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Raman scattering through a metal-insulator transition
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The exact solution for nonresonantA1g andB1g Raman scattering is presented for the simplest model that has
a correlated metal-insulator transition, the Falicov-Kimball model, by employing dynamical mean-field theory.
In the general case, theA1g response includes nonresonant, resonant, and mixed contributions, and theB1g

response includes nonresonant and resonant contributions~we prove the Shastry-Shraiman relation for the
nonresonantB1g response!, while the B2g response is purely resonant. Three main features are seen in the
nonresonantB1g channel:~i! the rapid appearance of low-energy spectral weight at the expense of higher-
energy weight;~b! the frequency range for this low-energy spectral weight is much larger than the onset
temperature, where the response first appears; and~iii ! the occurrence of an isosbestic point, which is a
characteristic frequency where the Raman response is independent of temperature for low temperatures. Vertex
corrections renormalize away all of these anomalous features in the nonresonantA1g channel. The calculated
results compare favorably to the Raman response of a number of correlated systems on the insulating side of
the quantum-critical point~ranging from Kondo insulators to mixed-valence materials to underdoped high-
temperature superconductors!. We also show why the nonresonantB1g Raman response is ‘‘universal’’ on the
insulating side of the metal-insulator transition.

DOI: 10.1103/PhysRevB.64.125110 PACS number~s!: 71.30.1h, 78.30.2j, 74.72.2h, 75.20.Hr
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I. INTRODUCTION

Raman scattering has been an important experimental
for studying lattice dynamics for over four decades~since the
advent of the laser!. More recently, it has been applied
study the scattering of electrons in metals, insulators, se
conductors, and superconductors. Via light’s coupling to
electron’s charge, inelastic light scattering reveals symm
selective properties of the electron dynamics over a w
range of energy scales and temperatures. It is similar to
optical conductivity, which involves elastic scattering of lig
by electron-hole pairs, but Raman scattering provides a
tional information, since it is able to isolate different sym
metry channels by selectively polarizing the incident lig
and measuring the reflected light with a polarized detec
Three principle symmetries are usually examined:~i! A1g,
which has the full symmetry of the lattice~i.e., iss like!; ~ii !
B1g, which is a d-like symmetry ~which probes the
Brillouin-zone axes!; and ~iii ! B2g, which is anotherd-like
symmetry ~which probes the Brillouin-zone diagonals!. In
1990–1991, Shastry and Shraiman proposed a sim
relation1 that connects the nonresonant Raman respons
the optical conductivity. We prove the Shastry-Shraiman
lation here for theB1g channel in the large-dimensional limi

Strongly correlated systems as disparate as mixed-val
compounds2 ~such as SmB6), Kondo insulators3 ~such as
FeSi!, and the underdoped cuprate high-temperat
superconductors4–6 show temperature-dependentB1g Raman
spectra that are both remarkably similar and quite ano
lous. This ‘‘universality’’ suggests that there is a comm
mechanism governing the electronic transport in correla
insulators. As these materials are cooled, they all sho
pileup of spectral weight for moderate photon energy los
with a simultaneous reduction of the low-frequency spec
weight. This spectral weight transfer is slow at high tempe
0163-1829/2001/64~12!/125110~11!/$20.00 64 1251
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tures and then rapidly increases as the temperature is low
towards a putative quantum-critical point~corresponding to a
metal-insulator transition!. In addition, the Raman spectra
range is divided into two regions: one where the respo
decreases asT is lowered and one where the response
creases. These regions are separated by a so-called isos
point, which is defined to be the characteristic frequen
where the Raman response is independent of tempera
Finally, it is often observed that the range of frequen
where the Raman response is reduced asT is lowered is an
order of magnitude~or more! larger than the temperature a
which the low-frequency spectral weight disappears. Th
anomalous features are not typically seen in either theA1g or
the B2g channels.

Theory has lagged behind experiment for electronic R
man scattering in strongly correlated materials. While th
ries that describe Raman scattering in weakly correla
~Fermi-liquid! metals7 or in band insulators8 have been
known for some time, it is only recently that a theory th
describes materials near the metal-insulator transition
been developed.9 This theoretical treatment involves apply
ing the dynamical mean-field theory to the simplest ma
body system that has a quantum-critical point—the spinl
Falicov-Kimball model.10 We choose this model as our ca
nonical model for Raman scattering because it can be so
exactly and the results are universal for the nonresonantB1g
channel on the insulating side of the transition~we do not
choose it because we believe that the Falicov-Kimball mo
is the physically relevant model for all correlated experime
tal systems—it is not!. Other work has been performed in th
so-called iterated-perturbation-theory approximation to
Hubbard model, where the nonresonantB1g Raman response
is determined.11

The Hamiltonian contains two types of electrons: itinera
band electrons and localized (d or f ) electrons. The band
©2001 The American Physical Society10-1
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J. K. FREERICKS AND T. P. DEVEREAUX PHYSICAL REVIEW B64 125110
electrons can hop between nearest neighbors@with hopping
integral t* /(2Ad) on a d-dimensional cubic lattice12#, and
they interact via a screened Coulomb interaction with
localized electrons~which is described by an interactio
strengthU between electrons that are located at the sa
lattice site!. All energies are measured in units oft* . The
Hamiltonian is

H52
t*

2Ad
(
^ i , j &

di
†dj1Ef(

i
wi2m(

i
~di

†di1wi !

