
PHYSICAL REVIEW B, VOLUME 64, 125326
Effective boundary conditions for planar quantum dot structures
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The effective-boundary condition method is extended to nanoscale mesoscopic systems. The~EBC’s! appear
as a result of the two-dimensional~2D!-homogenization procedure and have the form of two-side anisotropic
impedance boundary conditions stated on the structure surface. It has been shown that, unlike to macroscopic
electrodynamics, the surface impedance tensor exhibits sharp oscillations at frequencies of optical transitions.
The EBC method supplemented with well-developed mathematical techniques of classical electrodynamics
creates unified basis for solution of boundary-value problems in electrodynamics of nanostructures. We have
shown that the radiative lifetime of 2D array of spherical quantum dots~QD’s! drastically changes its depen-
dence on QD radius in comparison with the case of a single QD in the range of radii smaller than Bohr radius.
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I. INTRODUCTION

Fascinating electronic and optical properties of spatia
confined nanostructures irreducible to properties of bulk m
dia, and great potentiality of such structures in engineer
applications has motivated permanent extension of t
study. Among a variety of new results in this field, the rec
progress in the synthesis of sheets of nanoscale th
dimensional~3D! confined narrow-gap insertions in a ho
semiconductor, quantum dots~QD’s!, is of a special interest
Indeed, QD-based structures provide practical realization
the idea proposed by Dingle and Henry1 to use structures
with size quantization of charge carriers in one or more
rections as active media of double heterostructure laser. S
a laser will show radically changed characteristics as co
pared to conventional quantum-well~QW! lasers.2,3 For
InxGa12xAs QD’s on GaAs substrates, an exceptiona
bright luminescence at 1.36mm was realized at room
temperature4 in a spectral range far beyond those availa
for conventional strained InxGa12xAs-GaAs QW’s. The large
body of recent results on physical properties of QDs a
their utilization for the QD laser design has been accum
lated in Ref. 5.

The key peculiarities of QD heterostructures are relate
spatial confinement of the charge-carrier motion and intrin
spatial inhomogeneity. Since the inhomogeneity scale
much less than the optical wavelength, inclusions~QD’s! can
be treated aselectrically smallobjects and electromagnet
response of such heterogeneous structures,composites, can
be evaluated by means of effective-medium theory.6 Appli-
cation of effective-medium approach to 3D arrays of QD
has been presented in Refs. 7 and 8. In many cases, how
a planar array of QD’s with intrinsic 2D periodicity of cha
acteristic period much less than the optical wavelength,
be treated as more adequate and realistic model.5

In this paper we present a general method for evalua
of electromagnetic response of planar arrays of QD’s. T
method, conventionally referred to as the effectiv
boundary-condition~EBC! method, has been originally de
veloped for microwaves and antenna theory,9–11 and has
0163-1829/2001/64~12!/125326~8!/$20.00 64 1253
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found a wide application in these fields. Similar approach
have also been developed in acoustics, hydrodynamics,
ticity theory. Recently, the EBC method has been extende
low-dimensional nanostructures, such as QW’s,12,13 carbon
nanotubes,14–16 and semicontinuous metal films.17 General
outlook of the EBC method applications in electrodynam
of nanostructures has recently been reported in Ref. 18.

The basic idea of the EBC method is that a smooth
mogeneous surface is considered instead of the initial st
ture, and appropriate EBCs for the electromagnetic field
stated for this surface. These conditions are chosen in su
way that the spatial structures of the electromagnetic fie
due to an effective current induced on the homogeneous
face, and the electromagnetic field of the real current in
initial structure turn out to be identical at some distan
away from the surface. Material characteristics of the str
ture as well as its geometrical parameters are included
coefficients of the EBC’s. Such an approach is applica
both to continuous thin films9 and 2D periodical structure
~semitransparent grid screens, helical sheaths in trave
wave tubes, etc.!. The effect of periodicity is taken into ac
count by the field averaging over the period. Thus, in
sence, the EBC method is modification of the effectiv
medium theory as applied to planar structures. T
applicability of the EBC’s is restricted by the requireme
that the lattice period is small compared with the wavelen
in the host medium. The effectiveness of the EBC metho
determined by a possibility of its extension to more comp
cated situations like finite-sized and/or deformed structu
structures located in the vicinity of additional reflectors a
scatterers, etc. Such an extension is only possible when
parameters involved in the EBC’s do not depend on the s
tial structure of the irradiating field, or, in another words, t
EBC’s must belocal, i.e., they must couple field componen
and their spatial derivatives at a given position on the bou
ary surface.

