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Kondo effect in a host with fractional statistics: Absence of Kondo logarithms
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By constructing the reflection Dunkl operator we derive several integrable models consisting of a boundary
impurity coupled to an electron gas with interactions of the Calogero-Sutherland type. Some of these models
were constucted previously using Lax-pair operators. The necessary condition of integrability imposes that the
impurity potential has a form similar to that of the bulk interactions. Based on these results we conjecture that
a Kondo impurity coupled to the host with long-range interactions of thietgpe is also integrable. Using the
asymptotic BethéAnsatzwe show that there are no Kondo logarithms, and depending on the coupling of the
impurity to the host, the impurity spin can either be totally screened, partially screened, or unscreened. On the
other hand, for a 1/sirftr) interaction potential a Kondo effect with logarithms is obtained.
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[. INTRODUCTION of impurity models frequently renormalizes to an equivalent
open-boundary impurity probleff.Boundary potentials and

In correlated electron metals the screening of the Coua Kondo impurity placed at the open end usually lead to
lomb potential usually leads to short- or intermediate-rangé&imilar solutions. This is also to be expected for models with
interactions. In low-carrier-density systems, e.g., close to #ng-range potentials and could be of relevance for the edge
metal-insulator transition and especially in low dimensionsstates of FQHE. Open boundaries have been studied previ-
however, the small number of carriers and their reduced moPusly in the context oBCy-type CSM (Refs. 15-18 and
bility do not provide an effective mechanism for screening,the open Haldane-Shastry spin chdlithe quasiparticles in
and long-range interactions should be considered. Of specitle CSM withr~2 and sin(r) potentials obey ideal frac-
interest is a class of integrable one-dimensida&)) systems tional statistics, so that in this unusual host the Kondo impu-
with interactions decreasing with distancasr ~2, sin4(r), rity is expected to behave differently from the usual Kondo
and sinh2(r), frequently referred to as Calogero-Sutherlandeffect in simple metaf§?* or in a Luttinger liquid?>** We
modeld? (CSM’s) to honor the pioneering work of these find that although there is Kondo screening, there are no
authors. In this paper we present results for the openlogarithmic precursors characteristic of asymptotic freedom.
boundary CSM and impurities at the boundary. In particularOn the other hand, for the CSM with sint{r) potential
we explore the implications of long-range interactions on thewhich has finite rangewe obtain screening with Kondo
Kondo effect. logarithms.

Besides for low carrier-density systerfesg., underdoped The structure of the present paper is the following. In Sec.
cupratey the CSM is relevant to fractional statistics and Il we rederive the open-boundary CSM with boundary fields
anyons® and spin chair(Haldane-Shastyymodels? Numer-  for all three cases, namely, the?, sin"?(r), and sinhi*(r)
ous common features between the CSM in 1D and the edgeotentials using Dunkl operators. Conjecturing integrability
states of the fractional quantum Hall effe®QHE) are = we present in Sec. Ill the exact solution of a magnetic-
known? For instance, in both cases the ground state is #&npurity model showing the Kondo effect in a system with
Jastrow-Slater wave function and the excited states are co@n ideal fractional statistics. In Sec. IV we extend our study
structed by multiplying polynomials to the ground-stateto a Kondo model with hyperbolic interaction, for which we
wave functior?*® The CSM and its generalizatich have  find that the Kondo effect is similar to that of other short-
been extensively studied with various methods, in particulafange interaction models. Finally, concluding remarks follow
with periodic boundary conditions via the asymptotic Bethein Sec. V.
ansatz(ABA).29-1

The app_li_cation of the AI_SA_requires an inde_pendent proof II. NONMAGNETIC-IMPURITY MODELS
of integrability. If a model is integrable it suffices to know
the asymptotic behavior of the wave functions at long dis- In this section, we study a boundary impurity in the
tances, i.e., the phase shifts, which can be obtained withoU(2)-invariant CSM. Since the interaction in the CSM de-
the full knowledge of the many-particle wave functions. Thecreases with distance ag/it is necessary for the integra-
ABA only requires the two-particle phase shifts to classifybility to consider an electron-impurity interaction propor-
the states and determine the energy eigenvalues. The exdiinal to 1f2. Such an impurity potential induces a natural
solution is then valid for any finite density of carriers. An open-boundary confinement without further assumption on a
elegant and compact method to construct integrable modektrong-coupling fixed poir? We note that the open-
is via Dunkl operators?*? boundary CSM with multicomponents has been studied via

Impurities and boundary effects play a relevant and venthe Lax-pair operator procedure and transfer-matrix formal-
similar role in 1D systems. The strong-coupling fixed pointism by Yamamot& and Hikami'’ respectively. Here we re-
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derive the models within a slightly different approach, One pOSS|bIe solution withJ;; =W;;,=0 is v(Xx)=gx" 1
namely, using Dunkl operators. The Dunkl operator for theand u(x)=vx"* with g and » being real parameters. This
trigonometric case has previously been obtained by Hikamsolution yields the integrable Hamiltonian

by means of a transfer-matrix expansion.

