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Kondo effect in a host with fractional statistics: Absence of Kondo logarithms
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By constructing the reflection Dunkl operator we derive several integrable models consisting of a boundary
impurity coupled to an electron gas with interactions of the Calogero-Sutherland type. Some of these models
were constucted previously using Lax-pair operators. The necessary condition of integrability imposes that the
impurity potential has a form similar to that of the bulk interactions. Based on these results we conjecture that
a Kondo impurity coupled to the host with long-range interactions of the 1/r 2 type is also integrable. Using the
asymptotic BetheAnsatzwe show that there are no Kondo logarithms, and depending on the coupling of the
impurity to the host, the impurity spin can either be totally screened, partially screened, or unscreened. On the
other hand, for a 1/sinh2(r) interaction potential a Kondo effect with logarithms is obtained.
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I. INTRODUCTION

In correlated electron metals the screening of the C
lomb potential usually leads to short- or intermediate-ran
interactions. In low-carrier-density systems, e.g., close t
metal-insulator transition and especially in low dimensio
however, the small number of carriers and their reduced
bility do not provide an effective mechanism for screenin
and long-range interactions should be considered. Of spe
interest is a class of integrable one-dimensional~1D! systems
with interactions decreasing with distancer asr 22, sin22(r),
and sinh22(r), frequently referred to as Calogero-Sutherla
models1,2 ~CSM’s! to honor the pioneering work of thes
authors. In this paper we present results for the op
boundary CSM and impurities at the boundary. In particu
we explore the implications of long-range interactions on
Kondo effect.

Besides for low carrier-density systems~e.g., underdoped
cuprates! the CSM is relevant to fractional statistics an
anyons,3 and spin chain~Haldane-Shastry! models.4 Numer-
ous common features between the CSM in 1D and the e
states of the fractional quantum Hall effect~FQHE! are
known.3 For instance, in both cases the ground state i
Jastrow-Slater wave function and the excited states are
structed by multiplying polynomials to the ground-sta
wave function.2,4,5 The CSM and its generalizations6–8 have
been extensively studied with various methods, in particu
with periodic boundary conditions via the asymptotic Bet
ansatz~ABA !.2,9–11

The application of the ABA requires an independent pro
of integrability. If a model is integrable it suffices to kno
the asymptotic behavior of the wave functions at long d
tances, i.e., the phase shifts, which can be obtained with
the full knowledge of the many-particle wave functions. T
ABA only requires the two-particle phase shifts to class
the states and determine the energy eigenvalues. The e
solution is then valid for any finite density of carriers. A
elegant and compact method to construct integrable mo
is via Dunkl operators.12,13

Impurities and boundary effects play a relevant and v
similar role in 1D systems. The strong-coupling fixed po
0163-1829/2001/64~12!/125113~6!/$20.00 64 1251
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of impurity models frequently renormalizes to an equivale
open-boundary impurity problem.14 Boundary potentials and
a Kondo impurity placed at the open end usually lead
similar solutions. This is also to be expected for models w
long-range potentials and could be of relevance for the e
states of FQHE. Open boundaries have been studied p
ously in the context ofBCN-type CSM ~Refs. 15–18! and
the open Haldane-Shastry spin chain.19 The quasiparticles in
the CSM with r 22 and sin22(r) potentials obey ideal frac
tional statistics, so that in this unusual host the Kondo im
rity is expected to behave differently from the usual Kon
effect in simple metals20,21 or in a Luttinger liquid.22,23 We
find that although there is Kondo screening, there are
logarithmic precursors characteristic of asymptotic freedo
On the other hand, for the CSM with sinh22(r) potential
~which has finite range! we obtain screening with Kondo
logarithms.

The structure of the present paper is the following. In S
II we rederive the open-boundary CSM with boundary fie
for all three cases, namely, ther 22, sin22(r), and sinh22(r)
potentials using Dunkl operators. Conjecturing integrabil
we present in Sec. III the exact solution of a magnet
impurity model showing the Kondo effect in a system wi
an ideal fractional statistics. In Sec. IV we extend our stu
to a Kondo model with hyperbolic interaction, for which w
find that the Kondo effect is similar to that of other sho
range interaction models. Finally, concluding remarks follo
in Sec. V.

