
PHYSICAL REVIEW B, VOLUME 64, 125119
Excitons in one-dimensional Mott insulators

F. H. L. Essler,1 F. Gebhard,2 and E. Jeckelmann2

1Department of Physics, Warwick University, Coventry, CV4 7AL, United Kingdom
2Fachbereich Physik, Philipps-Universita¨t Marburg, D-35032 Marburg, Germany

~Received 20 March 2001; published 11 September 2001!

We employ dynamical density-matrix renormalization-group~DDMRG! and field-theory methods to deter-
mine the frequency-dependent optical conductivity in one-dimensional extended, half-filled Hubbard models.
The field-theory approach is applicable to the regime of ‘‘small’’ Mott gaps which is the most difficult to access
by DDMRG. For very large Mott gaps the DDMRG recovers analytical results obtained previously by means
of strong-coupling techniques. We focus on exciton formation at energies below the onset of the absorption
continuum. As a consequence of spin-charge separation, these Mott-Hubbard excitons are bound states of
spinless, charged excitations~‘‘holon-antiholon’’ pairs!. We also determine exciton binding energies and sizes.
In contrast to simple band insulators, we observe that excitons exist in the Mott-insulating phase only for a
sufficiently strong intersite Coulomb repulsion. Furthermore, our results show that the exciton binding energy
and size are not related in a simple way to the strength of the Coulomb interaction.
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I. INTRODUCTION

Excitons in conventional band insulators are well d
scribed by Wannier-Mott theory.1 A Wannier-Mott exciton is
a charge neutral optical excitation made of an electron in
conduction band and a hole in the valence band, bound
gether by the Coulomb attraction between them. In inorga
semiconductors like GaAs the typical binding energy, as
fined by the energy difference between the exciton and
band edge of the particle-hole continuum, is several m
This should be compared to the band gap itself, which is
the order of 1 eV. Concomitantly the typical size of
Wannier-Mott exciton is of the order of 100 Å , which is
almost two orders of magnitude larger than the lattice sp
ing. We note that although the total spin of an optically e
cited exciton is necessarily zero, it is composed of two q
siparticles carrying spin 1/2.

In quasi-one-dimensional materials like conjugat
polymers2 the situation is quite different. Here the electro
electron interaction accounts, to a substantial degree, for
optical gap itself3 as well as for the formation of excitons
The exciton binding energy in, e.g., polydiacetylenes
found to be of the order of 0.5 eV~Refs. 4,5! and is thus
comparable to the optical gap of 2.4 eV in 3-butox
carbonyl-methyl-urethan-polydiacetylene~PDA! chains di-
luted in their monomer matrix.4,5 The exciton size was
estimated5 to be 12 Å and is thus comparable to the length
the unit cell of 5 Å. These facts suggest that electron-elec
interactions will play an important role in any theoretic
description of excitons in these materials.

Realistic models for conjugated polymers must acco
for the effects of both electron-electron and electron-pho
interactions. The interplay between these makes the reli
calculation of the optical conductivity a very demandi
task. As a first step it is therefore natural to investigate
effects of the two mechanisms separately.6 The optical con-
ductivity for models with only electron-lattice coupling suc
as the celebrated Su-Schrieffer-Heeger model has b
widely analyzed in the literature7 and is well established. As
0163-1829/2001/64~12!/125119~15!/$20.00 64 1251
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an extension of this approach, electron-electron interacti
have been taken into account perturbatively.8 In contrast
there are comparatively few reliable results for the opti
spectrum in models that take account of the sizable elect
electron interaction.9–13 The interaction drives these system
into a Mott-insulating ground state.14 The scarcity of results
is due to the difficulties associated with the calculation
excited-state properties in one-dimensional Mott insulato
Therefore, it is of considerable interest to develop relia
methods for the investigation of optical excitations in cor
lated electron systems, and to determine the optical cond
tivity of one-dimensional Mott insulators.

In this paper we focus on the calculation of the optic
conductivity in models with electron-electron interactio
only. We study an extended Hubbard model with neare
and next-nearest-neighbor density-density interactions;
model is further specified in Sec. II.

We employ two recently developed numerical and anal
cal techniques to determine the real part of the optical c
ductivity over the full frequency range and analyze excit
properties without suffering from finite-size limitations; for
first application to the Hubbard model, see Ref. 15. In S
III we first test the dynamical density-matrix renormalizatio
group ~DDMRG! by applying it to the limit of large Mott
gaps where analytical results are available.16 We obtain ex-
cellent agreement between numerical and analytical res
and confirm the clear and simple physical picture of an
citon as a bound state of a double occupancy and an em
lattice site in a background of singly occupied sites. We th
move on to the generic case of intermediate Mott gaps
find qualitatively the same physical behavior.

In the regime of small Mott gaps, finite-size effects a
finite resolution of the DDMRG start to hamper the nume
cal analysis. Therefore, in Sec. IV, we carry out a wea
coupling field-theory analysis of the problem. Using t
form-factor bootstrap approach we determine the opt
conductivity in the field-theory limit. Here, the spin sect
does not couple to the current operator so that it is suffic
to analyze the charge sector only. The exciton is then
©2001 The American Physical Society19-1
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F. H. L. ESSLER, F. GEBHARD, AND E. JECKELMANN PHYSICAL REVIEW B64 125119
scribed as a bound state of a holon and an antiholon, w
are the elementary charge excitations in the theory. The
sulting picture for small Mott gaps remains very similar
the cases of intermediate to large gaps. We even find q
titative agreement between field theory and DDMRG res
for intermediate Mott gaps where the applicability of fie
theory is nota priori expected.

In Sec. V we discuss two fundamental properties of Mo
Hubbard excitons, their binding energy and size, in grea
detail. In contrast to Wannier-Mott excitons in band insu
tors, Mott-Hubbard excitons exist only when the inters
Coulomb repulsion exceeds a certain threshold. In gene
the exciton binding energy is not related in a simple way
the strength of the Coulomb interaction. We analyze a n
correlation function which allows to define the size of
exciton in correlated electron systems. Our analysis prov
a comprehensive picture of excitons in one-dimensional M
insulators. In our conclusions~Sec. VI! we address implica-
tions of our results for the theory ofp-conjugated polymers

II. MODEL HAMILTONIAN

In this work we study the one-dimensional extended H
bard model,17

Ĥ52t(
l ;s

~ ĉl ,s
1 ĉl 11,s1 ĉl 11,s

1 ĉl ,s!

1U(
l

~ n̂l ,↑2 1
2 !~ n̂l ,↓2 1

2 !

1V1(
l

~ n̂l21!~ n̂l 1121!

1V2(
l

~ n̂l21!~ n̂l 1221!. ~1!

This Hamiltonian describes electrons with spins5↑,↓
which can hop between neighboring sites. Hereĉl ,s

1 ,ĉl ,s are
creation and annihilation operators for electrons with spins

at sitel, n̂l ,s5 ĉl ,s
1 ĉl ,s are the corresponding number oper

tors, andn̂l5n̂l ,↑1n̂l ,↓ .
Since we are interested in the Mott-insulating phase,

exclusively consider a half-filled band where the number
electronsN equals the number of lattice sitesL. The lattice
spacing is set to unity,a0[1. Note that we have chosen th
chemical potential in such a way that the Hamiltonian exp
itly exhibits a particle-hole symmetry. This Hamiltonian h
two other discrete symmetries which are useful for opti
excitation calculations: a spin-flip symmetry and a spat
reflection symmetry~through the lattice center!. Therefore,
each eigenstate of Eq.~1! has a well-defined parity unde
charge conjugation (Pc561) and spin flip (Ps561), and
belongs to one of the two irreducible representations,Ag or
Bu , of a one-dimensional lattice reflection symmetry grou

The kinetic energy is diagonal in momentum space a
gives rise to a cosine band,e(k)522t cos(k) of width W
54t. The Coulomb repulsion is mimicked by a repulsiv
local Hubbard interactionU, and nearest- and next-neare
12511
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neighbor repulsionsV1 ,V2. We restrict ourselves to the
physically relevant caseU.V1.V2>0. In this work, we are
not interested in issues like a complete classification of
phase diagram of the model~1!; instead, we constrain ou
analysis to the consideration of several different points in
Mott-insulating phase. A more systematic investigation
the extended Hubbard model withV250 will be published
elsewhere.18 There it is shown that without the next-neare
neighbor interaction, it is not possible to have simultaneou
a small Mott gap and form a Mott-Hubbard exciton.

