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Effective boundary conditions for planar quantum dot structures
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The effective-boundary condition method is extended to nanoscale mesoscopic syste(BB8TBeappear
as a result of the two-dimension@D)-homogenization procedure and have the form of two-side anisotropic
impedance boundary conditions stated on the structure surface. It has been shown that, unlike to macroscopic
electrodynamics, the surface impedance tensor exhibits sharp oscillations at frequencies of optical transitions.
The EBC method supplemented with well-developed mathematical techniques of classical electrodynamics
creates unified basis for solution of boundary-value problems in electrodynamics of nanostructures. We have
shown that the radiative lifetime of 2D array of spherical quantum @'s) drastically changes its depen-
dence on QD radius in comparison with the case of a single QD in the range of radii smaller than Bohr radius.
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[. INTRODUCTION found a wide application in these fields. Similar approaches
have also been developed in acoustics, hydrodynamics, elas-
Fascinating electronic and optical properties of spatiallyticity theory. Recently, the EBC method has been extended to
confined nanostructures irreducible to properties of bulk melow-dimensional nanostructures, such as QW% carbon
dia, and great potentiality of such structures in engineeringianotubes?~® and semicontinuous metal film5.General
applications has motivated permanent extension of theioutlook of the EBC method applications in electrodynamics
study. Among a variety of new results in this field, the recentof nanostructures has recently been reported in Ref. 18.
progress in the synthesis of sheets of nanoscale three- The basic idea of the EBC method is that a smooth ho-
dimensional(3D) confined narrow-gap insertions in a host mogeneous surface is considered instead of the initial struc-
semiconductor, quantum dof@D’s), is of a special interest. ture, and appropriate EBCs for the electromagnetic field are
Indeed, QD-based structures provide practical realization oftated for this surface. These conditions are chosen in such a
the idea proposed by Dingle and Hehtp use structures way that the spatial structures of the electromagnetic field,
with size quantization of charge carriers in one or more di-due to an effective current induced on the homogeneous sur-
rections as active media of double heterostructure laser. Sudace, and the electromagnetic field of the real current in the
a laser will show radically changed characteristics as cominitial structure turn out to be identical at some distance
pared to conventional quantum-welRQW) lasers>® For away from the surface. Material characteristics of the struc-
In,Ga;_,As QD’s on GaAs substrates, an exceptionallyture as well as its geometrical parameters are included in
bright luminescence at 1.3@m was realized at room coefficients of the EBC’s. Such an approach is applicable
temperaturgin a spectral range far beyond those availableboth to continuous thin filnsand 2D periodical structures
for conventional strained J&a, _,As-GaAs QW'’s. The large (semitransparent grid screens, helical sheaths in traveling
body of recent results on physical properties of QDs andvave tubes, etg. The effect of periodicity is taken into ac-
their utilization for the QD laser design has been accumueount by the field averaging over the period. Thus, in es-
lated in Ref. 5. sence, the EBC method is modification of the effective-
The key peculiarities of QD heterostructures are related tanedium theory as applied to planar structures. The
spatial confinement of the charge-carrier motion and intrinsi@pplicability of the EBC's is restricted by the requirement
spatial inhomogeneity. Since the inhomogeneity scale ishat the lattice period is small compared with the wavelength
much less than the optical wavelength, inclusi@@B’s) can  in the host medium. The effectiveness of the EBC method is
be treated aglectrically smallobjects and electromagnetic determined by a possibility of its extension to more compli-
response of such heterogeneous structwesipositescan  cated situations like finite-sized and/or deformed structures,
be evaluated by means of effective-medium théofppli- structures located in the vicinity of additional reflectors and
cation of effective-medium approach to 3D arrays of QD’sscatterers, etc. Such an extension is only possible when the
has been presented in Refs. 7 and 8. In many cases, howevparameters involved in the EBC’s do not depend on the spa-
a planar array of QD’s with intrinsic 2D periodicity of char- tial structure of the irradiating field, or, in another words, the
acteristic period much less than the optical wavelength, caBBC’s must bdocal, i.e., they must couple field components
be treated as more adequate and realistic ntodel. and their spatial derivatives at a given position on the bound-
In this paper we present a general method for evaluatioary surface.
of electromagnetic response of planar arrays of QD’s. This In Ref. 19 the dielectric properties of thin films consisting
method, conventionally referred to as the effective-of a few layers of molecules or particles are considered and,
boundary-conditiofEBC) method, has been originally de- by calculation of the effective permittivity tensor, it has been
veloped for microwaves and antenna thebr}, and has shown that in such structures the local-field effects exhibit in
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rather different way than in 3D bulk medium. However, the
solution of the specific electrodynamical problems based or
these results is more complicated than by application of
EBC'’s, as the latter decreases the number of boundaries be
tween areas with different material parameters that require
the field matching.

