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Effective transport energy versus the energy of most probable jumps
in disordered hopping systems
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An analytic expression for the effective transport energy in a positionally random and energetically disor-
dered hopping system is obtained. It is shown that multiple carrier jumps within pairs of occasionally close
localized states strongly affect the position of the effective transport level on the energy scale and lead to a
noticeable difference between the effective transport energy and the energy of most probable jumps. In a
hopping system with a Gaussian density-of-states energy distribution, the equilibrium carrier mobility is found
to be an almost factorized function of temperature and concentration of localized states.
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[. INTRODUCTION occur via a band of extended states. Once a carrier was re-

leased from a trap to an extended state, lots of other localized

Charge carrier transport in positionally and energeticallystates are available for trapping and the probability to be
disordered hopping systems is notoriously difficult for exactc@ptured by the same trap is negligibly small. However, in a
analytic consideration. Among several approximate methodUre hopping system the target site at the transport level is
suggested over the last decadebthe concept of effective still a localized state that normally has only a few hopping

transport energyf was especially efficient as far as the prob- neighbors accessible for the next jump. The starting site is
P P y P inevitably one of those states, and it is quite possible that,

lems of energy relaxation a8nd dispersive or equilibrium caryger an upward jump, a carrier will return to the initially
rier mobility are concernefl” The use of this concept con- occupied deeper site. Such a jump contributes to neither
siderably simplifies the problem and essentially reduces it t¢ransport nor energy relaxation. Therefore, one must distin-
trap-controlled transport with a broad energy distribution ofguish between the energy level onto which most carriers
localized state$:'° jump from deeper states, and the genuine transport level,
The occurrence of an effective transport energy was firsjumps onto which will most probably draw the carrier away
revealed in Monte Carlo simulatidand was later proved by from the initially occupied state. That these two are different
analytic consideratidhof charge carrier kinetics in disor- was already indicated by previous Monte Carlo
dered hopping systems. In such systems, the rate of carrisimulations'!
jumps from a given starting hopping site of enefgyto a In the present paper we develop an analytic model of
target site of energy, is determined by the interplay be- charge carrier hopping in disordered hopping systems, taking
tween the energy differendg — E and the jump distance ~ into account p_ossmle correlapons between energies and po-
In general, the probability that the jump will be made to Sitions of localized states which may lead to “multiple hop-
some site of the specific enerd depends upon the tem- ping” of a carrier between occasionally close hopping neigh-

peratureT, the density-of-statéDOS) distributiong(E), the bors. It is shown that accounting for such cases leads to a

localization radiug1/y), and the energy of the starting site. meaningful distinction b_etween the energy level of most
However, if the DOS function is sufficiently steep and if the Probable upward carrier jumps and the genuine transport en-

starting site is sufficiently deep, the most probable value of'9- The latter is calculated for both exponential and Gauss-
the engergyEt does not Ej/epen% UpOE Inpother words E’m DOS distributions. The obtained results are applied to a
S [l

ractically all carriers, localized in a deep tail of the Doscalculation Of. the equilibri_um charge_carrier mpbi[ity ?n a
b y b random hopping system with a Gaussian DOS distribution. It

distribution, will sooner or later jump to one of the shallower . ! ) "
states whose energies are close to some universal Vawé,worth noting that our approach is based on the traditional

which is traditionally referred to as the transport enegy approach to hopping in disqrdered systems. This approach

It was usually implied that after an energetically upwardqIsregards p_035|b_le correlation between energies and posi-
jump into a hopping site, which belongs to the transportt'ons of hopping sites although such correlations may p_Iay an
level, a carrier will make several downward jumps to otheriMportant role as far as charge transport characteristics are

2,13
states than the starting one. This assumption was also ma&gncerned.
and is certainly valid for the trap-controlled transport, but
P . Il. THEORY
justification thereof for a more general case of carrier hop-
ping in disordered systems needs special consideration. Car- Most models of carrier hopping in disordered materials,
rier drift and diffusion in the trap-controlled transport mode both numeric and analytic, are based on the Miller-Abrahams
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expressiotf for the tunneling jump rates, which can be E 6
written in terms of the hopping parameters f wd Eg(E)(E;— Et)3=;(7kT)3- (6)
Et_ Es
v=voexp(—u), u=2yr+—=—n(E—~E9, (1  However, the result given by E¢f) is obtained disregarding
the possibility of backward carrier jumps into starting sites.