In Ref. 19 the dielectric properties of thin films consistin
of a few layers of molecules or particles are considered a
by calculation of the effective permittivity tensor, it has be
shown that in such structures the local-field effects exhibi
©2001 The American Physical Society26-1
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rather different way than in 3D bulk medium. However, t
solution of the specific electrodynamical problems based
these results is more complicated than by application
EBC’s, as the latter decreases the number of boundaries
tween areas with different material parameters that req
the field matching.

This paper is arranged as follows: In Sec. II, we formul
effective boundary conditions for planar nanostructures
derive an expression for the 232 surface conductivitiy ten-
sor. The contribution of dielectric function nonlocality inhe
ent in QD’s at weak confinement of carriers is discussed
Sec. III. The analysis presented in Secs. II and III is appl
in Sec. IV to estimate the radiative decay rate in planar
array. The paper concludes with a discussion in Sec. V.

II. FORMULATION OF EFFECTIVE BOUNDARY
CONDITIONS

In order to derive the EBC’s, a kernel problem must
solved in each particular case. For example, for grid scre
this problem is formulated as the problem of plane-wa
scattering by the infinite plane screen.11 In QD’s, apart from
the charge-carrier confinement,5 there exists a class of elec
trodynamic effects related to light diffraction by QD’s an
QD ensembles that strongly influences the electromagn
response of such systems.7,8,21Here we consider 2D arrays o
QD’s to establish correlation between properties of such s
tems and homogeneous 2D structures like quantum w
The kernel problem here is the diffraction by infinite plan
quadratic lattice constituted by identical QD’s embedded i
host medium. The host medium is assumed to be dispers
less and transparent. As for the dispersion in QD, two
gimes are differentiated by the carrier confinement. One
them, the strong confinement regime, is realized when
exciton Bohr radiusaB exceeds significantly the QD linea
extension and, thus, Coloumb interaction between elec
and hole is negligible. In opposite case~weak confinement
regime!, namely, Coloumb interaction forms exciton in Q
providing strong nonlocality of the QD electromagnetic r
sponse. In the strong confinement regime, the well-kno
Lorentz dispersion law

«~v!5«h1
g0

v2v01 i /t
. ~1!

can be used as the simplest phenomenological model of
persion in a single QD in the vicinity of the excito
resonance.22,23 In the above equationv0 is the resonant fre-
quency of the transition;t is the relaxation time~effective
exciton dephasing time! in the QD; «h is the host medium
permittivity; phenomenological parameterg0 is given byg0
524pumu2W/3\V ~see, e.g., Ref. 22! with m as the matrix
element of the dipole moment,W as the level population
difference (W,0 in an inverted medium!, andV as the QD
volume.

Further, we restrict ourselves to the dipole approximat
of the diffraction theory assuming the lattice periodd and
QD size to be small as compared to the wavelength in
host medium and inside the QD; thus, QD’s are assume
12532
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be electrically small. In that case, electromagnetic field sc
tered from an isolated QD can be expressed in terms of H
potentials by

E~r !5E0~r !1 (
l ,m52`

`

@““•Plm
e ~r !1k1

2Plm
e ~r !#,

H~r !5H0~r !2 ik«h (
l ,m52`

`

“3Plm
e ~r !, ~2!

where k5v/c, k15kA«h, c is the speed of light,E0(r ),
H0(r ) stand for the incident field; an exp(2ivt) time depen-
dence is supposed. The incident field is assumed to
ex-polarized plane wave propagating at angleu with respect
to the z axis ~see Fig. 1!. Note that the polarization of the
structure in the directionn normal to the surfaceS, azz,
should be included into consideration for QD’s like sphe
with comparable extensions in all directions. In that case

Plm
e ~r !5@exaxxEx~Rlm!1ezazzEz~Rlm!#

exp~ ik1r lm!

r lm
.

