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Electronic transport properties of nanographite ribbon junctions
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The electronic transport properties through junctions connecting nanographite ribbons of different or same
width are investigated by means of the Landauer-Bu¨ttiker approach using a tight binding model. Graphite
ribbon with zigzag boundary has a single conducting channel of edge states in the low-energy regime. The
electrical conductance as a function of the chemical potential shows a rich structure with sharp dips of zero
conductance. This perfect reflectivity originates from twofold degenerate resonant levels, i.e., flux states visible
in the formation of strong current-current correlation with a Kekule´-like vortex pattern. At each energy of
conductance-zeros, this degeneracy yields the formation of standing waves in the scattering region of the
junctions. The origin of zero-conductance resonances is also discussed by the standard scattering matrix
approach, and the similarities between the nanographite ribbon junctions and the asymmetric Aharanov-Bohm
ring connected to current leads are pointed out. Since the zero-conductance resonances are connected with the
time-reversal symmetry of the system, the application of a magnetic field removes these zero-conductance dips,
yielding a pronounced negative magnetoresistance.

DOI: 10.1103/PhysRevB.64.125428 PACS number~s!: 72.10.2d, 72.80.Rj, 73.23.2b, 73.20.2r
s
a

de
a
in
m
r-

la
, t
he
in
th

wa

e
-

e
d
et

bo
w
ct
h
th
en
ph
n

ermi
ing

ytic
n-
rm-

s of

ge
in

ively
mi

ties
at

etic
Be-
ingle
ow-
gle-
n,

two
na-

dge
ems
e
u-

is

in
ro-
al

nc-
rgy
I. INTRODUCTION

Electron transport through nanometer-sized structure
one of the recent fundamental issues in the mesoscopic
nanoscopic physics.1 The motivation for this type of study is
the development of atomic or molecular scale electronic
vices, which not only could increase the device density in
integrated circuit enormously, but also the operation pr
ciples of a transistor could be fundamentally different fro
ordinary electronic devices.2 Recently, nanometer-sized ca
bon systems such as carbon nanotubes3,4 have attracted much
attention for the possibilities as carbon-based molecu
electronic devices. In nanometer-sized carbon systems
geometry ofsp2 carbon networks has much influence on t
electronic states near the Fermi level. Studies with scann
tunneling microscopy and spectroscopy have confirmed
connection between the electronic states of the single
carbon nanotubes~SWCN’s! and their geometry.5 Recent ex-
periments can provide the electrical transport measurem
of individual SWCN’s,6–10 the observation of quantized con
ductance of multi-walled carbon nanotubes,11 and the fabri-
cation of SWCN junctions sandwiched by magnetic or sup
conducting materials.12,13 These experiments initiate
theoretical studies devoted to effects of nonmagn
impurity,14 electron correlation,15 and topological
defects.16–20

Not only the closed carbon molecules such as car
nanotubes and fullerene molecules, but also systems
open boundaries also display unusual features conne
with their shape. Fujita and co-workers have pointed out t
the existence of graphite edges strongly affects
p-electronic states in nanometer-sized graphite fragm
~nanographites!.21 There are two basic edge shapes in gra
ite, armchair and zigzag. For the model of graphite ribbo
one-dimensional graphite lattices of finite width,21–34 it was
shown that ribbons with zigzag edges~zigzag ribbon! pos-
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sess localized edge states with energies close to the F
level.21–25 These edge states correspond to the non-bond
molecular orbital as can be seen by examining the anal
solution for semi-infinite graphite with a zigzag edge. In co
trast, edge states are completely absent for ribbons with a
chair edges. The edge states were analyzed in term
nearest-neighbor tight binding models21–25and density func-
tional approach.35 We have also pointed out that the ed
states play important roles in magnetic properties
nanometer-sized graphite systems, because of their relat
large contribution to the density of states at the Fer
energy.21–25,27

In this paper, we present the electron transport proper
through nanographite ribbon junctions, in which we find th
the edge states play important roles not only for magn
properties, but also for electron transport phenomena.
cause of the nonbonding character of edge states, a s
edge state cannot contribute to the electron transport. H
ever, in zigzag ribbons, the edge states can provide a sin
channel for electron conduction in the low-energy regio
due to the bonding and antibonding interaction between
edge states which overlap from both edges. In order to a
lyze the electronic transport properties responsible for e
states, we consider the nanographite ribbon junction syst
which connect two zigzag ribbons with different or sam
width. The electrical conductance of the junctions is calc
lated through the Landauer-Bu¨ttiker formula based on a
simple tight binding model, in which the conductance
written in terms of the transmission coefficient.1,36–38We cal-
culate the transmission coefficient through the junctions
terms of the recursive Green’s function method which p
vides high efficiency and accuracy for numeric
calculations.39,40

Conductance of nanographite ribbon junctions as a fu
tion of the Fermi energy shows rich structures in the ene
region corresponding to single channel transport.23,41The re-
©2001 The American Physical Society28-1



th
or
an
liz
th
wi
in
es
th
th

a
m

nc
e.
ph
el
o

fly
n

w
n

or
fl

di
th
th

as
a
nt

s.
b-
in
n
te

t

th
r

e

ing
he

f

of a
the
we
ron

f

e-
the

ght
tron

d
the
o-

c-

KATSUNORI WAKABAYASHI PHYSICAL REVIEW B 64 125428
markable feature in the behavior of the conductance is
appearance of sharp zero-conductance dip structures c
sponding to total reflection resonances. These conduct
zeros are associated with the presence of resonant loca
states in the junction region which resemble flux states in
sense that they show a strong current-current correlation
a Kekulé-like vortex pattern. The resonant state is a stand
wave resulting from the superposition of two flux stat
which are the time reversed of each other. We also show
zero-conductance dips can be well interpreted in terms of
result of an asymmetric Aharanov-Bohm~AB! ring con-
nected to current leads. Since these resonances are intim
connected with the time-reversal symmetry of the syste
the application of a magnetic field removes the conducta
zeros, yielding a pronounced negative magnetoresistanc
this paper, we emphasize that edge states in nanogra
ribbons lead to electronic transport properties distinctiv
different from those found in usual quantum wires or carb
nanotubes.