where v, is the attempt-to-jump frequency; the inverse If a carrier jump is most probably followed by the return of
localization radius,k the Boltzmann constant, ang the  the carrier back to initially occupied state, both these jumps
unity-step function. If the starting site is fixed, every targetdo not contribute to hopping transport and relaxation. There-
site can be characterized by its hopping parametdn a  fore, although Eq(6) does determine the energy level of
positionally random system of localized states, the averagmost probable upward jumps, the enefgjyis not necessar-
number of target sites)(Eg,u), whose hopping parameters ily the genuine transport energy. In order to calculate the

are not larger thao can be calculated as latter, one must account for the backward jumps. Now we
o E o KT(u 29 embark on this calculation.
Y u—2yr ; ; ; ;
n(Es,u)=4wf dr rzf s dEg(E) After an upward jump over the dlst_ance.a carrier W|_II,
0 — most probably, not return to the starting site if there is an-

other hopping neighbor of the target site with a hopping pa-
fESdE 9(Ep) + jESH(T”dE 9(E) rameter that is smaller thany? outsidethe sphere of radius
o T . ot r centered at the starting site. The average number of such
neighborsn,(E;,r), increases with increasing bol andr

_47'ru3
312y

E.—E\3 as
x| 1= ) (2
The first term on the right-hand side of E@®) gives the np(E r)=2wfrdr’r’2 J” ddsing
number of target states which are deeper than the starting site b 0 arccosr’/2r)

and the second one describes the number of shallower states.
The former is important as far as downward carrier jumps are x JEt”’/kW" 'd E'g(E")
concerned, while the latter governs the rate of upward jumps.
In the present paper we consider the effect of the “round-trip 3

P : ; i r Et
hopping” on the effective transport energy. This concept is _m llf dE'g(E")
relevant to upward carrier jumps and, concomitantly, in the 12 %
following we concentrate on consideration of this hopping

—o0

mode. Et+2kTyr dE'a(EN |8l 1 E'—E;
Carring out the replacement of variables, N fEt 9(E") B 2KTyr
E;=E¢+kTuy, 3 E'—E\*
_ o +3|1- t) . )
yields the following expression for the number of shallower 2KTyr

hopping neighbors of a starting site of eneigy.
The probabilityw(E; ,r) that the target site of enerdy; has
at least one hopping neighbor of the hopping parameter

V=T fst" _E)3
N(Es,Ej) =75 (k) ESdEtg(Et)(EJ B)% @) smaller than 3r is determined by the Poisson distribution:

An upward carrier jump from a starting site is possible if
there is at least one such hopping neighbor, i.e., from
n(Es,Ej)=1 on. The use of this condition in E(}) leads to
the following transcendental equation for the energy of the Since the round-trip carrier jumps do not contribute to
most probable upward jumps: transport and relaxation, only those hopping neighbors
should be accounted for from which carrier jumps back to
initially occupied starting sites are improbable. For upward
jumps this condition leads to

W(E,r)1—exg —ny(E,r)]. ®

E 6
J dEtg(Et)(Ej—Et)3=—(7kT)3_ 5
E, 0

If the DOS distribution decreases with energy faster than ul2y Eq+KT(u—291)
|[E| =4, then(i) the value of the integral on the left-hand side n(Es,u)=477f dr rzf dEg(E,)
of Eq. (5) is practically independent of the lower bound of 0 Es

integration for sufficiently deep starting sites diigla major X {1—exd — ny(E;,N)]}

contribution to the integral comes from states with energies

aroundE; . Physically, it means that target sites for thermally Es+kTu (112y)[u— (B~ Eg)/KT]
assisted upward carrier jumps are located around the energy :4”f dEg(Ey Jo