~3!

For QD’s with planar configuration in thexy plane, e.g.,
discs, islands, flattened pyramids, etc., the QD polarizab
in the z direction azz can be neglected to simplify signifi
cantly the further analysis. HereRlm5$ ld,md,0% is the ra-
dius vector of QD in the lattice,r lm5uRlm2r u5@( ld2x)2

1(md2y)21z2#1/2, a i i are the components of the QD po
larizability tensorâ, and E is the electric field inside QD.
This field is related to the Hertz potentials by the equat
analogous to Eqs.~2!:

E~r !5E0~r !1 lim
r→0

(
l ,m52`

`8

@““•Plm
e ~r !1k1

2Plm
e ~r !#.

~4!

Prime in this equation excludes the term withl 5m50.
The next step in derivation of EBC’s is the 2D averagi

of the electromagnetic field in thez50 plane. As it was
mentioned above, such a procedure implies replacemen
the discrete 2D elementary scatterer by a homogeneoud
3d element of surface. By analogy with effective-mediu
theory for bulk composites,6,24mathematically this procedur
reduces summation in Eqs.~2! and ~4! to integration, i.e.,

FIG. 1. Schematic 2D array of QD’s.
6-2
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(
l ,m52`

`

$•••%→ 1

d2E2`

` E
2`

`

$•••%dxdy, ~5!

(
l ,m52`

`8

$•••%→ 1

d2E2`

` E
2`

`

$•••%dxdy

2
1

d2E2d/2

d/2 E
2d/2

d/2

$•••%dxdy. ~6!

In view of rules~5! and the conditionk1d!1, combination
of Eqs.~2! and~4! leads to the relation for electric field in a
arbitrary lattice siteRlm :

Ei
I~Rlm!1Ei

II ~Rlm!52S 11a i i

d i

d2D Ei~Rlm!. ~7!

Although this equation has been derived for lattice sites,
eraging procedure described above allows us to exten
over the whole planez50. The coefficientsd i are given by
the equations as follows:

dx5E
2d/2

d/2 E
2d/2

d/2 2x22y2

~x21y2!5/2
dxdy'2

8

A2d
, ~8!

dz5 lim
z→0

E
2d/2

d/2 E
2d/2

d/2 3z22r 2

r 5
dxdy'

2pAp

d
, ~9!

wherer 5(x21y21z2)1/2. Equation fordy is obtained from
Eq. ~8! by the substitutionx↔y; it is easy to show thatdy
5dx . It should be noted that the above integrals conve
conditionally. For instance, in Eq.~8! result of integration
depends on the order of integration~first, integration overx
should be performed!. In Eq. ~8!, interchanging integration
and limiting transition is impermissible.

The different sings ofdx,y anddz reveals the difference in
the local field effects for the structures considered here
3D medium. The same was found in Ref. 19, where
interaction diadicF̂MM was introduced with elementsFMM

ii

analogous in the physical meaning to the coefficientsd i .
Herewith, the relationdx,y /dz5FMM

xx,yy/FMM
zz takes place and

as one can see, this is valid with high accuracy for val
FMM

xx,yy50.359 andFMM
zz 520.718 obtained in Ref. 19.

Now one should find discontinuities of the mean fie
tangential components atz50. Application of procedure~5!
to Eq. ~4! leads us to

Hy~r !5H0y~r !