1U(
i

di
†diwi , ~1!

where di
† (di) is the spinless conduction electron creati

~annihilation! operator at lattice sitei and wi50 or 1 is a
classical variable corresponding to the localizedf-electron
number at sitei. We will adjust bothEf and m so that the
average filling of thed electrons is 1/2 and the average fillin
of the f electrons is 1/2 (m5U/2 andEf50).

In this contribution we will show how to derive the non
resonant, mixed, and resonant Raman response of a sy
that crosses through a metal-insulator transition by solv
the problem exactly in the large-dimensional limit~employ-
ing dynamical mean-field theory!. In the case of nearest
neighbor hopping on a hypercubic lattice in infinite dime
sions, we show that theA1g response includes contribution
from all processes, theB1g response is resonant or nonres
nant, and theB2g response is purely resonant. We provi
computational results only for the nonresonantA1g and B1g
responses. Resonant~and mixed! Raman scattering result
will be presented elsewhere. We also prove the Shas
Shraiman relation, motivate the origin of the anomalous f
tures in the nonresonantB1g response, and show why the
are not seen in the nonresonantA1g channel.

We present the formalism in Sec. II which includes a d
tailed analysis of the Raman response in the different s
metry channels. In Sec. III we present the results of
calculations which display anomalous behavior forB1g and
ordinary behavior forA1g. Our conclusions are presented
Sec. IV.

II. FORMALISM

A. Nonresonant Raman response

The Feynman diagrams for the nonresonant Raman
sponse are shown in Fig. 1. The straight lines denote
momentum-dependent Green’s function and the wavy li
denote the photon propagator. The shading is used to re
sent the renormalized susceptibility and the symbolG de-
notes the local irreducible charge vertex. The functionsg(k)
are called the Raman scattering amplitudes, and they are
sen to have a well-defined spatial symmetry and no
quency dependence. The Raman response is found from
frequency-dependent density-density correlation funct
which is
12511
e

e

em
g

-

-

y-
-

-
-
r

e-
e
s

re-

o-
-

his
n

xRaman~ in l !5(
k
E

0

b

dtein ltH Tr Tt^e
2bHrk~t!rk~0!&

Z

2FTr^e2bHrk~0!&
Z G2J , ~2!

with the uniform (q50) Raman density operator

rk5g~k!dk
†dk , dk5

1

N (
j

e2Rj •kdj , ~3!

Z5Tr^e2bH& the partition function, andin l52ip lT the
bosonic Matsubara frequency~the t dependence of the op
erators is with respect to the full Hamiltonian!. The Raman
response is characterized in terms of the different spa
symmetries of the scattering amplitude. One can expand
function in a Fourier series, examine the contributions of
lowest components of the series, and compare them to
periment. Alternatively, one can start from a metallic Ham
tonian, and expand the Raman response in powers of
electronic vector potential. Under the assumption that
photon wavelength is much larger than the lattice spac
this latter approach yields the following results for the R
man scattering amplitudes in two dimensions:

gA1g
~k!'

]2e~k!

]kx
2

1
]2e~k!

]ky
2

'2e~k!,

gB1g
~k!'

]2e~k!

]kx
2

2
]2e~k!

]ky
2

'coskx2cosky ,

gB2g
~k!'

]2e~k!

]kx]ky
'sinkx sinky , ~4!

with e(k)} coskx1cosky the electronic band structure. Not
that theB2g response vanishes for pure nearest-neighbor h
ping, which is what we consider here~the band structure is
just a sum of cosines; hence all mixed derivatives vanis!.
The nonresonant B2g Raman response then vanishes, beca
the lowest-order Raman scattering amplitude vanishes.

The above forms can be generalized to the infinite-d limit
for nonresonant scattering by noting thatg(k) satisfies13

FIG. 1. Dyson equation for the nonresonant Raman respo
function. Solid lines denote electron propagators and wavy li
denote photon propagators. The shading denotes the fully renor
ized susceptibility and the symbolG is the irreducible frequency-
dependent charge vertex. The vertex functiong is the Raman scat-
tering amplitude, which determines the symmetry of the Ram
scattering channel.
0-2
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g~k!5(
ab

eia

]2e~k!

]ka]kb
eob , ~5!

with ei(eo) the incoming~outgoing! photon polarization. In
systems with hopping beyond nearest neighbors, it is
possible to project completely onto theA1g sector with just
one choice of polarizations, since eitherB1g or B2g sectors
will always be mixed in; it is possible to project ontoB1g or
B2g with one measurement. In the infinite-dimensional lim
with nearest-neighbor hopping only, we can chooseeia
5eoa51 for A1g, eia51 and eoa5(21)a for B1g, and
eia5even50, eia5odd51, eoa5even51, and eoa5odd50 for
B2g. The resulting Raman scattering amplitudes are

gA1g
~k!'c2e~k!, gB1g

~k!'
1

Ad
(
i 51

d

~21! i coski ,

~6!

and gB2g
(k)50. Note that we include a constant termc in

the A1g amplitude, since it is allowed by symmetry.
The nonresonant Raman response in theB1g channel has

no vertex corrections14,9 and is equal to the bare bubble. Th
key element needed to show this is that the irreduc
charge vertexG is independent of momentum~since it is
local!. Hence, we must evaluate a summation overk of the
form

(
k

1

Ad
(
i 51

d

~21! i coski

1

X1
2

Ad
(
j 51

d

coskj

, ~7!

which arises when solving the Dyson equation for theB1g
response~and we can assume without loss of generality t
the imaginary part ofX is greater than zero!. Writing the
fraction in Eq.~7! as the integral of an exponential,15

1

X1
2

Ad
(
j 51

d

coskj

52 i E
0

`

dzexpF izS X1
2

Ad
(
j 51

d

coskj D G , ~8!

allows us to decouple the summation over momentum to
sum overd identical terms, each multiplied by (21)i . This
then vanishes for all evend and for oddd in the limit d
→` ~due to the 1/Ad term!. So the nonresonantB1g response
reduces to the evaluation of the bare bubble.

