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Excitons in one-dimensional Mott insulators
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We employ dynamical density-matrix renormalization-grd MRG) and field-theory methods to deter-
mine the frequency-dependent optical conductivity in one-dimensional extended, half-filled Hubbard models.
The field-theory approach is applicable to the regime of “small” Mott gaps which is the most difficult to access
by DDMRG. For very large Mott gaps the DDMRG recovers analytical results obtained previously by means
of strong-coupling techniques. We focus on exciton formation at energies below the onset of the absorption
continuum. As a consequence of spin-charge separation, these Mott-Hubbard excitons are bound states of
spinless, charged excitatiofi$holon-antiholon” pairg. We also determine exciton binding energies and sizes.
In contrast to simple band insulators, we observe that excitons exist in the Mott-insulating phase only for a
sufficiently strong intersite Coulomb repulsion. Furthermore, our results show that the exciton binding energy
and size are not related in a simple way to the strength of the Coulomb interaction.
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[. INTRODUCTION an extension of this approach, electron-electron interactions
have been taken into account perturbatielyy contrast

Excitons in conventional band insulators are well de-there are comparatively few reliable results for the optical
scribed by Wannier-Mott theoryA Wannier-Mott exciton is  spectrum in models that take account of the sizable electron-
a charge neutral optical excitation made of an electron in thelectron interactiol-*3 The interaction drives these systems
conduction band and a hole in the valence band, bound tdnto a Mott-insulating ground staté.The scarcity of results
gether by the Coulomb attraction between them. In inorganics due to the difficulties associated with the calculation of
semiconductors like GaAs the typical binding energy, as deexcited-state properties in one-dimensional Mott insulators.
fined by the energy difference between the exciton and th&herefore, it is of considerable interest to develop reliable
band edge of the particle-hole continuum, is several meMnethods for the investigation of optical excitations in corre-
This should be compared to the band gap itself, which is ofated electron systems, and to determine the optical conduc-
the order of 1 eV. Concomitantly the typical size of ativity of one-dimensional Mott insulators.

Wannier-Mott exciton is of the order of DOA , which is In this paper we focus on the calculation of the optical
almost two orders of magnitude larger than the lattice spaceonductivity in models with electron-electron interactions
ing. We note that although the total spin of an optically ex-only. We study an extended Hubbard model with nearest-
cited exciton is necessarily zero, it is composed of two quaand next-nearest-neighbor density-density interactions; the
siparticles carrying spin 1/2. model is further specified in Sec. Il.

In quasi-one-dimensional materials like conjugated We employ two recently developed numerical and analyti-
polymerg the situation is quite different. Here the electron- cal techniques to determine the real part of the optical con-
electron interaction accounts, to a substantial degree, for theuctivity over the full frequency range and analyze exciton
optical gap itseft as well as for the formation of excitons. properties without suffering from finite-size limitations; for a
The exciton binding energy in, e.g., polydiacetylenes isfirst application to the Hubbard model, see Ref. 15. In Sec.
found to be of the order of 0.5 e\Refs. 4,5 and is thus Ill we first test the dynamical density-matrix renormalization
comparable to the optical gap of 2.4 eV in 3-butoxy-group (DDMRG) by applying it to the limit of large Mott
carbonyl-methyl-urethan-polydiacetylef®DA) chains di- gaps where analytical results are availa§lgVe obtain ex-
luted in their monomer matrik> The exciton size was cellent agreement between numerical and analytical results,
estimatedto be 12 A and is thus comparable to the length ofand confirm the clear and simple physical picture of an ex-
the unit cell of 5 A. These facts suggest that electron-electrogiton as a bound state of a double occupancy and an empty
interactions will play an important role in any theoretical lattice site in a background of singly occupied sites. We then
description of excitons in these materials. move on to the generic case of intermediate Mott gaps and

Realistic models for conjugated polymers must accounfind qualitatively the same physical behavior.
for the effects of both electron-electron and electron-phonon In the regime of small Mott gaps, finite-size effects and
interactions. The interplay between these makes the reliablinite resolution of the DDMRG start to hamper the numeri-
calculation of the optical conductivity a very demandingcal analysis. Therefore, in Sec. IV, we carry out a weak-
task. As a first step it is therefore natural to investigate theoupling field-theory analysis of the problem. Using the
effects of the two mechanisms separafelhe optical con- form-factor bootstrap approach we determine the optical
ductivity for models with only electron-lattice coupling such conductivity in the field-theory limit. Here, the spin sector
as the celebrated Su-Schrieffer-Heeger model has beafoes not couple to the current operator so that it is sufficient
widely analyzed in the literatufeand is well established. As to analyze the charge sector only. The exciton is then de-
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scribed as a bound state of a holon and an antiholon, whicheighbor repulsionsv,,V,. We restrict ourselves to the
are the elementary charge excitations in the theory. The rephysically relevant casd >V,;>V,=0. In this work, we are
sulting picture for small Mott gaps remains very similar to not interested in issues like a complete classification of the
the cases of intermediate to large gaps. We even find quaphase diagram of the modél); instead, we constrain our
titative agreement between field theory and DDMRG resultsanalysis to the consideration of several different points in the
for intermediate Mott gaps where the applicability of field Mott-insulating phase. A more systematic investigation of
theory is nota priori expected. the extended Hubbard model with,=0 will be published

In Sec. V we discuss two fundamental properties of Mott-elsewheré® There it is shown that without the next-nearest-
Hubbard excitons, their binding energy and size, in greateneighbor interaction, it is not possible to have simultaneously
detail. In contrast to Wannier-Mott excitons in band insula-a small Mott gap and form a Mott-Hubbard exciton.
tors, Mott-Hubbard excitons exist only when the intersite Linear optical absorption is one of the most commonly
Coulomb repulsion exceeds a certain threshold. In generalised probes in experimental studies of the dynamical prop-
the exciton binding energy is not related in a simple way toerties of a material. The optical absorption is proportional to
the strength of the Coulomb interaction. We analyze a newhe real part of the optical conductivity, which is related to
correlation function which allows to define the size of anthe imaginary part of the current-current correlation function
exciton in correlated electron systems. Our analysis providelsy
a comprehensive picture of excitons in one-dimensional Mott

insulators. In our conclusion$&ec. VI we address implica- B Im{x(0>0)} )
tions of our results for the theory ef-conjugated polymers. o1(0>0)= ® ' (2a)
Il. MODEL HAMILTONIAN 1 . 1 R
: , , xX(w>0)=— -0 j=——=—J|0 (2b)
In this work we study the one-dimensional extended Hub- L Eo—-H+thow+in
bard model’
1 |(0[7In)|?
N aAl - - - =—— — 2
H= —tI_E (€' 4Cli10T €l 16C1 o) L ; fhiw—(En—Eg)+in (29

Here, |0) is the ground statejn) are excited states, and
+UY (n =5 -1 Eo. E, are their respective energies. Although-0" is in-
! finitesimal, we may introduce a finite value to broaden our
resonances dtw=E,— Ey. In momentum space, the current
+vl§|: (n—1)(Nj.,—1) operator reads