2
ik«h

d2
axx

]

]zE2`

` E
2`

` 1

r
exp~ ik1r!Ex~R!d2R

1
ik«h

d2
azz

]

]xE2`

` E
2`

` 1

r
exp~ ik1r!Ez~R!d2R,

~10!
12532
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Ex~r !5E0x~r !1
1

d2
axxS ]2

]x2
1k1

2D
3E

2`

` E
2`

` 1

r
exp~ ik1r!Ex~R!d2R

1
1

d2
azz

]2

]x]zE2`

` E
2`

` 1

r
exp~ ik1r!Ez~R!d2R,

~11!

whereR is the radius vector in thexy plane andr5uR2r u.
Note that the integrals involved into Eqs.~10! and~11!are the
single-layer potentials for scalar Helmholtz equation.20 For
further consideration we take into account continuity of t
incident field and single-layer potentials through the xy pla
and discontinuity of the normal derivatives of these pote
tials on the surface.20 Then, carrying out the limiting transi
tion z→60, we obtain:

Ex
I 2Ex

II52
4p

d2
azz

]Ez

]x
, ~12!

Hy
I 2Hy

II5
4p ik«h

d2
axxEx . ~13!

Superscripts I and II mark limiting values of correspondi
quantities forz→10 andz→20, respectively. Correspond
ing equation forEy is obtained from Eq.~12! by the changes
Ex→Ey and]/]x→]/]y. In order to derive equation forHx ,
the changesHy→Hx , Ex→2Ey and axx→ayy should be
performed in Eq.~13!. Substitution ofEi determined by Eq.
~7! into all four equations leads us to the EBC’s in sca
representation. To present them in more convenient, cov
ant, notation we introduce the tangential vectors2Eyex
1Exey[n3E andHxex1Hyey[2n3n3H; then, combin-
ing the scalar EBC’s by pairs, we come to the followin
covariant notation of the EBC’s:

n3n3~HI2HII !52
2p

c
n3ŝ~EI1EII !, ~14!

n3~EI2EII !52jn3“@n•~EI1EII !# ~15!

where

ŝ5S ŝi 0

0 0
D .

The 232 surface conductivity tensorŝi and the coefficient
j are defined by

ŝi5 i
v«h

d2
âiS Î i1

dx

d2
âi D 21

, j5
2pazz

d21dzazz

. ~16!

Here Î i is the 232 unit tensor andâi is given by the in-
plane componentsa i j ( i , j 5x,y) of the QD polarizability
6-3
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G. YA. SLEPYAN et al. PHYSICAL REVIEW B 64 125326
tensor. Second term in the brackets in Eq.~16! is due to the
depolarization related to the difference between mean
acting fields.

The equations~14!–~16! constitute the complete syste
of EBC’s for electromagnetic field in low-dimensional nan
structures. They have been obtained in the ordinary way
the averaging of a microscopic field over a physically infi
tesimal volume. The technique of macroscopic averagin
similar to one that introduces the constitutive parameters
bulk media, but differs in that the averaging occurs in bou
ary conditions rather than in field equations. Correspo
ingly, the averaging was carried out over the 2D surface
not over the 3D spatial element. Thus, in electrodynamics
low-dimensional structures the EBC’s play the same role
constitutive relations in electrodynamics of bulk media. A
though the EBC’s have been derived for 2D periodical str
ture with quadratic lattice, they keep validity for arbitra
configuration of elementary cell and for planar layers w
random distribution of QD’s. The difference will manife
itself in the modified coefficientsd i . Since we did not con-
cretize the incident field structure under derivation of EBC
~14! and ~15!, these boundary conditions hold true at ar
trary excitation~plane waves and wave beams, moving e
ternal charges, etc.!. The only restriction is absence of exte
nal sources of electromagnetic field in the xy plane. T
restriction allows us to assumeE0 , H0 to be continuous
through the plane. Note also that the EBC’s~14! and ~15!
turn out to be analogous to corresponding EBC’s for QW
Refs. 12 and 13 if spatial dispersion in the latter can
neglected, i.e., in the limit of infinitely large exciton mas
Thus, a planar layer comprising a 2D array of QD’s can
treated as an effective QW. As a result, well-developed
malism of investigation of QW’s Refs. 12,25–28 can be e
tended to QD arrays by introducing of effective integral p
rameters of the array defined by Eqs.~16!.

