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Interference and interaction effects in multilevel quantum dots
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Using renormalization group techniques, we study spectral and transport properties of a spinless interacting
quantum dot consisting of two levels coupled to metallic reservoirs. For strong Coulomb repulsionU and an
applied Aharonov-Bohm phasef, we find a large direct tunnel splittinguDu;(G/p)ucos(f/2)u ln(U/vc) be-
tween the levels of the order of the level broadeningG. As a consequence we discover a many-body resonance
in the spectral density that can be measured via the absorption power. Furthermore, forf5p, we show that the
system can be tuned into an effective Anderson model with spin-dependent tunneling.
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Introduction. Electronic transport through ultrasma
quantum dots~QD’s!, where the charging energy is the lar
est energy scale, has been studied extensively over the
few years.1 Due to the quantization of charge the transpor
dominated by Coulomb blockade~CB!. More recently ex-
periments revealed that the transport can be even more
triguing by measuring the Kondo effect,2,3 as suggested in
Ref. 4.

The Kondo effect occurs for a dot with one low-lyin
spin-degenerate level. In this Brief Report, we will study
dot consisting of two levels without spin or, equivalent
two dots in an Aharonov-Bohm~AB! geometry with one
level per dot in the presence of an interdot Coulomb rep
sion U. Such a system is of fundamental interest since
two possible paths through the dot~via level 1 or 2) can
interfere with each other. The interference can be contro
by an AB flux and has attracted much interest due to
possibility of realizing AB interferometers5 or using the co-
herent properties in connection with quantum computi6

~for recent experimental realizations see Ref. 7!. Further-
more, in many recent experiments performed in the str
tunneling regime, the level broadening is large and trans
is inevitably controlled by multilevel physics.

The model.We consider a quantum dot consisting of tw
levels, labeled byj 51,2. Via tunnel barriers the dot is con
nected to two electronic reservoirsr 5L,R. The orbital index
j is not conserved during tunneling and hence does not e
in the leads. The Hamiltonian is written asH5Hdot1H res

1HT , with Hdot5( j« j cj
†cj1Un1n2 , H res5(kr«krakr

† akr ,
and HT5( rk j (t j

rakr
† cj1H.c.). The tunnel matrix element

are assumed to be real except for an AB phase, i.e., we a
a phase factoreif to t2

L . The energy scale of the level broa
ening is defined byG j

r52put j
r u2r0, wherer0 is the density of

states in the leads, which we assume to be independe
energy for the energy range of interest.

We neglect spin~assuming a large Zeeman splitting! since
the aim is at analyzing explicitly the physical effects arisi
from the tunneling-induced interference between the two l
els. Since both levels overlap with the reservoir states, th
is an effective overlap matrix element2D/2, which, surpris-
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ingly, is shown to be zero for a noninteracting quantum d
but for strong on-site Coulomb repulsionU@ueu,G, scales
like

D;
AG1

RG2
R1AG1

LG2
Leif

p
ln~U/vc!. ~1!

Here,f is the AB phase, andvc denotes a low-energy cutof
set by the maximum of the mean level positione5(e1
1e2)/2, the mean level broadeningG5(G11G2)/2 ~with
G j5G j

R1G j
L), the temperatureT, or the bias voltage eV. The

level splitting is given by

dẽ5Ade21uDu2, ~2!

wherede5e22e1 denotes the level spacing. Consequen
the tunnel splitting gives rise to an interference-and
interaction-induced level repulsion, i.e., an effect not be
considered in models with levels labeled by a conser
quantum number ~e.g., spin4! or in the absence o
interactions.8 The energy scale ofD is given byG and will
influence the spectral properties as well as the conducta
for low enough temperaturesT&G. We emphasize that this
energy scale is well separated from the Kondo tempera
TK;AGUexp(pe/G) (e!2G), which is exponentially small
and determines the crossover to the occurrence of the Ko
effect for spin-degenerate levels.4 Most importantly, we will
show in this Brief Report that for low-lying levelse&2G
~where the ground state is the singly occupied state!, the
effective level splitting shows up in a many-body resonan
in the spectral density at the energydẽ, which, e.g., can be
measured by an absorption experiment but influences
the temperature and flux dependence of the linear cond
tance. Forf5p and G j

R5G j
L , the tunnel splitting is zero

and the system is shown to be equivalent to an Ander
model with Zeeman splittingde. Thus, Kondo physics can
be realized in a quantum dot without spin even if the qu
tum number labeling the levels isnot conserved.