A__2etz . 3
+v22I (N —1)(Nj1o—1). (1) =T & siN(K)Cy ,Ci, - 3

This Hamiltonian describes electrons with spin=1,| We note that th_e current operator is_ invariant under the_spin-
, , ) ) AL A flip transformation but antisymmetric under charge conjuga-
which can hop between neighboring sites. Hgfg,Ci, are o and spatial reflection. Therefore, if the ground state
creation Aand einnlAhllatlon operators for electrons with spin belongs to the symmetry subspade, (P..,PJ), only excited
at sitel, n; ,=c,’,c, , are the corresponding number opera-states |n) belonging to the symmetry subspace
tors, andn, = ﬁm + F‘I,i . (B,,—P.,PJ contribute to the optical conductivity. Accord-
Since we are interested in the Mott-insulating phase, wéng to selection rules, the matrix e|eme<@qj|n> vanishes if
exclusively consider a half-filled band where the number Oﬂ n> belongs to another symmetry subspace. Wefsetl
electronsN equals the number of lattice sités The lattice  throughout, and for the presentation of our results weaise
spacing is set to unityg,=1. Note that we have chosen the =t=1 in our figures.
chemical potential in such a way that the Hamiltonian explic-
itly exhibits a particle-hole symmetry. This Hamiltonian has
two other discrete symmetries which are useful for optical
excitation calculations: a spin-flip symmetry and a spatial- Recently, the density-matrix renormalization-group
reflection symmetry(through the lattice centerTherefore, method®?°(DMRG) has been extended to the calculation of
each eigenstate of Eql) has a well-defined parity under dynamicalcorrelation functiond®'>2!This numerical tech-
charge conjugationH.= *1) and spin flip Ps==*=1), and nique allows us to obtain;(w) for all interaction strengths
belongs to one of the two irreducible representatigyspr  as long as the gap is not exponentially small. A complete
B,, of a one-dimensional lattice reflection symmetry group.exposition of our DDMRG method will be published
The kinetic energy is diagonal in momentum space analsewheré?
gives rise to a cosine band(k)= —2t cosk) of width W DDMRG allows us to calculate dynamical correlation
=4t. The Coulomb repulsion is mimicked by a repulsive, functions, such as the right-hand side of E2p), very accu-
local Hubbard interactiotJ, and nearest- and next-nearest-rately over the full frequency range for fairly large systems

Ill. DENSITY-MATRIX RENORMALIZATION GROUP
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(L=<128) with open boundary conditions andimite broad- ~ we identify the charge gap with the optical g&Some spe-

ening factor, i.e., the DDMRG actually gives cial cases for which the charge gap does not correspond to
the optical gap are discussed in Ref.)18.
1 E We also use the symmetrized DMRG metfibth calcu-
_ J 7 . . . o
o, (w)= r E E_E T 2 4 late the lowest eigenstates in the optical excitation symmetry
n EnmEo [o—(E,~Eg) ]+ 7 subspacdsee Sec. )l As the standard DMRG method, the

For 7—0, o, () reduces tar;(w) as defined in Eq(2). symmetrized DMRG yields_not only _the eigenengrgies but
Ultimately, we are interested in the optical conductivity of an@lSO allows us the computation of various expectation values
infinite systemL —c, for 7— 07 It is shown in Ref. 22 that and correlation functions of the eigenstattes an example,
the most appropriate way of approaching this double limit is5€ S€c. ¥/ We can thus investigate the nature and properties
to computer,, () for different system sizes while keeping of t_hesg optical excitations. In partlcgla_r, it is p055|bl_e to
7L =const and then to extrapolate to infinite-system size. I/fliStinguish unbound particle-hole excitations from excitons
this paper we usg/L=12.&, which yields an energy reso- and from other kinds of excitationgexcitonic strings,
lution of 0.1t for our largest system sizd (& 128). charge-density-wave dropleétehich can dominate the opti-

A very useful consistency check of the method is to test@ spectrum of a Mot insulaté?.!n this paper we consider
various sum rules, relating moments of the functioy(w) o_nly the regime of the Hgmntonlaﬁl) where optlcally ex
gted states can be described(bsund or unboundparticle-

to ground-state expectation values, which can be evaluat i ; X
with great accuracy using a standard DMRG methid For ehole pairs. We e_mphaS|ze. that the symmetrized DMRG re-
sults for the optically excited states are always in perfect

instance, for the Hamiltoniafl) with open boundary condi- . /
@) P y agreement with the DDMRG results for the optical conduc-

tions 2 C
tivity, confirming the accuracy of both methods.
>dw 1 . All DMRG methods have a truncation error which is re-
. 7w01(w)=[(0|J2|0>, (58  duced by increasing the numbmrof retained density-matrix

eigenstatesfor more details, see Refs. 19 and 2@aryingm
allows one to compute physical quantities for different trun-
> cation errors and thus to obtain error estimates on these
' quantities. For some quantities, especially eigenenergies, it is
(5b) possible to extrapolate the results to the limit of vanishing
) truncation error and thus to achieve a greater accuracy. We
2 (P — } > have systematically used these procedures to estimate the
(n;—1)| [0). (50 - : : i
T precision of our numerical calculations and adjusted the
] maximal numbem of density-matrix eigenstates to reach a
For o, (w) these sum rules are not fulfilled exactly, but gesjred accuracy. The largest number of density matrix
only up to errors of the order ad([ /t]) or O([7/t]?). eigenstates we have usednis=1200. For all numerical re-
The ground-state phase diagram of the Hamiltor@n  gyits presented in this paper DMRG truncation errors are
exhibits several different phaséfsr instance, Mott-Hubbard npegjigible unless specified explicitly. The main cause of in-
insulator, charge-density wave, and bond-order wavelfor  accyracies are finite-size effects or extrapolation errors for

>V;1=0 andV,=0, see Ref. 1B To check the nature of the | _, o which we discuss below when we present our numeri-
ground-state for some fixed model parameters we calculatgy| results.

the spin gap and various ground state properties, such as
charge density, bond order, and spin and density correlations,
for large system size@up to L=512 site$ with a standard

*dw e’t ~L A
. ?Ul(w)=z<0 Zo (¢ 4Ci11,TH.C)|O

»dw o(w) €2

o T w

A. Limit of large Mott gaps

DMRG method. The ground state of Ed) is a Mott insu- Let us now consider the situation where the Mott gap is
lator for all values of the model parameters used in thismuch larger than the bandwidtht.4For large interaction
work. strengthsU>t,V,,V,, it is possible to analyze the model
With DMRG one can also calculate the charge gap (1) by means of a U expansiort® If we ignore corrections
of the ordert/U, all sites are singly occupied in the ground
Ed(L)=Eo(L+1)+Eo(L—1)—2Eq(L), (6)  state. Electron transfers are limited to processes that con-

serve the number of double occupancies, and a rather simple

L-site lattice withN electrons. FolL—c, E, gives the en- 0and picture emerges faf,=V,=0. In an optical absorp-

ergy threshold of the electron-hole excitation continuum. In ,ﬂlion process we excite one hole_ at momentkimg/2 in the
Mott insulator it corresponds to the Mott gap. In the one-oWer Hubbard band,e yg(k)=—U/2+€(k), and one
dimensional Hubbard modelg=V,=0), it is known that double occupancy at momentuki q/2 in the upper Hub-

E, is also equal to the optical gap which we define as thé?@'d bandeyng(k) =U/2— e(k) (antiparallel bands The to-
energy threshold of the lowest band in the optical spectrumi@l momentum of the two charge excitationsgisand their

In all cases withV;,V,#0 discussed here we have found EN€TY ise. Due tp spin-charge separation, the oscillator
that the optical spectrum contains a single band, which corSténgth can be written s

responds to unbound particle-hole excitations, and Eat

agrees with the onset of this band. Therefore, in this paper [0[7[ny|2=|—iee(k)|g,. 7)

where Ey(N) is the ground-state energy of El) on an

125119-3



F. H. L. ESSLER, F. GEBHARD, AND E. JECKELMANN PHYSICAL REVIEW B4 125119

The spin sector enters the current-current correlation func- 20 | ' ' ]
tion via the momentum-dependent ground-state form factor

Ya- 10 | ]