This paper is arranged as follows: In Sec. I, we formulate
effective boundary conditions for planar nanostructures anc
derive an expression for thex2 surface conductivitiy ten-
sor. The contribution of dielectric function nonlocality inher-
ent in QD’s at weak confinement of carriers is discussed in’
Sec. lll. The analysis presented in Secs. Il and Il is applied
in Sec. IV to estimate the radiative decay rate in planar QD
array. The paper concludes with a discussion in Sec. V.

FIG. 1. Schematic 2D array of QD’s.

be electrically small. In that case, electromagnetic field scat-

tered from an isolated QD can be expressed in terms of Hertz
Il. FORMULATION OF EFFECTIVE BOUNDARY potentials by

CONDITIONS

In order to derive the EBC's, a kernel problem must be E(N=Ey(nN+ > [VV-IIE,(r)+KIIE (1],
solved in each particular case. For example, for grid screens l,m=—c
this problem is formulated as the problem of plane-wave
scattering by the infinite plane scre¥rin QD’s, apart from
the charge-carrier confinemehthere exists a class of elec- H(r)=Ho(r)—ike, >  VXIIE(1), (2
trodynamic effects related to light diffraction by QD’s and b=
QD ensembles that strongly influences the electromagnetighere k=w/c, k;=k\ep, c is the speed of lightEq(r),
response of such systerh-*Here we consider 2D arrays of H(r) stand for the incident field; an exp{wt) time depen-
QD's to establish correlation between properties of such sysdence is supposed. The incident field is assumed to be
tems and homogeneous 2D structures like quantum We”%x_po|arized p|ane wave propagating at ang|w|th respect
The kernel problem here is the diffraction by infinite planartg the z axis (see Fig. 1 Note that the polarization of the
quadratic lattice constituted by identical QD’s embedded in &trycture in the directiom normal to the surfacs, «,,,
host medium. The host medium is assumed to be dispersiojhould be included into consideration for QD's like spheres

less and transparent. As for the dispersion in QD, two rewith comparable extensions in all directions. In that case,
gimes are differentiated by the carrier confinement. One of

o)

them, the strong confinement regime, is realized when the exp(ikipim)
exciton Bohr radiusg exceeds significantly the QD linear ~ Him(") =[&@xEx(Rim) + €a;£5(Rim) o
extension and, thus, Coloumb interaction between electron " 3

and hole is negligible. In opposite caggeak confinement ) ) o

regime, namely, Coloumb interaction forms exciton in QD For QD's with planar configuration in they plane, e.g.,
providing strong nonlocality of the QD electromagnetic re-discs, islands, flattened pyramids, etc., the QD polarizability
sponse. In the strong confinement regime, the well-knowrn the z direction «,, can be neglected to simplify signifi-

Lorentz dispersion law cantly the further analysis. Hef®,,={ld,md,0} is the ra-
dius vector of QD in the latticgp;=|Rm—r|=[(1d—x)?
9% +(md—y)?+ 22]1’3, a;; are the components of the QD po-
e(w)=ept w—wotilT D larizability tensore, and € is the electric field inside QD.

This field is related to the Hertz potentials by the equation
can be used as the simplest phenomenological model of dignalogous to Eqg2):
persion in a single QD in the vicinity of the exciton
resonancé®? In the above equationy, is the resonant fre- . . .
quency of the transitions is the relaxation timgeffective E(r)=Eo(r)+lim m;@ [VV -5 (r) + KT (r) 1.
exciton dephasing timen the QD; gy, is the host medium o
permittivity; phenomenological parametgg is given bygg
=— 47| u|?WI3hV (see, e.g., Ref. 22with x as the matrix  Prime in this equation excludes the term witam=0.
element of the dipole momenty as the level population The next step in derivation of EBC's is the 2D averaging
difference W< 0 in an inverted medium andV as the QD  of the electromagnetic field in the=0 plane. As it was
volume. mentioned above, such a procedure implies replacement of

Further, we restrict ourselves to the dipole approximatiorthe discrete 2D elementary scatterer by a homogendous
of the diffraction theory assuming the lattice peridcand X d element of surface. By analogy with effective-medium
QD size to be small as compared to the wavelength in théheory for bulk composite$2* mathematically this procedure
host medium and inside the QD; thus, QD’s are assumed teeduces summation in Eq&) and(4) to integration, i.e.,

!

