, and(c) single conducting channel region with log-
however in the single-channel region néar 0 the conduc- scale are displayed. Here we define the single-channel region
tance has strong features fot 0. Since in realistic systems as|E|<A,(N_)/2, where both leads have a single conduct-
the low-energy region close =0 which is the Fermi en- ing channe[ N, >Ng implies A,(N; ) <A,(Ng)]. Similarly,
ergy for undoped system is most important, we shall drawn the Fig. 6, we show the Fermi energy dependence of the
attention to the behavior of the conductance in the low-conductance in junction Ill. For both types of junctions, we
energy region. Th&(E) of junction | for the single-channel fix the width of the left zigzag ribbon &, = 20, the width of
region |E|<A/2 is shown in Figs. é) and 4c) with log  the right zigzag ribbon is changed Ag=16,14,10. When
scale for the Fermi energy. The characteristic feature is thél, is equal toNg, the system is a perfect conductor, so that
appearance of zero-conductance dips at the specific values thfe conductance is a step function of the Fermi energy. Since
E where the system shows complete back scattering. Thi#he maximum number of conducting channels is equal to the

(a)
10 T
ol i N=10
5 FIG. 4. The Fermi energy dependence of the
G s i transmission probability of the junction | fdg)
the whole energy regiortb) the energy region of
1=0 single conducting channel, arid) with log-scale
S 07 for the Fermi energy.

B 1§
=1

0

30 2 1 1 2 3
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Y

FIG. 5. The Fermi energy dependence of the
transmission probability of the junction Il fdg)
the whole energy regiortb) the energy region of
single conducting channel, arid) with log-scale
for the Fermi energy.

10]

width of the lead lines, the maximum value of the conduc-support edge states whose wave function resides on both
tance is equal to the width of the right zigzag ribbon, so thasides on the same sublattice. It is easy to see that the tilted
the conductance decreases with decreasing the width of rigliigzag edge indeed switches the sublattice in junction 1l. On
zigzag ribbon in the multichannel region. Interestingly, al-the other hand, in junction lll the tilted edge has armchair
though we can find sharp dips in the multichannel region ofstructure and does not have any edge state.
|E|>1 for the junction I, we cannot find such structures for
junction Il and lll. Now we turn to the low-energy transport
properties. The behavior of the conductance of the junction Il
and Il is qualitatively same in the multichannel region. The presence of edge states in the junction region seems
However, in the single-channel region né&ax 0, the behav- to be essential for the zero-conductance dips. The analysis of
ior of the conductance of junctions Il and IIl is quite differ- the electron wave functions shows that the states at energies
ent. The conductance of junction Ill is smooth even in thecorresponding to zero-conductance dips form standing waves
single-channel region, but for junction Il dip structuresin the junction, corresponding to resonant states. We present
analogous to the junction | appear. here the result for junction | withl=20 andl =6 where we

In junction I, with increasing the length of thd region,  visualize the wave function for three energies in Fig. 7. We
the number of the zero-conductance dips increases and thestrict to the wave function on only on the sublattice carry-
height of the conductance decreases. The tilted edge in juniag the edge state in the junction region. Here a clear struc-
tion Il supports an edge state which, similar to the beardedure of a standing wave emerdemte that in Figs. )—7(d)
ribbon, lies on the same sublattice as the edge state on tlge encoded the amplitude of the wave function by the size of
other side of the ribbon. Again with increasing the length ofthe circles and the sign by black and white for positive and
the M region, the conductance is lowered because of th@egative, respective]y Obviously, different energies are as-
enhanced reflection of the electron wave. sociated with different numbers of nodes or hills of the

Considering the conductance the region arobrd0 then  standing wave which we may use to label them. Note that the
we find that junction Il behaves very similar to junction I, longer the junction the more standing waves fit into it and the
while junction Il belongs to another class. The propertymore zero-conductance dips should occur in accordance with
common to junction | and Il is that the junction regions our observation. Furthermore we would like to draw the at-

C. Behavior of electron waves

(@)

20 . .