9q=2(01Z; 1+ 1(D(G =SS+ 1)Z r42(9)[0), (88 ‘é 0
5 1 —igla-(I—-r)A—(-r)
Zepa(@=p 2 e NTETSY, (8b)
where 75 shifts all spins by one site where&g performs
the same operation on the lattice with siteandr+1 re- w-U
moved. _ _
For the larged Hubbard model itself, the analysis of is FIG. 1. Current-current correlation function {w(w)} for U/t

rather involved. We can use a “no-recoil approximatiéh” —%: V1=5t V2=0, and»=0.1t. The solid line is the DDMRG
to argue that the dominant contributions to the conductivity©SUlt IMx; ()} for L=128. The dotted line is E¢10) con-
come fromgq=0 andq=, which correspond to vertical volved yvlth a Lore.nt2|an of widthy. NotPT the logarithmic scale of
transitions between two antiparallel barfds=0: €_15(K), the ordinate. Inset: same results on a linear scale.
euns(K)] and between two parallel banflg=7; € 5(K),
eyn(k+ m)]. This hypothesis has subsequently been con
firmed by DDMRG*®which yields excellent agreement if
the form factors are chosen ag=2.65 andg,=0.05
+0.03. Exact sum rules impose the conditigg+g,
=41n(2)=2.77 for an infinite system. The deviation of our
best fits can be traced back to finite-size effects and numeri- 1
cal errors of the order of 1%. o(w)*x ——
We now discuss the effects of a finite nearest-neighbor VO~ Wph
Coulomb repulsior/;<U with V,=0. It follows by direct (11)
inspection of the Hamiltoniafl) that the double occupancy - . . .
and the hole now mutually attract. To some extent, this isf. The Eredlcuons Of.th'ls strolng—coupllng analysis are con-
reminiscent of the situation encountered in Wannier—Mottt'r:?tei? isym(z)ur:a r::lcj)rr?\%lr?gn{eiiul;sbl\'/\lﬁg tt(r)wgagl(g&;ltle/%irsgctl
theory for a band insulator. However, unlike in Wannier-Mott Y

theory, the double occupancy and the hole are not fermioniEhe imaginary part of the current-current correlation function,

quasiparticles but spinless hard-core bosons. Even more i~ Im{x(e)} = way(w). In analogy to Eq(4), a broaden-

portantly, there is a critical valu¥.=2t below which no ing # is introduced in the DDMRG procedure for the

exciton appears below the threshold of the particle-hole corguirrent-current correlation function,

tinuum atwp,=E.=U—4t. For V>V, there is an exciton 1 nl(OI]In)IZ
at the energy Im{ —_—
XpL(@)}==2 .12
! L% [0—(Ex—Eo) P+ 7°

hole continuum for|w—U|<4t. Near the lower(uppey
boundary, the optical conductivity shows a characteristic
square-root increas@lecrease The only exception is the
case ofV, =V, where the optical conductivitglivergesat the
threshold,

for w— wph—>0+ (V,=21).

w,=U—-V;—4t?/V,. (9a) . _
- _ . For »—0, this expression reduces to{lf(w)}, and we ana-
In addition, there is a second Mott-Hubbard exciton at thqyze the finite-size effects as discussed aboveofgw).
energy Figure 1 shows Iy, (w)} for L=128 and»=0.1t ob-
_U—V 9b tained in the largéJ limit of the extended Hubbard model
W2= YTV, (9b) with V;=5t andV,=0. We compare the DDMRG data to
WhiCh, for V1<4t, lies in the partic'e-ho'e continuum but the analytical fOI’mu|6(lO), convolved with a Lorentzian of

carries very little spectral weight. width ». The DDMRG data and the lardeé-result are in
The optical conductivity is given by very good agreement when we choagg=2.659,=0.08,
as discussed above. These values are found to be essentially
0o (w)=1g,12e?8(w— w,) + got? independent o¥/;. We previously obtained a similarly good
agreemerlg for the case of the laideHubbard model Y,
X €2 O(Vy—2t) [ 1— (2t/V1)2]8(w— wy) =V,=0).

For V,=5t,V,=0, most of the spectral weight is carried

) 5 by the exciton atw—U=w;—U=—-5.8, as one also ob-
2t2V1-[(0—U)/4t] serves for typical band insulators. Therefore we use a loga-

Vi(w—wq) ' rithmic scale to make visible the contributions of the other

(10) exciton and the particle-hole continuum. The use of a loga-
rithmic scale also reveals deviations around the second exci-

Here, ©(x) is the Heaviside step function. Apart from the ton (w—U~w,—U=—5t) and close to the upper band

two & peaks corresponding to the excitons, there is a particleedge — U= +4t), which are associated with difficulties in

+O(4t—|w—Ul)
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the numerical determination of small contributions to the op- 4
tical spectrum, and remaining finite-size and boundary ef-
fects. In fact, these deviations are less than 1% of the total 3r 01}

spectral weight, and are completely irrelevant for practical, .
i.e., experimental purposes. On a linear scale they are not gt
visible as seen in the inset of Fig. 1. ©

The case of &V,<V; can be treated analogously and 1} 0.0 ———
does not yield any new physical aspects. It is known that
increasing the interaction range simply reduces the critical 0 -
coupling below which no exciton appears in the gap and 0 2 4 6 8 10
increases the number of visible excitons in the spectftim. ©

FIG. 2. Optical conductivityo,, () for U=8t, V,;=4t, and
V,=2t, calculated with DDMRG on a 128-site lattice;€ 0.1t).
The inset shows an expanded view @f, (w) (dotted ling for

In the simple Hubbard modeV;=V,=0) we previously 3.5<w/t<6. The excitondasheyland continuuntsolid) contribu-
found that the optical conductivity evolved smoothly from tions too,, (w) are also shown.
the regime of small Mott gapdJ<t) to the limit of large
Mott gaps (U>1).%® Optical excitations can simply be inter- excitation with energy g~ eyt c(L)g?<E. and quasimo-
preted as a particle-hole pair, i.e., a pair of spinless quasipamentaq~ (2l +1)/(L+1),1=0,1,2 . .. | na<L/227 The
ticles with opposite charges, corresponding to the hole anfirst of these statesl €0) has always much more spectral
double occupancy for large Mott gaps and to the holonweight than the other ones and corresponds to an exciton
antiholon pair in the field-theory limit of small Mott gaps with momentumg=0 in an infinite chain. Scattering by the
(see Sec. IV. chain ends is responsible for the small but finite optical

The optical spectrum of the extended Hubbard mdtlel weight of the other stated#1), corresponding to excitons
shows more diversity in the presence of a finite intersitewith momentumg#0 in an infinite system. Thus, with peri-
Coulomb repulsion {;>V,=0). Even within the Mott in- odic boundary conditions or in an infinite system, only one
sulator phase one can observe “exotic” optical excitationsexciton contributes to the optical conductivity(w) of the
such as charge-density-wave droplets or excitonic strihgs. Hamiltonian(1) in the regime of intermediate Mott gaps.
In this study we restrict ourselves to the Mott-insulator re- In contrast to this, both the strong-coupling analysis and
gime of Eq.(1) where the dominant optical excitations can field theory allow for more than one exciton in the optical
be described as @ound or unboundparticle-hole pair and spectrum of a Mott insulator in the thermodynamic limit if
the Coulomb interaction is strong enough to generate at leagte Coulomb repulsion becomes strong enough. For the
one bound paifexciton. model (1) an increase oW, andV, does not lead to the

Varying the model parametetd/t, V,/t, andV,/t we  formation of a second Mott-Hubbard exciton. Instead, the
have investigated the optical excitations of systems with aature of the lowest optical excitations changes to charge-
Mott gap ranging from 10 to 0.1 times the bandwidth dis  density-wave droplets or excitonic strings, or the ground
important to note that the Mott gép, increases witltJ and  state develops long-range order. Both the strong-coupling
V, but decreases with increasitng.''18?°As in the large analysis and the field-theory approach assume a Mott-
Mott-gap limit, we have found that the intersite Coulomb insulator ground state and particle-hole pairs as optical exci-
interaction must exceed a critical value before a discrete altations, and thus do not reproduce this instability toward
sorption peak appears at an enedgy, below the optical gap charge-density ordering. It is conceivable, though, that the
E.. For V,=0 the critical value isV,~2t for all U/t in  inclusion of Coulomb terms beyond next-nearest neighbors
agreement with our analytical strong-coupling analysis and & the lattice model1) favors the appearance of more exci-
previous work?® The critical value oV, /t becomes smaller tons in the optical conductivity of a Mott insulator.
as the next-nearest-neighbor repulsiénincreases. Besides the single-exciton peak we have always found