For a 1D system oN electrons and an impurity at the v(v—M))
boundary, we define the Dunkl operafol® with boundary H=2> |pi+ ——
reflection, =1 X
N 9(g—M;)  g(g—M;)
_ —— +2 + . 6
Dl:pj+||§j (UJ'|MJ'|+UJ'|MJ'|)+|UJ'M]', 1) |2<] (X —X|) (XJ+X|)2 ©

Since the Hamiltonian acts on antisymmetric wave functions,
we can replace- M; by the spin-exchange operaty; . In
addition[M; ,H]=0, i.e., the Hamiltonian is invariant under
reflections. HenceM; can be substituted by its eigenvalues
+1 orbyof.*® Here M;==1 corresponds to a scalar im-

wherevj =v(x;—X)), vj=v(Xj+X), andu;=u(x;) are yet
undetermined functions, ang andp; are the coordinate and
momentum of thejth electron. Herel\/l j and M; are the
exchange and reflection operatots?

M:i=M; =M M2=1. M+ A=AM. purity potentlal wh|Ie|\/I = o7 yields a scalar potential and a
il U T il ' ST AT s ]
boundary magnetic f|eld. In the SMI() case, we can replace
MuA=AM; for k#j,l, (20  MjbyanMXxM-order matrix in spin space with elgenvalues

+ 1 If all M; take the same eigenvalues 1) or M= J ,

then— M“ in Eq.(6) can be replaced bly;; with the |dent|ty

ojo(Pj;=Pj . Model (6) then describes an open Calogero

model with boundary impurityor boundary fieldd The (x;

+X,) terms represent a typical feature of the open-boundar
[Mi . M;]=0, MJ' M;MiM;, 3 syslt)em; they dpescribe thgipnteraction betweerthceIectron g

We seek the solutions ¢D;,D,]=0, wherey is any an- and the mirror image of théth electron or vice versa. The

tisymmetrized wave function, to define a class of mutuallyInCIUSIon of the image terms s just equivalent to removing

whereA, is any operator, and

Mixj=—=xMj,  M;pj=—p;Mj,

commutative quantities,=>_,(D;)". If one of thel, the infinite wall at the boundary. _
chosen as the Hamiltonian, then the model is mtegrable The The Sutherland model and the hyperbolic CSM can be
commutator of the Dunkl operators is derived similarly. For the Sutherland model, we chooge

=g[cot(x—x)+isgn(—1)], vj=glcotlx+x)—i], and
u(x)=(v—6)(cotx—i)+25[cot(2x)—i], which is a solution
[D;.D]=U;— > Wy, (4 since M;; and M; commute with the sign function. The
kA1 Hamiltonian reads

where N _
7 g(g+Py) g(g+Pj)
—[(u:— o _ H=—> —+2 +2
Ui =L = v+ (U + U)oy My My = M;Mj), 12'1 ox2 1S sinf(xi—x) (=) sirP(x+x)
Wiik=(jivjkt o) togo) (MM ig—MyM;) N v(v—M, ) N 8(6—M;))
_ +Z = 2 o @)
+ (001 + 03V VY ) (M M= MM ) =1 sy J=1 CosX;
+ (V01— ViRV jkF 010 (MM ie— M M) wherer andé are real constants ait};=M;M,P;, . For the
_ - _ _ spinless case, the above Hamiltonian corresponds to a CSM
+(jkvi vk — v (MM =M M) of the BCy type® By rescalingx;—mx;/(2L), it is seen

that the last two terms describe two impuritiésoundary
fields) at O andL, respectively.
For the hyperbolic CSM, we obtain the following solu-
PP+ (Vi+vi+u Mj+u M) tion, vj=g[coth&—x)—sgn(—1)], v;=g[cothf+x)
i#l +1], u(x) = (v— 8)(cothx+1)+24 coth()+1], and the cor-
responding Hamiltonian is

If we choosel, as the Hamiltonian we have

Il
M=

1 1
+2 (Uj'Mj+Uj2)+§E Ui—3 > Wik,
j=1 j#l j#

j# 7 N g P, P,
c H:_E _2+2 g(g j|) 12 g(g Jl)
(5 Froxt 1S S|nI”F(xj—x|) i< sinkP(x;+x)
whereu! =a;u;, v =dvy, andv,,=dv; . Hence,l, is a N
I R R R [ IRl "2 M; O(6—M;
natural choice for the Hamiltonian, because it leads to the R e n— v(r—M)) 2 u (8)
usual parabolic kinetic energy. =1 SlnthJ =1 coslifx;
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Models (6) and (7) have been derived in Refs. 17 and 18.and i) if V=J? provided thatJg>0, then
Note that if we putM;=1 or M;=o7, thenP;=P;,.