A Ng=2o ff, Mu=20

A ik (®)
.’J IE_/NR=14E: .:_

FIG. 6. The Fermi energy dependence of the
transmission probability of the junction Il fdg)
the whole energy region an@h) the energy re-
gion of single conducting channel.
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FIG. 7. (a) The energy dependence of the conductance of the junction INvitR0 andl =6. The electron waves of this junction at the
energy(b) E;, (c) E,, and(d) E;. Here the radius of a circle and the black and white of a circle means the amplitude and sign of the electron
waves.

tention to the fact that the wave function extends further intaron waves. This interference effects produce the additional
the ribbon the higher the energy. This will be important whenstructure in the spatial distribution of the electric currents
we discuss the magnetoresistance phenomenon later. As batkier the scattering region of the nanographite ribbon junc-
edges of the junction region develop a standing wave, whergons. In this section, we draw attention to the spatial distri-
the one on the bearded side is clearly more pronounced. An&ution of electric currents close to the energies of the zero-
lyzing their symmetry properties we realize that the parityconductance dips. For energies close to a zero-conductance
under exchanging andR is opposite for the standing waves resonance, a Kekulike vortex pattern appears over the
on the two sides. Consequently, we may conclude that thecattering region. The nearly regular pattern reminds of a
zero-conductance dip is a resonance phenomenon involvirfiux state. We will see that the resonant state responsible for
the interference of two states of opposite parity. We will seethe zero-conductance dip may also be considered as a stand-
below that this is indeed a crucial feature for the presence ahg wave due to the superposition of such a “flux phase” and
zero-conductance dips. its time reversed state.

A similar analysis is possible for junction Il where we In order to visualize the spatial distribution of electric
also can observe standing waves as a resonant state at therents, we study here bond current distribution. The bond
energy of zero conductance, especially at the tilted zigzagurrent flowing from sitg- to sitei is defined by
edge. The overall structure is, however, more difficult to ana-
lyze than in our toy junction I. The tilted armchair edge of
junction Il does not provide the environment for a standing
edge state, so no zero-conductance dips are expected with
single-channel region.

Thus, the appearance of zero conductance can be attrib-
uted to the formation of standing waves in the junction.In Fig. 8@), we show the distribution of the currents for
Hence theM region of the junctions plays a role of single junction I of N=20 andl =6, atE=0.049565. This energy
potential barrier for electron tunneling. In general, when thdies immediately belowE,, a zero-conductance resonance
length of the potential barrier gets longer, the energy of the&shown in Fig. Ta). The overall currents give rise to a clock-
long-wavelength standing waves in thé region become Wise vorticity.,ln the junction region we observe a clear tri-
smaller. This is the reason why the number of zero-angular Kekulepattern of the current vortex. Interestingly,
conductance dips increases with increasing the length of thé@e center of the junction region supports large circulating
M region. Of course, if the length of the! region gets currents while the net current passing through the junction is
longer, the electron transmission is reduced, resulting in théather small. We see also that the current pattern rapidly van-
decrease of the height of the conductance. ishes when we leave the junction region. When we increase
the energy slightly abov&, we find a very similar current
distribution pattern in the junction region. While the net cur-
rent is flowing in the same direction as in the previous case

The appearance of the zero-conductance resonances cine vortex pattern shows the opposite orientation and also the
be understood by the formation of standing waves due to theverall vorticity is reversed. Considering current distribution
interference effects between the incident and scattered eleat an energy far from a resonance, elf§=0.21517 with

et . N
Jiyj=|ze'zﬂﬂi,j||>(1|+H.c.). (3.9

D. Large induced current vortex
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FIG. 8. The distribution of currents in thd region of the junc-
tion | with N=20 andl =6, at(a) E=0.04956% (immediately be-
low E,), (b) E=0.05028% (immediately aboveE,), and (c) E
=0.2151T whereG=0.72636.