Linear optical absorption is one of the most common
used probes in experimental studies of the dynamical pr
erties of a material. The optical absorption is proportiona
the real part of the optical conductivity, which is related
the imaginary part of the current-current correlation functi
by

s1~v.0!5
Im$x~v.0!%

v
, ~2a!

x~v.0!52
1

L K 0U ̂ 1

E02Ĥ1\v1 ih
̂U0L ~2b!

52
1

L (
n

u^0u ̂un&u2

\v2~En2E0!1 ih
. ~2c!

Here, u0& is the ground state,un& are excited states, an
E0 , En are their respective energies. Althoughh501 is in-
finitesimal, we may introduce a finite value to broaden o
resonances at\v5En2E0. In momentum space, the curre
operator reads

̂52
2et

\ (
k;s

sin~k!ĉk,s
1 ĉk,s . ~3!

We note that the current operator is invariant under the s
flip transformation but antisymmetric under charge conju
tion and spatial reflection. Therefore, if the ground stateu0&
belongs to the symmetry subspace (Ag ,Pc ,Ps), only excited
states un& belonging to the symmetry subspac
(Bu ,2Pc ,Ps) contribute to the optical conductivity. Accord
ing to selection rules, the matrix element^0u ̂un& vanishes if
un& belongs to another symmetry subspace. We set\51
throughout, and for the presentation of our results we use
5t[1 in our figures.

III. DENSITY-MATRIX RENORMALIZATION GROUP

Recently, the density-matrix renormalization-grou
method19,20 ~DMRG! has been extended to the calculation
dynamicalcorrelation functions.12,15,21This numerical tech-
nique allows us to obtains1(v) for all interaction strengths
as long as the gap is not exponentially small. A compl
exposition of our DDMRG method will be publishe
elsewhere.22

DDMRG allows us to calculate dynamical correlatio
functions, such as the right-hand side of Eq.~2b!, very accu-
rately over the full frequency range for fairly large system
9-2
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EXCITONS IN ONE-DIMENSIONAL MOTT INSULATORS PHYSICAL REVIEW B64 125119
(L<128) with open boundary conditions and afinite broad-
ening factorh, i.e., the DDMRG actually gives

sh;L~v!5
1

L (
n

u^0u ̂un&u2

En2E0

h

@v2~En2E0!#21h2
. ~4!

For h→0, sh;L(v) reduces tos1(v) as defined in Eq.~2!.
Ultimately, we are interested in the optical conductivity of
infinite system,L→`, for h→01. It is shown in Ref. 22 that
the most appropriate way of approaching this double limi
to computesh;L(v) for different system sizes while keepin
hL5const and then to extrapolate to infinite-system size
this paper we usehL512.8t, which yields an energy reso
lution of 0.1t for our largest system size (L5128).

A very useful consistency check of the method is to t
various sum rules, relating moments of the functions1(v)
to ground-state expectation values, which can be evalu
with great accuracy using a standard DMRG method.19,20For
instance, for the Hamiltonian~1! with open boundary condi
tions

E
0

`dv

p
vs1~v!5

1

L
^0u ̂2u0&, ~5a!

E
0

`dv

p
s1~v!5

e2t

2L K 0U(
l ;s

~ ĉl ,s
1 ĉl 11,s1H.c.!U0L ,

~5b!

E
0

`dv

p

s1~v!

v
5

e2

L K 0UF(
l

l ~ n̂l21!G2U0L . ~5c!

For sh;L(v) these sum rules are not fulfilled exactly, b
only up to errors of the order ofO(@h/t#) or O(@h/t#2).

The ground-state phase diagram of the Hamiltonian~1!
exhibits several different phases~for instance, Mott-Hubbard
insulator, charge-density wave, and bond-order wave foU
.V1>0 andV250, see Ref. 18!. To check the nature of the
ground-state for some fixed model parameters we calcu
the spin gap and various ground state properties, suc
charge density, bond order, and spin and density correlati
for large system sizes~up to L5512 sites! with a standard
DMRG method. The ground state of Eq.~1! is a Mott insu-
lator for all values of the model parameters used in t
work.

With DMRG one can also calculate the charge gap

Ec~L !5E0~L11!1E0~L21!22E0~L !, ~6!

where E0(N) is the ground-state energy of Eq.~1! on an
L-site lattice withN electrons. ForL→`, Ec gives the en-
ergy threshold of the electron-hole excitation continuum. I
Mott insulator it corresponds to the Mott gap. In the on
dimensional Hubbard model (V15V250), it is known that
Ec is also equal to the optical gap which we define as
energy threshold of the lowest band in the optical spectr
In all cases withV1 ,V2Þ0 discussed here we have foun
that the optical spectrum contains a single band, which
responds to unbound particle-hole excitations, and thatEc
agrees with the onset of this band. Therefore, in this pa
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we identify the charge gap with the optical gap.~Some spe-
cial cases for which the charge gap does not correspon
the optical gap are discussed in Ref. 18.!

We also use the symmetrized DMRG method23 to calcu-
late the lowest eigenstates in the optical excitation symm
subspace~see Sec. II!. As the standard DMRG method, th
symmetrized DMRG yields not only the eigenenergies
also allows us the computation of various expectation val
and correlation functions of the eigenstates~for an example,
see Sec. V!. We can thus investigate the nature and proper
of these optical excitations. In particular, it is possible
distinguish unbound particle-hole excitations from excito
and from other kinds of excitations~excitonic strings,
charge-density-wave droplets! which can dominate the opti
cal spectrum of a Mott insulator.18 In this paper we conside
only the regime of the Hamiltonian~1! where optically ex-
cited states can be described as~bound or unbound! particle-
hole pairs. We emphasize that the symmetrized DMRG
sults for the optically excited states are always in perf
agreement with the DDMRG results for the optical condu
tivity, confirming the accuracy of both methods.

All DMRG methods have a truncation error which is r
duced by increasing the numberm of retained density-matrix
eigenstates~for more details, see Refs. 19 and 20!. Varyingm
allows one to compute physical quantities for different tru
cation errors and thus to obtain error estimates on th
quantities. For some quantities, especially eigenenergies,
possible to extrapolate the results to the limit of vanish
truncation error and thus to achieve a greater accuracy.
have systematically used these procedures to estimate
precision of our numerical calculations and adjusted
maximal numberm of density-matrix eigenstates to reach
desired accuracy. The largest number of density ma
eigenstates we have used ism51200. For all numerical re-
sults presented in this paper DMRG truncation errors
negligible unless specified explicitly. The main cause of
accuracies are finite-size effects or extrapolation errors
L→` which we discuss below when we present our nume
cal results.

A. Limit of large Mott gaps

Let us now consider the situation where the Mott gap
much larger than the bandwidth 4t. For large interaction
strengths,U@t,V1 ,V2, it is possible to analyze the mode
~1! by means of a 1/U expansion.16 If we ignore corrections
of the ordert/U, all sites are singly occupied in the groun
state. Electron transfers are limited to processes that c
serve the number of double occupancies, and a rather sim
band picture emerges forV15V250. In an optical absorp-
tion process we excite one hole at momentumk2q/2 in the
lower Hubbard band,eLHB(k)52U/21e(k), and one
double occupancy at momentumk1q/2 in the upper Hub-
bard band,eUHB(k)5U/22e(k) ~antiparallel bands!. The to-
tal momentum of the two charge excitations isq, and their
energy isv. Due to spin-charge separation, the oscilla
strength can be written as16

u^0u ̂un&u25u2 iee~k!u2gq . ~7!
9-3
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The spin sector enters the current-current correlation fu
tion via the momentum-dependent ground-state form fa
gq ,

gq52^0uẐr ,r 11
1 ~q!~ 1

4 2ŜrŜr 11!Ẑr ,r 11~q!u0&, ~8a!

Ẑr ,r 11~q!5
1

L (
l

e2 iql T̂ S
( l 2r )T̂ S8

2( l 2r ) , ~8b!

where T̂S shifts all spins by one site whereasT̂S8 performs
the same operation on the lattice with sitesr and r 11 re-
moved.