We note that multilevel dots in the presence of spin ha
been studied previously.9–11However, Ref. 9 studies the cas
of a conserved quantum number labeling the levels,
©2001 The American Physical Society09-1
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Refs. 10 and 11 consider the casesde@G or f5p, where
the effect of the tunnel splittingD can be neglected. Th
same applies to the AB geometry of Ref. 12 where the in
dot Coulomb repulsion is absent.

Renormalization group study.An effective dot Hamil-
tonian can easily be derived from perturbation theory
equivalently, by integrating out the reservoir states by
renormalization group. The dot is characterized by fo
states u0&, u1&, u2&, and u12&, with energiesE050, E1
5e1 , E25e2, andE125e11e21U. Intuitively, the hybrid-
ization with the reservoirs will lower the energies of all the
states. For the singly occupied states, however, this is
pronounced because it costs a finite energyU to occupy the
dot with a second electron. Therefore, the level positionse j
5Ej2E0 will be renormalized upwards. Furthermore, a co
pling between the levels is generated since tunneling ev
can shift the electrons between the two levels. For an e
tron starting in level 1 there are two possibilities: either t
electron first tunnels out and hops into level 2 or an elect
first hops into level 2 and then the electron tunnels out
level 1. In the latter case, the intermediate state is the do
occupied state and, due to Fermi statistics, the matrix
ment gets an additional minus sign. Therefore, for reser
electrons with an energyueku@U, these two terms will can-
cel each other and, consequently, there is no direct coup
between the levels in the noninteracting case. In contrast
an interacting system, the doubly occupied state is s
pressed, and there is a finite couplingD between the two
levels. We note that this mechanism does not work for lev
characterized by spin since the two tunneling processes
scribed above would also change the spin in the reserv
and, therefore, do not lead to a direct renormalization of
dot Hamiltonian.

Using the real-time renormalization group~RG! of Ref.
13 for the forward propagator we find that energy sca
vc.U do not renormalize the states, i.e., we start the RG
vc5min(D,U) whereD is the bandwidth. In the basis of th
three remaining statesu0&, u1&, and u2&, we obtain the flow
equation (tc51/vc)

dHdot

dtc
52

1

2p~ tc2 i01!S G/2 0 0

0 G1 F

0 F* G2

D , ~3!

where F5AG1
RG2

R1AG1
LG2

Leif. Neglecting level broaden
ing, the solution of this equation gives an upward level sh
E1/22E05e1/21lG2/1, with l5(1/2p)ln(U/vc), and a cou-
pling 2D/252Fl leading to Eq.~1!. As a consequence w
get two effective levels atẽ1/25e1lG7dẽ/2, where the ef-
fective level splittingdẽ is given by Eq.~2!. While ẽ1 is
quite close to the original level position,ẽ2 is strongly renor-
malized upwards. ForG j

r'G/2, de!G, andf!1 the lower
~upper! level is coupled strongly~weakly! to the reservoirs.
For the following discussion we will usually assume equ
couplingsG j

r5G/2, i.e., ut j
r u5t j5t and discuss the effect o

asymmetries at the appropriate places.
In the symmetric case we defineA2 f i5c12(21)ic2. For

f50, only thef 1 operator couples to the reservoirs, where
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the level spacingde controls the coupling between thef 1
and f 2 level. The current operator in the right reservoir
given by I R5 ieA2t(k(akR

† f 12H.c.). We also note that for
de50 andf5p the conductance is exactly zero since t
f 1( f 2) level couples only to the left~right! reservoir. This is
an effect of destructive interference which interestingly p
sists also in the presence of interactions.