We have analyzed the nature of the excited states assod¢hat o1(w) shows an absorption band starting at the charge
ated with the discrete absorption peak using various meagapE.. Within the resolution of our method the optical spec-
surements and correlation functions. For instance, in Sed¢rum does not display any other feature. The investigation of
V B we present a method to determine the size of a particlethe excited states in the continuum abdvgis much more
hole pair. This analysis confirms that this excited state islemanding than the analysis of the isolated exciton peak.
clearly a bound particle-hole paiexciton. The exciton Whenever this has been feasible, we have found that the
binding energiesSE=E_.— w., Observed in our calculations excited states contributing to the absorption continuum can
range fromSE=0.03 to SE= 12 and the exciton sizes mea- be described as unbound particle-hole pé&ee Sec. V B
sured with the procedure of Sec. V B vary froma2@own As a typical example, the optical conductivity of HQ)
to slightly more than one lattice spacing. for U=8t, V;=4t, andV,=2t is shown in Fig. 2. A peak at

It is interesting to note that we have never found morethe exciton energw.,= 3.34 is the dominant feature of the
than one exciton in the regime of intermediate Mott gapsspectrum while a very weak band is visible far=E,
Our numerical result§DDMRG and symmetrized DMRG  =4.0%. No gap is visible betweea., andE_ because of the
for finite open chains sometimes yield more than one opticabroadening of the strong exciton peak. In the inset of Fig. 2

B. Regime of intermediate Mott gaps
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one can see the weak particle-hole continuum part of thevhereu.andg are functions ofJ,V,,V,. In order to utilize
spectrum separated from the strong exciton contribution. Theesults obtained from the integrability of the sine-Gordon
onset of the absorption band is clearly visible @=E.  model we use a flat renormalization scheme, in wigcis a
=4.0%. The small irregular fluctuations seen in the inset areconstant,

numerical errorgtruncation errorsmade visible by the small

scale used. ) ATvg
In summary, our numerical results show that there is no = (16)
Amve+ \/gf—gf

gualitative change in the optical conductivity of a Mott insu-

lator with excitons when one goes from the limit of large 1o pure Hubbard model corresponds to the ligit 1 and
Mott gaps down to the regime of intermediate Mott gapsihe effect ofV, andV, is to decrease the value @

with E;=0.4t. As in the Hubbard modé_F, the simple picture |, the field-theory limit the electrical current operator is
of the strong-coupling analysis remains qualitatively valid.¢5,nd to be

We expect that a truly long-range Coulomb interaction be-
tween electrons will not lead to any significant qualitative ﬂt,x):\/ﬁa@c, (17)
changes of this picture, as suggested by the available results
in the strong-coupling limit? in the field-theory regimésee  where A’ >0 is a nonuniversal constant. As seen from Eq.
the next sectionsand in related models including electron- (17), the current operator does not couple to the spin sector.
lattice coupling®® This shows that spinons do not contribute to the optical con-
ductivity. Therefore we ignore the spin pétt, of the Hamil-
IV. EIELD THEORY tonian from now on.
) The calculation of the optical conductivity in the field-
In order to address the regime of small Mott gaps, Weiheory Iimit has thus been reduced to the evaluation of the

study the extended Hubbard modgJ in the field-theoretical  retarded current-current correlation function in the charge
limit. This limit can be constructed directly from the lattice ggctor,

model in the weak-coupling regimé,V,,V,<t. The low-

energy physics of the noninteracting model is simply de- i (= %
scribed in terms of a massless Dirac fermion with velocity x" ()= Ef dtexp(iwt)f dx([J(x,1),7(0,0)]).
ve=2tay. The interactions introduce a four-fermion cou- 070 o

pling. The resulting effective theory is known as tb¢1) (18)
Thirring model and can be represented®g$ We turn to the calculation of this correlation function in Sec.
IV A.
_ For the sine-Gordon model, many exact results are
= | dX[H+Hl, ) )
nt f [Het sl available®® The spectrum of the SGM depends on the value

of the coupling constan®. In the so-called repulsive regime,
1/\J2<B<1, there are only two elementary excitations,
called soliton and antisoliton. From the point of view of the
underlying lattice mode(1) these correspond to holon and

27, o _ _ antiholon (spinless excitations of opposite chargebhese
He=2 3 LI+ g (K PP) +g)l*17], have a massive relativistic dispersion,

o 19 E(P)= M7+ 07P?, 19
whereJ«,J* (14,1) are left and right movindgsU(2) spin
currents| SU(2) pseudospin currentsind

27 — —
He=, [ 3 °[:393% +:393%: ] — 29, 34},

where M is the single-particle gap which is related to the
optical gap byA=2M. At weak coupling the gap scales as
g9, =2(U-2[V;—V;3]a,, g=2(U+6V,+2V,)a, (gx+2) Mg

: (20)

1—Xx

1+x

8t
2(UIA+V, +V,)ag Uag M=~ —=va(1+x)
Ve=vpt - » UsTURT 5 (14

where we have fixed the constant factor by comparing to the
The Hamiltonian(13) explicitly exhibits spin-charge separa- exact result for the Hubbard model, and where
tion: H, s describe the charge and spin degrees of freedom,

respectively, which are independent of one another. As long U-—2V;+2V,\?]*?

as g, >0, the spin sector remains gapless and can be X=11= U+6V,+2V, ’

bosonized in terms of a Gaussian model. The charge sector

can be bosonized as well, as is for example shown in Ref. 28. g=(U+6V, +2V,)/2mt. 1)

The result is a sine-Gordon mod&@GM)
1 We note that the gap vanishes on the critical surface
_ 2 2149 1 -2V, + 2V?=O §ep§1rat|ng the Mott-lnsulatlng.phase'wnh
He 1677[((?‘%) (edxpe) "1 +20cCOS e, (19 gapless spin excitations from another phase with a spin gap.
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In the regime 6 8<1/4/2, soliton and antisoliton attract for a more detailed exposition. In order to utilize the spectral
and can form bound states. In the SGM these are usuallfepresentation we need to specify a basis of eigenstates of the
known as “breathers” and correspond to excitons in our lat-Hamiltonian(15). Such a basis is given by scattering states

tice model. There are of excitons, holons, and antiholons. In order to distinguish
) these we introduce labets ,e,, . .. ,eNex,h,h. As usual for
N = 1-5 (22) particles with relativistic dispersion, it is useful to introduce
& B? a rapidity variabled to parametrize energy and momentum,
different types of excitons, whef&] in Eq. (22) denotes the .
integer part ofx. The exciton gaps are given by En(#)=M coshg, Pp(0)=(M/vy)sinheg, (259
Ma=2Msinmf2), n=1,... New (29 Er(6)=M coshd, Pp(6)=(M/vgsinhg, (25
where
B2 Een(0)=Mncosh0, Pen(0)=(Mn/vc)sinh0,
= . 24 250
= (24) (250
Therefore, the single-particle gapand the coupling fully ~ Where the exciton gaps!, are given by Eq(23). Next we
characterize the spectrum of the SGM. turn to the construction of a basis of scattering states of ho-

One knows that the field-theory approximation to the |at-lons, antiholons, and excitons. A convenient formalism to
tice problem is valid in the limitU,V;,V,<t where the this end is obtained by using the Zamolodchikov-Faddeev
single-particle gap is much smaller than the bandwidth. FofZF) algebra. The ZF algebra can be considered to be the
the Hubbard model\(;=V,=0) we have fountf that field ~ €xtension of the algebra of creation and annihilation opera-
theory gives surprisingly good results for the optical conducors for free fermions or bosons to the case of interacting
tivity even for intermediate single-particle gaps of magnitudeParticles with factorizable scattering. The ZF algebra is
M~0.3. The same holds true for the Mott-insulating phaseP@sed on the knowledge of the exact spectrum and scattering
of the extended Hubbard model with,>0,V,=0.183L As matrix of the modef® For the SGM the ZF operatofand
we shall show in Sec. IV B, field theory remains applicablethelr Hermitian conjugatessatisfy the following algebra:

even in the presence of excitons.
| I_n the framework of the fleld_—theory approximation to the Z€1(0,)Z¢( 02)256}'63( 0,— 02)255( 92)255( 0,),
attice problem we can determine the value®bnly in the €10€
limit U,V,,V,<t. In fact, for the Hubbard mode=1 is (263
fixed by theSO(4) symmetry’? As seen from Eq(16), the
effect of a smallV,,V, is to decrease the value @f. One + N ot + €l e}
may therefore hope that by carefully tunitgy V4, andV, Zel( 01)252( 92)_24 02)251( 01)551,62( 01— 02),
one may stay in a regime with a “small” single-particle gap, (26b)
i.e., close to the critical surfadg —2V,+2V,=0, but with
a sufficiently smallg for excitons to exist. We have found '
numerically that it is indeed possible to reach regions of the A 01)22 (62)=ZT,(02)SEZ’E}( 0,— 01)251( 01)