G=0.72636, we do not observe this type of Keklile vor-
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wherel; , means the current on thiéh bond ofpth hexago-
nal ring. In order to quantify the total of all circulating cur-
rents flowing in the junction, we take an average|‘¢f,|.
Thus this quantityv; is given by

ORVA

p

V1:<|Vp|>: (3.6)

>

Similarly, we also define the total vorticity of the junctivh
as

V2:<Vp>: -
>

(3.7

This represents the direction of the total circulating current
component of the junction. It should be noted that the sum-
mation over plaquettes is taken over rings in the junction
region M and slightly beyond including several columns of
rings in L and, because there is @oximity effectof the
current vortex pattern, i.e., the components of circulating
currents penetrate into both the left and the right lead lines.
In Fig. 9, we show the Fermi energy dependenc& pfnd
V, for the junction | withN=20 andl=6 in the single
conducting channel region. BoM, andV, vanish at each
energy of zero conductance, i.e., not only the total vorticity
V, disappears, but also no circular currents can be found in
each individual plaquetteM;=0). Moreover, the vorticity
V, changes the sign at each zero-conductance energy point.
Note that bothv,; andV, vanish in a linear dependence of
E—E, close to the zero-conductance pdi). The fact that
both vorticities go to zero at each zero-conductance energy
E, verifies the claim that the resonant state in the junction
region may be also interpreted as a standing wave as the
superposition of two flux phaselike states which are con-
nected with each other by means of time reversal operation.
This also suggests that the resonance should disappear once
time reversal symmetry is explicitly violated, for example,
by an external field. As we will show later there is indeed a
negative magnetoresistance associated with the zero-
conductance dips.

The study ofV, allows us also to observe the formation
of the Kekulelike vortex pattern easily, if we transforiv,
into momentum space,

tex pattern, but a more or less laminar flow, as can be seen in

Fig. 8(c).

In order to analyze the features of this current vortex pat-

tern in more detail we introduce the loocabrticity which is

F(k)=2 V,codkrp), (3.9
p

wherer , is the coordinate of the hexagonal ring center, and

of the currents flowing on the bonds of each hexagonal ringiy the junction. The sum runs again over all rings in the

The local vorticity on thepth hexagonal ring is given by

6
vpzi; lips (3.5

junction and a few columns beyond. In Figs(d)0and 1Qb),

we showF (k) again for junction | withN=20 and|=6
close to the zero-conductance polg. We see the Bragg

peaks at;=2m/a(1/\/3,}) [or q,=27/a(0,2)] andqs=0,
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(a) {b)
Ey E; E; E; E; Ej

10 : : : 10 : : ;
0.8
0.6

G
0.4
o FIG. 9. The Fermi energy dependence(af
o V; and(b) V,, together with the conductance, for

the junction 1 ofN=20 andl =6.
Vi

corresponding to a triangular correlation of the flux statelikethe energy approachds, i.e., V,(E)/J o E)*(E—E,) 1.
current vortex pattern depicted in Figag In Fig. 10c), we  consequently, for energieg close to a zero-conductance
show the 3D plot of thé=(k), where the pronounced trian- point, even a small net current may generate a large vorticity,
gular symmetry can be observed. We would like to mentionyithin the linear response regime. This is not a real linear
here that we have observed analogous current pattern angsponse, since the external source corresponds to the lead
properties oV, andV, for junction Il. currentd,eaq, and the actually measured currdp, includes
Finally we would like to draw attention to a remarkable g)| scattering renormalizations. Nevertheless, the relation be-

property of the vorticityV, (andV,) close the each zero- tween vorticity and transmitted current may be experimen-
conductance point. The net current passing through the junggjly verified.

tion is defined as
E. Negative magnetoresistance

Jne= (1=[r?) Jiead= [t|Jjead: 3.9

nei= (27115 Dea= [t Jias (3.9 We now consider the effect of an applied magnetic field.
whereJie,q is the incoming component of the current on the |t was anticipated above that the zero-conductance resonance
source lead line from one of the reservoirs. Close to eacBhould be suppressed by a magnetic field, since it is time
zero-conductance poir,, we find J.<(E—E,)?, a qua- reversal symmetry is a condition to realize total reflection.
dratic dependence. With the linear dependence/gt(E  This suggestion is confirmed by our numerical study. For the
—E,), the total vorticity of the system considered as a “re-case of the junction | wittN=20 andl=6, we show the
sponse” to a current through the junctiod,§) diverges as Fermi energy dependence of the conductance in Fi),11