For the large-U Hubbard model itself, the analysis ofgq is
rather involved. We can use a ‘‘no-recoil approximation’16

to argue that the dominant contributions to the conductiv
come from q50 and q5p, which correspond to vertica
transitions between two antiparallel bands@q50; eLHB(k),
eUHB(k)] and between two parallel bands@q5p; eLHB(k),
eUHB(k1p)]. This hypothesis has subsequently been c
firmed by DDMRG,15,18 which yields excellent agreement
the form factors are chosen asg052.65 and gp50.05
60.03. Exact sum rules impose the conditiong01gp

54 ln(2)'2.77 for an infinite system. The deviation of o
best fits can be traced back to finite-size effects and num
cal errors of the order of 1%.

We now discuss the effects of a finite nearest-neigh
Coulomb repulsionV1!U with V250. It follows by direct
inspection of the Hamiltonian~1! that the double occupanc
and the hole now mutually attract. To some extent, this
reminiscent of the situation encountered in Wannier-M
theory for a band insulator. However, unlike in Wannier-M
theory, the double occupancy and the hole are not fermio
quasiparticles but spinless hard-core bosons. Even more
portantly, there is a critical valueVc52t below which no
exciton appears below the threshold of the particle-hole c
tinuum atvph5Ec5U24t. For V1.Vc there is an exciton
at the energy

v15U2V124t2/V1 . ~9a!

In addition, there is a second Mott-Hubbard exciton at
energy

v25U2V1 , ~9b!

which, for V1,4t, lies in the particle-hole continuum bu
carries very little spectral weight.

The optical conductivity is given by

vs1~v!5pgpt2e2d~v2v2!1g0t2

3e2H Q~V122t !p@12~2t/V1!2#d~v2v1!

1Q~4t2uv2Uu!
2t2A12@~v2U !/4t#2

V1~v2v1! J .

~10!

Here, Q(x) is the Heaviside step function. Apart from th
two d peaks corresponding to the excitons, there is a parti
12511
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hole continuum foruv2Uu<4t. Near the lower~upper!
boundary, the optical conductivity shows a characteris
square-root increase~decrease!. The only exception is the
case ofV15Vc where the optical conductivitydivergesat the
threshold,

s1~v!}
1

Av2vph

for v2vph→01 ~V152t !.

~11!

The predictions of this strong-coupling analysis are co
firmed by our numerical results. Note thats1(v);1/U so
that it is more convenient in DDMRG to calculate direct
the imaginary part of the current-current correlation functio
i.e., Im$x(v)%5vs1(v). In analogy to Eq.~4!, a broaden-
ing h is introduced in the DDMRG procedure for th
current-current correlation function,

Im$xh;L~v!%5
1

L (
n

hu^0u ̂un&u2

@v2~En2E0!#21h2
. ~12!

For h→0, this expression reduces to Im$x(v)%, and we ana-
lyze the finite-size effects as discussed above fors1(v).

Figure 1 shows Im$xh,L(v)% for L5128 andh50.1t ob-
tained in the large-U limit of the extended Hubbard mode
with V155t and V250. We compare the DDMRG data t
the analytical formula~10!, convolved with a Lorentzian of
width h. The DDMRG data and the large-U result are in
very good agreement when we chooseg052.65,gp50.08,
as discussed above. These values are found to be essen
independent ofV1. We previously obtained a similarly goo
agreement for the case of the large-U Hubbard model (V1
5V250).15

For V155t,V250, most of the spectral weight is carrie
by the exciton atv2U5v12U525.8t, as one also ob-
serves for typical band insulators. Therefore we use a lo
rithmic scale to make visible the contributions of the oth
exciton and the particle-hole continuum. The use of a lo
rithmic scale also reveals deviations around the second e
ton (v2U'v22U525t) and close to the upper ban
edge (v2U'14t), which are associated with difficulties i

FIG. 1. Current-current correlation function Im$x(v)% for U/t
→`, V155t, V250, andh50.1t. The solid line is the DDMRG
result Im$xh;L(v)% for L5128. The dotted line is Eq.~10! con-
volved with a Lorentzian of widthh. Note the logarithmic scale o
the ordinate. Inset: same results on a linear scale.
9-4
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the numerical determination of small contributions to the o
tical spectrum, and remaining finite-size and boundary
fects. In fact, these deviations are less than 1% of the t
spectral weight, and are completely irrelevant for practic
i.e., experimental purposes. On a linear scale they are
visible as seen in the inset of Fig. 1.

The case of 0,V2,V1 can be treated analogously an
does not yield any new physical aspects. It is known t
increasing the interaction range simply reduces the crit
coupling below which no exciton appears in the gap a
increases the number of visible excitons in the spectrum24

B. Regime of intermediate Mott gaps

In the simple Hubbard model (V15V250) we previously
found that the optical conductivity evolved smoothly fro
the regime of small Mott gaps (U!t) to the limit of large
Mott gaps (U@t).15 Optical excitations can simply be inte
preted as a particle-hole pair, i.e., a pair of spinless quasi
ticles with opposite charges, corresponding to the hole
double occupancy for large Mott gaps and to the hol
antiholon pair in the field-theory limit of small Mott gap
~see Sec. IV!.

The optical spectrum of the extended Hubbard model~1!
shows more diversity in the presence of a finite inters
Coulomb repulsion (V1.V2>0). Even within the Mott in-
sulator phase one can observe ‘‘exotic’’ optical excitatio
such as charge-density-wave droplets or excitonic string18

In this study we restrict ourselves to the Mott-insulator
gime of Eq.~1! where the dominant optical excitations ca
be described as a~bound or unbound! particle-hole pair and
the Coulomb interaction is strong enough to generate at l
one bound pair~exciton!.

Varying the model parametersU/t, V1 /t, and V2 /t we
have investigated the optical excitations of systems wit
Mott gap ranging from 10 to 0.1 times the bandwidth 4t. It is
important to note that the Mott gapEc increases withU and
V2 but decreases with increasingV1.11,18,25As in the large
Mott-gap limit, we have found that the intersite Coulom
interaction must exceed a critical value before a discrete
sorption peak appears at an energyvex below the optical gap
Ec . For V250 the critical value isV1'2t for all U/t in
agreement with our analytical strong-coupling analysis an
previous work.26 The critical value ofV1 /t becomes smalle
as the next-nearest-neighbor repulsionV2 increases.

We have analyzed the nature of the excited states as
ated with the discrete absorption peak using various m
surements and correlation functions. For instance, in S
V B we present a method to determine the size of a parti
hole pair. This analysis confirms that this excited state
clearly a bound particle-hole pair~exciton!. The exciton
binding energiesdE5Ec2vex observed in our calculation
range fromdE50.03t to dE512t and the exciton sizes mea
sured with the procedure of Sec. V B vary from 20a0 down
to slightly more than one lattice spacing.

It is interesting to note that we have never found mo
than one exciton in the regime of intermediate Mott ga
Our numerical results~DDMRG and symmetrized DMRG!
for finite open chains sometimes yield more than one opt
12511
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excitation with energyvq'vex1c(L)q2,Ec and quasimo-
menta q'p(2l 11)/(L11),l 50,1,2, . . . ,l max!L/2.27 The
first of these states (l 50) has always much more spectr
weight than the other ones and corresponds to an exc
with momentumq50 in an infinite chain. Scattering by th
chain ends is responsible for the small but finite opti
weight of the other states (l>1), corresponding to exciton
with momentumqÞ0 in an infinite system. Thus, with peri
odic boundary conditions or in an infinite system, only o
exciton contributes to the optical conductivitys1(v) of the
Hamiltonian~1! in the regime of intermediate Mott gaps.

In contrast to this, both the strong-coupling analysis a
field theory allow for more than one exciton in the optic
spectrum of a Mott insulator in the thermodynamic limit
the Coulomb repulsion becomes strong enough. For
model ~1! an increase ofV1 and V2 does not lead to the
formation of a second Mott-Hubbard exciton. Instead,
nature of the lowest optical excitations changes to char
density-wave droplets or excitonic strings, or the grou
state develops long-range order. Both the strong-coup
analysis and the field-theory approach assume a M
insulator ground state and particle-hole pairs as optical e
tations, and thus do not reproduce this instability towa
charge-density ordering. It is conceivable, though, that
inclusion of Coulomb terms beyond next-nearest neighb
in the lattice model~1! favors the appearance of more exc
tons in the optical conductivity of a Mott insulator.