. . . . 2 € €5,€
parameter space where field theory is valid gfdis as 2
small as 0.36 close to a critical surfate-2V;+2V,~0 +(27)5U8(0,— 6,). (260
which separates the Mott-insulating phase from other phases €2
with long-range order. The determination of the field-
theoretical parameteg? as a function of the lattice-model Here SE}’S?(Q) are the known(factorizable two-particle
parameters using DMRG results will be discussed in Sec. 12

IVB. scattering matricé8 ande;=h,h,ey, ... € -
Using the ZF operators a Fock space of states can be

A. Optical conductivity in the sine-Gordon model constructed as follows. The vacuum is defined by

Our task is now to calculate the Fourier transform of the
retarded, dynamical current-current correlation functio®)
in the sine-Gordon model. This is done by going to the spec-
tral representation and then utilizing the integrability of theMultiparticle states are then obtained by acting with strings
SGM to determine exactly the matrix elements of the currentf creation operatorzl(e) on the vacuum
operator between the ground state and various excited states.
This method is known as the form-factor bootstrap
approacf®3*and has recently been applied to calculate the
optical conductivity in the repulsive regime of the SGRf?
Here we review briefly the relevant steps and refer to Ref. 29n terms of this basis the resolution of the identity is given by

Z,(6)[0)=0. @7

0y =200 ZL00I0). 9
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” * df,---do e
=0 (o[+> > | —=———"]g,--6, 01 0,|]. (29)
n=1 ¢ - (277)”n
€€
|
Inserting Eq.(29) between the current operators in Efi8), ~ whereP; andE; are given by
we obtain the following spectral representation of the corre-
lation function: M,
P] = ) E] =M € COSth , (31)
d01~ A d0 ¢
(J(x,1) J(0,0) = 22 — and
n=1 ¢ (27)"n!
n 76, & =(0|T(0,0[0y - 1) ..., (32
Xex;( ',Zl ij_Ejt) are the form factors. Our conventions in E§1) are such

that M,,=M,=M and Me =Mp. After carrying out the

2
x[(0|7(0,0)] - - - 01>5n"'51| , (30 double Fourier transform we arrive at

s > M Sinhﬁj/vc)

i
|fj(01 n)el...5n|2 -
—; Mejcosh0j+i1; w+; Mejcosh0j+i1;

(33

5 2 M sinhg; /v

SATTE B e

=1 ¢ )

This then yields the following representation for the real part Using the transformation property of the current operator

of the optical conductivity ¢>0): under charge conjugation one finds that many of the form
factors in Eq.(33) actually vanish. In particular, only the
252 = de de “od(_j"_ excitons e;,e3, ... (assuming they exist, i.ef is_
UET(Q,): f ! sufficiently small couple to the current operator. The first
Lagw n=1 g (2m)"n! few nonvanishing terms of the spectral representat®h
are

N 2
X|f (01"'0n)51"'€n| FT(w) [(Nogt 1)/2]
5 Mo 5 AT 2 ey (@) om(@)oee ()
> v—smhak 5<w— 4 M., coshéy|. (35

Cc
(34 HereA=A'v /Lay andog (»), opp(w), andoe e (w) are
the contributions of the odd excitons, the holon-antiholon
The missing ingredients in E434) are the form factors. In  continuum, and the;e, exciton-exciton continuum, respec-
Refs. 33 and 34 integral representations for the form factorgively. The latter of course exists only No,=2. We find
of the current operator in the sine-Gordon model were de-

X0

rived. Using these results we can determine the first few . m

terms of the expansiofB4). In particular, the form factors Ueanl(w)_MZ fan-16(@=Mzn-1), (363
involving excitons are determined via the bootstrap axioms an-t

for soliton-antisoliton form factord> m-1

From Eq.(34) it is easy to see for any given frequeney  fn=4M2g2sinm=¢) [ tarf(wnél2)
only a finite number of intermediate states will contribute: n=1
the delta function forces the sum of single-particle gaps p( dt sinf{t(1—¢)/2]  sinkA(mté/2)
X ex

M. to be less thanw. Expansions of the forni34) are o T Sini(té2)cosht/2) Sinhi
usually found to exhibit a rapid convergence, which can be

understood in terms of phase-space arguméntsTherefore (36D
we expect that summing the first few terms in E84) will The holon-antiholon contribution has previously been
give us good results over a large frequency range. determined! and is given by
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)= 4\ w?—4M?O(w—2M) p( >dt sinft(1—£)/2][1—codqtb/w)cosht] 37
X - N - il
Thnl @ w?[cog 7/ &)+ cosh 6/ )] ot sinh(t&/2)cosh(t/2)sinht
where = 2arccosh{p/2M). Finally, we quote the result for thee, exciton-exciton continuum,
20|f1A01)]?
o w)= , 38
e ) P M- M2 (MM, ? %9
where
[tanm&| sint?0,+ sir’(wél2)
|f12(01)]?=\° > , =
sint? 0,,+ sir?(3wél2)
p( =dt sinht sinh(t&)sini t(1+ &)Jcosh2t£)
Xexp =8| — -
ot sink?(2t)
y f dt sinh(2t&)sin t(1+ &)]cog2t 64,/ €)
ex 0 cosht sinh(2t)
x{4 12 he 12)]} 2 i 39
{4 cog wé/2)[ coshdy,+ cog mél2) ]} Bsnnd) (39
|
and 1
FT + 2_
o7 (w)x —— for w—A =1/2). (43
w?—M35—M3 1 Vo—A (#
6,,=arccos W ,
12 The behavior of the field-theoretical conductivity is thus
775 sedt t qualitatively similar to that of the lattice model in the large
A=2 cos{ ) \/2 s, exp( f ) Mott-gap limit (10). For V,=0 (Ref. 18 it has also been
2 sint found for intermediate Mott gaps that;(w) diverges as a

(400 square root at the absorption band threstgldor the criti-
cal couplingV=V, below which no exciton appears in the
optical gap. FoV,# V., o1(w) increases smoothly at the
absorption band threshold. This generic behaviorgfw)
illustrates once more the absence of significant qualitative
changes in the particle-hole continuum and single-exciton
spectrum of Eq(1) as one goes from the large to the small
A ® Mott-gap limit. Forg?<1/3, the field-theoretical optical con-
(@)= Khﬁ(x)’ (41)  ductivity shows more features, but it seems that this regime
cannot be reached in the lattice mod®l and thus we shall

whereh,(x) is a universal function depending only ggf. ~ not discuss it further.

Therefore, only the parametgf determines the shape of the

optical spectrum. The parametess and A/A just set the B. Application to the lattice model
energy and conductivity scales, respectively.

For 1=32=1/2 the optical spectrum contains a single
band, while for 1/2- 82>1/3 it contains one band and one
exciton peak in the optical gap at the energy=M,. The
optical weight is progresswely transfered from the band to
the single exciton ag? decreases down to 1/3. The absorp-
tion band increases smoothly at the threshb|cas

For 1=82>1/3 the contributions of the first odd exciton
(36) and of the holon-antiholon continuu(®@7) dominate the
field-theoretical optical conductivit{85) (at least in the low-
frequency regimeand other contributions vanish or can be
neglected. The optical conductivity can be written as

The field-theory optical conductivity]'(w), [Eq. (35)],
depends on three paramete@?, the gapA =2M, and the
normalization A. To compare the field-theory predictions

with our numerical results for the lattice modé) one needs
to determine the field-theory parameters corresponding to
specific values of the model parametéksV,, andV,. For-
tunately, if there is exactly one exciton in the spectrum

o (@) xJo—A for o—A*, (42) El/ﬁ>_,82>1/3), this can be done using standard DMRG
echniques.

for all values of 8% but B2=1/2, when the exciton peak  The first step is the calculation of the gap parameter
merges with the band. In this caeéT(w) shows a square- The gapA obviously corresponds to the charge dép ex-
root divergence at the absorption threshold, trapolated to the infinite-system limih,=lim, _...E(L). The
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second step is determinirgf. The exciton energywe, (L) of

the lattice system can be calculated using the symmetrized
DMRG method. The extrapolation to infinite-system size
gives us the exciton gap of field theory, E(Q3), M,
=lim__ .we(L). The parameteg? is then fixed by the ratio

of M; andA=2M through Eqs(23) and(24).