II. NONMAGNETIC-IMPURITY MODELS

In this section, we study a boundary impurity in th
SU(2)-invariant CSM. Since the interaction in the CSM d
creases with distance as 1/r 2, it is necessary for the integra
bility to consider an electron-impurity interaction propo
tional to 1/r 2. Such an impurity potential induces a natur
open-boundary confinement without further assumption o
strong-coupling fixed point.24 We note that the open
boundary CSM with multicomponents has been studied
the Lax-pair operator procedure and transfer-matrix form
ism by Yamamoto18 and Hikami,17 respectively. Here we re
©2001 The American Physical Society13-1
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derive the models within a slightly different approac
namely, using Dunkl operators. The Dunkl operator for
trigonometric case has previously been obtained by Hik
by means of a transfer-matrix expansion.

For a 1D system ofN electrons and an impurity at th
boundary, we define the Dunkl operator12,13 with boundary
reflection,

D j5pj1 i (
l ,lÞ j

N

~v j l M jl 1 v̄ j l M̄ j l !1 iu jM j , ~1!

wherev j l 5v(xj2xl), v̄ j l 5 v̄(xj1xl), anduj5u(xj ) are yet
undetermined functions, andxj andpj are the coordinate an
momentum of thej th electron. HereM jl and M j are the
exchange and reflection operators,13,19

M jl 5Ml j 5M jl
† , M jl

2 51, M jl Al5AjM jl ,

M jl Ak5AkM jl for kÞ j ,l , ~2!

whereAl is any operator, and

M jxj52xjM j , M j pj52pjM j ,

@Mi ,M j #50, M̄ jl 5M jMlM jl . ~3!

We seek the solutions of@D j ,Dl #c50, wherec is any an-
tisymmetrized wave function, to define a class of mutua
commutative quantitiesI n5( j 51

N (D j )
n. If one of the I n is

chosen as the Hamiltonian, then the model is integrable.
commutator of the Dunkl operators is

@D j ,Dl #5U jl 2 (
k,kÞ j ,l

N

Wjlk , ~4!

where

U jl 5@~uj2ul !v j l 1~uj1ul !v̄ j l #~M jl M j2M jM jl !,

Wjlk5~v j l v jk1v lkv l j 1vk jvkl!~M jl M lk2MlkM jl !

1~v jkv̄ l j 1 v̄ l j v̄ lk2 v̄ lkv jk!~M jkM̄ lk2M̄ lkM jk!

1~ v̄ jkv̄ l j 2v lkv̄ jk1 v̄ l j v lk!~M̄ jkM lk2MlkM̄ jk!

1~ v̄ jkv l j 2 v̄ lkv̄ jk2v l j v̄ lk!~M jl M̄ jk2M̄ jkM jl !.

If we chooseI 2 as the Hamiltonian we have

H5(
j 51

N

pj
21(

j Þ l
~v j l

2 1 v̄ j l
2 1v j l8 M jl 1 v̄ j l8 M̄ jl !

1(
j 51

N

~uj8M j1uj
2!1

1

2 (
j Þ l

U jl 2
1

3 (
j Þ lÞkÞ j

Wjlk ,

~5!

whereuj85] juj , v j l8 5] jv j l , and v̄ j l8 5] j v̄ j l . Hence,I 2 is a
natural choice for the Hamiltonian, because it leads to
usual parabolic kinetic energy.
12511
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One possible solution withU jl 5Wjlk50 is v(x)5gx21

and u(x)5nx21 with g and n being real parameters. Thi
solution yields the integrable Hamiltonian

H5(
j 51

N F pj
21

n~n2M j !

xj
2 G

12(
l , j

Fg~g2M jl !

~xj2xl !
2

1
g~g2M̄ jl !

~xj1xl !
2 G . ~6!