For practical utilization of the derived EBC’s the polari
ability tensor requires to be known. For simplest configu
tion of QD’s ~sphere, disc! this tensor can be found
analytically7 whereas direct numerical simulation is requir
for more complicated configurations like cubic or pyramid
In particular, the minimal autonomic block method can
successfully applied for this purposes~see Ref. 8!.

III. THE ROLE OF NONLOCALITY

EBC’s ~14! and~15! are valid for QD with strong confine
ment of carriers. Namely in this case the local model of
QD permittivity presented by Eq.~1! holds true; otherwise
in the case of weak confinement of carriers, the QD elec
magnetic response becomes nonlocal: the constitutive
tion for the QD medium polarization takes the form of t
integral operator as follows:29

P~r !5AF~r !E
V
F~r 8!E~r 8!d3r 8, ~17!

where A5p«hvLTaB
3/(v02v2 i /t), the functionF(r ) is

related to the envelope function of the exciton ground st
12532
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vLT is the exciton longitudinal-transverse splitting in th
bulk material. Integration in this equation is carried out ov
the QD volumeV.

Let us now study the role of nonlocality presented by E
~17! in electromagnetic response of an isolated QD. We s
with the integrodifferential wave equation that describ
electromagnetic field both inside and outside the QD:

E~r !5E0~r !14p~““•1k1
2!E

V
P~r 8!G~r2r 8!d3r 8.

~18!

Here G(r )5exp(ik1ur u)/4pur u is the Green function. In the
far zone, electromagnetic field scattered by QD is charac
ized by the Hertz potential

Pe5
eik1r

r E
V
P~r 8!d3r 85

eik1r

r
ANL, ~19!

whereN5*VF(r )d3r , L5*VF(r )E(r )d3r . Inside QD, the
retardation can be neglected and, thus, Eq.~18! reduces to
more simple form:

E~r !5E0~r !1““•E
V

P~r 8!

ur2r 8u
d3r 8. ~20!

Note that Eq.~17! defines very special type of nonlocality
the integral operator in it has degenerated kernel withM
51 degeneration order. In view of that, integral different
equations~18! and~20! turn out to be equivalent to the inte
gral Fredholm equations with degenerated kernels. For a
trary degeneration order, such equations reduce to system
algebraic equations;30 in our case, presence of a degenera
kernel makes possible analytical consideration of the non
cality problem. First, Eq.~20! allows us to find vectorL
omitting the procedure of evaluation of the electromagne
field E(r ) inside QD; to do this, let us multiply Eq.~20! by
the functionF(r ) and integrate it over the QD volume. As
result, we obtain

L'NE014pAŶL, ~21!

where the 3D-tensorŶ is given by its components by

Yab5
1

4pEV
E

V
F~r !F~r 8!

]2

]xa]xb

1

ur2r 8u
d3rd3r 8

~22!

with xa,b5x,y,z. Substitution of explicit expression forL
obtained from Eq.~22! into Eq. ~19! leads to the Hertz po-
tential Pe.exp(ik1r)âE0 /r with the polarizability tensor of
an isolated QD defined by

â5AN2~ Î24pAŶ!21. ~23!

Thus, we have shown that the special law of the nonloca
~17! inherent to an isolated QD admits description of t
electromagnetic field scattering by the QD using the pola
ability tensor independent on the incident field structure.
another words, the nonlocality changes values of the po
izability tensor components but does not change the gen
6-4
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EFFECTIVE BOUNDARY CONDITIONS FOR PLANAR . . . PHYSICAL REVIEW B 64 125326
representation of the scattering operators as compared t
strong confinement regime. This allows one to conclude
the above introduced EBC’s remain valid in the weak co
finement regime as well. Note that the above result adm
extension of the Maxwell Garnett approach6 to 3D compos-
ites constituted by QD’s in weak confinement regime.