In the A1g channel, the Raman scattering amplitude h
the same symmetry as the irreducible charge vertex, so
corresponding summation over momentum does not van
and the nonresonantA1g Raman response is renormalized
the irreducible charge vertex.

The Falicov-Kimball model can be solved exactly in t
infinite-dimensional limit by using dynamical mean-fie
theory ~see Ref. 16 for details!. We summarize the main
12511
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points to establish our notation. The local Green’s function
the fermionic Matsubara frequencyivn5 ipT(2n11) is de-
fined by

Gn5G~ ivn!52Tr TtE
0

b

dteivnt ^e2bHatd~t!d†~0!S~l!&
Z

,

~9!

with

Z5Z0~m!1e2b(Ef2m)Z0~m2U !, ~10!

the atomic partition function expressed in terms of

Z0~m!5Trd^e
2bH0S~l!&, H052md†d. ~11!

In the above equations, the atomic HamiltonianHat is the
Hamiltonian of Eq.~1! restricted to one site, witht* 50, and
all time dependence is with respect toHat . The evolution
operatorS(l) satisfies

S~l!5expF2E
0

b

dtE
0

b

dt8d†~t!l~t2t8!d~t8!G ,
~12!

with l(t2t8) a time-dependent atomic field adjusted
make the atomic Green’s function equal to the local latt
Green’s function. We define an effective medium by

G0
21~ ivn!5Gn

211Sn5 ivn1m2ln , ~13!

with Sn the local self-energy andln the Fourier transforma-
tion of l(t). The trace in Eq.~9! can be evaluated directly to
yield

Gn5w0G0~ ivn!1w1@G0
21~ ivn!2U#21, ~14!

with w0512w1,

w15exp@2b~Ef2m!#Z0~m2U !/Z, ~15!

and

Z0~m!52ebm/2 )
n52`

`
ivn1m2ln

ivn
. ~16!

The self-consistency relation needed to determineln andGn
is to equate the local lattice Green’s function to the atom
Green’s function via

Gn5E
2`

`

de
r~e!

ivn1m2Sn2e
, ~17!

with r(e)5exp(2e2)/Ap the noninteracting density of state
for the infinite-dimensional hypercubic lattice.

The iterative algorithm to solve forGn starts with Sn
50. Then Eq.~17! is used to findGn , Eq. ~13! is employed
to extract the effective medium, Eq.~14! is used to find a
new local Green’s function, and then Eq.~13! is used to find
the new self-energy. This sequence of steps is then repe
until it converges, which usually requires only about a doz
or so iterations. This algorithm can also be used on the
axis ~with suitably modified equations! to directly solve for
the Green’s function and self-energy on the real axis.
0-3
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Once the Green’s functions are known, then the nonre
nant Raman response can be calculated directly. TheB1g
channel is simple, since we need only evaluate the b
bubble. Noting that the average of the square of theB1g
Raman scattering amplitude is 1/2 then yields

xB1g
~ in l !52

T

2 (
n

G~ ivn!2G~ ivn1 l !

in l1S~ ivn!2S~ ivn1 l !
~18!

for the Raman response on the imaginary axis. This form
can be easily analytically continued to the real axis by f
lowing the same procedure outlined in the calculation of
dynamical charge susceptibility:17 rewrite the sum over Mat-
subara frequencies by a contour integral of advanced or
tarded Green’s functions and self-energies multiplied by
Fermi factor, and then deform the contours to the real a
picking up any poles in the complex plane. Under the
sumption that there are no extra poles when the contours
deformed, one ends up with the following expression for
B1g response:

xB1g
~n!5

2 i

4pE2`

`

dvH f ~v!
G~v!2G~v1n!

n1S~v!2S~v1n!

2 f ~v1n!
G* ~v!2G* ~v1n!

n1S* ~v!2S* ~v1n!
2@ f ~v!2 f ~v

1n!#
G* ~v!2G~v1n!

n1S* ~v!2S~v1n!
J , ~19!

with f (v)51/@11exp(bv)# the Fermi function. We verify
that this expression is indeed accurate, by using the spe
formula to calculate the Raman response on the imagin
axis and comparing it to the result directly calculated fro
the expression in Eq.~18!. We find that the results rarel
differ by more than 1 part in 1000, confirming the accura
of the analytic continuation~we believe, but cannot prove
that no additional poles exist in the complex plane, wh
would mean the analytic continuation is exact!.

We can use the expression in Eq.~19! to prove the
Shastry-Shraiman relation. Using the identity that relates
local Green’s function on the lattice to the self-energy in E
~17! ~but evaluated on the real axis rather than the imagin
axis! yields

G~v!2G~v1n!

n1S~v!2S~v1n!