S

E; independent of the energy of starting sites and, therefore,
Eq. (5) reduces to xdrr?{1—exd —ny(E;,r)]}. 9
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00[" £ = 00025ev ' ' ] perature dependence Bf calculated ignoring the possibility
° of backward carrier jumps. As one should expect, accounting
for backward carrier jumps raises the transport level to a

027" . higher energy. The difference between value€pfand E;
increases with increasing, and remains typically less than
o4 0.1 eV for realistic values of the latter parameter. It is also

remarkable that this difference is almost independent of the
temperature, especially at smaller valuesEgf It is worth
noting that the density of states described by @4) mono-
tonically increases with increasing energy. This inevitably
implies the occurrence of the mobility edge at some energy
1 E.. Therefore, the hopping mode of carrier transport can
dominate only at lower temperatures at which the effective
transport level is still belovi,,.

The energy of most probable jumps can also be calculated
within the framework of the traditional Mott approach to the
variable-range hopping with a nonuniform distribution of lo-
calized state$>!® The result reads

4 -

0

075 eV

14l | Ej ~4/3 9\ 13
50 100 150 200 250 300
For the exponential DOS function, E(L2) yield$!®
Temperature T (K)
. 2y® [KkT\3
FIG. 1. Temperature dependence of the effective transport en- Ej=EoIng——| = (13
ergy (solid lineg and the energy of most probable jumfaashed 97Eog0 | Eo

and dotted lingsin a disordered hopping system with an exponen-The temperature dependencequcaIcuIated from Eq(13)
tial DO$ distribution. The data shown by the solid, dashed anqS shown by dotted lines in Fig. 1. Although Ed.3) predicts
dotted lines are Cf‘l'CU'ated fro”; E(EO)’ (_61)' and (12), respec- 4 geeper level of most probable carrier jumps, its temperature
tively, for y=1nm"* andgo=10"cm* eV, dependence mimics that of both the transport level and the
level of most probable jumps calculated from EG).

In disordered organic materials, the DOS distribution is
commonly believed to be described by a Gaussian function
of energy as

Making again the change of variables described by (BR.
with E; substituting for Ej, and using the condition
n(Es,Ey) =1 yields the relationship

= (Ey—EQ)/29kT
47TJ dEtg(Et)j ’ drr?{1—exd —np(E;.r)1} g(E)= N exp(_E_z) (14)
— 0 \N2mTo 20'2 ’
-1 (10

whereN; is the total density of hopping sites andhe DOS
wheren,(E,,r) is given by Eq.(7). Equations(7) and(10)  Variance. The density of hopping sites in these materials is

thus determine the genuine transport energy which precludd¥rmally not high enough to provide for the occurrence of
the return of carriers into initially occupied states and, in a@xtended states and, therefore, the charge transport will be

sense, is fully equivalent to a transport band edge. due to carrier hopping independer_wt of temperature. Th_e tem-
perature dependence of the effective transport energy is illus-
trated in Fig. 2 parametric in the Gaussian DOS width.
Dashed and dotted lines in this figure show the temperature
dependences of the most probable jump level calculated
In order to comparatively illustrate the results given byfrom Egs.(6) and (12), respectively. At variance with the

Egs.(6) and (10), we employ an exponential DOS function results obtained for an exponential DOS distributiggp,and
which is commonly used as a model of band-tail energy disEj in a Gaussian hopping system reveal rather different
tributions in inorganic disordered semiconductors: temperature dependences, especiallyEjf is calculated

from Eq. (12).

A common feature of these results for the Gaussian DOS

(1) s that, at some temperature, every curve crosses the zero-

energy level at which the DOS has a maximum. At first
Temperature dependences of the transport energy calculatgthnce this seems to be an artifact. Even at very high tem-
from Eqgs.(7), (10), and(11) are shown by solid lines in Fig. peratures, most carriers cannot jump to states far afove
1, parametric in the characteristic energy of the DOS distri—=0 where the density of states is relatively low and steeply
bution. For comparison, the dashed lines illustrate the temdecreases with increasing energy. In order to resolve this

