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Effective transport energy versus the energy of most probable jumps
in disordered hopping systems
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An analytic expression for the effective transport energy in a positionally random and energetically disor-
dered hopping system is obtained. It is shown that multiple carrier jumps within pairs of occasionally close
localized states strongly affect the position of the effective transport level on the energy scale and lead to a
noticeable difference between the effective transport energy and the energy of most probable jumps. In a
hopping system with a Gaussian density-of-states energy distribution, the equilibrium carrier mobility is found
to be an almost factorized function of temperature and concentration of localized states.
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I. INTRODUCTION

Charge carrier transport in positionally and energetica
disordered hopping systems is notoriously difficult for ex
analytic consideration. Among several approximate metho
suggested over the last decades,1–4 the concept of effective
transport energy5,6 was especially efficient as far as the pro
lems of energy relaxation and dispersive or equilibrium c
rier mobility are concerned.7,8 The use of this concept con
siderably simplifies the problem and essentially reduces
trap-controlled transport with a broad energy distribution
localized states.9,10

The occurrence of an effective transport energy was
revealed in Monte Carlo simulation5 and was later proved by
analytic consideration6 of charge carrier kinetics in disor
dered hopping systems. In such systems, the rate of ca
jumps from a given starting hopping site of energyEs to a
target site of energyEt is determined by the interplay be
tween the energy differenceEt2Es and the jump distancer.
In general, the probability that the jump will be made
some site of the specific energyEt depends upon the tem
peratureT, the density-of-state~DOS! distributiong(E), the
localization radius~1/g!, and the energy of the starting site
However, if the DOS function is sufficiently steep and if th
starting site is sufficiently deep, the most probable value
the energyEt does not depend uponEs . In other words,
practically all carriers, localized in a deep tail of the DO
distribution, will sooner or later jump to one of the shallow
states whose energies are close to some universal v
which is traditionally referred to as the transport energyEtr .

It was usually implied that after an energetically upwa
jump into a hopping site, which belongs to the transp
level, a carrier will make several downward jumps to oth
states than the starting one. This assumption was also m
and is certainly valid for the trap-controlled transport, b
justification thereof for a more general case of carrier h
ping in disordered systems needs special consideration.
rier drift and diffusion in the trap-controlled transport mo
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occur via a band of extended states. Once a carrier was
leased from a trap to an extended state, lots of other local
states are available for trapping and the probability to
captured by the same trap is negligibly small. However, i
pure hopping system the target site at the transport leve
still a localized state that normally has only a few hoppi
neighbors accessible for the next jump. The starting site
inevitably one of those states, and it is quite possible th
after an upward jump, a carrier will return to the initiall
occupied deeper site. Such a jump contributes to nei
transport nor energy relaxation. Therefore, one must dis
guish between the energy level onto which most carri
jump from deeper states, and the genuine transport le
jumps onto which will most probably draw the carrier aw
from the initially occupied state. That these two are differe
was already indicated by previous Monte Car
simulations.11

In the present paper we develop an analytic model
charge carrier hopping in disordered hopping systems, tak
into account possible correlations between energies and
sitions of localized states which may lead to ‘‘multiple ho
ping’’ of a carrier between occasionally close hopping neig
bors. It is shown that accounting for such cases leads
meaningful distinction between the energy level of mo
probable upward carrier jumps and the genuine transport
ergy. The latter is calculated for both exponential and Gau
ian DOS distributions. The obtained results are applied t
calculation of the equilibrium charge carrier mobility in
random hopping system with a Gaussian DOS distribution
is worth noting that our approach is based on the traditio
approach to hopping in disordered systems. This appro
disregards possible correlation between energies and p
tions of hopping sites although such correlations may play
important role as far as charge transport characteristics
concerned.12,13

II. THEORY

Most models of carrier hopping in disordered materia
both numeric and analytic, are based on the Miller-Abraha
©2001 The American Physical Society25-1
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expression14 for the tunneling jump raten, which can be
written in terms of the hopping parameteru as

n5n0 exp~2u!, u52gr 1
Et2Es

kT
h~Et2Es!, ~1!

where n0 is the attempt-to-jump frequency,g the inverse
localization radius,k the Boltzmann constant, andh the
unity-step function. If the starting site is fixed, every targ
site can be characterized by its hopping parameteru. In a
positionally random system of localized states, the aver
number of target sites,n(Es ,u), whose hopping parameter
are not larger thanu can be calculated as

n~Es ,u!54pE
0

u/2g

dr r 2E
2`

Es1kT~u22gr !

dEtg~Et!