5E
2`

`

de
r~e!

@v1m2S~v!2e#@v1n1m2S~v1n!2e#
.

~20!

Employing this identity and related ones for the advanc
Green’s functions in Eq.~19! produces
12511
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xB1g
~n!5

1

2pE2`

`

dvE
2`

`

der~e!

3H f ~v!

v1n1m2S~v1n!2e
Im

1

v1m2S~v!2e

1
f ~v1n!

v1m2S* ~v!2e
Im

1

v1n1m2S~v1n!2eJ .

~21!

Using the definition of the spectral function

A~e,v!52
1

p
Im

1

v1m2S~v!2e
~22!

and taking the imaginary part of Eq.~21! then yields

Im xB1g
~n!5

p

2 E
2`

`

dvE
2`

`

der~e!

3@ f ~v!2 f ~v1n!#A~e,v!A~e,v1n!,

}ns~n!, ~23!

which is the Shastry-Shraiman relation—the imaginary p
of the nonresonantB1g Raman response is proportional to th
frequencyn times the optical conductivitys(n). This con-
clusion comes from comparing the integration in Eq.~23! to
the well-known result for the optical conductivity on th
infinite-d hypercubic lattice.18 Note that this final formula for
the Raman response depends only on the shape of the
tral function. Since the derivation was model independ
~like the derivation of the optical conductivity18!, this form
for the nonresonantB1g Raman response holds for all mod
els. ~Similarly, in models with next-nearest-neighbor ho
ping, one can also show that the nonresonantB2g response
also satisfies the Shastry-Shraiman relation.! We note that
this is a consequence of the momentum-independent
energy—any dependence of the self-energy on momen
will generally violate the Shastry-Shraiman relation, a
though it may still be an accurate approximation.

TheA1g response is more complicated, because it requ
a proper treatment of the vertex contributions. Fortunat
the charge vertex for the Falicov-Kimball model is we
known17 and assumes a simple form~for in l5” 0)

G~ ivm ,ivn ; in l !5dm,n

1

T

S~ ivn!2S~ ivn1 l !

G~ ivn!2G~ ivn1 l !
. ~24!

Hence, the Raman response in theA1g channel can be found
by solving the relevant Dyson’s equation, using the abo
form of the charge vertex. The set of Feynman diagram
shown in Figs. 1 and 2. Note that we have to solve these
coupled equations for theA1g Raman response.

The difference between the two diagrams shown in Fi
1 and 2 is the number of factors of the Raman scatter
amplitudeg; the nonresonant Raman response requires
dressed response that has only one power ofg—this dressed
response satisfies a simple Dyson equation, shown in Fig
0-4
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We denote the dressed response function in Fig. 2
x8( ivm ,ivn ; in l). Then a straightforward evaluation of th
Feynman diagrams and a solution of the Dyson equa
produces

FIG. 2. Supplemental Feynman diagrams for the nonreso
A1g Raman response. These diagrams are identical to those in F
except they have one fewer power ofg.
p-

e
l
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.
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y

n

x8~ ivm ,ivn ; in l !5
dmnx08~ ivm ; in l !

11x0~ ivm ; in l !TG~ ivm ,ivm ; in l !
,

~25!

with the irreducible charge vertex function found in Eq.~24!,

x0~ ivn ; in l !52
G~ ivn!2G~ ivn1 l !

in l1S~ ivn!2S~ ivn1 l !
~26!

and

x08~ ivn ; in l !52
c~Gn2Gn1 l !2ZnGn1Zn1 lGn1 l

in l1Sn2Sn1 l
.

~27!

Here we used the notationZn5 ivn1m2S( ivn). Now,
knowledge ofx8 allows us to solve for the Raman respon
in Fig. 1. The end result is

nt
. 1
xA1g
~ in l !5T(

n

x̄0~ ivn ; in l !2@x0~ ivn ; in l !1GnGn1 l #TG~ ivn ,ivn ; in l !

11x0~ ivn ; in l !TG~ ivn ,ivn ; in l !
, ~28!
one

tic
where the charge vertex is found in Eq.~24!, the bare sus-
ceptibility x0 is found in Eq.~26!, and the other bare susce
tibility x̄0 ~which is where all of thec dependence lies! is

x̄0~ ivn ; in l !5@2c2~Gn2Gn1 l !12c~ZnGn2Zn1 lGn1 l !

1Zn2Zn1 l2Zn
2Gn1Zn1 l

2 Gn1 l #/@ in l1Sn

2Sn1 l #. ~29!

Surprisingly, all of thec dependence actually drops out of th
nonresonantA1g Raman response~as it does in conventiona
metals7!. This can be seen by substituting the representat
for x0 and G into the denominator in the first term of Eq
~28!. One finds that the summation for the first term can th
be written in the general form(n(Yn2Yn1 l)/ in l , which
ns

n

vanishes since the individual summations converge and
can change the summation indexn→n1 l in the first term
@we similarly note that(n(Sn2Sn1 l)50#. Hence we arrive
at the final form for the nonresonantA1g Raman response:

xA1g
~ in l !5

T

in l
(

n

~Sn2Sn1 l !GnGn1 l

x0~ ivn ; in l !

5
T

in l
(

n

~Sn2Sn1 l !~ in l1Sn2Sn1 l !