The final step is the calculation of the normalizatidn
EvaluatingA accurately turns out to be the most difficult task
and we have tried two different approaches. In the first one
we calculate the excitonic spectral weight in the lattice
model using the symmetrized DMRG technique and extrapo-
late to an infinite system size. This yields the normalization
A by comparison with the field-theory prediction, E¢85) FIG. 3. Optical conductivityo,, () (solid) calculated with
and(36). This method is simple and exact on the field-theoryppmRrG for U=5.2, V,=3.7, andV,=1.% on a 128-site lattice
side but difficult to carry out numerically because of signifi- (,=0.1t). Field-theoretical result f"(w) (dashed for A
cant truncation errors and complicated finite-size effects. =0.628, 2=0.40, andA=1.12%, convolved with a Lorentzian

In the second approach we use the sum r@®s We  of width »=0.1t. Inset: same results witih=0.66@ and A
numerically integrate the contributions of the exciton and the=1.02%.
holon-antiholon continuum to the optical conductivity5)
for a fixed value of32. The result has a trivial dependence on phase from other phasés particular, a charge-density-wave
A andA because of Eq41). This gives us the left-hand side Phase, where the Mott gap vanishes or becomes very small
of Egs.(5b) or (5¢) assuming that the neglected contributionseven for relatively strong Coulomb interactiat least up to
to o "(w) are insignificant and that most of the optical spec-U="6t). A careful tuning of the parametets, V,, andV,
trum weight is concentrated at low energy where field theoryallows one to reach regions of the parameter space, where
is expected to describe the lattice-model properties accifield theory appears to remain valid agd decreases down
rately. The right-hand side of Eqébb) and (5¢) can be cal- to 0.36(for instancelU =6t, V,=4.5, andV,=2t). We can_
culated for the lattice model with DMRG and extrapolated tothus compare our numerical results with the field-theoretical
the infinite-system limit. Comparison of both sides of thePredictions for the optical conductivity in the parameter re-
equations gives the value of the normalizatian gime with a single exciton. Again, we have found a good

We prefer the second approach because it is simpler arRgreement between DDMRG and field theory for gaps as
more accurate than the first one as far as the numerical cdprge asA=0.&.
culations are concerned. It can also be used when there is no In Fig. 3 we compare the optical conductivity from field
exciton (1=32=1/2). Unfortunately, the second approachtheory and DDMRG folU=5.2, V,;=3.7, andV,=1.3.
works only if the exciton(36) and holon-antiholon con- ©Only the low-frequency ¢<2t) part of the spectrum is

tinuum (37) reproduce the lattice modet;(w) very accu- Shown as there is almost no spectral weight at higher fre-
rately, i.e., if guency. The numerical results have been calculated on a 128-

site chain with a resolution ofy=0.1t. The field-theory re-
[~ n sult, Egs.(35—(37), has been convolved with a Lorentzian
6S= fo dwo™ Ao, (@) +Agpi(w) —oy(@)] (44 o widih 7»=0.1t to allow for a direct comparison with
DDMRG results. The field-theory parametefs=0.6285,
is very small compared to the left-hand side of Esp) for ~ 32=0.40, andA=1.12%t have been evaluated for an infi-
n=0 or the left-hand side of Eq5c) for n=1. nite chain as discussed above. The gap between the exciton
The validity of the field-theory approximation to the peak atM;=0.544 and the threshold of a weak holon-
model(1) is not necessarily restricted to the linit,V1,V,  antiholon continuum aA is not visible in Fig. 3 because it is
<t but rather to the regions where the single-particle gagmaller than the finite resolution introduced by the broaden-
M=A/2=EJ2 is small compared to the bandwidth 4nthe  ing.
Hubbard modéf (V;=V,=0) we have found that field |n Fig. 3 one sees that the agreement between numerical
theory describes the optical conductivity accurately even foand field-theory results is good. The visible discrepancies are
U =3t, corresponding ta ~0.6. In the case/,>0,V,=0,  well-understood finite-size effects: the excitation energies of
field theory is valid not only in the weak-coupling limit Eq. (1), in particular the exciton energy, decreases as the
(U,V;<t) but also in the vicinity of a critical lindJ —2V;  system size increases, the total spectral weight is slightly
~0 separating the Mott-insulating phase from phases witlsmaller in the finite chain as shown by corrections to the
long-range ordet® The Mott gap vanishes or becomes ex- kinetic energy[right-hand side of Eq(5b)] of the order 1L,
tremely small on this critical line at least up tb=4t. The  and the exciton peak is broadened and flattened because of
holon-antiholon continuum contributiof87) to the optical the scattering by chain ends. If we choose the field-theory
conductivity agrees with DDMRG results for gaps=0.& parametersd andA (the energy and conductivity scales
and 2 ranging from 1 to 1/2. fit the finite-system DDMRG conductivity, differences al-
In the general casd>V,>V,>0), there is also a criti- most completely vanish foA=0.663 and A=1.02%t, as
cal surfaced —2V,;+2V,~0 separating the Mott-insulating seen in the inset of Fig. 3.
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As mentioned in Sec. lll B we have never observed more 0.6 : : 3
than one exciton below the optical absorption continuum in ""“-e\\
the regime of intermediate Mott gaps, down Eo=0.4. 05 r Ol
Therefore, we cannot evaluate the field-theory predictions for °. 12
.. . . . . . 04 r &
the additional excitons and the exciton-exciton continuum in ®, m
the regimes?<1/3. It remains conceivable, however, that 53| «  _.-8-a__"g
smaller values of3? can be reached in the modd) in the ,/Er \u‘@\ 11
limit E.=A<t. 02} -7 ©
‘ b
0.1 T L : 0
V. EXCITON PROPERTIES 2 3 4 5
V1

In Wannier-Mott theory exciton properties, such as size,

binding energy, effective mass, or optical weight, are related g\ 4. Charge gaf, (circles, right axi and exciton binding

by simple equations and exhibit a monotonic behavior as @nergy sE (squares, left axisas a function ofV, for U=6t and
function of the Coulomb repulsion strength. This simplicity v, =2t.

is due to a drastic assumption of this theory: optical excita- )

tions are represented by an electfonthe conduction band ~ study of the model1). Therefore, we assume tha€E is
and a holg(in the valence bandwhich are completely inde- indeed the blr)dlng energy of the single I\/_Iott-qubard exci-
pendent from the system’s other degrees of freedom. ThiPn observed in the spectrum of the Mott-insulating phase of
interaction with these degrees of freedom is taken into acEd: (- o

count only through renormalized parameters such as effec- |1 the limit of a large Mott gap Y>t,V,,V;) SE=V,

2 _ — ind-
tive masses for the electron and hole, and an effective back" 4t IVa 4t for V,=2t andtVZ. Oli see Eg(gta).lThel b'.rt‘q
ground dielectric constant for the Coulomb interaction!"d EN€rgy increases monotonically wif but, clearly, it is
between electron and hole. not a good measure for the strength of the Coulomb interac-

In a Mott insulator the exciton properties show a moretIon as itis independent df and vanishes even whafy is

complex behavior. Although a Mott-Hubbard exciton can itlgjilglsggovcg F]/ z;\zzfgﬁn':(jotrhlgietﬂgi?rl%tii gMgrt,te?ga@E;g?'l
also be described as a bound pair of excitations with opposit

fig from 0.03 to 12) do not depend in a simpl th
charges, the Coulomb interaction at the same time detegt:'| rom 0 12) do not depend in a simple way on the