(@)

1.0

©

1.0

vos
F(K)

0.0 0.0

B e L LT PR v |

_2n

0.0

F(k)

0.0 01 0.2 0.0 01 02
E E

FIG. 10. The Fermi energy dependence of the Fourier transform of the vonigigt (a) k=0 and(b) k=g for the junction | with
N=20 andl=6. (c) The 3D plot of the correlation of circular current pattern in Meegion close tE=E,.
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LB =8
B=2
/B =0

FIG. 11. (a) The Fermi energy dependence of the conductance of the junction IN¥#B0 andl=6 whenB=0 (bold line), B=2
(dashed ling andB=8 (broken ling, within the single channel regiofb) The effective magnetic field dependence of the conductance at
E=E,, E,, andEs. (c) The plots ofG/B? vs B.

where the magnetic fiel® is 0, 4, and 16scaled with the WhereA(N,l) is a factor which depends drand also weakly
width of the ribbon as defined in Sec).IWith a finite field ~ On N. This behavior indicates the coupling of the magnetic
the conductance becomes finite and the position of the minifield increases strongly with increasing index, which is very
mum value of conductance dips moves with increasing thdikely a consequence of the larger overlap of the edge states
magnetic field. In Fig. 1(b), the magnetic field dependence for increasinge.
of the conductance is shown at the energieg€efE,, E,,
and E; for the same junction. The indicds;, E,, andE;
specify the energy points of zero-conductance, given in Fig.
11(a). In the very strong field limit, the conductance ap-
proaches one in the whole single-channel region. Thus the |n this section we discuss the theory of a simple model
effect of the magnetic field is not only to removes the zerowhich has analogous electronic transport properties as the
conductance dips, but also to turn the system into a perfegianographite ribbon junctions on the basis of the scattering
conductor, in principle, although it is not possible reach suctmatrix theory developed by Biiker and co-workeré® The
high fields under experimental conditions. system analyzed here is the single-channel asymmetric
Figure 11c) also shows that the coefficient of the qua- Aharanov-Bohm(AB) ring connected to current leads, as
dratic term, i.e.G=a,B, increases with increasing energy shown in Fig. 13. We will adopt the notation of Ref.48. This
E,. We found a simple law for the dependence connectedystem reproduces well the qualitative properties of our rib-
with the index numben of the zero-conductance dip. The bon junctions. If the two branches in the AB ring have dif-
index numbem indicates the zero-conductance dip which is

associated witls,, state(defined in Sec. Il ¢atB=0. Plot- L,
ting I In(ag) versusn in Fig. 12, we find linear dependence - ==
where the soliddashedl line represent the data for the junc-
tion | with N=20 (N=30) for =6,8,10. Interestingly, all
data have approximately the same slope Therefore o
follows approximately the exponential behavior

IV. CONNECTION WITH ASYMMETRIC
AHARANOV-BOHM RING

n
aOZA(N,I)eX;{ 7 (3.10
-10
20 |
2 0
E_.—
~ 40 |
50 L
_60 L
o 1 2 3 4 5 6 I .
n FIG. 13. Schematic figure of Aharanov-Bohm ring, where the
definition of the amplitudes of wave functions are written. The
FIG. 12. Scaling properties of magnetoresistatea®e text length of the uppeftlower) branch of the ring id ;(L,).
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ferent length or different transmission probabilities, zero-Thus we can rewritex and b as function ofe, e.g.,a.=
transmission resonances appear as a function of energy. A3(\/1—2e—1) andb. =+ 3(J1—2e+1).

current through the device generates circulating currents in Now we determine the transmission amplitude and the
the ring which change sign at each zero-conductance reseirculating currents in this system for the arbitrary value of
nance. The application of an external field leading to a finiteThe boundary condition are;=1 anda,=0, i.e., an inci-
flux through the ring yield a negative magnetoresistance aflent wave from the left lead line. It is straightforward to
the zero-conductance resonance. Finally, we also find that thgalculate the amplitude of the transmitted wave

at the zero-conductance resonance that two branches of the

ring possess electron wave function of opposite parity. All , i €h
these features are common with the nanographite ribbon ar=—¢ 1m, (4.6
junctions. —