Gn1 l
21 2Gn

21
.

~30!

It is a straightforward exercise to perform a similar analy
continuation of this expression. The result is
xA1g
~n!5

i

2pnE2`

`

dvH f ~v!
@S~v!2S~v1n!#@n1S~v!2S~v1n!#

G21~v1n!2G21~v!

2 f ~v1n!
@S* ~v!2S* ~v1n!#@n1S* ~v!2S* ~v1n!#

G21* ~v1n!2G21* ~v!

2@ f ~v!2 f ~v1n!#
@S* ~v!2S~v1n!#@n1S* ~v!2S~v1n!#

G21~v1n!2G21* ~v!
J . ~31!
o-
. 1
in
B. Resonant Raman response

Resonant Raman scattering arises from a fourth-o
process with respect to the photon vector potential. One
er
y

to view this scattering is to ‘‘separate’’ the two-photon-tw
electron vertex of nonresonant Raman scattering in Fig
into two single-photon-two-electron vertices. Keeping
0-5
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mind the direct and exchange possibilities results in f
distinct bare resonant Raman scattering diagrams, which
depicted in Fig. 3:~a! the uncrossed~direct! diagram,~b! the
first partially crossed diagram,~c! the second partially
crossed diagram, and~d! the fully crossed~exchange! dia-
gram. In all relevant cases, the partially crossed diagrams~b!
and ~c! are equal to each other.

In general, the Raman vertices for resonant scattering
volve expectation values of the momentum operator betw
the conduction band and the excited states. However, in
single-band model, the Raman vertices in Fig. 3 are equa
the dot product of the photon polarization vectore with
Fermi velocityv:

va5
]e~k!

]ka

5
t*

Ad
sinka . ~32!

Again, we distinguish between the incoming photon pol
ization ei and the outgoing photon polarizationeo . The dif-
ferent symmetry channels are projected by appropr
choice of the polarization vectors. We chooseeia5eoa51
for A1g, eia51, andeoa5(21)a for B1g, andeia5even50,
eia5odd51, eoa5even51, andeoa5odd50 for B2g. It is im-
portant to note that in all cases a single factor ofe•v is an
odd function ofk, so the only way to get nonzero summ
tions over momentum is to have an even number ofe•v
factors in any given integration.

In general, the bare resonant Raman scattering diagr
must be renormalized by attaching appropriate irreduc
charge vertex functions~and higher-order generalizations,
possible! to all relevant Green’s function legs. Since alle•v

FIG. 3. Bare resonant Raman scattering diagrams. The~a! un-
crossed,~b! first partially crossed,~c! second partially crossed, an
~d! fully crossed diagrams are all shown. The straight lines
momentum-dependent Green’s functions, the wiggly lines are p
ton propagators, and the vertex factors are the dot product of
photon polarization with the Fermi velocity as described in the t
(v i5ei•v, vo5eo•v). Note that the two partially crossed dia
grams~b! and ~c! are equal to each other.
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factors are odd ink and the irreducible charge vertex hasA1g
symmetry, there can be no renormalization of any single v
tex. Similarly, one can argue that there are no three-part
or four-particle vertex renormalizations possible either. T
only possibility is a two-particle vertex that connects opp
site Green’s function lines. In theA1g resonant Raman sca
tering channel, all possible vertical and horizontal renorm
izations of each bare diagram are possible. For theB1g and
B2g channels, there are simplifications. One can quic
verify that in both of those cases the productei•veo•v is
orthogonal to theA1g symmetry, so the partially crossed dia
grams ~b! and ~c! cannot have any renormalization eithe
Furthermore, this also implies that attaching a vertical cha
vertex to either the~a! or the ~d! diagram vanishes for the
same reason. But a horizontal attachment of the verte
possible in both the~a! and ~d! diagrams. Hence, the reno
malized resonant Raman scattering in both theB1g and B2g
channels is described by the coupled set of equations in
4. A similar, but more complicated, set of diagrams is need
for the A1g channel, where renormalizations are present
both the vertical and horizontal pairs of legs for all diagram
We do not show those Feynman diagrams here.

Evaluation of these diagrams and their analytic contin
tion to the real axis is tedious. We leave that task for a fut

e
o-
he
t

FIG. 4. Renormalized resonant Raman scattering diagrams
Figs. 3~a! and 3~d! in the B1g and B2g channels. We suppress th
photon lines that are explicitly shown in Fig. 3, for simplicity. In~a!
one has the diagrams for the Raman response, while in~b! the
supplemental Dyson equation needed to solve for the dressed
man response is given. The only difference for theB1g and B2g

channels is the choice of polarization vectorsei and eo , and we
have suppressed the incoming and outgoing indices on the ver
v. The symbolG denotes the local irreducible charge vertex. No
that only the direct and exchange diagrams@Figs. 3~a! and 3~d!# are
renormalized.
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publication. But we do note that both of the renormaliz
diagrams~a! and ~d! of Fig. 3 will have the zero-frequenc
( in l50) piece of the irreducible charge vertex renormalizi
them. This is the nondiagonal piece of the charge vertex,
it can get large when the system is tuned to lie near a ph
separation transition. Hence, we expect the resonant Ra
scattering to be enhanced whenever one is close to a p
separation. Note that this enhancement will occur for all p
ton frequencies, since the zero-frequency vertex couple
such diagrams; this implies that one will not see this eff
by tuning through a resonant frequency.