Besides the single-exciton peak we have always fou
that s1(v) shows an absorption band starting at the cha
gapEc . Within the resolution of our method the optical spe
trum does not display any other feature. The investigation
the excited states in the continuum aboveEc is much more
demanding than the analysis of the isolated exciton pe
Whenever this has been feasible, we have found that
excited states contributing to the absorption continuum
be described as unbound particle-hole pairs~see Sec. V B!.

As a typical example, the optical conductivity of Eq.~1!
for U58t, V154t, andV252t is shown in Fig. 2. A peak a
the exciton energyvex53.34t is the dominant feature of the
spectrum while a very weak band is visible forv>Ec
54.05t. No gap is visible betweenvex andEc because of the
broadening of the strong exciton peak. In the inset of Fig

FIG. 2. Optical conductivitysh;L(v) for U58t, V154t, and
V252t, calculated with DDMRG on a 128-site lattice (h50.1t).
The inset shows an expanded view ofsh;L(v) ~dotted line! for
3.5<v/t<6. The exciton~dashed! and continuum~solid! contribu-
tions tosh;L(v) are also shown.
9-5



th
Th

ar
l

n
u-
e
p

id
be
ve
su

n-

w

e

e
ity
u-

-
om
on

b
c
2

on

is

q.
tor.

on-

-
the
rge

c.

are
lue
,
s,
e
d

e
s

the

th
ap.

F. H. L. ESSLER, F. GEBHARD, AND E. JECKELMANN PHYSICAL REVIEW B64 125119
one can see the weak particle-hole continuum part of
spectrum separated from the strong exciton contribution.
onset of the absorption band is clearly visible atv'Ec
54.05t. The small irregular fluctuations seen in the inset
numerical errors~truncation errors! made visible by the smal
scale used.

In summary, our numerical results show that there is
qualitative change in the optical conductivity of a Mott ins
lator with excitons when one goes from the limit of larg
Mott gaps down to the regime of intermediate Mott ga
with Ec*0.4t. As in the Hubbard model,15 the simple picture
of the strong-coupling analysis remains qualitatively val
We expect that a truly long-range Coulomb interaction
tween electrons will not lead to any significant qualitati
changes of this picture, as suggested by the available re
in the strong-coupling limit,24 in the field-theory regime~see
the next sections!, and in related models including electro
lattice coupling.13

IV. FIELD THEORY

In order to address the regime of small Mott gaps,
study the extended Hubbard model~1! in the field-theoretical
limit. This limit can be constructed directly from the lattic
model in the weak-coupling regimeU,V1 ,V2!t. The low-
energy physics of the noninteracting model is simply d
scribed in terms of a massless Dirac fermion with veloc
vF52ta0. The interactions introduce a four-fermion co
pling. The resulting effective theory is known as theU(1)
Thirring model and can be represented as28,29

H5E dx@Hc1Hs#,

Hs5(
a

H 2pvs

3
@ :JaJa:1: J̄aJ̄a:#22g'JaJ̄aJ ,

Hc5(
a

2pvc

3
@ :I aI a:1: Ī a Ī a:#1@g'~ I xĪ x1I yĪ y!1giI

zĪ z#,

~13!

whereJa,J̄a (I a, Ī a) are left and right movingSU(2) spin
currents@SU(2) pseudospin currents# and

g'52~U22@V12V2# !a0 , gi52~U16V112V2!a0 ,

vc5vF1
2~U/41V11V2!a0

p
, vs5vF2

Ua0

2p
. ~14!

The Hamiltonian~13! explicitly exhibits spin-charge separa
tion: Hc,s describe the charge and spin degrees of freed
respectively, which are independent of one another. As l
as g'.0, the spin sector remains gapless and can
bosonized in terms of a Gaussian model. The charge se
can be bosonized as well, as is for example shown in Ref.
The result is a sine-Gordon model~SGM!

Hc5
1

16p
@~] tfc!

21~vc]xfc!
2#12mc cosbfc , ~15!
12511
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wheremc andb are functions ofU,V1 ,V2. In order to utilize
results obtained from the integrability of the sine-Gord
model we use a flat renormalization scheme, in whichb is a
constant,

b25
4pvF

4pvF1Agi
22g'

2
. ~16!

The pure Hubbard model corresponds to the limitb→1 and
the effect ofV1 andV2 is to decrease the value ofb.

In the field-theory limit the electrical current operator
found to be

J~ t,x!5AA8] tfc , ~17!

whereA8.0 is a nonuniversal constant. As seen from E
~17!, the current operator does not couple to the spin sec
This shows that spinons do not contribute to the optical c
ductivity. Therefore we ignore the spin partHs of the Hamil-
tonian from now on.

The calculation of the optical conductivity in the field
theory limit has thus been reduced to the evaluation of
retarded current-current correlation function in the cha
sector,

xFT~v!5
i

La0
E

0

`

dt exp~ ivt !E
2`

`

dx^@J~x,t !,J~0,0!#&.

~18!

We turn to the calculation of this correlation function in Se
IV A.

For the sine-Gordon model, many exact results
available.30 The spectrum of the SGM depends on the va
of the coupling constantb. In the so-called repulsive regime
1/A2,b,1, there are only two elementary excitation
called soliton and antisoliton. From the point of view of th
underlying lattice model~1! these correspond to holon an
antiholon ~spinless excitations of opposite charges!. These
have a massive relativistic dispersion,

E~P!5AM21vc
2P2, ~19!

where M is the single-particle gap which is related to th
optical gap byD52M . At weak coupling the gap scales a

M'
8t

A2p
Ag~11x!S 12x

11xD (gx12)/4gx

, ~20!

where we have fixed the constant factor by comparing to
exact result for the Hubbard model, and where

x5F12S U22V112V2

U16V212V2
D 2G1/2

,

g5~U16V112V2!/2pt. ~21!

We note that the gap vanishes on the critical surfaceU
22V112V250 separating the Mott-insulating phase wi
gapless spin excitations from another phase with a spin g
9-6
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In the regime 0,b,1/A2, soliton and antisoliton attrac
and can form bound states. In the SGM these are usu
known as ‘‘breathers’’ and correspond to excitons in our l
tice model. There are

Nex5F12b2

b2 G ~22!

different types of excitons, where@x# in Eq. ~22! denotes the
integer part ofx. The exciton gaps are given by

Mn52M sin~npj/2!, n51, . . . ,Nex, ~23!

where

j5
b2

12b2
. ~24!

Therefore, the single-particle gapM and the couplingb fully
characterize the spectrum of the SGM.

One knows that the field-theory approximation to the l
tice problem is valid in the limitU,V1 ,V2!t where the
single-particle gap is much smaller than the bandwidth.
the Hubbard model (V15V250) we have found15 that field
theory gives surprisingly good results for the optical cond
tivity even for intermediate single-particle gaps of magnitu
M'0.3t. The same holds true for the Mott-insulating pha
of the extended Hubbard model withV1.0,V250.18,31 As
we shall show in Sec. IV B, field theory remains applicab
even in the presence of excitons.

In the framework of the field-theory approximation to th
lattice problem we can determine the value ofb only in the
limit U,V1 ,V2!t. In fact, for the Hubbard modelb51 is
fixed by theSO(4) symmetry.32 As seen from Eq.~16!, the
effect of a smallV1 ,V2 is to decrease the value ofb. One
may therefore hope that by carefully tuningU, V1, andV2
one may stay in a regime with a ‘‘small’’ single-particle ga
i.e., close to the critical surfaceU22V112V250, but with
a sufficiently smallb for excitons to exist. We have foun
numerically that it is indeed possible to reach regions of
parameter space where field theory is valid andb2 is as
small as 0.36 close to a critical surfaceU22V112V2'0
which separates the Mott-insulating phase from other pha
with long-range order. The determination of the fiel
theoretical parameterb2 as a function of the lattice-mode
parameters using DMRG results will be discussed in S
IV B.