4

125326-2



EFFECTIVE BOUNDARY CONDITIONS FOR PLANR . ..

|m_7oc f j{ -}dxdy, (5)
|,mx_w Héjlji{‘ .- }dxdy
3 BRERUE

In view of rules(5) and the conditiork;d<1, combination
of Egs.(2) and(4) leads to the relation for electric field in an
arbitrary lattice siteR;,:

Ei(Rim) +E'(Rim) =2 &Rm). (D)

o
1+ i &
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2

1 J
Ex(r)=Egx(r)+ ?axx (9_

+k2
X2

© (=1
xf f ;exp(iklp)SX(R)dzR

d2 ZZ(?X(?ZJ_ f —eXF(Iklp)g(R)d R,

(11

whereR is the radius vector in they plane ando=|R—r]|.
Note that the integrals involved into Eq40) and(11)are the
single-layer potentials for scalar Helmholtz equati®ror
further consideration we take into account continuity of the
incident field and single-layer potentials through the xy plane
and discontinuity of the normal derivatives of these poten-
tials on the surfac Then, carrying out the limiting transi-

Although this equation has been derived for lattice sites, avtion z— =0, we obtain:

eraging procedure described above allows us to extend
over the whole planeg=0. The coefficients; are given by
the equations as follows:

fdlz fdlz 2x2— 8
xdy~— —, 8
dr2J —arz(x +y2)5/2 = V2d ®
di2 (di2 3z2—r2 2
5Z=Iimf f dy~ \/— (9)
7.0J —di2J —dr2

wherer = (x2+y?+2z%)2 Equation ford, is obtained from
Eq. (8) by the substitutiork«y; it is easy to show thab,
=, . It should be noted that the above integrals converg
conditionally. For instance, in Eq8) result of integration
depends on the order of integratidfirst, integration ovex
should be performed In Eq. (8), interchanging integration
and limiting transition is impermissible.

The different sings ob, , and 5, reveals the difference in
the local field effects for the structures considered here an

it

| ' A7 9E,

Ex X ?azzé,_xv (12
| W Amikey

Hy— y= " Wy Ey - (13

Superscripts | and Il mark limiting values of corresponding
quantities forz— +0 andz— — 0, respectively. Correspond-
ing equation forE, is obtained from Eq(12) by the changes
Ex—Ey andd/ 9x— d/ dy. In order to derive equation fo,,

the changesHyHHx, Ex— —E, and a,,— ay, should be

é;)erformed in Eq(13). Substltutlon ofé; determined by Eq.

(7) into all four equations leads us to the EBC's in scalar
representation. To present them in more convenient, covari-
ant, notation we introduce the tangential vectorE, e,
+E,g=nXxE andH,g+Hye,=—nXxXnxH; then, combin-

ing the scalar EBC’s by pairs, we come to the following
Bovariant notation of the EBC's:

3D medium. The same was found in Ref. 19, where the

interaction diadicFy,,, was introduced with elements},,,
analogous in the physical meaning to the coefficiefits
Herewith, the relatiord, , /6,= FavnY/Fifg takes place and,

as one can see, this is valid W|th high accuracy for values

FiiY=0.359 andFif,,= —0.718 obtained in Ref. 19.

Now one should flnd discontinuities of the mean field
tangential components at=0. Application of procedurés)
to Eq.(4) leads us to

Hy(r)=Hoy(r)

ikSh Jd (= e 1 . 2
- ?axxEJWJwEGXKIklp)SX(R)d R

ik8h Jd (= 1 . 2
?azzaj_wf_w;equklp)gz(R)d R,
(10

2m N
nxnx(H'=H")=———nxe(E'+E"), (14

nx(E'-E"Y=—¢énxV[n-(E'+E")]

|

The 2x 2 surface conductivity tensa}H and the coefficient
& are defined by
-1
( ) , §:

Here | is the 2<2 unit tensor andy, is given by the in-
plane componentsy; (i,j=x,y) of the QD polarizability

(15

where

_| @
0’_

(‘0

0 O

Sy
2

27a,,

-
d°+ 5,a,,

WER A

o= i ?af” (16)
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tensor. Second term in the brackets in ELp) is due to the w1 is the exciton longitudinal-transverse splitting in the
depolarization related to the difference between mean anbulk material. Integration in this equation is carried out over
acting fields. the QD volumeV.