We organize this paper as follows. In Sec. II, we brie
introduce our model for the calculation for the electrical co
ductance of nanographite ribbon junctions. In Sec. III,
analyze the problem of the nanographite ribbon junctio
and their zero-conductance resonances from the behavi
electron waves and electric currents. The response of the
states to the net current through the junctions is also
cussed. In Sec. IV, we show the connection between
transport properties of nanographite ribbon junctions and
asymmetric AB ring connected to current leads, on the b
of the standard scattering matrix approach. The summary
discussion are given in Sec. V. The conclusions are prese
in Sec. VI.

II. MODEL

We use the Landauer-Bu¨ttiker formula1,36–38 in order to
evaluate the conductance through nanographite junction
order to describe thep-electronic states of nanographite ri
bon and junctions, we use a nearest-neighbor tight-bind
model, which is successfully used in the studies of fullere
molecules, carbon nanotubes, and carbon-rela
materials.42–44 The tight-binding Hamiltonian is defined by

H5(
i , j

t i , j u i &^ j u, ~2.1!

wheret i , j is transfer integral andu i & is a localized orbital on
site i. Throughout this paper, the transfer integrals are se
t between all the nearest neighbor sites and otherwise to 0
a simplicity, because we aim at the intrinsic difference in
transport properties originating from the topological natu
of systems. The transfer integralt is used as the unit of the
energy, and estimated about 3.03 eV.44

The magnetic fieldB perpendicular to the graphite plan
is incorporated in the transfer integralt i j by means of the
Peierls phase45 defined ast i j →t i j e

i2pu i , j , whereu i , j is given
by the line integral of the vector potential from sitei
to site j,
12542
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u i , j5
e

chEi

j

dl•A. ~2.2!

The magnetic flux through the areaS in units of the flux
quantumF05ch/e is

1

F0
E dS•B5

e

ch R dl•A5 (
areaS

u i , j . ~2.3!

We define the magnitude of the magnetic flux pass
through a single hexagon ring of graphite in the unit of t
quantum flux asu. The u is given asu5BShex/F0, where
B5uBu and Shex53A3a0

2/2. The Shex is the single hexagon
ring has the area, anda051.42 Å is the lattice constant o
graphite. Thenu51 corresponds to 7.93104 T. The cyclo-
tron radius~ magnetic length!, l m , is given by

l m5Ac\

eB
. ~2.4!

In ribbon-shaped systems, the ratio between the width
ribbon and cyclotron diameter effectively characterizes
electronic states of ribbon in a magnetic field. Therefore,
define the ratio between the ribbon width and the cyclot
diameter as the effective magnetic fieldB̃ for a convenience,
which is given by

B̃5S W

d D 2

, ~2.5!

whered52l m andW means the ribbon width in the units o
the lattice constant defined for zigzag ribbons as23,25 W
53Na0/22a0, where N is the number of zigzag lines in
zigzag ribbons. Note thatB̃ is proportional toB.

An example of the nanographite ribbon junctions is d
picted in Fig. 1. The shaded central region corresponds to
scattering region, and the zigzag ribbons of the left and ri
parts correspond to lead lines. We assume that the elec
wave comes in out of thenth channel of the left lead line an
transmit, passing through the scatter of central region, to
mth channel of the right lead line with the transmission c

FIG. 1. An example configuration of nanographite ribbon jun
tions. The shaded central region is the scatter. Lead lines~zigzag
ribbons! are attached on the both of the scatter.
8-2
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ELECTRONIC TRANSPORT PROPERTIES OF . . . PHYSICAL REVIEW B 64 125428
efficient tmn . Since the transmission probabilityTmn is the
square of transmission coefficients, i.e.,Tmn5utmnu2, electri-
cal conductance can be evaluated by the Landauer-Bu¨ttiker
formula

G~E!5
e2

p\ (
m,n

Tmn~E!5
e2

p\ (
m,n

utmn~E!u2. ~2.6!

Here e2/p\ is quantum conductance. In this paper, we u
the quantum conductance as the unit of conductance.
transmission coefficients and the electron waves in the s
terer are calculated in terms of the the recursive Green fu
tion method, which provides high efficiency and accuracy
numerical calculations.39,40

III. SINGLE-BARRIER NANOGRAPHITE RIBBON
JUNCTIONS

A. Design of single-barrier nanographite ribbon junctions

The junctions which we will discuss here are build fro
nanographite ribbons. We first summarize a few facts of
basic building blocks of these junctions, the zigzag ribb
and the so-called bearded ribbon.21,23,25,46,47.

The main ribbon structure we will consider is the one w
zigzag edges. The zigzag ribbons are metallic for arbitr
ribbon width with an energy dispersion nearE50 as shown
in Fig. 2~a!. There is a partly flat band atE50 which is a
special feature of the zigzag edge in graphite. It origina
from edge states which have a nonvanishing amplitude of
wave function on only one of the two sublattices. Con
quently it has nonbonding character and would not dispe
at all. However, in a zigzag ribbon of finite width, the tw
edges provide this kind of edges states belonging to diffe
sublattices. The finite overlap of the edge state from b
sides yield a mixing into bonding and antibonding config
ration. Because the overlap depends continuously on the
mentum along the ribbon, it leads to finite dispersion
these states with the peculiar form shown in Fig. 2~a!. Note
that the overlap is enhanced ask deviates fromp/a0 where
the overlap is zero, because the penetration depth of the
states increases and diverges atk52p/3a0. Naturally the

FIG. 2. The band structure nearE50 of ~a! zigzag ribbons and
~b! bearded ribbons.
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dispersion depends on the ribbon widthN ~number of zigzag
lines from one side to the other!, and can be approximated b

Ek562tNDk
N21F12 cosS ka0

2 D G , ~3.1!

for k close top/a0, whereDk52 cos(ka0/2). Thus the over-
lap of the two edge states gives rise to a single conduc
channel for energies close toE50. Only at exactlyE50 the
vanishing group velocity yields no conducting chann
Apart from theE50, there are many higher energy stat
providing multichannel conductance. We define the sing
channel energy region as the energy gap to the lowes
multichannel statesDz

s in Fig. 2~a!