Since the Hamiltonian acts on antisymmetric wave functio
we can replace2M jl by the spin-exchange operatorPjl . In
addition@M j ,H#50, i.e., the Hamiltonian is invariant unde
reflections. Hence,M j can be substituted by its eigenvalu
61 or by s j

z .19 Here M j561 corresponds to a scalar im
purity potential, whileM j5s j

z yields a scalar potential and
boundary magnetic field. In the SU(M ) case, we can replac
M j by anM3M -order matrix in spin space with eigenvalue
61. If all M j take the same eigenvalues (61) or M j5s j

z ,

then2M̄ jl in Eq. ~6! can be replaced byPjl with the identity
s j

zs l
zPjl 5Pjl . Model ~6! then describes an open Caloge

model with boundary impurity~or boundary field!. The (xj
1xl) terms represent a typical feature of the open-bound
system; they describe the interaction between thej th electron
and the mirror image of thel th electron or vice versa. The
inclusion of the image terms is just equivalent to removi
the infinite wall at the boundary.

The Sutherland model and the hyperbolic CSM can
derived similarly. For the Sutherland model, we choosev j l

5g@cot(xj2xl)1i sgn(j 2 l )#, v̄ j l 5g@cot(xj1xl)2i#, and
u(x)5(n2d)(cotx2i)12d@cot(2x)2i#, which is a solution
since M jl and M j commute with the sign function. The
Hamiltonian reads

H52(
j 51

N
]2

]xj
2

12(
l , j

g~g1Pjl !

sin2~xj2xl !
12(

l , j

g~g1 P̄j l !

sin2~xj1xl !

1(
j 51

N
n~n2M j !

sin2xj

1(
j 51

N
d~d2M j !

cos2xj

, ~7!

wheren andd are real constants andP̄j l 5M jMl Pjl . For the
spinless case, the above Hamiltonian corresponds to a C
of the BCN type.15 By rescalingxj→pxj /(2L), it is seen
that the last two terms describe two impurities~boundary
fields! at 0 andL, respectively.

For the hyperbolic CSM, we obtain the following solu
tion, v j l 5g@coth(xj2xl)2sgn(j 2 l )#, v̄ j l 5g@coth(xj1xl)
11#, u(x)5(n2d)(cothx11)12d@coth(2x)11#, and the cor-
responding Hamiltonian is

H52(
j 51

N
]2

]xj
2

12(
l , j

g~g1Pjl !

sinh2~xj2xl !
12(

l , j

g~g1 P̄j l !

sinh2~xj1xl !

1(
j 51

N
n~n2M j !

sinh2xj

2(
j 51

N
d~d2M j !

cosh2xj

. ~8!
3-2



8

te
s
n

on
ar

g
de
a
in

c
fo
el

n
as

th

n

na
HE
u

es
.

of

,
ht
-
ft
-
rix
-
If

the

oth

ic
tes
nd

the
nta

-

KONDO EFFECT IN A HOST WITH FRACTIONAL . . . PHYSICAL REVIEW B 64 125113
Models ~6! and ~7! have been derived in Refs. 17 and 1
Note that if we putM j51 or M j5s j

z , then P̄j l 5Pjl .
We were not able to find the Dunkl operator that genera

the interaction between a Kondo impurity and the CSM ho
However, the similar behavior of boundary potentials a
Kondo impurities at an open end in other hosts is a str
plausability argument that the CSM models with bound
impurity are also integrable.

III. KONDO EFFECT IN THE SUTHERLAND MODEL

Of great interest is the problem of an impurity carryin
internal degrees of freedom. Unfortunately, we could not
rive the condition of integrability for the impurity model vi
the Dunkl-operator procedure, but this can plausibly be
ferred by the reflection Yang-Baxter relation25 in the sense of
the ABA

Sjl ~kj2kl !Rj~kj !Sjl ~kj1kl !Rl~kl !

5Rl~kl !Sjl ~kj1kl !Rj~kj !Sjl ~kj2kl !, ~9!

whereSjl andRj are the two-body scattering and the refle
tion matrices, respectively. Guided by our observations
the scalar impurity we consider the following Kondo mod

H52(
j 51

N
]2

]xj
2

1(
j 51

N
V1JPj 0

@~2L/p!sin~pxj /2L !#2

12(
l , j

g~g1Pjl !

$~2L/p!sin@~p/2L !~xj2xl !#%
2

12(
l , j

g~g1 P̄j l !