C. Mixed Raman response

The mixed Raman response comes from the cross te
between the linear and quadratic terms in the vector po
tial. As such, these diagrams have two single-photon–t
electron vertices and one two-photon–two-electron ver
Since the B2g Raman scattering amplitude vanishes
nearest-neighbor hopping on a hypercubic lattice, there is
mixed Raman response for that channel. The bare m
Raman response is shown in Fig. 5. There are two poss
diagrams corresponding to the direct or exchange proces
In the B1g channel, the dressed mixed response is equa
the bare mixed response, since the irreducible charge ve
cannot be inserted anywhere. For theA1g channel, the bare
mixed response is renormalized by the irreducible cha
vertex in a similar way to how it renormalized the nonres
nant Raman response. We do not present any numerica
sults for the mixed Raman response here, but will do so
another publication. It turns out that one can show that in
B1g channel with nearest-neighbor hopping only, the mix
response is a 1/d correction and can be neglected; it cann
be neglected for theA1g sector. The 1/d correction forB1g
arises from the fact that the summation over momentum
a ‘‘form factor’’ proportional to cos(ki)(21)i sin2(kj)(21)j.
This term cancels when summed overi and j except for i
5 j . This latter constraint forces the mixed diagram to b
1/d correction. In theA1g case, there are no factors o
(21), so the terms with alli and j contribute, and it is an
O(1) term.

FIG. 5. Bare mixed Raman response. The single-photon vert
are multiplied by the respective factor of the polarization vec
dotted into the Fermi velocity, while the two-photon vertex is m
tiplied by the corresponding Raman scattering amplitude. Note
no renormalization is possible for theB1g channel, but the diagram
is renormalized in theA1g channel.
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III. RESULTS

The Falicov-Kimball model has a ground state that is n
a Fermi liquid because the lifetime of a quasiparticle is fin
at the Fermi energy. In addition, the imaginary part of t
self-energy has the wrong sign of curvature to be a Fe
liquid. We study the model at half filling. AsU increases, the
system first enters a pseudogap phase, where spectral w
is depleted near the chemical potential, and then undergo
metal-insulator transition~the pseudogap phase is possib
because the ground state is not a Fermi liquid!. The interact-
ing density of states~DOS! is, however, temperature inde
pendent for fixedU and fixed electron fillings.19 It is plotted
in Fig. 6 for a range of values ofU: U,0.65 corresponds to
a weakly correlated metal, while a pseudogap phase app
for 0.65,U,1.5 moving through a quantum-critical point a
U51.5 to the insulator phaseU.1.5 ~we neglect all pos-
sible charge-density-wave phases here!.

In Fig. 7~a! we plot the nonresonantB1g Raman response
at a fixed temperatureT50.5 for different values ofU. For
small values ofU, a small scattering intensity is observe
due to the weak interaction among ‘‘quasiparticles,’’ provi
ing a small region of phase space allowable for pair scat
ing. The peak of the response reflects the dominant en
scale for scattering, as is well known in metals,7 and the
high-energy tail is the cutoff determined by the finite-ener
band. This shape is also understandable from the Sha
Shraiman relation—since the optical conductivity is
Lorentzian, the Raman response is just proportional
an/@n21a2#, which assumes the above form. AsU in-
creases, the low-frequency response is depleted as spe
weight gets shifted into a large charge-transfer peak a
frequency;U. The charge-transfer peak begins to app
for values ofU for which the DOS is still finite at the Ferm
level (U51) and becomes large in this pseudogap ph
before growing even larger in the insulating phase. Not
how low-frequency spectral weight remains even as on
well on the insulating side of the quantum-critical point (U
54) and at a temperatureT much lower than the gap. It is

es
r

at

FIG. 6. Interacting density of states for the Falicov-Kimba
model. Results are shown forU50.5, 1, 1.5, 2, and 4~the numbers
in the figure label the value ofU). Note how the system first de
velops a pseudogap~1.0! before the metal-insulator transition a
U51.5. The density of states is independent of temperature.
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these spectral features that are characteristically seen in
experiments and which can only be seen in a theory
approaches the quantum-critical point.

In Fig. 7~b!, we show the nonresonantA1g Raman re-
sponse. As shown above, theA1g response is independent o
the value ofc. The general behavior is similar to that of th
B1g channel except~i! at weak coupling the Raman scatterin
is more symmetric and pushed to higher energy,~ii ! the ver-
tex corrections suppress all nontrivial low-frequency Ram
response, and~iii ! the widths of the charge-transfer peaks a
enhanced.

Since the Raman response displays anomalous feature
the insulating side of the metal-insulator transition, we fi
present results forU52, just on the insulating side of th
quantum critical point. In Fig. 8~a!, we plot the temperature
dependence. The total spectral weight increases dramati
with decreasing temperature as charge-transfer processe
come more sharply defined. At the same time, the lo
frequency response depletes with lowering temperatu
vanishing at a temperature which is on the order of theT
50 insulating gap~we are unable to analytically estimate th
crossover temperature!. This behavior is precisely what i
seen in experiments on3 FeSi and on4 underdoped
La22xSrxCuO4 at low temperatures where both the isosbes
point and the low-temperature spectral weight depletion
be seen. Similar results are also seen2 in SmB6, but a low-
energy peak also develops in that material at low temp
tures. In theA1g channel@Fig. 8~b!#, we see the same sharp
ening of the charge-transfer peak at lowT, but the low-
energy response is much smaller and changes much m
slowly with T ~but, in fact, increases asT is lowered!.