A. Optical conductivity in the sine-Gordon model

Our task is now to calculate the Fourier transform of t
retarded, dynamical current-current correlation function~18!
in the sine-Gordon model. This is done by going to the sp
tral representation and then utilizing the integrability of t
SGM to determine exactly the matrix elements of the curr
operator between the ground state and various excited st
This method is known as the form-factor bootstr
approach33,34 and has recently been applied to calculate
optical conductivity in the repulsive regime of the SGM.15,31

Here we review briefly the relevant steps and refer to Ref
12511
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for a more detailed exposition. In order to utilize the spect
representation we need to specify a basis of eigenstates o
Hamiltonian~15!. Such a basis is given by scattering sta
of excitons, holons, and antiholons. In order to distingu
these we introduce labelse1 ,e2 , . . . ,eNex

,h,h̄. As usual for
particles with relativistic dispersion, it is useful to introduc
a rapidity variableu to parametrize energy and momentum

Eh~u!5M coshu, Ph~u!5~M /vc!sinhu, ~25a!

Eh̄~u!5M coshu, Ph̄~u!5~M /vc!sinhu, ~25b!

Een
~u!5Mn coshu, Pen

~u!5~Mn /vc!sinhu,
~25c!

where the exciton gapsMn are given by Eq.~23!. Next we
turn to the construction of a basis of scattering states of
lons, antiholons, and excitons. A convenient formalism
this end is obtained by using the Zamolodchikov-Fadde
~ZF! algebra. The ZF algebra can be considered to be
extension of the algebra of creation and annihilation ope
tors for free fermions or bosons to the case of interact
particles with factorizable scattering. The ZF algebra
based on the knowledge of the exact spectrum and scatte
matrix of the model.35 For the SGM the ZF operators~and
their Hermitian conjugates! satisfy the following algebra:

Ze1~u1!Ze2~u2!5S
e

18 ,e
28

e1 ,e2~u12u2!Ze28~u2!Ze18~u1!,

~26a!

Ze1

† ~u1!Ze2

† ~u2!5Ze
28

†
~u2!Ze

18
†

~u1!Se1 ,e2

e18 ,e28~u12u2!,

~26b!

Ze1~u1!Ze2

† ~u2!5Ze
28

†
~u2!S

e2 ,e
18

e28 ,e1~u22u1!Ze18~u1!

1~2p!de2

e1d~u12u2!. ~26c!

Here S
e

18 ,e
28

e1 ,e2(u) are the known~factorizable! two-particle

scattering matrices35 and« j5h,h̄,e1 , . . . ,e[1/j] .
Using the ZF operators a Fock space of states can

constructed as follows. The vacuum is defined by

Z« i
~u!u0&50. ~27!

Multiparticle states are then obtained by acting with strin
of creation operatorsZe

†(u) on the vacuum

uun•••u1&en•••e1
5Zen

† ~un!•••Ze1

† ~u1!u0&. ~28!

In terms of this basis the resolution of the identity is given
9-7
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Inserting Eq.~29! between the current operators in Eq.~18!,
we obtain the following spectral representation of the cor
lation function:

^J~x,t !J~0,0!&5 (
n51

`

(
e i

E du1•••dun

~2p!nn!

3expS i (
j 51

n

Pjx2Ejt D
3u^0uJ~0,0!uun•••u1&en•••e1

u2, ~30!
ar

to
de
fe

m

te
p

b

12511
-
wherePj andEj are given by

Pj5
M e j

vc
sinhu j , Ej5M e j

coshu j , ~31!

and

f J~u1•••un!e1•••en
[^0uJ~0,0!uun•••u1&en•••e1

~32!

are the form factors. Our conventions in Eq.~31! are such
that Mh5Mh̄5M and Men

5Mn . After carrying out the
double Fourier transform we arrive at
xFT~v!5
22p

La0
(
n51

`

(
e i

E du1•••dun

~2p!nn!
u f J~u1•••un!e1 . . . en

u2F dS (
j

M e j
sinhu j /vcD

v2(
j

M e j
coshu j1 ih

2

dS (
j

M e j
sinhu j /vcD

v1(
j

M e j
coshu j1 ih

G .

~33!
tor
rm

st

on
-

en
This then yields the following representation for the real p
of the optical conductivity (v.0):

s1
FT~v!5

2p2

La0v (
n51

`

(
e i

E du1•••dun

~2p!nn!

3u f J~u1•••un!e1 . . . en
u2

3dS (
k

M ek

vc
sinhukD dS v2(

k
M ek

coshukD .

~34!

The missing ingredients in Eq.~34! are the form factors. In
Refs. 33 and 34 integral representations for the form fac
of the current operator in the sine-Gordon model were
rived. Using these results we can determine the first
terms of the expansion~34!. In particular, the form factors
involving excitons are determined via the bootstrap axio
for soliton-antisoliton form factors.33

From Eq.~34! it is easy to see for any given frequencyv
only a finite number of intermediate states will contribu
the delta function forces the sum of single-particle ga
( jM e j

to be less thanv. Expansions of the form~34! are
usually found to exhibit a rapid convergence, which can
understood in terms of phase-space arguments.36,37Therefore
we expect that summing the first few terms in Eq.~34! will
give us good results over a large frequency range.
t

rs
-

w

s

:
s

e

Using the transformation property of the current opera
under charge conjugation one finds that many of the fo
factors in Eq.~33! actually vanish. In particular, only the
‘‘odd’’ excitons e1 ,e3 , . . . ~assuming they exist, i.e.,b is
sufficiently small! couple to the current operator. The fir
few nonvanishing terms of the spectral representation~34!
are

s1
FT~v!

A
5 (

n51

[(Nex11)/2]

se2n21
~v!1shh̄~v!1se1e2

~v!1••• .

~35!

HereA5A8vc /La0 andsen
(v), shh̄(v), andse1e2

(v) are
the contributions of the odd excitons, the holon-antihol
continuum, and thee1e2 exciton-exciton continuum, respec
tively. The latter of course exists only ifNex>2. We find

se2n21
~v!5

p

M2n21
2

f 2n21d~v2M2n21!, ~36a!

f m54M2j2 sin~mpj! )
n51

m21

tan2~pnj/2!

3expS 22E
0

`dt

t

sinh@ t~12j!/2#

sinh~ tj/2!cosh~ t/2!

sinh2~mtj/2!

sinht D .

~36b!
The holon-antiholon contribution has previously be
determined31 and is given by
9-8
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shh̄~v!5
4Av224M2Q~v22M !

v2@cos~p/j!1cosh~u/j!#
expS E

0

`dt

t

sinh@ t~12j!/2#@12cos~ tu/p!cosht#

sinh~ tj/2!cosh~ t/2!sinht D , ~37!

whereu52arccosh(v/2M ). Finally, we quote the result for thee1e2 exciton-exciton continuum,

se1e2
~v!5

2vu f 12~u12!u2

A~v22M1
22M2

2!22~2M1M2!2
, ~38!

where

u f 12~u12!u25l6
utanpju

2

sinh2u121sin2~pj/2!

sinh2u121sin2~3pj/2!

3expS 28E
0

`dt

t

sinht sinh~ tj!sinh@ t~11j!#cosh~2tj!

sinh2~2t !
D

3expS 24E
0

`dt

t

sinh~2tj!sinh@ t~11j!#cos~2tu12/j!

cosht sinh~2t ! D
3$4 cos~pj/2!@coshu121cos~pj/2!#%22S pj

b sin~pj! D
2

, ~39!
n

e

e
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and

u125arccoshS v22M1
22M2

2

2M1M2
D ,

l52 cosS pj

2 DA2 sinS pj

2 DexpS 2E
0

pj dt

2p

t

sint D .

~40!

For 1>b2.1/3 the contributions of the first odd excito
~36! and of the holon-antiholon continuum~37! dominate the
field-theoretical optical conductivity~35! ~at least in the low-
frequency regime! and other contributions vanish or can b
neglected. The optical conductivity can be written as

s1
FT~v!5

A

D
hbS v

D D , ~41!

wherehb(x) is a universal function depending only onb2.
Therefore, only the parameterb2 determines the shape of th
optical spectrum. The parametersD and A/D just set the
energy and conductivity scales, respectively.

For 1>b2>1/2 the optical spectrum contains a sing
band, while for 1/2.b2.1/3 it contains one band and on
exciton peak in the optical gap at the energyvex5M1. The
optical weight is progressively transfered from the band
the single exciton asb2 decreases down to 1/3. The absor
tion band increases smoothly at the thresholdD, as

s1
FT~v!}Av2D for v→D1, ~42!

for all values of b2 but b251/2, when the exciton pea
merges with the band. In this cases1

FT(v) shows a square
root divergence at the absorption threshold,
12511
o
-

s1
FT~v!}

1

Av2D
for v→D1 ~b251/2!. ~43!