5
4p

3 S u

2g D 3F E
2`

Es
dEtg~Et!1E

Es

Es1kTu

dEtg~Et!

3S 12
Et2Es

kTu D 3G . ~2!

The first term on the right-hand side of Eq.~2! gives the
number of target states which are deeper than the starting
and the second one describes the number of shallower st
The former is important as far as downward carrier jumps
concerned, while the latter governs the rate of upward jum
In the present paper we consider the effect of the ‘‘round-
hopping’’ on the effective transport energy. This concept
relevant to upward carrier jumps and, concomitantly, in
following we concentrate on consideration of this hoppi
mode.

Carring out the replacement of variables,

Ej5Es1kTu, ~3!

yields the following expression for the number of shallow
hopping neighbors of a starting site of energyEs :

n~Es ,Ej !5
p

6
~gkT!23E

Es

Ej
dEtg~Et!~Ej2Et!

3. ~4!

An upward carrier jump from a starting site is possible
there is at least one such hopping neighbor, i.e., fr
n(Es ,Ej )51 on. The use of this condition in Eq.~4! leads to
the following transcendental equation for the energy of
most probable upward jumps:

E
Es

Ej
dEtg~Et!~Ej2Et!

35
6

p
~gkT!3. ~5!

If the DOS distribution decreases with energy faster th
uEu24, then~i! the value of the integral on the left-hand sid
of Eq. ~5! is practically independent of the lower bound
integration for sufficiently deep starting sites and~ii ! a major
contribution to the integral comes from states with energ
aroundEj . Physically, it means that target sites for therma
assisted upward carrier jumps are located around the en
Ej independent of the energy of starting sites and, theref
Eq. ~5! reduces to
12512
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2`

Ej
dEtg~Et!~Ej2Et!

35
6

p
~gkT!3. ~6!

However, the result given by Eq.~6! is obtained disregarding
the possibility of backward carrier jumps into starting site
If a carrier jump is most probably followed by the return
the carrier back to initially occupied state, both these jum
do not contribute to hopping transport and relaxation. The
fore, although Eq.~6! does determine the energy level
most probable upward jumps, the energyEj is not necessar-
ily the genuine transport energy. In order to calculate
latter, one must account for the backward jumps. Now
embark on this calculation.

After an upward jump over the distancer, a carrier will,
most probably, not return to the starting site if there is a
other hopping neighbor of the target site with a hopping
rameter that is smaller than 2gr outsidethe sphere of radius
r centered at the starting site. The average number of s
neighbors,nb(Et ,r ), increases with increasing bothEt andr
as

nb~Et ,r !52pE
0

r

dr8r 82 E
arccos~r 8/2r !

p

dqsinq

3E
2`

Et12gkT~r 2r 8!
dE8g(E8)

5
pr 3

12 H 11ÈEt
dE8g~E8!

1E
Et

Et12kTgr

dE8g(E8) F8S 12
E82Et

2kTgr D
13S 12

E82Et

2kTgr D 4G J . ~7!

The probabilityw(Et ,r ) that the target site of energyEt has
at least one hopping neighbor of the hopping parame
smaller than 2gr is determined by the Poisson distribution

w~Et ,r !12exp@2nb~Et ,r !#. ~8!

Since the round-trip carrier jumps do not contribute
transport and relaxation, only those hopping neighb
should be accounted for from which carrier jumps back
initially occupied starting sites are improbable. For upwa
jumps this condition leads to

n~Es ,u!54pE
0

u/2g

dr r 2E
Es

Es1kT~u22gr !

dEtg~Et!

