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J. K. Freerick§ and T. P. Devereadx
!Department of Physics, Georgetown University, Washington, DC 20057
°Department of Physics, University of Waterloo, Waterloo, Ontario, Canada N2G 1Y2
(Received 3 April 2001; published 10 September 2001

The exact solution for nonresonahkt, andB,, Raman scattering is presented for the simplest model that has
a correlated metal-insulator transition, the Falicov-Kimball model, by employing dynamical mean-field theory.
In the general case, thi,4 response includes nonresonant, resonant, and mixed contributions, aBgl,the
response includes nonresonant and resonant contributiemgprove the Shastry-Shraiman relation for the
nonresonanB,4 responsg while the B,4 response is purely resonant. Three main features are seen in the
nonresonanB,4 channel:(i) the rapid appearance of low-energy spectral weight at the expense of higher-
energy weight;(b) the frequency range for this low-energy spectral weight is much larger than the onset
temperature, where the response first appears;(@ndthe occurrence of an isosbestic point, which is a
characteristic frequency where the Raman response is independent of temperature for low temperatures. Vertex
corrections renormalize away all of these anomalous features in the nonresgpahtnnel. The calculated
results compare favorably to the Raman response of a number of correlated systems on the insulating side of
the quantum-critical pointranging from Kondo insulators to mixed-valence materials to underdoped high-
temperature superconductprgve also show why the nonresonddyy Raman response is “universal” on the
insulating side of the metal-insulator transition.
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[. INTRODUCTION tures and then rapidly increases as the temperature is lowered
towards a putative quantum-critical poiicbrresponding to a
Raman scattering has been an important experimental toohetal-insulator transition In addition, the Raman spectral
for studying lattice dynamics for over four decadsiice the range is divided into two regions: one where the response
advent of the laser More recently, it has been applied to decreases a¥ is lowered and one where the response in-
study the scattering of electrons in metals, insulators, semereases. These regions are separated by a so-called isosbestic
conductors, and superconductors. Via light's coupling to thgoint, which is defined to be the characteristic frequency
electron’s charge, inelastic light scattering reveals symmetryhere the Raman response is independent of temperature.
selective properties of the electron dynamics over a widé-inally, it is often observed that the range of frequency
range of energy scales and temperatures. It is similar to thehere the Raman response is reduced &slowered is an
optical conductivity, which involves elastic scattering of light order of magnitudd¢or more larger than the temperature at
by electron-hole pairs, but Raman scattering provides addiwhich the low-frequency spectral weight disappears. These
tional information, since it is able to isolate different sym- anomalous features are not typically seen in eithethgor
metry channels by selectively polarizing the incident lightthe B,y channels.
and measuring the reflected light with a polarized detector. Theory has lagged behind experiment for electronic Ra-
Three principle symmetries are usually examin@gl:Aqg, man scattering in strongly correlated materials. While theo-
which has the full symmetry of the lattidee., iss like); (ii) ries that describe Raman scattering in weakly correlated
Big, which is a d-like symmetry (which probes the (Fermi-liquid metals or in band insulatofs have been
Brillouin-zone axes and (iii) B,g, which is anothed-like known for some time, it is only recently that a theory that
symmetry (which probes the Brillouin-zone diagonpldn  describes materials near the metal-insulator transition has
1990-1991, Shastry and Shraiman proposed a simpleeen developediThis theoretical treatment involves apply-
relation' that connects the nonresonant Raman response fog the dynamical mean-field theory to the simplest many-
the optical conductivity. We prove the Shastry-Shraiman rebody system that has a quantum-critical point—the spinless
lation here for theB, 4 channel in the large-dimensional limit. Falicov-Kimball modef'® We choose this model as our ca-
Strongly correlated systems as disparate as mixed-valeneg®nical model for Raman scattering because it can be solved
compound$ (such as SmB, Kondo insulator$ (such as exactly and the results are universal for the nonresoBant
FeS), and the underdoped cuprate high-temperaturehannel on the insulating side of the transitiome do not
superconductofs® show temperature-dependdif; Raman  choose it because we believe that the Falicov-Kimball model
spectra that are both remarkably similar and quite anomais the physically relevant model for all correlated experimen-
lous. This “universality” suggests that there is a commontal systems—it is ngt Other work has been performed in the
mechanism governing the electronic transport in correlatego-called iterated-perturbation-theory approximation to the
insulators. As these materials are cooled, they all show &lubbard model, where the nonresonBrj Raman response
pileup of spectral weight for moderate photon energy losseis determined?
with a simultaneous reduction of the low-frequency spectral The Hamiltonian contains two types of electrons: itinerant
weight. This spectral weight transfer is slow at high temperaband electrons and localized (or f) electrons. The band
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integral t*/(2+/d) on a d-dimensional cubic latticé], and

they interact via a screened Coulomb interaction with the

localized electrongwhich is described by an interaction

strengthU between electrons that are located at the same ::3;(
- T

electrons can hop between nearest neighbeith hopping é
4 Y

.