IV. RADIATIVE DECAY RATE IN PLANAR ARRAY OF
QD’s

Let us apply the EBC method for the investigation
exciton radiative time in 2D array of QD’s that are assum
to be spherical inclusions of the radiusR. Corresponding
problem for QW’s was considered in detail in a number
papers~see, e.g., Refs. 12,13,25–28!. It can easily be shown
that EBC’s ~14! and ~15! describe a QW with the tensoria
dielectric function

«̂~v!5« i~v!~exex1eyey!1«'~v!ezez , ~24!

where « i(v)5«h24p isxx /ckLQW , «'(v)5«h /(1
12j/LQW) and LQW is the QW thickness. Plane-wave r
flection coefficients for this QW are given by12

r s5
ikh i

2A«hcosu2 ikh i
, ~25!

r p5
ik@h icos2u1«h

2h'sin2u#

2A«hcosu2 ik@h icos2u2«h
2h'sin2u#

~26!

for s polarizations andp polarizations, correspondingly. Her
u is the angle of incidence,h i5LQW@« i(v)2eh# and h'

5LQW@«'
21(v)2eh

21#. The quantitiessxx and j are given
by Eqs.~16!. For spherical particles, the polarizability tens
takes the form as follows:

â5R3
«~v!2eh

«~v!12eh
Î . ~27!

Thus, in view of Eq.~1!, the reflection coefficients for plana
array of spherical QD’s are given by Eqs.~25! and~26! after
substitutionsLQW→2R. By analogy with Ref. 12 we con
clude that three types of polaritons,T polaritons,L polaritons
andZ polaritons, can propagate in the planar array of QD
considered. Frequency poles of functionr s(v) correspond to
polaritons ofT type while poles ofr p(v) correspond to po-
laritons of T type and Z type. Real parts of these poles d
termine resonant frequencies of corresponding modes. It
easily be found that

vT5vL5v02
g0

3«h
S 11

R3dx

d2 D , ~28!

for T mode andL mode and corresponding expression for t
Z mode is obtained from the above equation by the subs
tion dx→dz . Second term in brackets in the right-hand p
of this equation is a local-field effect due to electromagne
12532
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interaction of QD’s in array. Namely, the electromagne
interaction is responsible for the frequency gap betweeL
~T! modes andZ mode.

Imaginary parts of frequency poles of the reflection co
ficients ~25! and ~26! determine the radiative decay rat
Then, using results of Ref. 12 and above-defined subs
tions, we obtain

GT5
G0

cosu
, GL5G0cosu, GZ5G0

vZsin2u

vLcosu
, ~29!

for T polaritons,L polaritons, andZ polaritons, correspond
ingly, where

G052
2pṽ0R3

3d2cA«h

g0S 12
dxR

3

3«hṽ0d2
g0D , ~30!

is the radiative decay rate across the plane of QD struct
ṽ05v02g0/3«h . Under derivation of Eqs.~29! we have
assumed all three modes to be independent. Indeed, in a
range of not too bigu the inequality (g0R3/3«hd2)udx2dzu
@GL,Z holds true and, consequently, the LZ splitting~fre-
quency splitting betweenl polaritons andz polaritons! ex-
ceeds linewidths of corresponding modes allowing thus
above assumption.

To compare the radiative decay rates of 2D array of Q
and of a single spherical QDg522(kR)3g0A«h/9 ~see Ref.
31! we rewrite Eq.~30! as

G0 /g'B, ~31!

whereB53p/(k1d)2 is the superradiance factor. The latt
enhances substantially the radiative lifetime in dense arr
Note that the quantityB coincides with that derived in Ref
32 @Eq. ~19!# using an approximate analysis of the light d
fraction by a 2D array of QD’s. Analogous super-radian
factor with the Bohr radiusaB instead ofd was introduced
also for quantum well.33 One can interpret the coefficientB
in Eq. ~31! in close analogy with Ref. 33: it results from th
coherent excitation of QD’s located at distanced from each
other.