3$12exp@2nb~Et ,r !#%

54pE
Es

Es1kTu

dEtg~Et!E
0

~1/2g!@u2~Et2Es!/kT#

3dr r 2$12exp@2nb~Et ,r !#%. ~9!
5-2
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Making again the change of variables described by Eq.~3!,
with Etr substituting for Ej , and using the condition
n(Es ,Etr)51 yields the relationship

4pE
2`

Etr
dEtg~Et!E

0

~Etr2Et!/2gkT
dr r 2$12exp@2nb~Et ,r !#%

51 ~10!

wherenb(Et ,r ) is given by Eq.~7!. Equations~7! and ~10!
thus determine the genuine transport energy which preclu
the return of carriers into initially occupied states and, in
sense, is fully equivalent to a transport band edge.

III. E tr AND Ej IN SYSTEMS WITH EXPONENTIAL AND
GAUSSIAN DOS DISTRIBUTIONS

In order to comparatively illustrate the results given
Eqs. ~6! and ~10!, we employ an exponential DOS functio
which is commonly used as a model of band-tail energy d
tributions in inorganic disordered semiconductors:

g~E!5g0 expS 2
E

E0
D . ~11!

Temperature dependences of the transport energy calcu
from Eqs.~7!, ~10!, and~11! are shown by solid lines in Fig
1, parametric in the characteristic energy of the DOS dis
bution. For comparison, the dashed lines illustrate the t

FIG. 1. Temperature dependence of the effective transport
ergy ~solid lines! and the energy of most probable jumps~dashed
and dotted lines! in a disordered hopping system with an expone
tial DOS distribution. The data shown by the solid, dashed
dotted lines are calculated from Eqs.~10!, ~6!, and ~12!, respec-
tively, for g51 nm21 andg051023 cm23 eV21.
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perature dependence ofEj calculated ignoring the possibility
of backward carrier jumps. As one should expect, accoun
for backward carrier jumps raises the transport level to
higher energy. The difference between values ofEtr and Ej
increases with increasingE0 and remains typically less tha
0.1 eV for realistic values of the latter parameter. It is a
remarkable that this difference is almost independent of
temperature, especially at smaller values ofE0 . It is worth
noting that the density of states described by Eq.~11! mono-
tonically increases with increasing energy. This inevitab
implies the occurrence of the mobility edge at some ene
Em . Therefore, the hopping mode of carrier transport c
dominate only at lower temperatures at which the effect
transport level is still belowEm .

The energy of most probable jumps can also be calcula
within the framework of the traditional Mott approach to th
variable-range hopping with a nonuniform distribution of l
calized states.15,16 The result reads

g~Ej !F E
2`

Ej
dE g~E!G24/3

5
1

kT S 9p

2g3D 1/3

. ~12!

For the exponential DOS function, Eq.~12! yields6,15

Ej5E0 lnF 2g3

9pE0g0
S kT

E0
D 3G . ~13!

The temperature dependence ofEj calculated from Eq.~13!
is shown by dotted lines in Fig. 1. Although Eq.~13! predicts
a deeper level of most probable carrier jumps, its tempera
dependence mimics that of both the transport level and
level of most probable jumps calculated from Eq.~6!.

In disordered organic materials, the DOS distribution
commonly believed to be described by a Gaussian func
of energy as

g~E!5
Nt

A2ps
expS 2

E2

2s2D , ~14!

whereNt is the total density of hopping sites ands the DOS
variance. The density of hopping sites in these material
normally not high enough to provide for the occurrence
extended states and, therefore, the charge transport wi
due to carrier hopping independent of temperature. The t
perature dependence of the effective transport energy is i
trated in Fig. 2 parametric in the Gaussian DOS wid
Dashed and dotted lines in this figure show the tempera
dependences of the most probable jump level calcula
from Eqs. ~6! and ~12!, respectively. At variance with the
results obtained for an exponential DOS distribution,Etr and
Ej in a Gaussian hopping system reveal rather differ
temperature dependences, especially ifEj is calculated
from Eq. ~12!.