lll. E; AND E; IN SYSTEMS WITH EXPONENTIAL AND
GAUSSIAN DOS DISTRIBUTIONS

Ey= E
9(E)=go ex B
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0.2 ergy defined by Eq(10). Evaluating the high-temperature
o1 asymptote of,, from Egs.(7) and(10) yields
?(_)/ 0.0 c 32) 1/6kT( 6’)/3) 1/3~1 Z(T( 6’)/3) 1/3 L
W 11 N, N, (7
indicating that the backward carrier jumps cause a genuine
0.2 transport energy 20% higher than the energy of most prob-
oAl able jumps.
@ It may be noted that Eq12) predicts a different solution
uF 0.0 for E; at high temperatures and/or low concentrations of
0.1 hopping sites. The approximate solution reads
02 2y? )1’3 kT
- o1 Ej=v2cin (ngt Nz (19
< 00 Being substituted into E¢3), this expression foE; leads at
W -0.1 T—o0 and/orN;— 0 to a hopping parameter which does not
02f ... depend upon the concentration of hopping sitas:
=E,/kT. The energy given by Eq18) can hardly be con-
0.1 sidered as a genuine level of most probable jumps as well. At
—~ o0l sufficiently high temperatures, this energy becomes positive,
@/ 01 which can only be explained by inherent contributions from
[ tunneling. Therefore, although E(L2), obtained on the ba-
u -02 . o . .
03[ sis of the Mott approach, qualitatively comp_hes W|th the
concept of transport energy, attenfptis apply this equation
50 100 150 200 250 300 or its equivalent to a calculation of transport or relaxation

Temperature T (K) characteristics will inevitably lead to wrong results for car-
rier transport in a disordered hopping system with a Gaussian
FIG. 2. Temperature dependence of the effective transport erPOS distribution.
ergy (solid lineg and the energy of most probable jum@ashed
and dotted linesin a disordered hopping system with a Guassian !V EQUILIBRIUM MOBILITY IN A GAUSSIAN RANDOM
DOS distribution. The data shown by the solid, dashed and dotted HOPPING SYSTEM
lines are calculated from Eq§l10), (6), and(12), respectively, for

y=10nnTt andN, = 10%2cm-2. In order to illustrate the efficiency of the transport energy

concept, we apply it to the calculation of the equilibrium
) , ) carrier mobility ueqin a positionally random hopping system
puzzle, one may consider the asymptotic behavidepnd  \ith 4 Gaussian DOS distribution at weak external electric
!Ej at higher temperatures ang/or low concentratlo_n of localsjg|ds. Estimating the equilibrium diffusivityDe, as a
ized states. The latter condition corresponds to diluted h°p§quared typical jump distance multiplied by the average
ping systems. Solving Ed6) at T—c and/orN,—0 yields  jump frequency and using the Einstein relation yields

-1

6‘)/3 13 _% fw dE E) X _E
This result is still puzzling:  th level of most prob Eu (B =
is result is still puzzling: e energy level of most prob- « f dE g(E) J' dEg(E)exp(——)
able jumps linearly increases with temperatateove the —w —w kT

maximum of the DOS distribution. Substituting this formula

into Eq.(3) leads to the following high-temperature and low- > exp{ _ Ev— E)
concentration asymptotic expression for the hopping param- kT
eter: 4
_ o f i dE g(E)exp — E
64318 E, kT | ) -w o KT
u= ( 7T_Nt) B k_T, (16) = 1/3 Etr
X f dE g(E) ex;< — k_T) . (29
which clarifies the situation. Equatiafi6) proves that, on m

the one hand, carriers do jump to states ardard through  Equation(19) is remarkably similar to the expression for the
barriers whose thickness is aroundn(¥,/3)"“® and, on the  trap-controlled equilibrium carrier mobilif/. The only two
other handE; can be interpreted as a genuine level of mostdifferences are the occurrence of a temperature-dependent
probable jumps only while this energy is still below the DOStransport energy instead of a fixed mobility edge and a
maximum. The same is, of course, true for the transport enweakly temperature-dependent mean jump distance instead
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FIG. 3. Temperature dependence of the equilibrium carrier mo- FIG. 4. Dependence of the equilibrium carrier mobility upon the

bility in a random hopping system with a Gaussian DOS distribu-concentration of hopping sites in a random hopping system with a
tion. Gaussian DOS distribution.