$~2L/p!sin@~p/2L !~xj1xl !#%
2

, ~10!

wherePj 0 is the spin-exchange operator of thej th electron
with the boundary impurity of spin 1/2. In fact, such a
Hamiltonian, although involving only classical spins, h
been derived via symmetry analysis by Polychronakos16 and
has been shown to be integrable for a special value of
boundary-coupling constant. Model~10! presents two main
features, namely,~a! the Kondo coupling is long ranged i
contrast to usual Kondo models, and~b! the host is rather
unusual since the bulk electrons follow an ideal fractio
statistics. Although the strong magnetic fields in the FQ
would quench the usual Kondo effect, the above model co
be thought of as two degenerate channels of edge stat
the FQHE coupled to a two-level system or quantum dot

The scattering matrix forg.1/2 is8

Sjl ~k!52 lim
h→01

Fk2 ih

k1 ihGg k2 ihPjl

k2 ih
. ~11!

The following two cases satisfy Eq.~9! for model ~10!,
namely,~i! if J andV are parametrized by a real constantc
.2, J52c21, andV5c22c11, then

Rj~k!5 lim
h→01

Fk2 ih

k1 ihGcH k2 ihPj 0

k2 ih J 2

, ~12!
12511
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and ~ii ! if V5J2 provided thatJg.0, then

Rj~k!5 lim
h→01

Fk2 ih

k1 ihGJ k22ihPj 0

k22ih
. ~13!

Below we study the low-temperature thermodynamics
these two cases we conjecture are integrable.

The periodic motion of particlej consists of its scattering
with each of the particles to the right scattering off the rig
boundary~impurity site!, then scattering with all other elec
trons while it moves to the left, its reflection at the le
boundary with a phase shiftp, and its scattering with elec
trons until it reaches its original position. The transfer mat
then consists of a product of 2(N21) electron-electron scat
tering matrices and one reflection matrix off the impurity.
the momentum of the electron iskj and the initial wave
function isc0, we have

2e2ik j LSj ,1
1
•••Sj , j 21

1 Sj , j 11
1

•••Sj ,N
1 Rj~kj !

3Sj ,N
2

•••Sj , j 11
2 Sj , j 21

2
•••Sj ,1

2 c05c0 , ~14!

whereSj ,l
6 5Sjl (kj6kl). The abovej 51, . . . ,N eigenvalue

equations are simultaneously solved by two nested Be
Ansätze in terms of two sets of rapidities~the charge mo-
menta $kj% and spin rapidities$la%), diagonalizing the
Hamiltonian with eigenvalueE5( j 51

N kj
2 .

Since the host drives the impurity and is common to b
cases,~i! Eq. ~12! and~ii ! Eq. ~13!, we first discuss the ABA
equations of the host without impurity,

e2ik j L5 )
r 56

)
lÞ j

N S kj2rkl1 ih

kj2rkl2 ih D g

)
a51

M kj2rla2 i
h

2

kj2rla1 i
h

2

,

)
r 56

)
j 51

N la2rk j2 i
h

2

la2rk j1 i
h

2

5 )
r 56

)
bÞa

M
la2rlb2 ih

la2rlb1 ih
. ~15!

Here the limith→0 is to be taken before the thermodynam
limit L→`. As a consequence no charge-spin bound sta
can be formed, nor is there the possibility of boundary bou
states induced by the impurity. The solutions of the Be
Ansatzequations are then classified into real charge mome
$kj% and squeezed strings of magnons26 characterized by
string rapidities$ln,a%. In the thermodynamic limit, we de
note withr(k), rh(k), sn(l), andsn,h(l) the densities of
the rapidities and their holes. It is useful to introducez(k)
[rh(k)/r(k) and hn(l)[sn,h(l)/sn(l). The thermody-
namics of the system is determined by

ln z5~k22m!/T1S g2
1

2D ln~11z21!2
1

2
ln~11h1!,

ln hn
25 ln~11hn21!1 ln~11hn11! ~16!
3-3
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with the boundary conditions 11h05(11z21)21 and
lim

n→`
ln hn /n5h/T[2x0. Here m is the chemical potentia

@m5p2N2(g11/2)2/L2 at T50#, h is the magnetic field,
and T is the temperature. The free energy of the host isF
52LT* ln@11z21(k)#dk/(2p). The bulk is a Luttinger liquid
with ideal fractional statistics.3,11

Due to the limith→0 in the ABA equations the integra
kernels are alld functions, so that Eqs.~16! are algebraic
rather than integral equations. WhenT→0, h→0, we have
z(k)→0 for k2,m andz(k)→` for k2.m. Therefore, as-
ymptotically the solutions of Eqs.~16! are 11hn

5sinh2(nx0)/sinh2(x0) for l,Am and 11hn5sinh2@(n
11)x0 #/sinh2(x0) for l.Am.