Following the theory developed by Biker, we consider \here
the single-channel electron transport through the AB ring as
shown in Fig. 13, where the upper and lower branches have 4
different lengthsL; andL,, respectively. The circumference h=de(E)[b—a,1][1E
isL=L;+L,=(1+R)L4. The notation for the amplitudes of _ ,
wave functions on the each branch are given in Fig. 13. Wavith IT=t,e™'%t;tje”'1t;—1. We have generalized the
assume that each branch has only one conduction channgkoblem here including the magnetic fldxthrough the loop
The uppeflowen-branch has a scatterer expressed by thevith 6=6,+ 6,=27®/P,. The phase shifts due to the
transfer matrixt; (t,), which relates the amplitudes to the gauge field in the upper and lower branch ag=6/(1
left to the amplitudes to the right of the scatterers. TheserR) and 6,=R6/(1+R), respectively. The link matrix,

b—a

gt .7

transfer matrices are defined as entering inll is defined as
’ * —r¥/t* ’ ; bz_ a.2 a
B, A 14 sl i 2 :t{ﬁf} 1 Bf | s
Bé __l Bl - _rlltl 1/t1 Bl ( ) ) Y2 - BZ b —a 1 BZ
It is also straightforward to obtain the amplitudes in the two
and branches as follows:
, * e , ! b—a
Y1 L v ~ 1435 rs/t; ¥h w2 Bl} __ %H—l L (4.9
,yi _2 Y2 —I’2/'[2 1/t2 Y2 ! : ﬁl -
. - b—a
wheret;=TY%i% (i=1,2) is the transmission amplitude of 7} = \/—;thl[ } (4.10
the scatterer,T; the transmission probability, ang,; the 71 b -1

phase shift of the transmitted wave=<(1 and 2 indicating with TI=t; 2 %, 1t vzt 1 —1
: AN = -1 -2 =
upper an(_j lower branche_s, respectiyely (r;) is the re_flec- We can then express the transmission amplitude including
tion amplitude. It is sufficient for our purpose to consider they,q finite magnetic flux
case where; =0, i.e., perfect transmissiom(=1). '

Now let us consider the junction between lead and ring. ie(sing,+€?sing,)
The amplitudes of the three outgoing waves are connecteda,(P,e)= 5 > —,
with the three incoming ones via ax® scattering matrix a“cosy¢+bcosf—(1—e)cosg+iesing
(which depends on three parameters 8hly (4.11

where ¢= ¢+ ¢, and y=(1—-R)/(1+R). It should be

@ @ —(a+h) €2 €Y2| @ noted thatg, and ¢, can be written as
B |_ s Bl_ el a b B , 1 R
Y| 7|y el2 b all? b1=77r® and ¢o=7 ¢ (4.12

43 The transmission probabilitf (®, €) = | a(P, €)|?, propor-
where e (0<e=<1/2) is the key parameter determining the tional to the conductance, shows now zero-conductance dips
coupling between the ring and a lead. Note that the m&trix in the absence of a magnetic field<€0). The transmission
is unitary because of the current conservation and symmetrig€ros appear fop= ¢, given by
because of the time-reversal invariance. The probaljiity-

rent conservation requires that $o1=2Mm OF ¢o1=(2m+1)mly, (4.13
wherem is an integer.
(a+h)?+2e=1, (4.9 The resonant behavior of the transmission probability is
determined by the poles of the transmission amplitude Eq.
a’+b’+e=1. (4.5  (4.11. In order to determine the poles of E(.11), we
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(a)
E,
1.0
08}
G 06 FIG. 14. Numerical results for
04 the junction | withN=20 and|
=6: (a) the contour plot of the ab-
02 solute value of the transmission
00 amplitude in the complex energy
0.04 L plane. The zero-pole pairs appear
at each zero-transmission energy.
[ 0.02 (b) The energy dependence of the
S 0 phase of the transmission.
0.02
0.04