We were not able to find the Dunkl operator that generates
the interaction between a Kondo impurity and the CSM host.
However, the similar behavior of boundary potentials and
Kondo impurities at an open end in other hosts is a stron®@elow we study the low-temperature thermodynamics of
plausability argument that the CSM models with boundarythese two cases we conjecture are integrable.

k—in
k+in

T k—2inPjo
k—2i7n

R;(k)=lim (13

n—0"

impurity are also integrable. The periodic motion of particlgconsists of its scattering,
with each of the particles to the right scattering off the right
IIl. KONDO EFEECT IN THE SUTHERLAND MODEL boundary(impurity site, then scattering with all other elec-

_ _ ) ) ~ trons while it moves to the left, its reflection at the left
~ Of great interest is the problem of an impurity carrying poundary with a phase shift, and its scattering with elec-
internal degrees of freedom. Unfortunately, we could not deyons until it reaches its original position. The transfer matrix

rive the condition of integrability for the impurity mpdel viq then consists of a product of R 1) electron-electron scat-
the Dunkl-operator procedure, but this can plausibly be inyering matrices and one reflection matrix off the impurity. If
ferred by the reflection Yang-Baxter relatfdin the sense of the momentum of the electron Ig and the initial wave

the ABA function is ¢, we have
Sji (kj =k R; (k) S (kj+ k)R (k) —eMLST S LS SR (K)
=Ri(k)S;i(kj+k)R;j(k) Sji(kj—k), (9

, XS N 5415 -1 Sao=to, (14
whereS;; andR; are the two-body scattering and the reflec- . _ _
tion matrices, respectively. Guided by our observations fo:WherGj Sj_,|:Sj|(kj.i k). The abovej=1, ... N eigenvalue
the scalar impurity we consider the following Kondo model: equations are simultaneously solved by two nested Bethe
Ansdze in terms of two sets of rapiditie&he charge mo-
V+JPjo ﬂent'? {kj} an.dh spin rapl)i(%EitiesE{L\a}lzz, diagonalizing the
. ' 2 amiltonian with eigenvalu&=3;"_k; .

L2t/ m)sin(mx; /2L)] Since the host drives the impurity and is common to both
g(g+P;) cases(i) Eq.(12) and(ii) Eqg. (13), we first discuss the ABA

N (92 N
H:—z —2+
Froxt =

+2 equations of the host without impurity,
I§<:i {(2L/m)sin (m/2L) (x;—x) 1}?
— N/
+P N : M Ki—r\,—is
n -g(g i) 2, (10) - kj—rki+i7)9 i 2
=5 {(2L/m)sinl (r/2L) (x;+x) ]} e?it= L[J k—rk=in) 1L o
== ] a= N L
wherePj, is the spin-exchange operator of tfi& electron ki r)\“JFIZ
with the boundary impurity of spin 1/2. In fact, such an
Hamiltonian, although involving only classical spins, has ”
been derived via symmetry analysis by Polychrondkaad N No—rkj—iz LN
has been shown to be integrable for a special value of the [[—-= 11 “—”_ (15)
boundary-coupling constant. Mod€l0) presents two main r==j=1_ M f=x pra Ao TAgtiy
L . No—rki+is
features, namely@ the Kondo coupling is long ranged in 12

contrast to usual Kondo models, afln) the host is rather

unusual since the bulk electrons follow an ideal fractionalHere the limitz— 0 is to be taken before the thermodynamic

statistics. Although the strong magnetic fields in the FQHEIMit L—%. As a consequence no charge-spin bound states

would quench the usual Kondo effect, the above model coulgan be formed, nor is there the possibility of boundary bound

be thought of as two degenerate channels of edge states $fates induced by the impurity. The solutions of the Bethe

the FQHE coupled to a two-level system or quantum dot. Ansatzequations are then classified into real charge momenta
The scattering matrix fog>1/2 i {k;} and squeezed strings of magn®hsharacterized by

string rapidities{\, ,}. In the thermodynamic limit, we de-

__|k=in]% k=inPy note with p(k), pn(k), on(N), andoy, n(\) the densities of
Sji(k)=— I|m+ k+iz k—ip (11 the rapidities and their holes. It is useful to introdugé)
7—0 =pn(k)/p(k) and n,(N\)=o0,n(N)/oy(N). The thermody-