A common feature of these results for the Gaussian D
is that, at some temperature, every curve crosses the z
energy level at which the DOS has a maximum. At fi
glance this seems to be an artifact. Even at very high te
peratures, most carriers cannot jump to states far abovE
50 where the density of states is relatively low and stee
decreases with increasing energy. In order to resolve
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-
d
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puzzle, one may consider the asymptotic behavior ofEtr and
Ej at higher temperatures and/or low concentration of loc
ized states. The latter condition corresponds to diluted h
ping systems. Solving Eq.~6! at T→` and/orNt→0 yields

Ej5kTS 6g3

pNt
D 1/3

. ~15!

This result is still puzzling: the energy level of most pro
able jumps linearly increases with temperatureabove the
maximum of the DOS distribution. Substituting this formu
into Eq.~3! leads to the following high-temperature and low
concentration asymptotic expression for the hopping par
eter:

u5S 6g3

pNt
D 1/3

2
Es

kT
, ~16!

which clarifies the situation. Equation~16! proves that, on
the one hand, carriers do jump to states aroundE50 through
barriers whose thickness is around (4pNt/3)21/3 and, on the
other hand,Ej can be interpreted as a genuine level of m
probable jumps only while this energy is still below the DO
maximum. The same is, of course, true for the transport

FIG. 2. Temperature dependence of the effective transport
ergy ~solid lines! and the energy of most probable jumps~dashed
and dotted lines! in a disordered hopping system with a Guass
DOS distribution. The data shown by the solid, dashed and do
lines are calculated from Eqs.~10!, ~6!, and ~12!, respectively, for
g510 nm21 andNt51022 cm23.
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ergy defined by Eq.~10!. Evaluating the high-temperatur
asymptote ofEtr from Eqs.~7! and ~10! yields

Etr5S 32

11D
1/6

kTS 6g3

pNt
D 1/3

>1.2kTS 6g3

pNt
D 1/3

, ~17!

indicating that the backward carrier jumps cause a genu
transport energy 20% higher than the energy of most pr
able jumps.

It may be noted that Eq.~12! predicts a different solution
for Ej at high temperatures and/or low concentrations
hopping sites. The approximate solution reads

Ej5&s lnF S 2g3

9pNt
D 1/3 kT

A2ps
G . ~18!

Being substituted into Eq.~3!, this expression forEj leads at
T→` and/orNt→0 to a hopping parameter which does n
depend upon the concentration of hopping sites:u
5Es /kT. The energy given by Eq.~18! can hardly be con-
sidered as a genuine level of most probable jumps as wel
sufficiently high temperatures, this energy becomes posit
which can only be explained by inherent contributions fro
tunneling. Therefore, although Eq.~12!, obtained on the ba-
sis of the Mott approach, qualitatively complies with th
concept of transport energy, attempts7 to apply this equation
or its equivalent to a calculation of transport or relaxati
characteristics will inevitably lead to wrong results for ca
rier transport in a disordered hopping system with a Gaus
DOS distribution.

IV. EQUILIBRIUM MOBILITY IN A GAUSSIAN RANDOM
HOPPING SYSTEM

In order to illustrate the efficiency of the transport ener
concept, we apply it to the calculation of the equilibriu
carrier mobilitymeq in a positionally random hopping system
with a Gaussian DOS distribution at weak external elec
fields. Estimating the equilibrium diffusivityDeq as a
squared typical jump distance multiplied by the avera
jump frequency and using the Einstein relation yields

meq5
en0

kT F E
2`

`

dE g~E!expS 2
E

kTD G21

3F E
2`

Etr
dE g~E!G22/3E

2`

Etr
dE g~E!expS 2

E

kTD
3expS 2

Etr2E

kT D
5

en0

kT F E
2`

`

dE g~E!expS 2
E

kTD G21

3F E
2`

Etr
dE g~E!G1/3

expS 2
Etr

kTD . ~19!

Equation~19! is remarkably similar to the expression for th
trap-controlled equilibrium carrier mobility.17 The only two
differences are the occurrence of a temperature-depen
transport energy instead of a fixed mobility edge and
weakly temperature-dependent mean jump distance ins

n-

d
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of a fixed mean free path of delocalized carriers. Fo
Gaussian DOS function, Eq.~19! reduces to

meq5
en0

A3 2kTNt
2/3

expF2
s2

2~kT!2GF11ErfS Etr

&s
D G 1/3

3expS 2
Etr

kTD , ~20!

where Erf is the error function. Further simplication of th
equation is possible at highT and/or lowNt . Substituting the
high-temperature and low-concentration expression forEtr
from Eq. ~17! into Eq. ~20! yields

meq5
en0

kTNt
2/3expF21.2S 6g3

pNt
D 1/3GexpF2

s2

2~kT!2G . ~21!