rewrite ¢ as¢= ¢, +i¢; . The real and imaginary part of the  In Fig. 14&), we show the contour plot of the absolute
phase¢ are determined by the following two equations:  value of the transmission amplitude in the complex energy
plane for the junction | witiN=20 andl =6. We can clearly
2 siny¢, sinhyg,— sing,[e?—(1—2¢e)e” ¢]=0, find the zero-pole pair at each zero-conductance energy
(4.19 points. Thus we consider that the nanographite ribbon junc-
tion systems corresponds to the asymmetric AB-ring system

a’cosy¢, coshye;+b? cosé of strong coupling limit €— 3). In the strong coupling limit,
we can rewrite the transmission probability as
~ Lcosg[edi+(1-2€e)e #]=0. 4.15 P Y

We can find that one resonance solution is associated with 112 4|sin g, + € sin g,|?
two poles in complexp plane. T= aé( e— E) = 5 —.

In the asymmetric case, i.ey#0(R# 1), it is not easy to (CoSy¢+ cosf—2 cosg)"+4 siné
deal with Egs.(4.14) and (4.15 in a simple analytic way. (4.16
The numerical analysis shows that two types of solutions of
zero transmissiong, ; and ¢g ,, have the following differ- Since the zero-conductance resonances can be character-
ent characteristic features. ized by the zero-pole pair on the complex energy plane, one

(i) = ¢, solution. This solution satisfies EGd.11) for ~ zero-conductance resonance behavior can be written by the
arbitrary y, and gives a zero-transmission resonance whicliollowing Brite-Wigner form:
gives in general one zero point and two poles in compex
plane. In the strong coupling limit af=1/2 with y# 1, one
of two poles goes to infinity, so that the resonance can be tew(E)=1t(E) R—
characterized by a zero-pole pair in the complgxplane, E—(Ep—il’)
resulting in the zero-conductance resonance. On the other,
when the ring is symmetric i.ey=0(R=1) for arbitrary ~ wherel is the widths of the resonances, andE, are the
coupling, the zero-point and one of two poles are canceled senergy of zero and pole, respectively. In genekgl,is not
that only one pole is left on the complek plane. Then the equal toE,. WhenEy=E, the resonance have the symmet-
feature of the resonance is usual resonant transmission duerio Lorentzian form. It is instructive to consider the behavior
one pole. Thus the, ; solution gives the condition of anti- of the phase of the transmission coefficiefi,,, when
resonance for the asymmetric AB-ring system. |tew|? passes through zero. The phase is defined as

(if) ¢= ¢o solution. This solution appears when the ring
is asymmetric, i.e.y# 0. Although this solution also gives a
zero point and poles, the zero point and poles are always Gy =tan *
degenerate on the real axis for arbitrapy Therefore the
zero-transmission resonance of this solution has different
character to that of thepy, solution. The degeneracy of It is easy to confirm that the phase of the transmission am-
poles and zero point is not lifted by the variation of the plitude with the form of Eq(4.17) jumps atE=E, (not E
coupling parametee. =E,) by 7.

0

(4.17

Re(tgw) 418

|m(th)}
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In Fig. 14b), the phase of the transmission is depicted,
where clearr phase jumps are observed at each conductance xp(x)=|
energy points. It should be noted that recently the behavior
of the phase of transmission coefficient has attracted much - . . . +
interes'?ég‘52 in the context of the experiments by Yacoby where the origin of is the left junction ank™=k= ¢/L.
etal®® and Schusteet al® It is also mentioned that the /MOINEr expression of the wave functions is
appearance of zero-transmission resonances accompanied - o
with the zero-pole pair can be seen not only in the asymmet- . [ﬁée‘k X+ Be K X o=x=<L,,

X =

- -
Blelk X+Bie"k X _ngxg(),

(4.21

yiek e 0=x=Ly,

ric AB ring system, but also in the quantum wire system with ikt k% e (4.22
an attached resonatdy;®? Thus, the electron transport Y287 T yae —Lo=<x<0,
through the nanographite ribbon junctions is deeply con

nected to both of them. we use the former wave functions. F@p=2ms, we can

Next we consider the circulating current flowing in the ; ; . :
) ) easily derive the asymptotic form of the wave functions near
AB ring. The electric current on the upp@ower) branchJ, x:Oy ymp