The equationg14)—(16) constitute the complete system  Let us now study the role of nonlocality presented by Eq.
of EBC'’s for electromagnetic field in low-dimensional nano- (17) in electromagnetic response of an isolated QD. We start
structures. They have been obtained in the ordinary way, bwith the integrodifferential wave equation that describes
the averaging of a microscopic field over a physically infini- electromagnetic field both inside and outside the QD:
tesimal volume. The technique of macroscopic averaging is
similar to one that introduces the constitutive parameters for _ 2 / V43
bulk media, but differs in that the averaging occurs in bound- E(r)=Eo(r) +4m(VV: +k1)fVP(r JG(r=rdr".
ary conditions rather than in field equations. Correspond- (19

ingly, the averaging was carried out over the 2D surface butere G(r) = expkyr|)/4m]|r| is the Green function. In the

ar zone, electromagnetic field scattered by QD is character-
ized by the Hertz potential

not over the 3D spatial element. Thus, in electrodynamics o
low-dimensional structures the EBC’s play the same role a
constitutive relations in electrodynamics of bulk media. Al-
though the EBC's have been derived for 2D periodical struc- glkar
ture with quadratic lattice, they keep validity for arbitrary =
configuration of elementary cell and for planar layers with

random distribution of QD's. The difference will manifest \whereN= [, ®(r)d3, A= [,®(r)&(r)d>. Inside QD, the

itself in the modified coefficienté‘i. Since we did not con- retardation can be neg|ected and, thus, E_@) reduces to
cretize the incident field structure under derivation of EBC’smore simple form:

(14) and (15), these boundary conditions hold true at arbi-
trary excitation(plane waves and wave beams, moving ex- P(r")
ternal charges, etc.The only restriction is absence of exter- E(r)=Ey(r)+VV. f ;
nal sources of electromagnetic field in the xy plane. This vir=r’|
restriction allows us to assumg,, Hy to be continuous Note that Eq.(17) defines very special type of nonlocality:
through the plane. Note also that the EBCIsh) and (15)  the integral operator in it has degenerated kernel With
turn out to be analogous to corresponding EBC'’s for QW’'s=1 degeneration order. In view of that, integral differential
Refs. 12 and 13 if spatial dispersion in the latter can bequationg18) and(20) turn out to be equivalent to the inte-
neglected, i.e., in the limit of infinitely large exciton mass. gral Fredholm equations with degenerated kernels. For arbi-
Thus, a planar layer comprising a 2D array of QD’s can berary degeneration order, such equations reduce to systems of
treated as an effective QW. As a result, well-developed foralgebraic equation@,in our case, presence of a degenerated
malism of investigation of QW’s Refs. 12,25-28 can be ex-kernel makes possible analytical consideration of the nonlo-
tended to QD arrays by introducing of effective integral pa-cality problem. First, Eq(20) allows us to find vectoA
rameters of the array defined by E4$6). omitting the procedure of evaluation of the electromagnetic
For practical utilization of the derived EBC's the polariz- field £(r) inside QD; to do this, let us multiply Eq20) by

ability tensor requires to be known. For simplest configurathe functiond(r) and integrate it over the QD volume. As a
tion of QD’'s (sphere, disc this tensor can be found result, we obtain
analytically whereas direct numerical simulation is required

ikqr

f P(r")d3r’ = ANA, (19
Y, r

d3r’. (20)

for more complicated configurations like cubic or pyramidal. A~NEy+ 47AYA, (21)
In particular, the minimal autonomic block method can be . _
successfully applied for this purposesee Ref. 8 where the 3D-tensoY is given by its components by
1 2
Y, z—f f D(ryd(r’ d3rd3r’
lll. THE ROLE OF NONLOCALITY vy N (rd( )axaaxg ]
EBC's (14) and(15) are valid for QD with strong confine- (22

ment of carriers. Namely in this case the local model of the, i, s=X.y,z. Substitution of explicit expression fok
QD permittivity presented by Eq1) holds true; otherwise, ,piained from Eq(22) into Eq. (19) leads to the Hertz po-
in the case of weak confinement of carriers, the QD electro-