Dz
s54t cosF N21

2N11
pG . ~3.2!

In the following our main interest lies in the single-chann
region.

Next let us introduce the so-called bearded ribbon. T
corresponds to a zigzag ribbon where on one side additio
bonds ~beard! is attached to edge. Also the bearded ed
possesses a zero-energy nonbonding state. The main d
ence to the ordinary zigzag ribbon lies in the fact that h
the edge states on both sides~one zigzag and one bearde
edge! are now located on the same sublattice. Hence, t
overlap will not mix them and we do not end up with
bonding and antibonding configuration. As shown in F
2~b! the edge state provide an entirely flat band. This ba
does not contribute to transport, since the group velocity
zero. We may consider this ribbon as insulating within t
energy range defined by the gap

Db54t cosF N

2N12
pG . ~3.3!

Note that the bearded ribbon is not considered as a real
form of the nanographite ribbons. We will use it in the fo
lowing as a unit which will allow us to create a nontrivia
‘‘toy junction.’’

The main junction we will consider here is made of tw
regular zigzag ribbons as lead lines on the left~L! and right
~R! hand side, interrupted by an intermediate bearded rib
(M ), all of the same width. This device can be viewed a
metal-insulator-metal junction@see Fig. 3~a!#, and we will
refer to it as junction I in the following. This junction is
defined by the width of the leadsN and the number of at-
tached bondsl of the bearded regionM. The other two ex-
amples which we analyze are junctions connecting lead li
L andR of different width as shown in Figs. 3~b! and 3~c!.
The intermediate regionM for junction II includes a tilted
zigzag edge and for junction III a tilted armchair edge. The
latter two designs may be more feasible as experimental
vices. Note that the dimensions of the junction region
junction II and III is entirely determined by the width of th
lead lines,NL andNR .
8-3
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FIG. 3. The structure of junc-
tion ~a! I, ~b! II, and ~c! III.
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B. Fermi energy dependence of conductance

We would now like to discuss the energy dependence
the conductanceG(E) of the junctions I–III. The energy
may be considered as the chemical potential which could
adjusted by a gate underneath the junction. The energE
50 corresponds to the undoped system which is half-fill
As mentioned above we use an iterative Green’s func
scheme to evaluate the transmission probabilities.

In Fig. 4~a!, the Fermi energy dependence of the ballis
conductance for the junction I withN520 for the whole
energy region, where the number of attached bonds is 0
and 3. Since the system withl 50 is a perfect conductor, th
ballistic conductance is proportional to the number of co
ducting channels at the Fermi energy, i.e., the numbe
subbands at the Fermi energy. The conductance has a
step feature as a function of the Fermi energy. With incre
ing number of attached bonds, the conductance decre
due to the backward scattering. In the multichannel ene
region the structure of the functionG(E) is rather smooth,
however in the single-channel region nearE50 the conduc-
tance has strong features forlÞ0. Since in realistic system
the low-energy region close toE50 which is the Fermi en-
ergy for undoped system is most important, we shall dr
attention to the behavior of the conductance in the lo
energy region. TheG(E) of junction I for the single-channe
region uEu,Db/2 is shown in Figs. 4~b! and 4~c! with log
scale for the Fermi energy. The characteristic feature is
appearance of zero-conductance dips at the specific valu
E where the system shows complete back scattering.
12542
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number of dips increases with increasing the number of
attached bonds, and simultaneously the maximum heigh
the conductance decreases. Interestingly, even one-atta
bond makes a zero conductance dip. We should note
near the bottom of the valence bands~the top of the conduc-
tion bands! which is also a single-channel region the d
structures of zero conductance does not appear. Since
bottom of the valence bands~the top of the conduction
bands! has the character of ordinary free electrons, the
pearance of the zero-conductance nearE50 dips is related
to the topology of the lattice and the electron spectr
around E50. We should remark that the conductance
junctions connecting two nanotubes with different circumf
ence does not show this type of dip structures.19

Next we show the behavior of conductance for junctio
II and III in Figs. 5 and 6, respectively. In Fig. 5, the Ferm
energy dependence of the conductance in junction II for~a!
the whole energy range,~b! the single conducting channe
region, and~c! single conducting channel region with log
scale are displayed. Here we define the single-channel re
as uEu,Db(NL)/2, where both leads have a single condu
ing channel@NL.NR implies Db(NL),Db(NR)]. Similarly,
in the Fig. 6, we show the Fermi energy dependence of
conductance in junction III. For both types of junctions, w
fix the width of the left zigzag ribbon atNL520, the width of
the right zigzag ribbon is changed asNR516,14,10. When
NL is equal toNR , the system is a perfect conductor, so th
the conductance is a step function of the Fermi energy. S
the maximum number of conducting channels is equal to
he
FIG. 4. The Fermi energy dependence of t
transmission probability of the junction I for~a!
the whole energy region,~b! the energy region of
single conducting channel, and~c! with log-scale
for the Fermi energy.
8-4



he

ELECTRONIC TRANSPORT PROPERTIES OF . . . PHYSICAL REVIEW B 64 125428
FIG. 5. The Fermi energy dependence of t
transmission probability of the junction II for~a!
the whole energy region,~b! the energy region of
single conducting channel, and~c! with log-scale
for the Fermi energy.
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width of the lead lines, the maximum value of the condu
tance is equal to the width of the right zigzag ribbon, so t
the conductance decreases with decreasing the width of
zigzag ribbon in the multichannel region. Interestingly,
though we can find sharp dips in the multichannel region
uEu.1 for the junction I, we cannot find such structures f
junction II and III. Now we turn to the low-energy transpo
properties. The behavior of the conductance of the junctio
and III is qualitatively same in the multichannel regio
However, in the single-channel region nearE50, the behav-
ior of the conductance of junctions II and III is quite diffe
ent. The conductance of junction III is smooth even in t
single-channel region, but for junction II dip structur
analogous to the junction I appear.

In junction II, with increasing the length of theM region,
the number of the zero-conductance dips increases and
height of the conductance decreases. The tilted edge in j
tion II supports an edge state which, similar to the bear
ribbon, lies on the same sublattice as the edge state on
other side of the ribbon. Again with increasing the length
the M region, the conductance is lowered because of
enhanced reflection of the electron wave.