Equation~21! proves that the temperature and concentrat
dependences of the mobility are factorized at high temp
tures and/or in diluted hopping systems. This result does s
gest that these dependences will also be almost factorize
lower temperatures and in systems with higher concen
tions of hopping sites as well. The algebraic (1/T) factor in
Eq. ~21! will also affect themeq}exp@2s2/2(kT)2# tempera-
ture dependence of the mobility; this can be part of the r
son for the difference between the numeric factor of 1/2
Eq. ~21! and the 4/9 obtained in Monte Carlo simulations18

Figures 3 and 4 illustrate the dependences of the equ
rium mobility upon the temperature and concentration
hopping sites, respectively. The analysis of these data ind
leads to a factorized equation for the mobility of the form

FIG. 3. Temperature dependence of the equilibrium carrier m
bility in a random hopping system with a Gaussian DOS distri
tion.
12512
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meq5m0 expS 2
bg

Nt
1/3DexpF2S cs

kTD 2G , ~22!

with constantsb andc, which reveal only very weak depen
dences upon the temperature and concentration, respect
The constantb changes from 1.59 atT5100 K to 1.54 atT
5300 K, whilec ranges from 0.69 atNt51019cm23 to 0.64
at Nt51022cm23.

Both the form of Eq.~22! and the value of the numeri
parameters are in good agreement with the results of b
Monte Carlo simulations18 and the effective medium
model,2,3 which predictedc52/3'0.67. Modeling the posi-
tional disorder is a notoriously difficult problem for Mont
Carlo simulations. In order to avoid this difficulty Ba¨ssler
and co-workers18 performed simulations on a cubic lattic
and introduced a Gaussian distribution of the localizat
radius~1/g!. The underlying idea was that the jump rate d
pends only upon the product of the tunneling distance
the inverse localization radius and, therefore, a distribut
of localization radii is to some extent equivalent to a rand
spatial distribution of hopping sites. An almost factoriz
dependence of the mobility upon the temperature and c
centration of hopping sites also suggests the possibility o
simpler, although rougher, approach to hopping in disorde
systems, based on configurational averaging.19,20 Although
this kind of averaging does lead to the omission of the c
centration dependence, it yields the same functional dep
dence of the mobility upon the temperature with the nume
factor c50.5.

-
-

FIG. 4. Dependence of the equilibrium carrier mobility upon t
concentration of hopping sites in a random hopping system wi
Gaussian DOS distribution.
5-5
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V. CONCLUSIONS

The effect of multiple carrier jumps between localiz
states which are occasionally close neighbors in the ene
coordinate configurational space strongly affects the ef
tive transport energy in a random hopping system. Theref
one should distinguish between the energy level of m
probable upward carrier jumps and the genuine trans
level. At variance with the trap-controlled transport, t
transport level and the level of most probable jumps do
represent the real energy of states via which the trans
occurs. The difference is caused by the contribution of
tunneling exponent to the total carrier jump rate. This eff
was not adequately accounted for in earlier evaluations of
effective transport energy based on the Mott averaging
hopping rates. Concomitantly, the use of the previously
tained expressions forEtr in calculations of the carrier trans
port parameters would lead to incorrect results for the c
centration dependences of these parameters.

The newly derived expression for the effective transp
tt

y

V

v.
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energy was applied for the calculation of the equilibriu
carrier mobility as a function of the temperature and conc
tration of localized sites. It is shown that, in good quanti
tive agreement with both Monte Carlo simulations and e
perimental data, the temperature and concentra
dependences of the mobility can be represented as a pro
of two functions. The first one depends almost solely up
the temperature and reveals only a weak concentration
pendence, while the second one mainly governs the con
tration dependence of the mobility and is almost independ
of the temperature. These results support the prediction
the simpler models based on the effective medium appr
mation and configurational averaging.
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