Let us analyze dependence of the radiative rates~30! on
the QD radius. Sinceg0;1/R3 in the strong confinemen
regime,22 the explicit dependence ofG0 on the QD radius
vanishes; this dependence manifests itself only as a w
radial dependence of the renormalized resonant freque
ṽ0. The last effect is a combination of two mechanisms o
of which originates from the radial dependence of the ex
ton transition energy\v0, and the second one is provided b
the local-field effects responsible for the renormalization
the transition energyv0→ṽ0. Analogous situation occurs in
QW’s, where G0

QW52v0LQWg0
QW/2cA«h with g0

QW

;1/LQW . Thus, the QW thicknessLQW appears inG0
QW as

the thickness dependence of the oscillator strength pro
tional to the transition frequency. This dependence has b
study in Ref. 34 over a wide range of thickness including
transition region from strong to weak confinement regime

In order to study carefully the dependence of radiat
lifetime t051/G0 in 2D layer of QD’s on size of QD’s and
lateral lattice spacing between QD’s, which is of the mo
6-5
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interest especially in the region of small QD sizes less t
Bohr radius, we have to find preciselyg0 as a function of QD
size. For that, we have performed calculations of the dip
momentumu or oscillator strength of exciton ground state35

by solving Shro¨dinger equation for the Coloumb-correlate
electron-hole pair in InxGa12xAs/GaAs QD’s. The spherica
shape of QD’s was supposed and we have restricted
selves bys-like ground state of the exciton. Two-partic
Shrödinger equation was solved by the discrete varia
representation36 that was shown to be very effective also f
the spherical coordinates37 and can be easily generalized f
two-particle problem. Coulumb interaction potential of t
electron and hole as charged spherical surfaces was
taking into account different dielectric constants of the m
terials formed QD and, therefore, surface charge at
InxGa12xAs/GaAs boundary. For confinement potential w
have used step-wise function with finite-potential barriers
tween potentials of QD material InxGa12xAs and matrix ma-
terial GaAs, which are different for conduction and valen
bands and dependent on content of In. To reveal in m
obvious way the role of the confinement we considered a
the infinite high potential barriers in QD’s. All material pa
rameters of InxGa12xAs as a function ofx were taken from
Ref. 38.

FIG. 2. ~a! The ground-state energy of the exciton,~b! the ra-
diative lifetime of the single QD and~C! the radiative lifetime of
the planar array of QDs versus the QD radius for spher
InxGa12xAs/GaAs QD’s with the potential confinement by fini
~solid line! and infinitely high~dashed line! barriers and In conten
x50.33 ~1!, 0.67 ~2!, 1 ~3!; the lattice periodd5200 nm.
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In Fig. 2~a! the dependence of the ground-state energy
the QD’s radius for the Coulomb-correlated exciton is sho
in the case of finite and infinitely high potential barriers
the spherical QD boundary. For both cases of the poten
the photon energy has the pronounced radial dependen
the range of small radii considered. At the same time, o
lapp integral of the exciton wave functionC(r e ,r h) over
equal electron and hole radial coordinater e5r h , which de-
fines the oscillator strength,35 grows with radius in a lesse
degree. This is a reason for a drastic alteration of the ra
dependence of the radiative lifetimes for single QDt51/g
and for QD arrayt051/G0 shown in Fig. 2~b! and 2~c!,
respectively, which follows from Eqs.~30! and ~31!. For
growing QD radii the ground-state energy as well as cal
lated radiative lifetimes of the single QD and QD array te
to the radius-independent limits dealt with the relative mo
ment of the electron and hole in the Coulomb potent
However, for increasing radii the movement of the center
mass comes into play;39,40 this makes the wave function o
the exciton state of nonspherical symmetry that is not c
sidered here. Therefore, in Fig. 2 we restricted the radius
by the Bohr radius ~for In0.33Ga0.67As, case 1, aB