The following two cases satisfy Eq9) for model (10),  namics of the system is determined by
namely, (i) if J andV are parametrized by a real constant
>2,J=2c—1, andV=c?—c+1, then

¢ k_|7]PJ0 2
{ k—in ] ’ 123

Ing=(k?>—w)/T+

1| . 1I
' g-5In(1+ Y= SIn(1+ ),
k—in
k+in

Rj(k)z lim
7—07"

In 72=In(1+ 7,_1) +IN(1+ 74 1) (16)
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with the boundary conditions #7,=(1+¢" %) and In case(ii) the ABA equations(15) are very similar to
lim _ _In7,/n=h/T=2x, Here u is the chemical potential case(i) and are obtained by using E€L3) as the impurity
[w=m2N2(g+1/2)%/L? at T=0], h is the magnetic field, reflection matrixR. The impurity free energy is now
andT is the tem?erature. The free energy of the hodt is 1

Due to the limity—0 in the ABA equations the integral (18
kernels are alls functions, so that Eqg16) are algebraic
rather than integral equations. Wh&n-0, h—0, we have The first term arises from the charge sector and again yields
L(K)—0 for k< and {(k)—o for k?> u. Therefore, as- a low-T specific heat proportional 6 with y of the order of
ymptotically the solutions of Eqgs.(16) are 1+ 7, 1/u. The second term is more interesting, since it corre-
=sint(nxy)/sintf(xp) for A<u and 1+ y,=sinkf(n  sponds to half the free energy of a free spin 1. The interpre-

+1)%, I/sint?(xg) for x> /. tation of this result is that the impurity spin and its boundary
We now study the low-temperature properties of the im-image combine to form an effective spirfdee the reflection
purity for case(i). The free energy of the impurity is matrix Equation(13)], which is then partially screened by

the Kondo effect. The ground-state residual magnetization
1 1 and entropy of the impurity arbl es=1/2 andS,es= 1In 3.
fimp=—5TIN[1+ 71(0)]+ 5 (c—1)TIn[1+ ¢ *(0)] Hence, aff=0 the impurity spin acts as if it is completely
2 2 unscreened, but its entropy is reduced relative to that of a
1 - B free spin 1/2. Again, there are no logarithmic terms, charac-
=—(c—1)u+0(e ¥, (17 teristic of asymptotic freedom, as a consequence of the long-
2 range interactions and the ideal fractional statistics.

where ¢(0)~ ex — u/(g+1/2)T]=exp(— w/T). The residual IV. KONDO MODEL IN THE HYPERBOLIC CSM

entropy of the impurity is zero$,.s=0, which means that

the impurity spin is screened in the ground state, as for the Finally, an integrable Kondo model can also be con-
usual single-channel Kondo problem with short-range interstructed for the hyperbolic CSM,

actions. Both the susceptibility and the heat capacity of the
impurity behave like a local Fermi liquitf, but with the
leadingT dependence arising fropa(T). Hence, the screen-
ing of the spin is not associated with a Kondo energy, indi-
cating that the long-range interactiotmoth in the bulk and N
at the boundaryplay central roles. It follows from the ABA 2
equations that the impurity contributes to the density of =
states with as-function peak at zero energy, so that the*

purity level'is pinned in the core of the Fermi sea, rather The two-electron scattering matr$ and the ABA solution
than at the Fermi level as for the usual Kondo problemfor the host with periodic boundary conditions have been
Therefore, the impurity is screened for< u, the only en-  obtained!* The impurity model is integrable if=2g+ 1/2.
ergy scale in the system. The impurity only renormalizes then this case, the reflection matrix reads

chemical potential and slightly changes thle density of states

at th(_a Fe_rml Ie_vel(both to the order oL ™), so tha_t the T(1+ik) T(v—ik) k+i/2+i(v—1/2)Pjq
guasiparticles in the system are free. The impurity, after Rjo(k)= - - - -

screening, acts just like a foreign particle with zero momen- F(1=ik) D(r+ik)  k+if2+i(v=1/2)
tum and is essentially insensitive to thermal activation. k—i/2+i(v—1/2)Pig

N 2 -
+P, +P,
2 a _g(g N, .g(g i)
19X I<j sintP(x;—x)) 1<) sinkP(x;+x)
V+ PJO (V 1+P]0)
sint?x;