of a fixed mean free path of delocalized carriers. For a

b co\?
Gaussian DOS function, E¢19) reduces to Meq= Mo ex;{ - Nﬁlyg) ex;{ - (ﬁ) , (22
t
ero ;{ il | P E”)rs
Uo= expg — 5 r
4 32kTN? 2(kT) Vio with constants andc, which reveal only very weak depen-

£ dences upon the temperature and concentration, respectively.
Xexp( _ _") The constanb changes from 1.59 at=100K to 1.54 afT
KT =300K, whilec ranges from 0.69 atl,=10"%cm 3 to 0.64

where Erf is the error function. Further simplication of this at Nt= 107%cm™>. _
equation is possible at highand/or lowN, . Substituting the Both the form of Eq.(22) and the value of the numeric

high-temperature and low-concentration expressionHpr Parameters are in good agreement with the results of both
from Eq.(17) into Eq. (20) yields Monte Carlo simulationd and the effective medium

model?2 which predictedc=2/3~0.67. Modeling the posi-
evy 613 o2 tional disorder is a notoriously difficult problem for Monte
Meq:mex%_l-z(w_,\l exr{— 2(kT)2 Carlo simulations. In order to avoid this difficulty Bsler
! and co-worker® performed simulations on a cubic lattice
Equation(21) proves that the temperature and concentratiorand introduced a Gaussian distribution of the localization
dependences of the mobility are factorized at high temperaradius(1/y). The underlying idea was that the jump rate de-
tures and/or in diluted hopping systems. This result does sugends only upon the product of the tunneling distance and
gest that these dependences will also be almost factorized tite inverse localization radius and, therefore, a distribution
lower temperatures and in systems with higher concentraef localization radii is to some extent equivalent to a random
tions of hopping sites as well. The algebraicT)Lfactor in  spatial distribution of hopping sites. An almost factorized
Eq. (21 will also affect theueqocexr[—&/Z(kT)Z] tempera- dependence of the mobility upon the temperature and con-
ture dependence of the mobility; this can be part of the reaeentration of hopping sites also suggests the possibility of a
son for the difference between the numeric factor of 1/2 insimpler, although rougher, approach to hopping in disordered
Eq. (21) and the 4/9 obtained in Monte Carlo simulatidfis. systems, based on configurational averaditfy.Although
Figures 3 and 4 illustrate the dependences of the equilibthis kind of averaging does lead to the omission of the con-
rium mobility upon the temperature and concentration ofcentration dependence, it yields the same functional depen-
hopping sites, respectively. The analysis of these data indeateénce of the mobility upon the temperature with the numeric
leads to a factorized equation for the mobility of the form factorc=0.5.

(20

U3
. (2))
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V. CONCLUSIONS energy was applied for the calculation of the equilibrium
carrier mobility as a function of the temperature and concen-
tration of localized sites. It is shown that, in good quantita-

. : : Yive agreement with both Monte Carlo simulations and ex-
coordinate configurational space strongly affects the effec-

tive transport energy in a random hopping system ThereforéDerimental data, the temperature and ~concentration
port energy pping sy ' ependences of the mobility can be represented as a product
one should distinguish between the energy level of mos

robable upward carrier iumps and the genuine transpod f two functions. The first one depends almost solely upon
P pw . Jump 9 PO e temperature and reveals only a weak concentration de-
level. At variance with the trap-controlled transport, the

transport level and the level of most probable jumps do no endence, while the second one mainly governs the concen-
P P! '€ Jump {ation dependence of the mobility and is almost independent
represent the real energy of states via which the transpor:

. ; Lo of the temperature. These results support the predictions of

e ot e e s o i e sl models based on e efecive medium pprcx:
g Exp Tier jJump s mation and configurational averaging.

was not adequately accounted for in earlier evaluations of the

effective transport energy based on the Mott averaging of

hqpplng rates._ConcomlltantIy, the. use of the pre_wously ob- ACKNOWLEDGMENTS
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