B e~ ~ . . .y
magnetic response becomes nonlocal: the constitutive reléenF'aIH =expikirjak,/r with the polarizability tensor of

tion for the QD medium polarization takes the form of the an isolated QD defined by
integral operator as follows*

a=AN3(1—4mAY) L. (23
Thus, we have shown that the special law of the nonlocality
P(r):Aq)(r)j d(r)E(r")d3r, a7 (17) inherent to an isolated QD admits description of the
\Y%

electromagnetic field scattering by the QD using the polariz-

ability tensor independent on the incident field structure. In
where A= mrew 1a3/ (wg— w—i/7), the function®(r) is  another words, the nonlocality changes values of the polar-
related to the envelope function of the exciton ground stateizability tensor components but does not change the general
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representation of the scattering operators as compared to ti@eraction of QD’s in array. Namely, the electromagnetic
strong confinement regime. This allows one to conclude thainteraction is responsible for the frequency gap betwkeen

the above introduced EBC’s remain valid in the weak con{T) modes and& mode.

finement regime as well. Note that the above result admits Imaginary parts of frequency poles of the reflection coef-
extension of the Maxwell Garnett approidh 3D compos-  ficients (25) and (26) determine the radiative decay rate.

ites constituted by QD’s in weak confinement regime. Then, using results of Ref. 12 and above-defined substitu-
tions, we obtain
IV. RADIATIVE DECAY RATE IN PLANAR ARRAY OF r ko
QD's Fi=—2 T =Toc0s0, Tp=To"Bor’ (29
T cosg’ LT T 27704 cosh’

Let us apply the EBC method for the investigation of T polarit L volarit & volarit d
exciton radiative time in 2D array of QD’s that are assumeufor polaritons,L polaritons, and polaritons, correspond-

to be spherical inclusions of the radil& Corresponding ingly, where ~

problem for QW’s was considered in detail in a humber of 27 woR3 5,R3

papers(see, e.g., Refs. 12,13,259)28& can easily be shown o=~ Wgo 1- Wgo : (30

that EBC’s(14) and (15) describe a QW with the tensorial &h &h®o

dielectric function is the radiative decay rate across the plane of QD structure;
R Z)o=wo—go/38h. Under derivation of Eqs(29) we have
gow)=¢|(w)(eet+gg)t+e (w)ee,, (24)  assumed all three modes to be independent. Indeed, in a wide

_ range of not too bigy the inequality oR*/3s,d?)|8,— &,
where  g|(w)=gpn—4miox/Cklow, & (@)=en/(1 T , holds true and, consequently, the LZ splittitfge-
+2¢/Low) andLqw is the QW thickness. Plane-wave re- quency splitting betweeh polaritons andz polaritong ex-

flection coefficients for this QW are given By ceeds linewidths of corresponding modes allowing thus the
above assumption.
ik To compare the radiative decay rates of 2D array of QD'’s

rs= R (25 and of a single spherical QB=—2(kR)3g/e4/9 (see Ref.
2\/s—hcosa— ke 31) we rewrite Eq.(30) as
ik[ 7coS 6+ {7, SirP ] I'g/y~B, (32)

= : , (26)
P 2\/encoso—ik[ 7 coS 6— ey, sint 6] whereB=3/(k,d)? is the superradiance factor. The latter

enhances substantially the radiative lifetime in dense arrays.
for s polarizations ang polarizations, correspondingly. Here Note that the quantityd coincides with that derived in Ref.
¢ is the angle of incidencey =Lqowle|(w)—€,] and »,  32[Eq. (19)] using an approximate analysis of the light dif-
:LQW[sjl(w)—egl]. The quantitiess,, and ¢ are given  fraction by a 2D array of QD’s. Analogous super-radiance
by Egs.(16). For spherical particles, the polarizability tensor factor with the Bohr radiusg instead ofd was introduced

r

takes the form as follows: also for quantum welt® One can interpret the coefficieBt
in Eq. (31) in close analogy with Ref. 33: it results from the
- 3 e(w)— €, - coherent excitation of QD’s located at distartt&om each
a=R————1. 27 other
e(w)+2¢, .