We now study the low-temperature properties of the i
purity for case~i!. The free energy of the impurity is

f imp52
1

2
T ln@11h1~0!#1

1

2
~c21!T ln@11z21~0!#

5
1

2
~c21!m̄1O~e2m̄/T!, ~17!

wherez(0);exp@2m/(g11/2)T#[exp(2m̄/T). The residual
entropy of the impurity is zero,Sres50, which means tha
the impurity spin is screened in the ground state, as for
usual single-channel Kondo problem with short-range in
actions. Both the susceptibility and the heat capacity of
impurity behave like a local Fermi liquid,20 but with the
leadingT dependence arising fromm(T). Hence, the screen
ing of the spin is not associated with a Kondo energy, in
cating that the long-range interactions~both in the bulk and
at the boundary! play central roles. It follows from the ABA
equations that the impurity contributes to the density
states with ad-function peak at zero energy, so that the ‘‘im-
purity level’’ is pinned in the core of the Fermi sea, rath
than at the Fermi level as for the usual Kondo proble
Therefore, the impurity is screened forT,m, the only en-
ergy scale in the system. The impurity only renormalizes
chemical potential and slightly changes the density of sta
at the Fermi level~both to the order ofL21), so that the
quasiparticles in the system are free. The impurity, a
screening, acts just like a foreign particle with zero mom
tum and is essentially insensitive to thermal activatio
Moreover, the Kondo effect occurs for arbitrarily largeV/J,
in contrast to hosts with short-range correlations, wher
large repulsive scalar potential may suppress the Kondo
fect completely.22 On the other hand, this is similar to a
impurity in a Fermi liquid,20 where the scalar potential doe
not change the fixed point~althoughTK is the Fermi energy!.
For an impurity of arbitrary spinS, Pj 0 is replaced by (1/2
1sW j•SW )/(S11/2) in Eq. ~10!. The same procedure now
yields the expected result that the spin is underscreened
effective spinS21/2. There are, however, no logarithm
corrections as in the traditional Kondo problem with sho
range interaction. Hence, the spinS21/2 is free, rather than
asymptotically free. Screening by multiple electrons does
occur.
12511
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In case~ii ! the ABA equations~15! are very similar to
case~i! and are obtained by using Eq.~13! as the impurity
reflection matrixR. The impurity free energy is now

f imp5
1

2
~J21!m̄1O~e2m̄/T!2

1

2
T ln@sinh~3x0!/sinh~x0!#.

~18!

The first term arises from the charge sector and again yi
a low-T specific heat proportional toT with g of the order of
1/m̄. The second term is more interesting, since it cor
sponds to half the free energy of a free spin 1. The interp
tation of this result is that the impurity spin and its bounda
image combine to form an effective spin 1@see the reflection
matrix Equation~13!#, which is then partially screened b
the Kondo effect. The ground-state residual magnetiza
and entropy of the impurity areMres51/2 andSres5

1
2 ln 3.

Hence, atT50 the impurity spin acts as if it is completel
unscreened, but its entropy is reduced relative to that o
free spin 1/2. Again, there are no logarithmic terms, char
teristic of asymptotic freedom, as a consequence of the lo
range interactions and the ideal fractional statistics.

IV. KONDO MODEL IN THE HYPERBOLIC CSM

Finally, an integrable Kondo model can also be co
structed for the hyperbolic CSM,

H52(
j 51

N
]2

]xj
2

12(
l , j

g~g1Pjl !

sinh2~xj2xl !
12(

l , j

g~g1 P̄j l !

sinh2~xj1xl !

1(
j 51

N
~n1Pj 0!~n211Pj 0!

sinh2xj

. ~19!