The behavior of the field-theoretical conductivity is th
qualitatively similar to that of the lattice model in the larg
Mott-gap limit ~10!. For V250 ~Ref. 18! it has also been
found for intermediate Mott gaps thats1(v) diverges as a
square root at the absorption band thresholdEc for the criti-
cal couplingV5Vc below which no exciton appears in th
optical gap. ForV1ÞVc , s1(v) increases smoothly at th
absorption band threshold. This generic behavior ofs1(v)
illustrates once more the absence of significant qualita
changes in the particle-hole continuum and single-exci
spectrum of Eq.~1! as one goes from the large to the sm
Mott-gap limit. Forb2<1/3, the field-theoretical optical con
ductivity shows more features, but it seems that this reg
cannot be reached in the lattice model~1! and thus we shall
not discuss it further.

B. Application to the lattice model

The field-theory optical conductivitys1
FT(v), @Eq. ~35!#,

depends on three parameters:b2, the gapD52M , and the
normalization A. To compare the field-theory prediction
with our numerical results for the lattice model~1! one needs
to determine the field-theory parameters corresponding
specific values of the model parametersU, V1, andV2. For-
tunately, if there is exactly one exciton in the spectru
(1/2.b2.1/3), this can be done using standard DMR
techniques.

The first step is the calculation of the gap parameterD.
The gapD obviously corresponds to the charge gap~6! ex-
trapolated to the infinite-system limit,D5 limL→`Ec(L). The
9-9
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second step is determiningb2. The exciton energyvex(L) of
the lattice system can be calculated using the symmetr
DMRG method. The extrapolation to infinite-system si
gives us the exciton gap of field theory, Eq.~23!, M1
5 limL→`vex(L). The parameterb2 is then fixed by the ratio
of M1 andD52M through Eqs.~23! and ~24!.

The final step is the calculation of the normalizationA.
EvaluatingA accurately turns out to be the most difficult ta
and we have tried two different approaches. In the first o
we calculate the excitonic spectral weight in the latt
model using the symmetrized DMRG technique and extra
late to an infinite system size. This yields the normalizat
A by comparison with the field-theory prediction, Eqs.~35!
and~36!. This method is simple and exact on the field-theo
side but difficult to carry out numerically because of sign
cant truncation errors and complicated finite-size effects.

In the second approach we use the sum rules~5!. We
numerically integrate the contributions of the exciton and
holon-antiholon continuum to the optical conductivity~35!
for a fixed value ofb2. The result has a trivial dependence
A andD because of Eq.~41!. This gives us the left-hand sid
of Eqs.~5b! or ~5c! assuming that the neglected contributio
to s1

FT(v) are insignificant and that most of the optical spe
trum weight is concentrated at low energy where field the
is expected to describe the lattice-model properties ac
rately. The right-hand side of Eqs.~5b! and ~5c! can be cal-
culated for the lattice model with DMRG and extrapolated
the infinite-system limit. Comparison of both sides of t
equations gives the value of the normalizationA.

We prefer the second approach because it is simpler
more accurate than the first one as far as the numerical
culations are concerned. It can also be used when there
exciton (1>b2>1/2). Unfortunately, the second approa
works only if the exciton~36! and holon-antiholon con
tinuum ~37! reproduce the lattice models1(v) very accu-
rately, i.e., if

dSn5E
0

`

dvv2nuAse1
~v!1Ashh̄~v!2s1~v!u ~44!

is very small compared to the left-hand side of Eq.~5b! for
n50 or the left-hand side of Eq.~5c! for n51.

The validity of the field-theory approximation to th
model ~1! is not necessarily restricted to the limitU,V1 ,V2
!t but rather to the regions where the single-particle g
M5D/25Ec/2 is small compared to the bandwidth 4t. In the
Hubbard model15 (V15V250) we have found that field
theory describes the optical conductivity accurately even
U53t, corresponding toD'0.6t. In the caseV1.0,V250,
field theory is valid not only in the weak-coupling lim
(U,V1!t) but also in the vicinity of a critical lineU22V1
'0 separating the Mott-insulating phase from phases w
long-range order.18 The Mott gap vanishes or becomes e
tremely small on this critical line at least up toU54t. The
holon-antiholon continuum contribution~37! to the optical
conductivity agrees with DDMRG results for gapsD'0.6t
andb2 ranging from 1 to 1/2.

In the general case (U.V1.V2.0), there is also a criti-
cal surfaceU22V112V2'0 separating the Mott-insulatin
12511
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phase from other phases~in particular, a charge-density-wav
phase!, where the Mott gap vanishes or becomes very sm
even for relatively strong Coulomb interaction~at least up to
U56t). A careful tuning of the parametersU, V1, and V2
allows one to reach regions of the parameter space, w
field theory appears to remain valid andb2 decreases down
to 0.36~for instance,U56t, V154.5t, andV252t). We can
thus compare our numerical results with the field-theoret
predictions for the optical conductivity in the parameter
gime with a single exciton. Again, we have found a go
agreement between DDMRG and field theory for gaps
large asD50.6t.

In Fig. 3 we compare the optical conductivity from fie
theory and DDMRG forU55.2t, V153.7t, and V251.3t.
Only the low-frequency (v<2t) part of the spectrum is
shown as there is almost no spectral weight at higher
quency. The numerical results have been calculated on a
site chain with a resolution ofh50.1t. The field-theory re-
sult, Eqs.~35!–~37!, has been convolved with a Lorentzia
of width h50.1t to allow for a direct comparison with
DDMRG results. The field-theory parametersD50.625t,
b250.40, andA51.12e2t have been evaluated for an infi
nite chain as discussed above. The gap between the ex
peak at M150.544t and the threshold of a weak holon
antiholon continuum atD is not visible in Fig. 3 because it is
smaller than the finite resolution introduced by the broad
ing.

In Fig. 3 one sees that the agreement between nume
and field-theory results is good. The visible discrepancies
well-understood finite-size effects: the excitation energies
Eq. ~1!, in particular the exciton energy, decreases as
system size increases, the total spectral weight is slig
smaller in the finite chain as shown by corrections to
kinetic energy@right-hand side of Eq.~5b!# of the order 1/L,
and the exciton peak is broadened and flattened becaus
the scattering by chain ends. If we choose the field-the
parametersD andA ~the energy and conductivity scales! to
fit the finite-system DDMRG conductivity, differences a
most completely vanish forD50.669t and A51.02e2t, as
seen in the inset of Fig. 3.

FIG. 3. Optical conductivitysh;L(v) ~solid! calculated with
DDMRG for U55.2t, V153.7t, andV251.3t on a 128-site lattice
(h50.1t). Field-theoretical result s1

FT(v) ~dashed! for D
50.625t, b250.40, andA51.12e2t, convolved with a Lorentzian
of width h50.1t. Inset: same results withD50.669t and A
51.02e2t.
9-10
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EXCITONS IN ONE-DIMENSIONAL MOTT INSULATORS PHYSICAL REVIEW B64 125119
As mentioned in Sec. III B we have never observed m
than one exciton below the optical absorption continuum
the regime of intermediate Mott gaps, down toEc50.4t.
Therefore, we cannot evaluate the field-theory predictions
the additional excitons and the exciton-exciton continuum
the regimeb2<1/3. It remains conceivable, however, th
smaller values ofb2 can be reached in the model~1! in the
limit Ec5D!t.

V. EXCITON PROPERTIES

In Wannier-Mott theory1 exciton properties, such as siz
binding energy, effective mass, or optical weight, are rela
by simple equations and exhibit a monotonic behavior a
function of the Coulomb repulsion strength. This simplic
is due to a drastic assumption of this theory: optical exc
tions are represented by an electron~in the conduction band!
and a hole~in the valence band!, which are completely inde
pendent from the system’s other degrees of freedom.
interaction with these degrees of freedom is taken into
count only through renormalized parameters such as ef
tive masses for the electron and hole, and an effective b
ground dielectric constant for the Coulomb interacti
between electron and hole.