If one were to interpret the temperature at which theB1g
Raman spectral weight starts to deplete as the ‘‘transi
temperature’’Tc and the range of frequency over which th
weight is depleted as the gapD, then one would conclude
that near the quantum-critical point 2D/kBTc@1. This is be-
cause the ‘‘Tc’’ is effectively determined by the gap in th
single-particle density of states~which is small near the

FIG. 7. Nonresonant~a! B1g and ~b! A1g Raman response fo
different values ofU at T50.5. The Raman response is measured
arbitrary units. Notice how the vertex corrections suppress the l
frequency spectral weight in theA1g channel.
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quantum critical point!, while the ‘‘D ’’ is determined by the
width of the lower Hubbard band~which remains finite at the
quantum-critical point!; hence the ratio can become ve
large near the quantum-critical point~and should decrease i
the large-U limit !.

The nonresonant Raman response is plotted in Fig. 9 f
number of different temperatures atU51. Note how theB1g
response has nontrivial low-energy spectral weight, e
though it is not completely separated from the char
transfer processes. Even in this case, one can see the
temperature development of an isosbestic point nearU/2 for
temperatures below aboutT50.3. As the low-energy spectra
weight is depleted, the peak becomes more symmetric
shape. In theA1g channel, the response sharpens, and
peak moves to lower energy as the temperature is lowere
fact, the low-energy spectral weight actually increases asT is
lowered. There is no indication of a separation of the
sponse into low- and high-energy features that have a dif
ent temperature dependence~as seen for theB1g response!.

The B1g spectral-weight transfer from low frequencies
the charge-transfer peak as a function of temperature ca
quantified by separating the Raman response into two
gions determined by the isosbestic point and plotting
ratio of the low-frequency spectral weight at temperatureT
to the low-frequency spectral weight atT50.95 versus re-
duced temperatureT/0.95 ~Fig. 10!. ChoosingU/2 as the
location of the isosbestic point~which divides the low-
frequency and high-frequency regions!, we find that the re-
duction of spectral weight from high to low temperatures
over 50% even in the weak pseudogap phase, and decre
by well over three orders of magnitude asU increases into
the insulating phase (U54).

n
-

FIG. 8. ~a! NonresonantB1g Raman response for a range
temperatures (T50.05,0.2,0.3,0.5,0.9) forU52 ~which lies just on
the insulating side of the metal-insulator transition! and ~b! non-
resonantA1g Raman response for the same temperatures atU52.
The lines are labeled by their temperature~except forT50.2 which
is unlabeled!. Note how theB1g response has low-frequency spe
tral weight that develops rapidly at an onset temperature oT
'0.2 ~the low-frequency responses atT50.5 andT50.9 overlap!
and note the isosbestic point atn'1. The ratio of the range in
frequency over which the low-frequency weight increases and
onset temperature is about 5. There are no anomalous features
A1g spectrum.
0-8
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The origin of the isosbestic point in the nonresonantB1g
response is mysterious, but can be motivated by the Sha
Shraiman relation.1 Since the optical conductivity satisfies
sum rule, the appearance of an isosbestic point there is
surprising, as any decrease in low-frequency spectral we
must be compensated by a corresponding increase in h

FIG. 9. Nonresonant~a! B1g and ~b! A1g Raman response atU
51 for T50.9, 0.5, 0.3, 0.1, 0.05. The lines are labeled by
temperature. Note how theB1g response develops an isosbes
point at low temperatures, but the low-frequency depletion is m
modest here than in the insulating phase. TheA1g response has no
anomalous features, but the peak of the response moves to l
energies as the Raman response sharpens at low temperature.
moderate to low-frequency range, the Raman response increas
T is lowered.

FIG. 10. Ratio of low-frequency spectral weight at temperat
T to the low-frequency spectral weight atT50.95 plotted vs re-
duced temperatureT/0.95 for different values ofU. The values ofU
are 0.5, 1, 1.5, 2, and 4, and the curves correspond to increa
values ofU starting at the top with 0.5 and running to the bottom
4. Note how the sharpening of the Raman response asT is lowered
results in significant reductions to the low-frequency spec
weight even in the metallic case. In the strong insula
phase, the spectral weight decreases by over three orders of m
tude (U54).
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frequency spectral weight, so one might expect there to b
frequency where the response does not depend onT ~of
course this does not establish that an isosbestic point m
exist; it just motivates such an existence!. The isosbestic
point in the B1g Raman response then follows from th
Shastry-Shraiman relation, since multiplying the optical co
ductivity by a frequency will not modify the appearance
an isosbestic point.

We attribute the presence of anomalous low-freque
and low-temperature response in a system which is
strongly correlated insulator to the appearance of therm
activated transport channels~indeed, the only temperatur
dependence to the Raman response comes from Fermi
tors in an integral!. In the insulating phase at zero temper
ture, the only available intermediate states created by
light must involve double-site occupancy of a conducti
and a localized electron, with an energy cost ofU. This gives
the large charge-transfer peak. As the temperature is
creased, double occupancy can occur and as a result ligh
scatter electrons to hop between adjacent unoccupied s
either directly or via virtual double occupancies. The numb
of electrons which can scatter in this fashion increases w
increasing temperature, leading to an increase in the l
frequency spectral weight. The frequency range for this lo
frequency Raman response is determined by the lower H
bard bandwidth, which is typically much larger than th
temperature at which these features first appear.