Considering the conductance the region aroundE50 then
we find that junction II behaves very similar to junction
while junction III belongs to another class. The prope
common to junction I and II is that the junction region
12542
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support edge states whose wave function resides on
sides on the same sublattice. It is easy to see that the t
zigzag edge indeed switches the sublattice in junction II.
the other hand, in junction III the tilted edge has armch
structure and does not have any edge state.

C. Behavior of electron waves

The presence of edge states in the junction region se
to be essential for the zero-conductance dips. The analys
the electron wave functions shows that the states at ene
corresponding to zero-conductance dips form standing wa
in the junction, corresponding to resonant states. We pre
here the result for junction I withN520 andl 56 where we
visualize the wave function for three energies in Fig. 7. W
restrict to the wave function on only on the sublattice car
ing the edge state in the junction region. Here a clear str
ture of a standing wave emerges@note that in Figs. 7~b!–7~d!
we encoded the amplitude of the wave function by the size
the circles and the sign by black and white for positive a
negative, respectively#. Obviously, different energies are a
sociated with different numbers of nodes or hills of t
standing wave which we may use to label them. Note that
longer the junction the more standing waves fit into it and
more zero-conductance dips should occur in accordance
our observation. Furthermore we would like to draw the
he
FIG. 6. The Fermi energy dependence of t
transmission probability of the junction III for~a!
the whole energy region and~b! the energy re-
gion of single conducting channel.
8-5
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FIG. 7. ~a! The energy dependence of the conductance of the junction I withN520 andl 56. The electron waves of this junction at th
energy~b! E1, ~c! E2, and~d! E3. Here the radius of a circle and the black and white of a circle means the amplitude and sign of the e
waves.
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tention to the fact that the wave function extends further i
the ribbon the higher the energy. This will be important wh
we discuss the magnetoresistance phenomenon later. As
edges of the junction region develop a standing wave, wh
the one on the bearded side is clearly more pronounced. A
lyzing their symmetry properties we realize that the par
under exchangingL andR is opposite for the standing wave
on the two sides. Consequently, we may conclude that
zero-conductance dip is a resonance phenomenon invol
the interference of two states of opposite parity. We will s
below that this is indeed a crucial feature for the presenc
zero-conductance dips.

A similar analysis is possible for junction II where w
also can observe standing waves as a resonant state a
energy of zero conductance, especially at the tilted zig
edge. The overall structure is, however, more difficult to a
lyze than in our toy junction I. The tilted armchair edge
junction III does not provide the environment for a standi
edge state, so no zero-conductance dips are expected
single-channel region.

Thus, the appearance of zero conductance can be a
uted to the formation of standing waves in the junctio
Hence theM region of the junctions plays a role of sing
potential barrier for electron tunneling. In general, when
length of the potential barrier gets longer, the energy of
long-wavelength standing waves in theM region become
smaller. This is the reason why the number of ze
conductance dips increases with increasing the length of
M region. Of course, if the length of theM region gets
longer, the electron transmission is reduced, resulting in
decrease of the height of the conductance.

D. Large induced current vortex

The appearance of the zero-conductance resonance
be understood by the formation of standing waves due to
interference effects between the incident and scattered e
12542
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tron waves. This interference effects produce the additio
structure in the spatial distribution of the electric curren
over the scattering region of the nanographite ribbon ju
tions. In this section, we draw attention to the spatial dis
bution of electric currents close to the energies of the ze
conductance dips. For energies close to a zero-conduct
resonance, a Kekule´-like vortex pattern appears over th
scattering region. The nearly regular pattern reminds o
flux state. We will see that the resonant state responsible
the zero-conductance dip may also be considered as a s
ing wave due to the superposition of such a ‘‘flux phase’’ a
its time reversed state.

In order to visualize the spatial distribution of electr
currents, we study here bond current distribution. The bo
current flowing from site-j to site-i is defined by

Ji , j5 i
et

\
ei2pu i , j u i &^ j u1H.c.!. ~3.4!

In Fig. 8~a!, we show the distribution of the currents fo
junction I of N520 andl 56, at E50.049565. This energy
lies immediately belowE2, a zero-conductance resonan
shown in Fig. 7~a!. The overall currents give rise to a clock
wise vorticity. In the junction region we observe a clear t
angular Kekule´ pattern of the current vortex. Interestingl
the center of the junction region supports large circulat
currents while the net current passing through the junctio
rather small. We see also that the current pattern rapidly v
ishes when we leave the junction region. When we incre
the energy slightly aboveE2 we find a very similar current
distribution pattern in the junction region. While the net cu
rent is flowing in the same direction as in the previous c
the vortex pattern shows the opposite orientation and also
overall vorticity is reversed. Considering current distributi
at an energy far from a resonance, e.g.,E50.21517t with
8-6
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G50.72636, we do not observe this type of Kekule´-like vor-
tex pattern, but a more or less laminar flow, as can be see
Fig. 8~c!.

In order to analyze the features of this current vortex p
tern in more detail we introduce the localvorticity which is
defined on the dual~triangular! lattice as the clockwise sum
of the currents flowing on the bonds of each hexagonal r
The local vorticity on thepth hexagonal ring is given by

Vp5(
i 51

6

I i ,p , ~3.5!

FIG. 8. The distribution of currents in theM region of the junc-
tion I with N520 andl 56, at ~a! E50.049565t ~immediately be-
low E2), ~b! E50.050289t ~immediately aboveE2), and ~c! E
50.21517t whereG50.72636.
12542
in

t-

g.

whereI i ,p means the current on thei th bond ofpth hexago-
nal ring. In order to quantify the total of all circulating cu
rents flowing in the junction, we take an average ofuVpu.
Thus this quantityV1 is given by

V15^uVpu&5

(
p

uVpu

(
p

1

. ~3.6!

Similarly, we also define the total vorticity of the junctionV2
as

V25^Vp&5

(
p

Vp

(
p

1

. ~3.7!