Let us analyze dependence of the radiative ré&s&s on
Thus, in view of Eq(1), the reflection coefficients for planar the QD radius. Since,~ 1/R® in the strong confinement
array of spherical QD’s are given by Eq&5) and(26) after ~ regime?* the explicit dependence df, on the QD radius
substitutionsL oy— 2R. By analogy with Ref. 12 we con- vanishes; this dependence manifests itself only as a weak
clude that three types of polaritoriBpolaritons L polaritons radial dependence of the renormalized resonant frequency
andZ polaritons, can propagate in the planar array of QD'S,,. The last effect is a combination of two mechanisms one
considered. Frequency poles of functiafiw) correspond to  of which originates from the radial dependence of the exci-
polaritons of T type while poles of ,(w) correspond to po- ton transition energyi w,, and the second one is provided by
laritons of T type and Z type. Real parts of these poles dethe local-field effects responsible for the renormalization of
termine resonant frequencies of corresponding modes. It cafe transition energwo— wo. Analogous situation occurs in
easily be found that QW's, where FoQW:_woLvigoQW/ZC\/S—h with  gQW
~1/ow. Thus, the QW thickneskqy appears il'g" as
(28) the thickness dependence of the oscillator strength propor-
tional to the transition frequency. This dependence has been
study in Ref. 34 over a wide range of thickness including the
for T mode and- mode and corresponding expression for thetransition region from strong to weak confinement regime.
Z mode is obtained from the above equation by the substitu- In order to study carefully the dependence of radiative
tion 6,— &,. Second term in brackets in the right-hand partlifetime 7o=1/T"y in 2D layer of QD’s on size of QD’s and
of this equation is a local-field effect due to electromagnetidateral lattice spacing between QD’s, which is of the most

R35,
d2

%
@o 38h

wWT= W =
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FIG. 3. The radiative lifetime of the planar array of QD’s for the
0.5 ground-state exciton state inglgiGa, 35As/GaAs QD’s(solid line)
and exciton state without Coulomb correlation and the potential
confinement by finitddashed lingand infinitely high(dotted ling
25 barriers.
. 20 In Fig. 2(@) the dependence of the ground-state energy on
g |5 the QD's radius for the Coulomb-correlated exciton is shown
& in the case of finite and infinitely high potential barriers at
17 the spherical QD boundary. For both cases of the potential,
05 the photon energy has the pronounced radial dependence in

the range of small radii considered. At the same time, ove-
lapp integral of the exciton wave functio#(r.,r,,) over
equal electron and hole radial coordinate=r,,, which de-
FIG. 2. (a) The ground-state energy of the excitdh) the ra-  fines the oscillator strengffi,grows with radius in a lesser
diative lifetime of the single QD an(C) the radiative lifetime of degree. This is a reason for a drastic alteration of the radial
the planar array of QDs versus the QD radius for sphericadependence of the radiative lifetimes for single @B 1/y
In,Ga,_,As/GaAs QD's with the potential confinement by finite and for QD arrayry=1/T"y, shown in Fig. 2b) and 2c),
(solid line) and infinitely high(dashed Iinte_barriers and In content respectively, which follows from Eqs(30) and (31). For
x=0.33(1), 0.67(2), 1 (3); the lattice periodi=200 nm. growing QD radii the ground-state energy as well as calcu-
lated radiative lifetimes of the single QD and QD array tend
o the radius-independent limits dealt with the relative move-
ment of the electron and hole in the Coulomb potential.
(?—|owever, for increasing radii the movement of the center of