. ; ) . oulomb interaction strength. In particulatE has a non-
mines the size of the Mott gap, the exciton properties, anghonotonic behavior as illustrated in Fig. 4. The binding en-

the coupling of the exciton to the other electrons in the SYSergy SE first increases with; as long as the gal, remains
tem. Therefore, an increase of the Coulomb Interactionsssentially unchanged, thefE and E., decrease rapidly as
strength does not simply bind the exciton more tightly, buty, approaches the critical surfaéé—2V,+2V,~0. It is

also renormalizes the gap and couples the particle-hole eXGjikely that the same behavior also holds for small Mott gaps
tation more strongly to the other electrons. This leads to §E_.=A<t), where field theory gives SE=A[1

nonmonotonic behavior of Mott-Hubbard exciton properties—sin(7¢/2)],£<1, for the first exciton, see E¢23). If we
as a function of the Coulomb repulsion strength, and even t@ake the weak-coupling resufilé) as an indication of the
an instability toward the formation of excitonic strings or qualitative dependence @ on V,, then an increase of,
charge-density-wave droplets. leads to smalle, Eq. (24), and thus to a larger binding
In the following two subsections we shall discuss theenergy. On the other hand, an increas&/ ptan also lead to
binding energy and size of a Mott-Hubbard exciton usinga sharpdecreaseof the gapA close to the critical surface
analytical results in the limits of large and small Mott gaps,U—2V,+2V,~0, if we again take the weak-coupling re-

and numerical results in the intermediate regime. sults (20) and(21) to be indicative of the qualitative depen-
dence ofA onV;. Depending on the other parameter values,
A. Binding energy one of these two effects dominates and leads to an increase

The exciton binding energy is usually defined as the en—Or decrease of the bmdmg energy whép bec_omgs larger.

ergy difference between the excitan, and the band edge of In summary, our a}naly3|s shows thqt the binding energy of

the particle-hole continuuri % a Mott—Hubbar_d exmtqn does not prpwde a goqd estimate of

¢ the Coulomb interaction strength in a Mott insulator. Of

course, a large gap. or binding energypE requires a strong

Coulomb interaction. In general, however, a snigllor 6E

In Wannier-Mott theory this quantity is the energy requiredarenotan indication for a weak electron-electron interaction.

to break an exciton into an independent hole and electron. In contrast to the views of Ref. 38, even a “small” exciton
In a Mott insulator this is not always warranted 88  binding energy, of the order of 0.1 eV in someconjugated

does not necessarily correspond to the minimal energy reSystems, doesot imply that electron-electron interactions

quired to break an exciton. For instance, as seen i@, are small in these materials.

there is an excitorabove the band edge in the strong- )

coupling limit Us>4t>V, (V,=0). Except for this strong- B. Size

coupling limit, however, we have only found excitons with  In the limit of large Mott gaps y>t,V,,V,) an optical

an energywe, lower than the absorption band edggin our  excitation is simply made of a hole and a double occupancy

SE=E.— wey. (45)

125119-11



F. H. L. ESSLER, F. GEBHARD, AND E. JECKELMANN PHYSICAL REVIEW B4 125119

in a background of singly occupied sit€Sec. Il A). The 10° , . , . ,
probability of finding the hole and double occupancy at a ”
distancex in an optical excitation is given by the correlation 10
function = 107
s - - F10
CrdX¥) =N 1Ny ((1=N145 ) (1=Npy ), (46) 2 e
. . ~10"
where(- - -) means the expectation value in the correspond- ST
ing excitedN-electron eigenstate. The average distance be- 107
tween hole and double occupancy is 107 . . . . .
0 16 32 48 64 80 96
X
> Crdx)|x|
Chg= X _ (47) FIG. 5. Correlation functions for a hole and double occupancy,
hd Z Cha(X) (dasheg, and for an electron-hole excitatioGer(x) (solid),
= Chd(X) calculated for the lowest exciton in a 96-site system Wit 40,

V=25, andV,=0. The center of the pair is in the middle of the
If the hole and double occupancy are not bound, this quantityattice.
diverges as the system sikegoes to infinity. For an exciton,
{ng remains finite ad. —o and can be interpreted as the A suitable quantity for our analysis is the correlation func-
exciton size. FoW,;=2t andV,=0 an analytical calculation tion for electron-hole excitations
gives the exact result . .
Cer)=[(n[Py 11yt (=DM [0)2 (50)

Chd(x#0)=exp(— x|x]), (48 : , ,
where|0) is the ground statén) is the excited state under
with k=2 In(Vy/2t) for the lowest exciton. The exciton size jnvestigation, and
is then
1 Isiyj:; 6:—0.6j’0. (51)
A a— (493
l1-e

creates an electron at siteand a hole at sit¢. Obviously,
Cen(X) evaluates the importance of an electron-hole excita-
_ 1 (490) tion with distancex in the excited statén). This approach
1—( 2t/V1)2' has already been used to study the structure of excited states
in semiempirical calculations for ladder-type pgly-
{ng diverges asv, approaches the critical value/{=2t),  phenylene oligomer¥ Here, we have calculated this corre-
below which the pair is not bound, and tends to unity forjation function using the symmetrized DMRG method to
strong couplingV,/2t— . Using a density-density correla- analyze the structure of excited states in the lattice madel
tion functior?*°yields equivalent results. An average electron-hole distan¢g, can be defined by
Unfortunately, the correlation function for hole and substitutingCer(X) for Cpg(X) in Eq. (47). We have found
double occupancy and the density-density correlation funcehat this method predicts correctly whether a hole-double-
tions yield unclear results in the regime of intermediate Mottoccupancy pair is bound or unbound in the limit of large
gaps because the ground state already contains a finite deg@ott gaps U>t,V,,V,). The advantage of the correlation
sity of holes and double occupancies wligit is finite. The  functionC(x) overCy«x) (or a density-density correlation
function (46), for instance, tends to a finite valWf asx  function) becomes obvious in a system withfiaite Mott
—, which is determined by the density of doubly occupiedgap. In Fig. 5 one sees thet,(x) decreases exponentially
sitesd=(n, ;n; ;). These quantum charge fluctuations hideand thus allows us to identify a bound excitation, while the
the weak exciton contribution to E46). correlation function between hole and double occupancy
In Fig. 5 we show the correlation functidd,4(x) calcu-  Cp«(X) is dominated by the finite ground-state density of
lated with DMRG for the lowest optically excited state in the holes and double occupancies. Therefore, we think that the
model(1) with U=40t, V,=2.5, andV,=0. This system is correlation function for electron-hole excitatiog,(x) and
in the regime of large Mott gaps with.~36.14, and is well  the analysis of the average electron-hole distafag@rovide
described by our strong-coupling analysis, which predicts am reliable approach to distinguish an exciton from an un-
exciton with a size/,y~2.78 as the lowest optically excited bound particle-hole excitation in correlated systems. In any
state. However, one clearly sees in Fig. 5 tRaf(x) re-  case, this approach is more reliable than schemes based on
mains finite for largex. This wrongly suggests that the opti- the correlation function for hole and double occupancy or a
cally generated hole and double occupancy are not bound idensity-density correlation function.
this excited state. Similar problems arise with a density- However, this approach cannot be used to determine the
density correlation function. Taking the difference betweensize of a bound pair accurately beca@kg(x) is affected by
the correlation functions for an excited state and for thevery strong short-range fluctuations due to spin correlations
ground state, as in Ref. 10, does not provide better resultsand lattice and chain-end effecfén our figures we show a
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1.0 - T exponentially and we can use the analy&g) to determine
the exciton siz€,,. A typical example is also shown in Fig.
w 08 ! 6. We note that both examples in Fig. 6 correspond to sys-
5 tems with a gajfe.~0.6&, for which the field theory of Sec.
o 0.6 1 IV is still valid and supports our identification of bound and
8 o4 [T . | unbound excitations.
= ., The exciton sizeg ., observed range from slightly more
Y ‘\‘ - than one lattice spacing, to about 2@,. As in the binding
© energydE, the exciton siz€ ., does not depend in a simple
0.0 ' = way on the Coulomb interaction strength and even displays a
0 100 200 nonmonotonic behavior as a function \¢f, first decreasing
X asV, increases, then sharply increasing/asapproaches the