This represents the direction of the total circulating curr
component of the junction. It should be noted that the su
mation over plaquettes is taken over rings in the junct
region M and slightly beyond including several columns
rings in L and, because there is aproximity effectof the
current vortex pattern, i.e., the components of circulat
currents penetrate into both the left and the right lead lin
In Fig. 9, we show the Fermi energy dependence ofV1 and
V2 for the junction I with N520 and l 56 in the single
conducting channel region. BothV1 and V2 vanish at each
energy of zero conductance, i.e., not only the total vortic
V2 disappears, but also no circular currents can be foun
each individual plaquette (V150). Moreover, the vorticity
V2 changes the sign at each zero-conductance energy p
Note that bothV1 and V2 vanish in a linear dependence o
E2En close to the zero-conductance pointEn . The fact that
both vorticities go to zero at each zero-conductance ene
En verifies the claim that the resonant state in the junct
region may be also interpreted as a standing wave as
superposition of two flux phaselike states which are c
nected with each other by means of time reversal operat
This also suggests that the resonance should disappear
time reversal symmetry is explicitly violated, for exampl
by an external field. As we will show later there is indeed
negative magnetoresistance associated with the z
conductance dips.

The study ofVp allows us also to observe the formatio
of the Kekulé-like vortex pattern easily, if we transformVp
into momentum space,

F~k!5(
p

Vp cos~k"rp!, ~3.8!

wherer p is the coordinate of the hexagonal ring center, a
kx(ky) is wave number along~perpendicular to! zigzag lines
in the junction. The sum runs again over all rings in t
junction and a few columns beyond. In Figs. 10~a! and 10~b!,
we showF(k) again for junction I withN520 and l 56
close to the zero-conductance pointE2. We see the Bragg

peaks atq152p/a(1/A3,1
3 ) @or q252p/a(0,2

3 )] andq350,
8-7
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FIG. 9. The Fermi energy dependence of~a!
V1 and~b! V2, together with the conductance, fo
the junction I ofN520 andl 56.
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corresponding to a triangular correlation of the flux statel
current vortex pattern depicted in Fig. 8~a!. In Fig. 10~c!, we
show the 3D plot of theF(k), where the pronounced trian
gular symmetry can be observed. We would like to ment
here that we have observed analogous current pattern
properties ofV1 andV2 for junction II.

Finally we would like to draw attention to a remarkab
property of the vorticityV2 ~and V1) close the each zero
conductance point. The net current passing through the ju
tion is defined as

Jnet5~12ur u2!Jlead5utu2Jlead, ~3.9!

whereJlead is the incoming component of the current on t
source lead line from one of the reservoirs. Close to e
zero-conductance pointEn we find Jnet}(E2En)2, a qua-
dratic dependence. With the linear dependence ofV2}(E
2En), the total vorticity of the system considered as a ‘‘r
sponse’’ to a current through the junction (Jnet) diverges as
12542
e

n
nd

c-

h

-

the energy approachesEi , i.e., V2(E)/Jnet(E)}(E2En)21.
Consequently, for energiesE close to a zero-conductanc
point, even a small net current may generate a large vortic
within the linear response regime. This is not a real line
response, since the external source corresponds to the
currentJlead, and the actually measured currentJnet includes
all scattering renormalizations. Nevertheless, the relation
tween vorticity and transmitted current may be experim
tally verified.

E. Negative magnetoresistance

We now consider the effect of an applied magnetic fie
It was anticipated above that the zero-conductance reson
should be suppressed by a magnetic field, since it is t
reversal symmetry is a condition to realize total reflectio
This suggestion is confirmed by our numerical study. For
case of the junction I withN520 and l 56, we show the
Fermi energy dependence of the conductance in Fig. 11~a!,
FIG. 10. The Fermi energy dependence of the Fourier transform of the vorticityVp at ~a! k50 and~b! k5q1 for the junction I with
N520 andl 56. ~c! The 3D plot of the correlation of circular current pattern in theM region close toE5E2.
8-8
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FIG. 11. ~a! The Fermi energy dependence of the conductance of the junction I withN520 andl 56 when B̃50 ~bold line!, B̃52

~dashed line!, andB̃58 ~broken line!, within the single channel region.~b! The effective magnetic field dependence of the conductanc

E5E1 , E2, andE3. ~c! The plots ofG/B̃2 vs B̃.
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where the magnetic field,B̃ is 0, 4, and 16~scaled with the
width of the ribbon as defined in Sec. II!. With a finite field
the conductance becomes finite and the position of the m
mum value of conductance dips moves with increasing
magnetic field. In Fig. 11~b!, the magnetic field dependenc
of the conductance is shown at the energies ofE5E1 , E2,
and E3 for the same junction. The indicesE1 , E2, andE3
specify the energy points of zero-conductance, given in F
11~a!. In the very strong field limit, the conductance a
proaches one in the whole single-channel region. Thus
effect of the magnetic field is not only to removes the ze
conductance dips, but also to turn the system into a per
conductor, in principle, although it is not possible reach su
high fields under experimental conditions.

Figure 11~c! also shows that the coefficient of the qu
dratic term, i.e.,G5a0B̃, increases with increasing energ
En . We found a simple law for the dependence connec
with the index numbern of the zero-conductance dip. Th
index numbern indicates the zero-conductance dip which
associated withsn state~defined in Sec. III C! at B̃50. Plot-
ting l ln(a0) versusn in Fig. 12, we find linear dependenc
where the solid~dashed! line represent the data for the jun
tion I with N520 (N530) for l 56,8,10. Interestingly, all
data have approximately the same slopeh. Thereforea0
follows approximately the exponential behavior

a05A~N,l !expS h
n

l D , ~3.10!

FIG. 12. Scaling properties of magnetoresistance~see text!.
12542
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whereA(N,l ) is a factor which depends onl and also weakly
on N. This behavior indicates the coupling of the magne
field increases strongly with increasing index, which is ve
likely a consequence of the larger overlap of the edge st
for increasingE.