: I ;
by solving Shrdinger equation for the Coloumb-correlated mass comes into pla§;" this F"akes the wave fupctlon of
electron-hole pair in fGa _,As/GaAs QD’s. The spherical the exciton state of nons_phe_rlcal symme_try that is nqt con-
shape of QD’s was supposed and we have restricted outidered here. Therefore, in Fig. 2 we restricted the radius rise
selves byslike ground state of the exciton. Two-particle PY the Bohr radius (for IngsGaeAs, case 1, ag
Shradinger equation was solved by the discrete variable=24-1 nm). _ _
representatioif that was shown to be very effective also for ~ T0 show the important role of the Coulomb interaction for
the spherical coordinat¥sand can be easily generalized for the small-sized QD's, in Fig. 3 the radiative lifeting of the
two-particle problem. Coulumb interaction potential of the array of Iy 6/Ga, 3As/GaAs QD's is depicted together with
electron and hole as charged spherical surfaces was us#te radiative lifetime calculated with the help of the wave
taking into account different dielectric constants of the mafunctions of the Coulomb-uncorrelated electron and hole
terials formed QD and, therefore, surface charge at th€onfined in the finite and infinite-potential barriers. As one
In,Ga, _,As/GaAs boundary. For confinement potential wecan see, the Coulomb interaction enhances essentially the
have used step-wise function with finite-potential barriers bevalue of 7, even in the range of small radii shown, which is
tween potentials of QD material JGa _,As and matrix ma- typically considered as a strong confinement regime with
terial GaAs, which are different for conduction and valencenegligible contribution of the Coulomb interactih.

bands and dependent on content of In. To reveal in more Finally, it should be noted that besides of the polaritons
obvious way the role of the confinement we considered alseonsidered here, in 2D layer of QDs there exist surface
the infinite high potential barriers in QD’s. All material pa- polaritons with spatial dependence of the fields as
rameters of InGa, ,As as a function ok were taken from exp(—kz|z|+ik”x), wherek) = \/k12+ kzz. As follows from the
Ref. 38. EBC's (14) and (15), the quantityk, is given by

5 10 15 20 25 30
R (nm)

interest especially in the region of small QD sizes less tha
Bohr radius, we have to find precisady as a function of QD
size. For that, we have performed calculations of the dipol
moment|u| or oscillator strength of exciton ground stite
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20 V. CONCLUSION

k,=—1—Koy. 32 . i
2= T KO« 32 EBC’s given by Egs.(14) and (15 state mathematical

. . .equivalence of optical properties of a 2D periodical layer of
E‘; tgg &?&ngji;g\r’;l\i tQSEZti%?::r;gollrcf/vggr1$o(r:‘r(1)nES(:j%%;ed '®D’s and an isolated quantum well. It should be stressed that
’ o ; ; the mechanisms of transport processes and oscillator
and (26) under substitutionke,cosf——ik,. For QW's strengths in each case are essentially different. Nevertheless,
they are nonradiative with' 7 >=0. Itis not a case for 2D  the equivalence makes it possible to extend to QD-based
layer of QD's if one takes into account radiative effect of aplanar structures with more complicated configurations
single QD. For that, according to Refs. 21 and 42, we subffinite-sized QD layer, QD layer in microcavity, several QD
stitute a— a(1 — 2ik3a/3) "L in Eq. (27), equate the denomi- layers, etd. the well-developed mathematical formalism of

nator in Eq.(25) with zero and find investigation of quantum wells. Namely, this equivalence
provides promising potentiality of the derived EBC'’s for par-

67K, ticular electrodynamical problems in QD-based structures. In

Iy~ K, V- (33 particular, threshold current for QD-based lasers can be

evaluated by analogy with solution of corresponding prob-
The similar but more cumbersome result can be obtained fdem for the QW laseré® the EBC method allows us to ana-
the case ot polaritons andZ polariton. The physical inter- lyze electromagnetic response of a QD lag@ra multilayer
pretation of such kind of radiation is followed from exciton structure placed in microcavity: this is very important for
interaction with the boundaries of a single QD. the design of QD-based semiconductor lasers.

Note that dispersion equation for surface polarit¢g®) It should be emphasized that the extension of the EBC
can also be obtained by a standard but more complicate@iethod to deformed or other type of complicated structures
proceduré® on the basis of the conventional 3D effective- (finite-sized QD layer, QD layer in microcavity, several QD
medium approach. Indeed, planar array of electrically smallayers, eto.is only possible when the modification of geo-
spherical QD’s can be treated as a homogeneous anisotropietrical parameters of the structure does not change the
layer with the dielectric function given by E€R4). Solution electron-transport properties in it; otherwise, modification of

of the boundary-value problem for the layer leads us to th&BC S required. For example, too close location of two
dispersion equation for the symmetrical TE mdde; planar layers with QD's will change the energy spectrum
’ because of overlapping of exciton wave functions and tun-

>k >k neling. Thus, justification of applicability of EBC’s must be
K,= \ /ﬁgxx_ k2 tar( R\ /ﬁgxx— kf) ) given in each particular case.
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