(19

Moreover, the Kondo effect occurs for arbitrarily largélJ, T N— (20
in contrast to hosts with short-range correlations, where a : (v )

large repulsive scalar potential may suppress the Kondo ef

fect completely?? On the other hand, this is similar to an /S the transmissioi matrix takes the form

impurity in a Fermi liquid?® where the scalar potential does

not change the fixed poirtalthoughTy is the Fermi energy S (K)=— I(1+iky) T'(g—ikjy) kj+igP; (21
For an impurity of arbitrary spir§, P, is replaced by (1/2 (i I'(1-iky) I'(g+iky) ky—ig ’

+0;-9)/(S+1/2) in Eq. (10. The same procedure now

yields the expected result that the spin is underscreened to avherek;, = (k;—k;)/2. The reflection equatiof®) is satisfied
effective spinS—1/2. There are, however, no logarithmic for v=2g+ 1/2 Hence,v is strongly restricted by the bulk
corrections as in the traditional Kondo problem with short-coupling, as it is for impurities in th&-potential electron
range interaction. Hence, the s@a-1/2 isfree rather than  gas?® In fact, if we rescalgy—ag and leta— o, the present
asymptotically free. Screening by multiple electrons does noimodel is reduced to the model considered in Ref. 24. The
occur. Bethe Ansatz equation8AE) of the integrable case read

125113-4



KONDO EFFECT IN A HOST WITH FRACTIONA. . . .

s T(1=iky) T(2g+1/2+ik;) k;—rk;—2ig
- D(1+ik)) T(2g+1/2—ikj)== 14 kj—k+2ig

e

T(1—i[k—rk]/2) T(g—i[k—rk]/2)

X - -
,H: JE[. [(1—i[k;—rk ]/2) T(g+i[k,—rk]/2)
M .
Ki—r\,+ig
g1t

1'_“[ Na=TKHig NG Fi(g+12) N, +i(g—1/2)
r== j=1 No—rKj=ig  N,—i(g+1/2) \,—i(g—1/2)
No—FAg+2ig
Ze 7B 79
xrll Bra Ng—TNg—2ig°
(22)

PHYSICAL REVIEW B 64 125113

electrons in the host and that of the electrons to the impurity
spin. Screening of the impurity spin by multiple electrgas

in the multichannel Kondo problentdoes not occur despite
the long-range interactions. The absence of logarithmic terms
(usually the trademark of the Kondo effecs also remark-
able. The above models are easily generalized to more inter-
nal degrees of freedoffBU(M) invariancd, and for SU(2)

the extension to an arbitrary sp@ is straightforward by
replacingP;jq by (1/2+ o S)/(S+1/2).

The condition of integrability requires that the interaction
potential between the electrons and that of the electrons with
the boundary impurity have to be of the same form, that is,
they must have the same dependence on the coordinates and
only the amplitudes may differ. An interesting question is
whether similar properties are obtained if the space-
dependence of the Kondo coupling is modified. Since this
would destroy the integrability and then an exact solution is

Except for the prefactor in the first equation, the structure ohot available, we can only speculate on this issue. Only if the
the BAE is exactly the same as that of the short-range interinteraction in the host is long rangdde., of the 1/? or
action modef?#*A detailed calculation shows that an impu- 1/sirf(r) type], the particles in the host are free and have

rity spin 1/2 is completely screened far=3/2, partially
screened for 32 v>1, and for 6<v<1 the impurity po-

fractional statistics. We believe that this statistics is key to
the absence of Kondo logarithms and a Kondo scale. We

tential is not bounded from below. In view of the similarities expect that a modified electron-impurity interactiGt the

of the BAE to those of the short-range interaction mddéf

expense of the integrabilitydoes not change this fixed point.

the impurity contributions in this case have the usual logaSimilar conclusions could be inferred for the 1/gih po-

rithmic corrections.

V. CONCLUDING REMARKS

tential, which does not lead to fractional statistics and hence
to the ordinary Kondo effect with logarithms. Again, we do
not expect that small modifications of the electron-impurity
interaction will dramatically affect the Kondo physics.

In conclusion, we have constructed several models of

magnetic impurities coupled to an electron gas of the CSM
type and provided strong plausability arguments for their in-
tegrability. The screening of the impurity is influenced by the  We acknowledge the support by the National Science
long-range character of the interactions. From these inteFoundation and the Department of Energy under Grants No.
grable examples we conclude that the behavior of the impubMR98-01751 and No. DE-FG02-98ER45797. Y.W. was

rity is nonuniversal and depends on the coupling between thalso supported by the National Science Foundation of China.
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