IV. CONNECTION WITH ASYMMETRIC
AHARANOV-BOHM RING

In this section we discuss the theory of a simple mo
which has analogous electronic transport properties as
nanographite ribbon junctions on the basis of the scatte
matrix theory developed by Bu¨ttiker and co-workers.48 The
system analyzed here is the single-channel asymme
Aharanov-Bohm~AB! ring connected to current leads, a
shown in Fig. 13. We will adopt the notation of Ref.48. Th
system reproduces well the qualitative properties of our
bon junctions. If the two branches in the AB ring have d

FIG. 13. Schematic figure of Aharanov-Bohm ring, where t
definition of the amplitudes of wave functions are written. T
length of the upper~lower! branch of the ring isL1(L2).
8-9
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ferent length or different transmission probabilities, ze
transmission resonances appear as a function of energ
current through the device generates circulating current
the ring which change sign at each zero-conductance r
nance. The application of an external field leading to a fin
flux through the ring yield a negative magnetoresistance
the zero-conductance resonance. Finally, we also find tha
at the zero-conductance resonance that two branches o
ring possess electron wave function of opposite parity.
these features are common with the nanographite rib
junctions.

Following the theory developed by Bu¨ttiker, we consider
the single-channel electron transport through the AB ring
shown in Fig. 13, where the upper and lower branches h
different lengths,L1 andL2, respectively. The circumferenc
is L5L11L25(11R)L1. The notation for the amplitudes o
wave functions on the each branch are given in Fig. 13.
assume that each branch has only one conduction cha
The upper~lower!-branch has a scatterer expressed by
transfer matrixt1 (t2), which relates the amplitudes to th
left to the amplitudes to the right of the scatterers. Th
transfer matrices are defined as

Fb2

b28
G5t1Fb18

b1
G5F 1/t1* 2r 1* /t1*

2r 1 /t1 1/t1 G Fb18

b1
G ~4.1!

and

Fg1

g18
G5t2Fg28

g2
G5F 1/t2* 2r 2* /t2*

2r 2 /t2 1/t2 G Fg28

g2
G , ~4.2!

wheret i5Ti
1/2eif i ( i 51,2) is the transmission amplitude o

the scatterer,Ti the transmission probability, andf i the
phase shift of the transmitted wave (i 51 and 2 indicating
upper and lower branches, respectively!. r i (r i8) is the reflec-
tion amplitude. It is sufficient for our purpose to consider t
case wherer i50, i.e., perfect transmission (Ti51).

Now let us consider the junction between lead and ri
The amplitudes of the three outgoing waves are conne
with the three incoming ones via a 333 scattering matrix
~which depends on three parameters only48!,

F a8

b8

g8
G5SF a

b

g
G5F 2~a1b! e1/2 e1/2

e1/2 a b

e1/2 b a
GF a

b

g
G ,

~4.3!

wheree (0<e<1/2) is the key parameter determining th
coupling between the ring and a lead. Note that the matrS
is unitary because of the current conservation and symm
because of the time-reversal invariance. The probability~cur-
rent! conservation requires that

~a1b!212e51, ~4.4!

a21b21e51. ~4.5!
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Thus we can rewritea and b as function ofe, e.g., a65
6 1

2 (A122e21) andb656 1
2 (A122e11).

Now we determine the transmission amplitude and
circulating currents in this system for the arbitrary value ofe.
The boundary condition area151 anda250, i.e., an inci-
dent wave from the left lead line. It is straightforward
calculate the amplitude of the transmitted wave

a2852e2 iu1
eh

b2det~P!
, ~4.6!

where

h5det~P!@b2a,1#t1P21Fb2a

21 G , ~4.7!

with P5t le
2 iu2t28t le

2 iu1t121. We have generalized th
problem here including the magnetic fluxF through the loop
with u5u11u252pF/F0. The phase shifts due to th
gauge field in the upper and lower branch areu15u/(1
1R) and u25Ru/(11R), respectively. The link matrixt l

entering inP is defined as

Fg28

g2
G5t lFb2

b28
G5

1

b Fb22a2 a

2a 1GFb2

b28
G . ~4.8!

It is also straightforward to obtain the amplitudes in the tw
branches as follows:

Fb18

b1
G52

Ae

b
P21Fb2a

21 G , ~4.9!

Fg1

g18
G5

Ae

b
P̃21t l

21Fb2a

21 G , ~4.10!

with P̃5t l
21eiu1t1

21t l
21eiu2t82

2121.
We can then express the transmission amplitude includ

the finite magnetic flux,

a28~F,e!5
i e~sinf11eiu sinf2!

a2 cosgf1b2 cosu2~12e!cosf1 i e sinf
,

~4.11!

where f5f11f2 and g5(12R)/(11R). It should be
noted thatf1 andf2 can be written as

f15
1

11R
f and f25

R

11R
f. ~4.12!

The transmission probabilityT(F,e)5ua28(F,e)u2, propor-
tional to the conductance, shows now zero-conductance
in the absence of a magnetic field (u50). The transmission
zeros appear forf5f0 given by

f0,152mp or f0,15~2m11!p/g, ~4.13!

wherem is an integer.
The resonant behavior of the transmission probability

determined by the poles of the transmission amplitude
~4.11!. In order to determine the poles of Eq.~4.11!, we
8-10
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FIG. 14. Numerical results for
the junction I with N520 and l
56: ~a! the contour plot of the ab-
solute value of the transmissio
amplitude in the complex energ
plane. The zero-pole pairs appe
at each zero-transmission energ
~b! The energy dependence of th
phase of the transmission.
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rewritef asf5f r1 if i . The real and imaginary part of th
phasef are determined by the following two equations:

2 singf r sinhgf i2 sinf r@ef i2~122e!e2f i#50,
~4.14!

a2 cosgf r coshgf i1b2 cosu

2 1
2 cosf r@ef i1~122e!e2f i#50. ~4.15!

We can find that one resonance solution is associated
two poles in complexf plane.

In the asymmetric case, i.e.,gÞ0(RÞ1), it is not easy to
deal with Eqs.~4.14! and ~4.15! in a simple analytic way.
The numerical analysis shows that two types of solutions
zero transmission,f0,1 andf0,2, have the following differ-
ent characteristic features.