Spectral density and absorption power.In Fig. 1 we show
the spectral density of thef 1 level for e.0, where the
ground state is given by the empty state. The results
obtained by using the full real-time renormalization gro
method of Ref. 13, which is known to yield excellent resu
in the regime where charge fluctuations dominate. The
peaks in the spectral density correspond to the renormal
level positions and change qualitatively as function of te
peratureT andde according to Eqs.~1! and~2!. The distance
between the resonances saturates forde,G at the energy
scaleD according to Eq.~2!. In contrast, whene is below the
Fermi level, the lower level is occupied and particle exci
tions lead to a broad shoulder in the spectral density at
effective spacingdẽ; see inset of Fig. 2~an additional weak
feature occurs at negative frequencies but this is maske

FIG. 1. Spectral density of thef 1 level for e15T50, U
510G, de50.25G, 0.5G, 1G, 2G ~from left to right!. Inset: de
5G, T50,0.5G, 1G, 1.5G ~from top to bottom!.

FIG. 2. Absorption power~scaled, single peaks! vs spectral den-
sity of the f 1 level ~‘‘shoulder’’ at the same position! for e15
210G, U550G, and T50. In the inset, the spectral density
shown fore1523.5G andU510G.
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INTERFERENCE AND INTERACTION EFFECTS . . . PHYSICAL REVIEW B64 125309
the broad resonance atẽ1). These results have been obtain
by using Wilson’s nonperturbative numerical renormalizat
group~NRG!14 which, up to some overbroadening effects
higher frequencies, gives very precise results for the spe
density near the Fermi level and for the positions of all re
nances. Since the location of the shoulder is not at the Fe
level, it is more suitable to test its position via the absorpt
power rather than the linear conductance. Therefore, we h
shown in Fig. 2 the result for the spectral density of t
transition operatorc1

†c21c2
†c1. The peak position of the ab

sorption power agrees very precisely with the position of
shoulder in the spectral density of thef 1 level. We emphasize
that the shoulder is absent without the tunnel splitting, i.e
is a generic effect which will also be present in the asy
metric caseG1ÞG2. In this case, however, the broadening
the shoulder~which is determined byG) will increase rela-
tive to its height~which is determined byD).

Figure 3 shows the spectral density of thef 1 level for
different AB phasesf ~also obtained by NRG!. For de50,
the position of the shoulder varies proportional touDu
;(G/p)ucos(f/2)u ln(U/ueu), according to Eq.~1! ~for f50,
the amplitude of the shoulder is zero since thef 2 level is
decoupled from the reservoirs!. Furthermore, the resonance
at finite frequency become more pronounced and, forf5p,
merge into a Kondo resonance at the Fermi level with wi
given by the Kondo temperatureTK . This effect can easily
be understood, since forf5p, the tunneling Hamiltonian
readsHT5t(k j(bk j

† cj1H.c.) with A2bki5akR2(21)iakL .
Hence, for this special case, the pseudospinj is effectively a
conserved quantum number and we obtain the Hamilton
of the usual Anderson model, which, for a low-lying levele
is equivalent to the Kondo model.15

We note that this realization of Kondo physics witho
explicit spin degrees of freedom is quite different from oth
realizations, where metallic16 or two-level systems17 have
been used. Furthermore, there are three experimentally
able ways to destroy the Kondo resonance. First, a fi

FIG. 3. Effect of a finite AB phase on the single-particle spe
trum. The spectral density of thef 1 level is shown for e15
21.6G, de50, U58.1G, and T50. Left inset: Partial spectra
density corresponding to the levelc1. Same parameters as abov
but with a finite level splittingde50.08G. Right inset:f 1 spectral
density for different broadening strengthsG1ÞG2 of levelsc1 and
c2.
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level spacingdeÞ0 acts like an effective Zeeman splitting
This splits the Kondo resonance and decreases its height
the left inset of Fig. 3. Second, an AB phase away fromf
5p leads to an effective couplingD between the two levels
At D;TK a phase transition will occur quite analog to th
competition between Ruderman-Kittel-Kasuya-Yosi
~RKKY ! and Kondo physics in two-impurity models.15,18