There is also a more mathematical explanation to the lo
frequency spectral response. If we examine the integral
theB1g Raman response in Eq.~19!, we note three importan
points: ~i! the imaginary part of the Raman response is p
portional to the real part of the integrand@the terms within
the braces in Eq.~19!#, ~ii ! the integrand vanishes if th
Green’s functions~and self-energy! at v andv1n are both
real, and~iii ! all temperature dependence arises from
Fermi factors, since bothG andS are temperature indepen
dent. In the insulating regime, the DOS breaks into t
pieces, a lower subband centered at2U/2 with a width of
O(1) and an upper subband atU/2 with a width of O(1).
The Green’s functions are complex only when the freque
argument lies within one of the bands. Hence there are
main contributions to the Raman response:~i! intraband pro-
cesses, wherev'2U/2 or U/2 andn'1, and~ii ! interband
processes, wherev'2U/2 and n'U. The interband pro-
cesses, withn'U, are what give rise to the charge-transf
peaks seen in the Raman response; these processes s
even atT50. The intraband processes, withn'1, give rise
to the low-frequency spectral features. At low temperatur
these features are proportional tof (v)2 f (v1n) which can
be approximated by exp(2U/2T)@12exp(n/T)# in the insu-
lating phase. Hence, we expect the low-frequency spec
weight to be proportional to exp(2U/2T) in the large-U
limit. In the A1g channel, the charge vertex makes the in
grand more complicated to analyze~but the response stil
separates into interband and intraband processes!, and the
vertex corrections end up ultimately suppressing the lo
frequency response.

Last, we plot the inverse slope of the Raman respons
Fig. 11 as a function of temperature for different values ofU.
The inverse Raman slope is the reciprocal of the slope of
Raman response in the limit asv→0. Since the self-energy
is temperature independent, we might expect a constant
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man slope as a function of temperature, as is the case w
disordered Fermi liquid. However, this is not the case due
the formation of a thermally generated band for scatteri
For small values ofU, the temperature dependence of t
Raman inverse slope is weak due to the temperature i
pendence of the self-energy. However, as the single-par
bands begin to separate, the relevance of thermally gene
double occupancies becomes more pronounced and th
verse slope rapidly rises at low temperatures. As the sys
becomes more insulating, the low-temperature inverse s
increases dramatically due to the depletion of the lo
frequency spectral weight. AsU increases from the
pseudogap phase into the insulating phase, the temper
dependence of the Raman inverse slope indicates the fo
tion of gapped excitations„assuming the formT@1
1cosh(D/$2T%)#, with D the gap in the single-particle DOS….
Such behavior has been seen in the underdoped cu
materials.

IV. CONCLUSIONS

The electronic Raman response of a wide variety of c
related materials~on the insulating side of the meta
insulator transition! displays similar anomalous feature
which point to a common explanation. In our results,
have shown how to see these anomalies in theB1g channel
by solving the Falicov-Kimball model. We saw that the R
man response ultimately depended only on the single-par
density of states. In more complicated correlated models,

FIG. 11. Inverse Raman slope as a function of temperature.
inverse Raman slope measures the scattering rate of the ‘‘quas
ticles’’ of a correlated metal. As the system enters the pseudo
phase, the inverse slope starts to increase at low temperature
creasing dramatically as one enters the correlated insulatorU
52).
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metallic single-particle density of states can have an ad
tional Fermi liquid peak at low frequencies which will ad
new features to the Raman response,20 but on the insulating
side of the transition, where most of the anomalous beha
is seen, the single-particle density of states must be simila
that of the Falicov-Kimball model~except for some addi-
tional weak temperature dependence of the interacting DO!,
since an insulator has no low-energy spectral weight. Hen
these anomalous Raman scattering results are expected
essentially model independent~since they only depend on
the interacting DOS!.

In this work, we also illustrated how one can calcula
both the resonant and the mixed Raman scattering respo
as well. We showed how the bare diagrams are renormal
for the different symmetry sectors, but did not perform a
numerical calculations here.

Our theoretical results compare quite favorably to the
perimental results seen in a variety of different materi
ranging from mixed-valence compounds2 to Kondo
insulators3 to the underdoped high-temperature superc
ducting oxides.4–6 The experimental data illustrate the thre
characteristic features seen in our theory:~i! there is a rapid
rise in the low-frequency spectral weight at low temperatu
~at the expense of the high-frequency spectral weight!, ~ii !
there is an isosbestic point, and~iii ! the range of frequency
over which the low-frequency weight appears is much lar
than the onset temperature, where it is first seen. Our m
always produces an isotropic gap, so we are unable to il
trate the symmetry-selective behavior seen in the copper
ides where only theB1g response is anomalous and theA1g
andB2g responses are metallic. But our results do indicat
‘‘universality’’ and model independence of the Raman r
sponse on the insulating side of, but in close proximity to
quantum-critical point. We believe this is the reason why
many different materials show the same generic behavio
their electronic Raman scattering.

In future work we will examine nonresonantB1g Raman
scattering in the Hubbard model20 and will examine resonan
and mixed Raman scattering effects in the Falicov-Kimb
model.
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