~i! f5f0,1 solution. This solution satisfies Eq.~4.11! for
arbitrary g, and gives a zero-transmission resonance wh
gives in general one zero point and two poles in complexf
plane. In the strong coupling limit ofe51/2 with gÞ1, one
of two poles goes to infinity, so that the resonance can
characterized by a zero-pole pair in the complexf plane,
resulting in the zero-conductance resonance. On the o
when the ring is symmetric i.e.,g50(R51) for arbitrary
coupling, the zero-point and one of two poles are cancele
that only one pole is left on the complexf plane. Then the
feature of the resonance is usual resonant transmission d
one pole. Thus thef0,1 solution gives the condition of anti
resonance for the asymmetric AB-ring system.

~ii ! f5f0,2 solution. This solution appears when the rin
is asymmetric, i.e.,gÞ0. Although this solution also gives
zero point and poles, the zero point and poles are alw
degenerate on the real axis for arbitraryg. Therefore the
zero-transmission resonance of this solution has diffe
character to that of thef0,1 solution. The degeneracy o
poles and zero point is not lifted by the variation of t
coupling parametere.
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In Fig. 14~a!, we show the contour plot of the absolu
value of the transmission amplitude in the complex ene
plane for the junction I withN520 andl 56. We can clearly
find the zero-pole pair at each zero-conductance ene
points. Thus we consider that the nanographite ribbon ju
tion systems corresponds to the asymmetric AB-ring sys
of strong coupling limit (e→ 1

2 ). In the strong coupling limit,
we can rewrite the transmission probability as

T5Ua28S e→ 1

2D U2

5
4usinf11eiu sinf2u2

~cosgf1 cosu22 cosf!214 sinf
.

~4.16!

Since the zero-conductance resonances can be chara
ized by the zero-pole pair on the complex energy plane,
zero-conductance resonance behavior can be written by
following Brite-Wigner form:

tBW~E!5 t̃ ~E!
E2E0

E2~Ep2 iG!
, ~4.17!

whereG is the widths of the resonances.E0 andEp are the
energy of zero and pole, respectively. In general,E0 is not
equal toEp . WhenE05Ep , the resonance have the symme
ric Lorentzian form. It is instructive to consider the behavi
of the phase of the transmission coefficientuBW , when
utBWu2 passes through zero. The phase is defined as

uBW5tan21F Im~ tBW!

Re~ tBW!G . ~4.18!

It is easy to confirm that the phase of the transmission a
plitude with the form of Eq.~4.17! jumps atE5E0 ~not E
5Ep) by p.
8-11
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In Fig. 14~b!, the phase of the transmission is depicte
where clearp phase jumps are observed at each conducta
energy points. It should be noted that recently the beha
of the phase of transmission coefficient has attracted m
interests49–52 in the context of the experiments by Yacob
et al.53 and Schusteret al.54 It is also mentioned that the
appearance of zero-transmission resonances accomp
with the zero-pole pair can be seen not only in the asymm
ric AB ring system, but also in the quantum wire system w
an attached resonator.55–62 Thus, the electron transpo
through the nanographite ribbon junctions is deeply c
nected to both of them.

Next we consider the circulating current flowing in th
AB ring. The electric current on the upper~lower! branchJ1

(J2) is given byub1u22ub18u
2 (ug18u

22ug1u2), so that we de-
fine the vorticity (VAB) of electric currents through the AB
ring asJ11J2. After the simple mathematical manipulation
we obtain the vorticityVAB as

VAB5J11J2

5
2eb sinf@singf1~a1b!sinu#

@a2 cosgf1b2 cosu2~12e!cosf#21e2 sin2 f
.

~4.19!

In the strong coupling limit (e→1/2), we can rewrite the
above equation as follows:

VABS e→ 1

2D5
8 sinf singf

@cosgf1 cosu22 cosf#214 sin2 f
.

~4.20!

We find that the vorticityVAB changes its sign at the energi
of zero-transmission resonances, i.e.,f5f0. At the energies
of zero-transmission, the vorticityVAB becomes zero, be
cause no circulating currents can flow at the energies of z
conductances. Since the expression of the vorticityVAB also
has the resonance features, the vorticity becomes stro
around the energies of zero-transmission resonances. T
behaviors of the vorticity are consistent with our numeri
calculation results on the nanographite junctions.

Now we consider the parity of the wave functions at t
energies of zero transmission. In order to discuss the be
ior of the wave functions in the AB ring, let us construct t
wave functions in the AB-ring as follows:
12542
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C~x!5H b1eik1x1b18e
2 ik2x 2L1<x<0,

g18e
ik1x1g1e2 ik2x 0<x<L2 ,

~4.21!

where the origin ofx is the left junction andk65k6u/L.
Another expression of the wave functions is

C̃~ x̃!5H b28e
ik1x̃1b2e2 ik2x̃ 0< x̃<L1 ,

g2eik1x̃1g28e
2 ik2x̃ 2L2< x̃<0,

~4.22!

where the origin ofx̃ is the right junction. In the following,
we use the former wave functions. Forf052mp, we can
easily derive the asymptotic form of the wave functions n
x50,

C~d!5~A21A22!21~A21A22!d, for the upper branch ,

~4.23!

C~2d!5~A21A22!2

2~A21A22!d, for the lower branch ~4.24!

and nearx52L1 andL2,

C~2L11d!52~A2A21!d, for the upper branch,~4.25!

C~L22d!522~A2A21!d, for the lower branch, ~4.26!

whered is infinitesimal valueA5eimgp. We should note that
at the energy of the zero-transmission, i.e.,f5f0, the wave
function form the standing wave along the ring, in which t
node of wave function appears at the right junction. We c
also find that the wave function on the upper branch ham
nodes, and the the wave function on the lower branch
(m11) nodes, so that the wave functions of the upp
~lower! branch has the opposite parity at the energies of z
transmission. Actually looking at Fig. 7, in the nanograph
ribbon junctions, the wave function along the zigzag ed
and the wave function along the bearded edge have alw
different parity.

The zero-conductance resonance is a consequence o
destructive time-reversal interference. The application
magnetic field can destroy these zero-transmission re
nances, resulting in the negative magnetoresistances. Fo
weak magnetic field limits (u!1), we can easily derive the
magnetic field dependence of the transmission probability
follows:
T~u!5F sin~mgp!

a2 cos~2mgp!1b21e21
Gu21O~u3! at f052mp, ~4.27!