524.1 nm).
To show the important role of the Coulomb interaction f

the small-sized QD’s, in Fig. 3 the radiative lifetimet0 of the
array of In0.67Ga0.33As/GaAs QD’s is depicted together wit
the radiative lifetime calculated with the help of the wa
functions of the Coulomb-uncorrelated electron and h
confined in the finite and infinite-potential barriers. As o
can see, the Coulomb interaction enhances essentially
value oft0 even in the range of small radii shown, which
typically considered as a strong confinement regime w
negligible contribution of the Coulomb interaction.41

Finally, it should be noted that besides of the polarito
considered here, in 2D layer of QDs there exist surfa
polaritons with spatial dependence of the fields
exp(2kzuzu1ikuux), wherekuu5Ak1

21kz
2. As follows from the

EBC’s ~14! and ~15!, the quantitykz is given by

l

FIG. 3. The radiative lifetime of the planar array of QD’s for th
ground-state exciton state in In0.67Ga0.33As/GaAs QD’s~solid line!
and exciton state without Coulomb correlation and the poten
confinement by finite~dashed line! and infinitely high~dotted line!
barriers.
6-6
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kz52 i
2p

c
ksxx . ~32!

For the quantum wells these polaritons were considere
Ref. 12 with dispersive equations followed from Eqs.~25!
and ~26! under substitutionkA«hcosu→2ikz. For QW’s
they are nonradiative withGL,T,Z50. It is not a case for 2D
layer of QD’s if one takes into account radiative effect o
single QD. For that, according to Refs. 21 and 42, we s
stituteâ→â( Î 22ik1

3â/3)21 in Eq. ~27!, equate the denomi
nator in Eq.~25! with zero and find

GT'
6pk1

kz
g. ~33!

The similar but more cumbersome result can be obtained
the case ofL polaritons andZ polariton. The physical inter-
pretation of such kind of radiation is followed from excito
interaction with the boundaries of a single QD.

Note that dispersion equation for surface polaritons~32!
can also be obtained by a standard but more complic
procedure19 on the basis of the conventional 3D effectiv
medium approach. Indeed, planar array of electrically sm
spherical QD’s can be treated as a homogeneous anisot
layer with the dielectric function given by Eq.~24!. Solution
of the boundary-value problem for the layer leads us to
dispersion equation for the symmetrical TE mode;43

kz5A2pk

icR
sxx2kz

2 tanS RA2pk

icR
sxx2kz

2D .

In the thin layer limit, whenkzR!1, this equation is reduce
to Eq. ~32!. The above example demonstrates us the ef
tiveness of the EBC method as compared to the conventi
3D effective-medium approach, but also illustrates the ab
statement that the EBC method is applicable only to elec
cally thin layers.
um
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V. CONCLUSION

EBC’s given by Eqs.~14! and ~15! state mathematica
equivalence of optical properties of a 2D periodical layer
QD’s and an isolated quantum well. It should be stressed
the mechanisms of transport processes and oscill
strengths in each case are essentially different. Neverthe
the equivalence makes it possible to extend to QD-ba
planar structures with more complicated configuratio
~finite-sized QD layer, QD layer in microcavity, several Q
layers, etc.! the well-developed mathematical formalism
investigation of quantum wells. Namely, this equivalen
provides promising potentiality of the derived EBC’s for pa
ticular electrodynamical problems in QD-based structures
particular, threshold current for QD-based lasers can
evaluated by analogy with solution of corresponding pro
lem for the QW lasers;28 the EBC method allows us to ana
lyze electromagnetic response of a QD layer~or a multilayer
structure! placed in microcavity: this is very important fo
the design of QD-based semiconductor lasers.5

It should be emphasized that the extension of the E
method to deformed or other type of complicated structu
~finite-sized QD layer, QD layer in microcavity, several Q
layers, etc.! is only possible when the modification of geo
metrical parameters of the structure does not change
electron-transport properties in it; otherwise, modification
EBC is required. For example, too close location of tw
planar layers with QD’s will change the energy spectru
because of overlapping of exciton wave functions and t
neling. Thus, justification of applicability of EBC’s must b
given in each particular case.
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