The two-electron scattering matrixSjl and the ABA solution
for the host with periodic boundary conditions have be
obtained.11 The impurity model is integrable ifn52g11/2.
In this case, the reflection matrix reads

Rj 0~k!5
G~11 ik !

G~12 ik !

G~n2 ik !

G~n1 ik !

k1 i /21 i ~n21/2!Pj 0

k1 i /21 i ~n21/2!

3
k2 i /21 i ~n21/2!Pj 0

k2 i /21 i ~n21/2!
. ~20!

As the transmissionS matrix takes the form

Sj ,l~k!52
G~11 ik j l !

G~12 ik j l !

G~g2 ik j l !

G~g1 ik j l !

kjl 1 igPjl

kjl 2 ig
, ~21!

wherekjl 5(kj2kl)/2. The reflection equation~9! is satisfied
for n52g11/2. Hence,n is strongly restricted by the bulk
coupling, as it is for impurities in thed-potential electron
gas.23 In fact, if we rescaleg→ag and leta→`, the present
model is reduced to the model considered in Ref. 24. T
Bethe Ansatz equations~BAE! of the integrable case read
3-4
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KONDO EFFECT IN A HOST WITH FRACTIONAL . . . PHYSICAL REVIEW B 64 125113
e2ik j L5
G~12 ik j !

G~11 ik j !

G~2g11/21 ik j !

G~2g11/22 ik j !
)
r 56

)
lÞ j

kj2rkl22ig

kj2kl12ig

3 )
r 56

)
j Þ l

G~12 i @kj2rkl #/2!

G~12 i @kj2rkl #/2!

G~g2 i @kj2rkl #/2!

G~g1 i @kj2rkl #/2!

3 )
a51

M
kj2rla1 ig

kj2rla2 ig
,

)
r 56

)
j 51

N
la2rk j1 ig

la2rk j2 ig
5

la1 i ~g11/2!

la2 i ~g11/2!

la1 i ~g21/2!

la2 i ~g21/2!

3 )
r 56

)
bÞa

la2rlb12ig

la2rlb22ig
.

~22!

Except for the prefactor in the first equation, the structure
the BAE is exactly the same as that of the short-range in
action model.22,23A detailed calculation shows that an imp
rity spin 1/2 is completely screened forn>3/2, partially
screened for 3/2>n.1, and for 0,n,1 the impurity po-
tential is not bounded from below. In view of the similaritie
of the BAE to those of the short-range interaction model,22,23

the impurity contributions in this case have the usual lo
rithmic corrections.

V. CONCLUDING REMARKS

In conclusion, we have constructed several models
magnetic impurities coupled to an electron gas of the C
type and provided strong plausability arguments for their
tegrability. The screening of the impurity is influenced by t
long-range character of the interactions. From these i
grable examples we conclude that the behavior of the im
rity is nonuniversal and depends on the coupling between
12511
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electrons in the host and that of the electrons to the impu
spin. Screening of the impurity spin by multiple electrons~as
in the multichannel Kondo problem! does not occur despite
the long-range interactions. The absence of logarithmic te
~usually the trademark of the Kondo effect! is also remark-
able. The above models are easily generalized to more in
nal degrees of freedom@SU(M ) invariance#, and for SU(2)
the extension to an arbitrary spinS is straightforward by
replacingPj 0 by (1/21sW j•SW )/(S11/2).

The condition of integrability requires that the interactio
potential between the electrons and that of the electrons
the boundary impurity have to be of the same form, that
they must have the same dependence on the coordinate
only the amplitudes may differ. An interesting question
whether similar properties are obtained if the spa
dependence of the Kondo coupling is modified. Since t
would destroy the integrability and then an exact solution
not available, we can only speculate on this issue. Only if
interaction in the host is long ranged@i.e., of the 1/r 2 or
1/sin2(r) type#, the particles in the host are free and ha
fractional statistics. We believe that this statistics is key
the absence of Kondo logarithms and a Kondo scale.
expect that a modified electron-impurity interaction~at the
expense of the integrability! does not change this fixed poin
Similar conclusions could be inferred for the 1/sinh2(r) po-
tential, which does not lead to fractional statistics and he
to the ordinary Kondo effect with logarithms. Again, we d
not expect that small modifications of the electron-impur
interaction will dramatically affect the Kondo physics.
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