(J2) is given by|B|?=|B1|? (| y1l>—[71]%), so that we de-

fine the vorticity /xg) of electric currents through the AB ¥(8)=(A%+ A" %)%+ (A2+A~?)§, forthe upper branch ,
ring asJ; +J,. After the simple mathematical manipulations, 4.23
we obtain the vorticityV g as

Where the origin ok is the right junction. In the following,

V(- 8)=(A2+A2)2

Vag=J;+J
ABTVLT Y2 —(AZ+A72) s, for the lower branch (4.24
2eb sing[siny¢+(a+b)sing]

— _ and neaxx=—L; andL,,
[a? cosyd+b? cosd—(1— €)cosp]?+ €2 sir? ¢

V(—L,+8)=2(A—A"1)s, forthe upper branch,(4.25

(4.19
In the strong coupling limit é—1/2), we can rewrite the Y(L2—8)=—2(A—A"1)8, for the lower branch, (4.26
above equation as follows: where$ is infinitesimal valueA= €™, We should note that
at the energy of the zero-transmission, ig= ¢, the wave
( 1) 8 sing siny¢ function form the standing wave along the ring, in which the
Vag| €= 5= . : node of wave function appears at the right junction. We can
he 2] [cosy¢p+ cosf—2 cosp]?+4 sirf ¢ PP gntJ

also find that the wave function on the upper branch mas
(4.20 nodes, and the the wave function on the lower branch has
We find that the vorticity/ 55 changes its sign at the energies (m+1) nodes, so that the wave functions of the upper
of zero-transmission resonances, ig= ¢,. At the energies (lower) branch has the opposite parity at the energies of zero
of zero-transmission, the vorticity .5 becomes zero, be- transmission. Actually looking at Fig. 7, in the nanographite
cause no circulating currents can flow at the energies of zeraibbon junctions, the wave function along the zigzag edge
conductances. Since the expression of the vorti¢jty also  and the wave function along the bearded edge have always
has the resonance features, the vorticity becomes strongdifferent parity.
around the energies of zero-transmission resonances. TheseThe zero-conductance resonance is a consequence of the
behaviors of the vorticity are consistent with our numericaldestructive time-reversal interference. The application of
calculation results on the nanographite junctions. magnetic field can destroy these zero-transmission reso-
Now we consider the parity of the wave functions at thenances, resulting in the negative magnetoresistances. For the
energies of zero transmission. In order to discuss the behaweak magnetic field limits §<1), we can easily derive the
ior of the wave functions in the AB ring, let us construct the magnetic field dependence of the transmission probability as
wave functions in the AB-ring as follows: follows:

sin(myr)

T(0)=
a’cog2mym)+b’+e—1

6°+0(6%) at ¢po=2mnr, (4.27

_ co[(2m+ 1) 7/2y]
{a2+b%— (1—e)cog (2m+ 1) w/ y]}%+ € sirf[ (2m+ 1) 7/ y]

T(6) 6°+0(6°%), at po=(2m+1)7wly. (4.289
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For both cases, the zero transmission is removed in the formointed out that the single-channel transport through the nan-
of 62. ographite ribbon junctions can be connected to the physics of
In the summary of this section, we have shown the conthe asymmetric Aharanov-Bohm ring system. The zero-
nection between the electron transport through nanographinductance resonance is the consequence of the destructive
ribbons and the electron transmission through the asymmeinterference effects between two conducting-channels in the
ric Aharanov-Bohm ring system. We could understand thascattering region which is split from the single-conducting
the zero-conductance resonances are the interference eff@ttannel of edge states. The analysis in the complex energy
of two transmission paths split in the scattering region of theplane shows the Brite-Wigner form of E@.17). This means
nanographite ribbon junctions. The interference effects cathat the zero-conductance resonance can be viewed as so-
be visualized by the formation of the standing waves whosealled Fano resonanc&§which are known to occur when
parity is different at two edges in the junctions, and the cir-two scattering channels are available, one corresponding to a
culating currents with Kleule-like vortex pattern. The results continuum of states and the other to a discrete quasibound
presented here will be the basis of the phenomenologicatate. It also is known that the Fano resonances can be oc-
theory on nanographite junction systems remained for futureurred in the quantum wire with tastub resonatot*® Thus,
study. the single-channel electron transport through nanographite
ribbon junctions has the similarities not only to the asymmet-
ric Aharanov-Bohm ring, but also to the quantum wire with a
V. SUMMARY AND DISCUSSION t-stub resonator.
) ) . The zero-conductance resonances are the consequence of
This paper presented the electronic transport propertiege time-reversal symmetry of the system. The application of
through nanographite ribbon junctions connecting two Zig-, magnetic field removes these zero-conductance dips, yield-
zag ribbons with same or different width by the Landauer-ing 5 nronounced negative magneto resistance. Since carbon
Buttiker approach using a tight-binding model. The zigzagnanotybes show the large positive magnetoresistance, the