The same mechanism is induced by left/right asymmetr
i.e., for G j

RÞG j
L . Thirdly, for given left/right symmetry but

G1ÞG2, we obtain an Anderson model with pseudo-sp
dependent tunneling matrix elementst j . As shown in the
right inset of Fig. 3, the Kondo resonance arising atF5p is
reduced and splits asymmetrically but is well defined even
G2 /G1'2 ~we note that the reduction is quite more pr
nounced for a finite level spacing!. As a consequence, th
Kondo resonance can be shifted away from the Fermi le
by changing the asymmetry of the tunneling matrix elemen
an effect also seen in recent experiments.3

Since the conductance is zero forde50 andf5p, the
Kondo resonance will show up only weakly in theI (V) char-
acteristics by changing the level spacing or the AB flu
However, the crossover to the Kondo effect can, e.g.,
measured by the absorption power. Alternatively, in an A
geometry with two dots and one level per dot we expect
equilibrium forde50 andf5p a Kondo resonance in eac
dot separately. Their effect might be tested by measuring
conductance fluctuations of a parallel quantum wire lyi
very close to one dot.

Linear conductance.Another fingerprint for the renormal
ization of the energy levels due to the tunneling splittingD is
the measurement of the linear conductance. It is calcula
by using the renormalized Hamiltonian on the forward a
backward propagator according to Eq.~3!, including the
level broadening~for the backward propagator we take th
hermitian conjugate13!. This effective Hamiltonian is used a
an input for the calculation of rates in lowest order in t
tunneling coupling.

Figure 4 shows the temperature dependence forde5f
50.19 At T50, the spectral density of thef 1 level is a single
Lorentzian with widthG centered at the level positione. The
resonance ate1U is missing fore.2U/2 since thef 2 level
is decoupled from the system and is not occupied in

-
FIG. 4. The linear conductance forde50, D550G, and U

5`. Main panel:T dependence withf50 ~dashed lines indicate
the positive energies!. Inset:f dependence forT5G.
9-3
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ground state; see also inset of Fig. 2. Thus, at zero temp
ture, the conductance is symmetric under a sign changee,
in contrast to the case for spin degenerate levels, where
Kondo effect enhances the conductance for negativee. For
finite temperature, thef 2 level starts to become occupied an
suppresses the conductance due to the Coulomb repulsioU.
This effect is more pronounced for negativee and, therefore,
the conductance shows a local maximum forT;e.0 but is
nearly monotonic fore,0. This distinguishes the mode
from transport through a single level.

The inset of Fig. 4 shows the gate voltage dependence
different AB phases andde50. The RG predictsD to de-
crease with increasing flux. Forf→p the tunnel splitting is
small and the level shift byl leads to a resonance position
the linear conductance neare52l. In contrast, forf→0,
the tunnel splitting is large andẽ1'e, which leads to a reso
nance position neare50. As a consequence we find that th
position of the resonance is strongly influenced by the
phase and reflects directly the tunnel splittinguDu together
with the level renormalizationl.

Finally, we would like to comment on the case when t
number of levels is given byN.2. Generalizing the RG
equation~3! to this case gives rise to an upward shift of
s

.

.

12530
ra-

he

or

particle and hole excitations by approximately;NG, while
only one level with an equally increased broadening rema
approximately at the original position. This means that tra
port appears to be effectively controlled by single-level ph
ics and may explain recent experiments2,3 in the regimeG
;de where universal Kondo behavior of single-level do
has been observed.

Summary.We have studied interaction and interferen
effects in quantum dots with two levels or two quantum d
with one level coupled to reservoirs. We found a new tun
splitting that changes as a function of an applied magn
flux and can be measured via the absorption power. As fu
tion of the flux, the system can be tuned into an effect
model showing Kondo physics. We expect important imp
cations of our results for transport and spectroscopy exp
ments as well as for the theory of level statistics in quant
dots.
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