In a Mott insulator the exciton properties show a mo
complex behavior. Although a Mott-Hubbard exciton c
also be described as a bound pair of excitations with oppo
charges, the Coulomb interaction at the same time de
mines the size of the Mott gap, the exciton properties,
the coupling of the exciton to the other electrons in the s
tem. Therefore, an increase of the Coulomb interact
strength does not simply bind the exciton more tightly, b
also renormalizes the gap and couples the particle-hole e
tation more strongly to the other electrons. This leads t
nonmonotonic behavior of Mott-Hubbard exciton propert
as a function of the Coulomb repulsion strength, and eve
an instability toward the formation of excitonic strings
charge-density-wave droplets.18

In the following two subsections we shall discuss t
binding energy and size of a Mott-Hubbard exciton us
analytical results in the limits of large and small Mott gap
and numerical results in the intermediate regime.

A. Binding energy

The exciton binding energy is usually defined as the
ergy difference between the excitonvex and the band edge o
the particle-hole continuumEc

dE5Ec2vex. ~45!

In Wannier-Mott theory this quantity is the energy requir
to break an exciton into an independent hole and electro

In a Mott insulator this is not always warranted asdE
does not necessarily correspond to the minimal energy
quired to break an exciton. For instance, as seen in Eq.~9b!,
there is an excitonabove the band edge in the strong
coupling limit U@4t.V1 (V250). Except for this strong-
coupling limit, however, we have only found excitons wi
an energyvex lower than the absorption band edgeEc in our
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study of the model~1!. Therefore, we assume thatdE is
indeed the binding energy of the single Mott-Hubbard ex
ton observed in the spectrum of the Mott-insulating phase
Eq. ~1!.

In the limit of a large Mott gap (U@t,V1 ,V2) dE5V1
14t2/V124t for V1>2t andV250, see Eq.~9a!. The bind-
ing energy increases monotonically withV1 but, clearly, it is
not a good measure for the strength of the Coulomb inte
tion as it is independent ofU and vanishes even whenV1 is
still quite strong (V152t). For intermediate Mott gaps (0.
<Ec/4t<10) we have found that the binding energies~rang-
ing from 0.03t to 12t) do not depend in a simple way on th
Coulomb interaction strength. In particular,dE has a non-
monotonic behavior as illustrated in Fig. 4. The binding e
ergydE first increases withV1 as long as the gapEc remains
essentially unchanged, thendE and Ec decrease rapidly as
V1 approaches the critical surfaceU22V112V2'0. It is
likely that the same behavior also holds for small Mott ga
(Ec5D!t), where field theory gives dE5D@1
2sin(pj/2)#,j<1, for the first exciton, see Eq.~23!. If we
take the weak-coupling result~16! as an indication of the
qualitative dependence ofb on V1, then an increase ofV1
leads to smallerj, Eq. ~24!, and thus to a larger binding
energy. On the other hand, an increase ofV1 can also lead to
a sharpdecreaseof the gapD close to the critical surface
U22V112V2'0, if we again take the weak-coupling re
sults ~20! and ~21! to be indicative of the qualitative depen
dence ofD on V1. Depending on the other parameter valu
one of these two effects dominates and leads to an incr
or decrease of the binding energy whenV1 becomes larger.

In summary, our analysis shows that the binding energy
a Mott-Hubbard exciton does not provide a good estimate
the Coulomb interaction strength in a Mott insulator. O
course, a large gapEc or binding energydE requires a strong
Coulomb interaction. In general, however, a smallEc or dE
arenot an indication for a weak electron-electron interactio
In contrast to the views of Ref. 38, even a ‘‘small’’ excito
binding energy, of the order of 0.1 eV in somep-conjugated
systems, doesnot imply that electron-electron interaction
are small in these materials.

B. Size

In the limit of large Mott gaps (U@t,V1 ,V2) an optical
excitation is simply made of a hole and a double occupa

FIG. 4. Charge gapEc ~circles, right axis! and exciton binding
energydE ~squares, left axis! as a function ofV1 for U56t and
V252t.
9-11
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in a background of singly occupied sites~Sec. III A!. The
probability of finding the hole and double occupancy a
distancex in an optical excitation is given by the correlatio
function

Chd~x!5^n̂l ,↑n̂l ,↓~12n̂l 1x,↑!~12n̂l 1x,↓!&, ~46!

where^•••& means the expectation value in the correspo
ing excitedN-electron eigenstate. The average distance
tween hole and double occupancy is

zhd5

(
x

Chd~x!uxu

(
x

Chd~x!

. ~47!

If the hole and double occupancy are not bound, this quan
diverges as the system sizeL goes to infinity. For an exciton
zhd remains finite asL→` and can be interpreted as th
exciton size. ForV1>2t andV250 an analytical calculation
gives the exact result

Chd~xÞ0!}exp~2kuxu!, ~48!

with k52 ln(V1/2t) for the lowest exciton. The exciton siz
is then

zhd5
1

12e2k
~49a!

5
1

12~2t/V1!2
. ~49b!

zhd diverges asV1 approaches the critical value (Vc52t),
below which the pair is not bound, and tends to unity
strong coupling,V1/2t→`. Using a density-density correla
tion function9,10 yields equivalent results.

Unfortunately, the correlation function for hole an
double occupancy and the density-density correlation fu
tions yield unclear results in the regime of intermediate M
gaps because the ground state already contains a finite
sity of holes and double occupancies whenEc /t is finite. The
function ~46!, for instance, tends to a finite valued2 as x
→`, which is determined by the density of doubly occupi
sitesd5^n̂l ,↑n̂l ,↓&. These quantum charge fluctuations hi
the weak exciton contribution to Eq.~46!.

In Fig. 5 we show the correlation functionChd(x) calcu-
lated with DMRG for the lowest optically excited state in th
model~1! with U540t, V152.5t, andV250. This system is
in the regime of large Mott gaps withEc'36.14t, and is well
described by our strong-coupling analysis, which predicts
exciton with a sizezhd'2.78 as the lowest optically excite
state. However, one clearly sees in Fig. 5 thatChd(x) re-
mains finite for largex. This wrongly suggests that the opt
cally generated hole and double occupancy are not boun
this excited state. Similar problems arise with a dens
density correlation function. Taking the difference betwe
the correlation functions for an excited state and for
ground state, as in Ref. 10, does not provide better resu
12511
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A suitable quantity for our analysis is the correlation fun
tion for electron-hole excitations

Ceh~x!5u^nuP̂l ,l 1x1~21! uxuP̂l 1x,l u0&u2, ~50!

whereu0& is the ground state,un& is the excited state unde
investigation, and

P̂i , j5(
s

ĉi ,s
1 ĉ j ,s ~51!

creates an electron at sitei and a hole at sitej. Obviously,
Ceh(x) evaluates the importance of an electron-hole exc
tion with distancex in the excited stateun&. This approach
has already been used to study the structure of excited s
in semiempirical calculations for ladder-type poly-p-
phenylene oligomers.39 Here, we have calculated this corre
lation function using the symmetrized DMRG method
analyze the structure of excited states in the lattice model~1!.

An average electron-hole distancezeh can be defined by
substitutingCeh(x) for Chd(x) in Eq. ~47!. We have found
that this method predicts correctly whether a hole-doub
occupancy pair is bound or unbound in the limit of lar
Mott gaps (U@t,V1 ,V2). The advantage of the correlatio
functionCeh(x) overChd(x) ~or a density-density correlation
function! becomes obvious in a system with afinite Mott
gap. In Fig. 5 one sees thatCeh(x) decreases exponentiall
and thus allows us to identify a bound excitation, while t
correlation function between hole and double occupa
Chd(x) is dominated by the finite ground-state density
holes and double occupancies. Therefore, we think that
correlation function for electron-hole excitationsCeh(x) and
the analysis of the average electron-hole distancezeh provide
a reliable approach to distinguish an exciton from an u
bound particle-hole excitation in correlated systems. In a
case, this approach is more reliable than schemes base
the correlation function for hole and double occupancy o
density-density correlation function.

However, this approach cannot be used to determine
size of a bound pair accurately becauseCeh(x) is affected by
very strong short-range fluctuations due to spin correlati
and lattice and chain-end effects.@In our figures we show a

FIG. 5. Correlation functions for a hole and double occupan
Chd(x) ~dashed!, and for an electron-hole excitation,Ceh(x) ~solid!,
calculated for the lowest exciton in a 96-site system withU540t,
V152.5t, andV250. The center of the pair is in the middle of th
lattice.
9-12
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EXCITONS IN ONE-DIMENSIONAL MOTT INSULATORS PHYSICAL REVIEW B64 125119
running average ofCeh(x).# Instead, we evaluate the excito
sizezex as the average electron-hole distance@as in Eq.~47!#
calculated for the exponential function which gives the b
fit to Ceh(x),

Ceh~x!}exp~2luxu!, ~52a!

zex5
1

12exp~2l!
. ~52b!