T~u!5F cos2@~2m11!p/2g#

$a21b22~12e!cos@~2m11!p/g#%21e2 sin2@~2m11!p/g#
Gu21O~u3!, at f05~2m11!p/g. ~4.28!
8-12
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ELECTRONIC TRANSPORT PROPERTIES OF . . . PHYSICAL REVIEW B 64 125428
For both cases, the zero transmission is removed in the f
of u2.

In the summary of this section, we have shown the c
nection between the electron transport through nanograp
ribbons and the electron transmission through the asymm
ric Aharanov-Bohm ring system. We could understand t
the zero-conductance resonances are the interference e
of two transmission paths split in the scattering region of
nanographite ribbon junctions. The interference effects
be visualized by the formation of the standing waves wh
parity is different at two edges in the junctions, and the c
culating currents with Ke´kule-like vortex pattern. The result
presented here will be the basis of the phenomenolog
theory on nanographite junction systems remained for fu
study.

V. SUMMARY AND DISCUSSION

This paper presented the electronic transport prope
through nanographite ribbon junctions connecting two z
zag ribbons with same or different width by the Landau
Büttiker approach using a tight-binding model. The zigz
shape of graphite edge provide a nonbonding edge local
state atE50. A single edge state cannot contribute the el
tron transport due to this nonbonding character, howeve
the zigzag ribbon systems the bonding and antibonding c
figuration between two edge states can provide a single
ducting channel. Our numerical analyses have shown tha
electrical conductance of nanographite ribbon junctions c
cially depends on their morphology and edge shapes.

In the single-channel conducting region, the Fermi ene
dependence of electrical conductance of nanographite rib
junctions shows rich structures with sharp zero-conducta
dips. We analyzed the origin of the zero-conductance d
from the behavior of electron waves and electric curren
Each zero-conductance resonance can be associated w
quasibound state in the scattering region of the junctio
yielding the formation of standing waves. It is also fou
that in the scattering region the electron waves are split
two edge localized electron waves which have opposite
ity each other.

Furthermore, when the energy of the incident elect
waves is close to the energy of zero conductance resona
the electric currents form the circulating currents with
Kekulé-like vortex pattern in the scattering region. This ele
tric current behaviors resemble flux states in the sense
they show a strong current-current correlation. The fl
states strongly appears in the scattering region, and rap
decreases with leaving from the scattering region. This
culating currents changes the its direction as we cross
energies of the zero-conductance dip. Therefore, the z
conductances are caused by the superposition of two
states with opposite chirality, resulting in the formation
standing waves.

We have presented not only the numerical analysis,
also the phenomenological theory for the zero-conducta
resonances associated with the electric current vortex. It
12542
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pointed out that the single-channel transport through the n
ographite ribbon junctions can be connected to the physic
the asymmetric Aharanov-Bohm ring system. The ze
conductance resonance is the consequence of the destru
interference effects between two conducting-channels in
scattering region which is split from the single-conducti
channel of edge states. The analysis in the complex en
plane shows the Brite-Wigner form of Eq.~4.17!. This means
that the zero-conductance resonance can be viewed a
called Fano resonances,63 which are known to occur when
two scattering channels are available, one corresponding
continuum of states and the other to a discrete quasibo
state. It also is known that the Fano resonances can be
curred in the quantum wire with at-stub resonator.57,58Thus,
the single-channel electron transport through nanograp
ribbon junctions has the similarities not only to the asymm
ric Aharanov-Bohm ring, but also to the quantum wire with
t-stub resonator.

The zero-conductance resonances are the consequen
the time-reversal symmetry of the system. The application
a magnetic field removes these zero-conductance dips, y
ing a pronounced negative magneto resistance. Since ca
nanotubes show the large positive magnetoresistance,
negative magnetoresistance in nanographite systems is
trast.

Theoretically, there is a deep connection between the
pearance of flux states and the problem of chiral anomal
the ~211!-dimensional system of fermions. Semenoff64 have
pointed out that theK and K8 point of graphite have a dif-
ferent chirality. This chiral feature of graphite lattice appea
if there is an imbalance between the two sublattices of gra
ite lattice, e.g., by different onsite potential. The edge sta
on zigzag edges are a consequence of this imbalance, s
the most outer sites belong to a single sublattice. The ab
change of the sublattice on the edge as it occurs for
nanographite junctions yields the boundary condition to fo
the degenerate flux states in the scattering-region of the ju
tions. From our numerical analysis no further obvious ru
for the creation of localized flux states can be derived. T
detailed analysis between chiral features of graphite and
flux states will be given elsewhere.

Since the nonmagnetic potential impurity or a lattice v
cancy can also induce the imbalance between sublatti
these lattice defects can induce the conductance zeros
companied with the flux states.23,65,66 The energy levels of
zero conductances corresponds to the quasibound state
ergy level. The energy levels of the conductance zeros
pends on the strength of overlapping between edge states
the impurity state. Quantitative analysis is given elsewhe

VI. CONCLUSION

In conclusion, we numerically analyzed the electric
transport properties of nanographite junctions based on
tight-binding model. We found that the conductance of va
ous junctions having zigzag edges shows a very rich st
ture as a function of the energy~chemical potential! with
8-13
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many zero-conductance dips in the low-energy region. Th
dips are identified as resonances connected with twofold
generate flux states which form circular-current Kekule´ pat-
terns. It is obvious that the topology of the edges is cruc
for this phenomenon and the chirality connected with t
sublattice structure plays an important role. The degener
of states responsible for the resonances can be lifted b
magnetic field, leading to negative magneto resistan
While the structures used in the calculation might be diffic
to produce at present, our results also suggest that trans
properties of defective carbon nanotubes, carpet-roll,
papier-maˆchéstructures28 could be rather different from the
transport properties of usual multiwall nanotubes or SWC
which have only weak features in the single-channel regim
The present study not only clarifies the importance of t
edges and their shapes on transport properties, but also
cates the necessity of further theoretical studies to explic
the interplay between the transport properties and the
work topology of carbon atoms.
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