shape of graphite edge provide a nonbonding edge localizghgative magnetoresistance in nanographite systems is con-
state aE=0. A single edge state cannot contribute the elecy, st

tron transport due to this nonbonding character, however, in Theoretically, there is a deep connection between the ap-
the zigzag ribbon systems the bonding and antibonding corsearance of flux states and the problem of chiral anomaly in
figuration between two edge states can provide a single COlRe (2+1)-dimensional system of fermions. Semefibfiave
ducting channel. Our numerical analyses have shown that ﬂ}ﬁ‘ointed out that th& andK’ point of graphite have a dif-
electrical conductance of nanographite ribbon junctions Crugerent chirality. This chiral feature of graphite lattice appears
cially depends on their morphology and edge shapes. if there is an imbalance between the two sublattices of graph-
In the single-channel conducting region, the Fermi energye |attice, e.g., by different onsite potential. The edge states
_depe_ndence of el_ectrlcal conductgnce of nanographite ribbogy, zigzag edges are a consequence of this imbalance, since
junctions shows rich structures with sharp zero-conductancge most outer sites belong to a single sublattice. The abrupt
dips. We analyzed the origin of the zero-conductance dibghange of the sublattice on the edge as it occurs for the
from the behavior of electron waves and electric currentspanagraphite junctions yields the boundary condition to form
Each zero-conductance resonance can be associated withi gegenerate flux states in the scattering-region of the junc-
quasibound state in the scattering region of the junctionjons, From our numerical analysis no further obvious rules
yielding the formation of standing waves. It is also foundfor the creation of localized flux states can be derived. The
that in the scattering region the electron waves are split intgjetailed analysis between chiral features of graphite and the
two edge localized electron waves which have opposite patjyx states will be given elsewhere.
ity each other. o Since the nonmagnetic potential impurity or a lattice va-
Furthermore, when the energy of the incident electrorcancy can also induce the imbalance between sublattices,
waves is close to the energy of zero conductance resonancggese lattice defects can induce the conductance zeros ac-
the electric currents form the circulating currents with acompanied with the flux staté&>% The energy levels of
K-Gkule-llke vortex pattern in the SCatterlng re_glon. This elec-Zero conductances Corresponds to the quasibound state en-
tric current behaviors resemble flux states in the sense thakgy |evel. The energy levels of the conductance zeros de-
they show a strong current-current correlation. The fluxpends on the strength of overlapping between edge states and

states strongly appears in the scattering region, and rapidihe impurity state. Quantitative analysis is given elsewhere.
decreases with leaving from the scattering region. This cir-

culating currents changes the its direction as we cross the
energies of the zero-conductance dip. Therefore, the zero-
conductances are caused by the superposition of two flux
states with opposite chirality, resulting in the formation of In conclusion, we numerically analyzed the electrical
standing waves. transport properties of nanographite junctions based on the
We have presented not only the numerical analysis, butight-binding model. We found that the conductance of vari-
also the phenomenological theory for the zero-conductanceus junctions having zigzag edges shows a very rich struc-
resonances associated with the electric current vortex. It wasire as a function of the energghemical potential with

VI. CONCLUSION
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