In the limit of large Mott gaps we have found that this a
proach reproduces the exact result~49b! for the exciton size,
i.e., zex'zhd. Furthermore, applying this analysis to syste
with large but finite gaps yields results in agreement with
strong-coupling analysis. For instance, using the data foU
540t and V152.5t in Fig. 5 our analysis giveszex52.99.
This value agrees within 10% with the analytical result~49b!
for U/t→` and V152.5t,zhd52.78. The difference can b
explained as a correction of the order 4t/U. Therefore, we
think that the analysis~52! of the correlation function for
electron-hole excitations allows one to determine reliably
size of an exciton in a correlated system.

We have calculated the average electron-hole distancezeh
of the lowest optically excited states for various values of
parametersU, V1, andV2 in the regime of intermediate Mot
gaps. The analysis ofzeh yields predictions about the pres
ence of bound particle-hole pairs which always agree w
the predictions based on the analysis of the excited-state
ergies. For an excited state above the absorption band th
old we have found thatzeh diverges with system size, con
firming that this excitation is made of an unbound partic
hole pair. A representative example for the various poss
shapes ofCeh(x) is shown in Fig. 6. For an unbound pair on
clearly sees thatCeh(x) remains finite for very largex of the
order of the system sizeL. Ceh(x) only goes to zero asx
approaches the system size (L5256 in this example! be-
cause of chain-end effects.

In contrast, when an excited state lies below the cha
gapEc , we have found thatzeh remains finite for an infinite
system, confirming that this excited state is made of a bo
particle-hole pair~exciton!. In this case,Ceh(x) decreases

FIG. 6. Correlation functionCeh(x) of the first optically excited
state on a 256-site lattice for two typical cases: an exciton~solid!
for U54t, V152.75t, andV251.5t, and an unbound particle-hol
pair ~dashed! for U53.5t, V151.4t, andV250. The center of the
pair is in the middle of the lattice.
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exponentially and we can use the analysis~52! to determine
the exciton sizezex. A typical example is also shown in Fig
6. We note that both examples in Fig. 6 correspond to s
tems with a gapEc'0.66t, for which the field theory of Sec
IV is still valid and supports our identification of bound an
unbound excitations.

The exciton sizeszex observed range from slightly mor
than one lattice spacinga0 to about 20a0. As in the binding
energydE, the exciton sizezex does not depend in a simpl
way on the Coulomb interaction strength and even display
nonmonotonic behavior as a function ofV1, first decreasing
asV1 increases, then sharply increasing asV1 approaches the
critical regimeU22V112V2'0. As expected,zex becomes
larger and seems to diverge asdE vanishes, while it dimin-
ishes whendE becomes larger if the gapEc is kept~approxi-
mately! constant.

We note that the operator used in Eq.~50! is antisymmet-
ric with respect to charge conjugation, as is the current
erator ~3!. Thus, Ceh(x) is nonzero only for those excite
statesun& ~including the excited states contributing to th
linear optical conductivity! whose parityPc under charge
conjugation is opposite to that of the ground state. Whe
minus sign is substituted for the plus sign in Eq.~50!, Ceh(x)
is nonzero for excited states which have the same parity
der charge conjugation as the ground state. One can
extend this scheme to excited states which contribute to
nonlinear optical properties of a system.

In the field-theory limit, a measure of the size of an ex
ton can be obtained in the following way. For an asympto
cally large separation between particles, the holon-antiho
wave function has the form

Cx1!x2
~x1 ,x2!5exp~ ip1x11 ip2x2!

1SR~p1 ,p2!exp~ ip2x11 ip1x2!,

Cx1@x2
~x1 ,x2!5ST~p1 ,p2!exp~ ip1x11 ip2x2!, ~53!

whereSR,T are two-particleS-matrix elements correspondin
to reflection and transmission, respectively. In terms of
pidity variables defined bypj5M sinhuj /vc , the S matrix
only depends on the differenceu125u12u2 and has poles a

u125 ip~12nj!. ~54!

An exciton state with energyMn coshu and momentum
Mn sinhu/vc is obtained by choosing

p15
M

vc
sinhS u1 i

p2pnj

2 D ,

p25
M

vc
sinhS u2 i

p2pnj

2 D . ~55!

Inserting these values in the wave function yields an ex
nential decay inux22x1u with a correlation length

zn
FT5

vc

M cospnj/2
, ~56a!
9-13
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5
2vc

AD22Mn
2

. ~56b!

We see that this size diverges when we approach from be
the coupling constantj, at which thenth exciton is first
formed. For example, the first exciton splits off the holo
antiholon continuum atj51 and its size displays a squar
root divergence forj→1,

z1
FT}A 1

D2M1
; M1→D2. ~57!

The nonmonotonic behavior of the exciton size as a func
of the Coulomb interaction strength is also observed in
small-gap regime. Equation~56a! shows thatz1

FT will de-
crease if the diminution ofj dominates when the lattice pa
rameterV1 increases, but becomes greater if the increas
the velocityvc and the reduction of the gapD prevail ~see
Sec. IV!.

To compare the field-theoretical predictions with our n
merical method based on the correlation functionCeh(x) we
have numerically calculated the exciton energyvex and size
zex for several values of the parametersU, V1, andV2, cor-
responding to gapsD5Ec of the order of 0.6t. The exciton
sizes range from 10a0 to 20a0. We have found that in al
cases our numerical results fulfill the field-theory relati
~56b! within 15% if we usevc52ta0 as the charge velocity
This good agreement shows that our definitions~52! and~56!
are mutually consistent in the regime of small Mott ga
Moreover, the numerical method yields reasonable estim
of the exciton size even in the regime where such calc
tions become laborious.

VI. CONCLUSIONS

We have investigated excitons in the optical conductiv
spectrum of one-dimensional Mott insulators using two re
able methods, the dynamical density-matrix renormalizat
group and the field-theoretical form-factor bootstrap a
proach, supplemented by two established techniques
strong-coupling analysis and the symmetrized DMRG. Mo
Hubbard excitons can be understood with the simple pic
of a bound pair of spinless bosonic excitations with oppo
charge, in analogy to the bound electron-hole pair
Wannier-Mott exciton theory. However, the properties
Mott-Hubbard excitons are not as simple as those
Wannier-Mott excitons because both the Mott gap and
-
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force between charged excitations originate from the C
lomb repulsion between electrons and are thus interdep
dent. In particular, the smallness of an exciton binding
ergy is no indication for the strength of the Coulom
repulsion in a Mott insulator.

We may compare our results to experiments for poly
acetylene chains in their monomer matrix. For an estimate
the exciton size we use the field-theoretical result~56! which
is fairly independent of the details of the lattice structure a
the range of the electron-electron interaction. We putvc
'vF52ta0 with a p-electron bandwidthW54t'10 eV,40

D5vph52.4 eV, andM15vex51.9 eV from experiment
for 3BCMU-PDA.5 The field-theoretical prediction for the
exciton size,

z1
FT5a0

W

Avph
2 2vex

2
'7a0'9 Å , ~58!

is in fair agreement with the experimental value 12 Å if w
put a051.3 Å for the average bond length between the c
bon atoms on the PDA chain. The difference can be att
uted to the limitations of this simple calculation or the u
certainty of the order of 20% for the experimental values41

We therefore conclude that our many-body approach can
applied successfully to real polymers.

Although the particular model studied here is too simp
to describe conjugated polymers accurately, we believe
the concept of Mott-Hubbard excitons is relevant for the
materials as the electron-electron interaction significan
contributes to the formation of their optical gap. In any ca
this approach is more realistic than the oversimplifi
Wannier-Mott theory and other simple approaches that
glect or minimize the role of electronic correlations in co
jugated polymers. The many-body methods used in this w
can be applied~and in part, have already been applied! to
more realistic models taking into account the polymer g
metrical structure and the electron-phonon interaction,
possibly additional perturbations such as interchain c
plings. We think that the optical properties of conjugat
polymers will be successfully investigated using a combi
tion of these many-body methods.
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