FIG. 6. Correlation functioiCe{x) of the first optically excited ~ Cfitical regimeU —2V; +2V,~0. As expected/., becomes
state on a 256-site lattice for two typical cases: an excismtid) larger and seems to diverge 88 vanishes, while it dimin-
for U=4t, V;=2.78%, andV,=1.%, and an unbound particle-hole ishes whernSE becomes larger if the gap, is kept(approxi-
pair (dashedi for U=3.5, V,;=1.4, andV,=0. The center of the mately constant.
pair is in the middle of the lattice. We note that the operator used in E§0) is antisymmet-

ric with respect to charge conjugation, as is the current op-

running average o€.(x).] Instead, we evaluate the exciton erator (3). Thus, Ce({X) is nonzero only for those excited
size ., as the average electron-hole distafgein Eq.(47)]  States|n) (including the excited states contributing to the
calculated for the exponential function which gives the bestinear optical conductivity whose parityP. under charge

fit to Cer(X), conjugation is opposite to that of the ground state. When a
minus sign is substituted for the plus sign in E80), C.x(X)
Cer(X)cexp —\[X|), (529 is nonzero for excited states which have the same parity un-
der charge conjugation as the ground state. One can thus
1 extend this scheme to excited states which contribute to the
§ex=m- (52b nonlinear optical properties of a system.

In the field-theory limit, a measure of the size of an exci-
In the limit of large Mott gaps we have found that this ap-ton can be obtained in the following way. For an asymptoti-
proach reproduces the exact regd®b) for the exciton size, cally large separation between particles, the holon-antiholon
i.e., {ex= {ng- Furthermore, applying this analysis to systemswave function has the form
with large but finite gaps yields results in agreement with our

strong-coupling analysis. For instance, using the dataJfor ‘Ifxl@z(xl,xz):exmplxﬁip2x2)

=40t andV;,=2.5 in Fig. 5 our analysis givege,=2.99.

This value agrees within 10% with the analytical reg4fb) + Sr(P1,P2)eXPip2X1 +ipaXa),

for U/lt—o andV,=2.%,{,.=2.78. The difference can be

explained as a correction of the ordet/d. Therefore, we Wy 5 x,(X1,X2) = Sr(P1,P2) €XPip X1 +iP2Xa),  (53)

think that the analysi$52) of the correlation function for

electron-hole excitations allows one to determine reliably thavhereSg 1 are two-particléS-matrix elements corresponding

size of an exciton in a correlated system. to reflection and transmission, respectively. In terms of ra-
We have calculated the average electron-hole distégce Pidity variables defined by;=M sinhé;/vc, the S matrix

of the lowest optically excited states for various values of theonly depends on the differengg,= 6, — 6, and has poles at

parameterd), V4, andV, in the regime of intermediate Mott )

gaps. The analysis aofg, yields predictions about the pres- b1p=im(1—ng). (54)

ence of _bo_und particle-hole pairs V\.'hiCh always_ agree WithAn exciton state with energy, coshd and momentum

the predictions based on the analysis of the excited-state eNi sinhdlv. is obtained by choosing

ergies. For an excited state above the absorption band thresh-" ¢

old we have found that,, diverges with system size, con- _

__— . . oen X M . m—mné

firming that this excitation is made of an unbound patrticle- p;=—sinh 6+i ————],

hole pair. A representative example for the various possible Ve 2

shapes o (x) is shown in Fig. 6. For an unbound pair one

clearly sees thaC.(x) remains finite for very large of the =Msin o—i m—mNn§ (55)

order of the system sizk. C.(X) only goes to zero ag P2 Ve 2 '

approaches the system sizk=256 in this example be- ) ] . ]

cause of chain-end effects. Inserting these values in the wave function yields an expo-
In contrast, when an excited state lies below the charg@€ntial decay irjx,—x,| with a correlation length

gapE., we have found thaf., remains finite for an infinite

system, confirming that this excited state is made of a bound FT_ Ve (568

particle-hole pair(exciton. In this case,C.{Xx) decreases N M cosmnél2’
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2 force between charged excitations originate from the Cou-
=%. (56b) lomb repulsion between electrons and are thus interdepen-
VA“=My dent. In particular, the smallness of an exciton binding en-

We see that this size diverges when we approach from belo%9Y 1S no indication for the strength of the Coulomb

the coupling constang, at which thenth exciton is first ~ePulsion in a Mott insulator. _ .
formed. For example, the first exciton splits off the holon- We may compare our results to experiments for_polyd|-
antiholon continuum ag=1 and its size displays a square- acetylene chains in their monomer matrix. For an estimate of
root divergence fog— 1 the exciton size we use the field-theoretical re€afh which

is fairly independent of the details of the lattice structure and
1 the range of the electron-electron interaction. We pyit
R A M M;—A". (57  ~vg=2tay with a m-electron bandwidttW=4t~10 eV
1 A=wpr=2.4 eV, andM ;= we,=1.9 eV from experiment
The nonmonotonic behavior of the exciton size as a functiorfior 3BCMU-PDA?® The field-theoretical prediction for the
of the Coulomb interaction strength is also observed in thexciton size,
small-gap regime. Equatiotb6a shows thatZT" will de-
crease if the diminution of dominates when the lattice pa-

rameterV_1 increases, but becpmes greater if the ir_lcrease of TT= ao\/ﬁ~7a0%9 A, (58
the velocityv, and the reduction of the gap prevail (see Wph™ Wex
Sec. V.

To compare the field-theoretical predictions with our nu-iS in fair agreement with the experimental value 12 Aif we

merical method based on the correlation funci@u(x) we  PUt@=1.3 A for the average bond length between the car-
have numerically calculated the exciton enetay, and size bon atoms on the PDA chain. The difference can be attrib-

Z., for several values of the parametéisV,, andV,, cor- uted to the limitations of this simple calculation or the un-
rg;ponding to gapa =E, of the order of 0.6 The exciton  Certainty of the order of 20% for the experimental valfres.
sizes range from ) to 20a,. We have found that in all We therefore conclude that our many-body approach can be

cases our numerical results fulfill the field-theory relation@PPlied successfully to real polymers. _ _
(56b) within 15% if we usev.= 2ta, as the charge velocity. Although the particular model studied here is too simple

This good agreement shows that our definitit6® and(56) tﬁ describe cofnjugated Eglyrgners _accuratelyi we beflieV(; that
are mutually consistent in the regime of small Mott gaps.t"€ concept of Mott-Hubbard excitons is relevant for these

Moreover, the numerical method yields reasonable estimate@""t‘:‘.riaIS as the eIectrqn—eIectrqn int.eraction significantly
contributes to the formation of their optical gap. In any case,

of the exciton size even in the regime where such calcula=™ ; L e

tions become laborious. this approach is more realistic than the oversimplified

Wannier-Mott theory and other simple approaches that ne-

glect or minimize the role of electronic correlations in con-

jugated polymers. The many-body methods used in this work
We have investigated excitons in the optical conductivitycan be appliedand in part, have already been appligd

spectrum of one-dimensional Mott insulators using two reli-more realistic models taking into account the polymer geo-

able methods, the dynamical density-matrix renormalizatiorimetrical structure and the electron-phonon interaction, and

group and the field-theoretical form-factor bootstrap ap-ossibly additional perturbations such as interchain cou-

proach, supplemented by two established techniques, Rlings. We think that the optical properties of conjugated

strong-coupling analysis and the symmetrized DMRG. Mott-polymers will be successfully investigated using a combina-

Hubbard excitons can be understood with the simple picturgon of these many-body methods.

of a bound pair of spinless bosonic excitations with opposite

charg_e, in analogy to the bound electron-hole p_air of ACKNOWLEDGMENTS
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