lattice site. All energies are measured in units ©&f. The
Hamiltonian is

FIG. 1. Dyson equation for the nonresonant Raman response

t* function. Solid lines denote electron propagators and wavy lines
H=- 2 ddej + Efz Wi — ,uE (ddei +w;) denote photon propagators. The shading denotes the fully renormal-
2d &) i i ized susceptibility and the symb#l is the irreducible frequency-
dependent charge vertex. The vertex functjois the Raman scat-
+UE ddeiWia (1) tering amplitude, which determines the symmetry of the Raman
|

scattering channel.

. . . . —pBH
whered! (d,) is the spinless conduction electron creation )= Bd iy TTTH€ " pi(7) pi(0))
W . .. . XRamak171) 7€
(annihilatior) operator at lattice sité andw;=0 or 1 is a k Jo z
classical variable corresponding to the localiZeglectron 2]

: 2

. . . —pBH
number at sitd. We will adjust bothE; and » so that the Tr{e” " p(0))
with the uniform @=0) Raman density operator

z

average filling of thel electrons is 1/2 and the average filling
of thef electrons is 1/2 4=U/2 andE;=0).

In this contribution we will show how to derive the non-
resonant, mixed, and resonant Raman response of a system 1
that crosses through a metal-lnsqlator transition by solving p=y(K)dld,, dg=— 2 e~ Ri'kdj , (3)
the problem exactly in the large-dimensional lirfémploy- N 4
ing dynamical mean-field theorylIn the case of nearest-
neighbor hopping on a hypercubic lattice in infinite dimen-
sions, we show that th&,4 response includes contributions
from all processes, thB,4 response is resonant or nonreso-
nant, and theB,, response is purely resonant. We provide
computational results only for the nonreson&gf and B4
responses. Resonafdnd mixed Raman scattering results
will be presented elsewhere. We also prove the Shastr
Shraiman relation, motivate the origin of the anomalous fea
tures in the nonresonal, 4 response, and show why they
are not seen in the nonresonany, channel.
e B e e i sy I aprozch s he oo resls fr tre R
metry channels. In Sec. Il we present the results of ouran scattering amplitudes in two dimensions:
calculations which display anomalous behavior By and

Z=Tr(e A" the partition function, and»,=2i#IT the
bosonic Matsubara frequencthe = dependence of the op-
erators is with respect to the full HamiltonjarThe Raman
response is characterized in terms of the different spatial
symmetries of the scattering amplitude. One can expand this
function in a Fourier series, examine the contributions of the
>Jpwest components of the series, and compare them to ex-
periment. Alternatively, one can start from a metallic Hamil-
tonian, and expand the Raman response in powers of the
electronic vector potential. Under the assumption that the
photon wavelength is much larger than the lattice spacing,

ordinary behavior foA;4. Our conclusions are presented in ya. (K)~ ——— +———— ~ — ¢(K)
Sec. IV. 19 k> kS ’
Fe(k)  9%e(k)
Il. FORMALISM yBlg(k)~ Z —Tmcoskx—cosky,
J J
A. Nonresonant Raman response X y
The Feynman diagrams for the nonresonant Raman re- Pe(k) )
sponse are shown in Fig. 1. The straight lines denote the VB, (K~ akxﬁkymsmkx sinky, (4)

momentum-dependent Green’s function and the wavy lines

denote the photon propagator. The shading is used to reprexth e(k) e cosk,+cosk, the electronic band structure. Note
sent the renormalized susceptibility and the symbBotle-  that theB,4 response vanishes for pure nearest-neighbor hop-
notes the local irreducible charge vertex. The functigp(is) ping, which is what we consider hefthe band structure is
are called the Raman scattering amplitudes, and they are chjust a sum of cosines; hence all mixed derivatives vanish
sen to have a well-defined spatial symmetry and no freThe nonresonant § Raman response then vanishes, because
guency dependence. The Raman response is found from thise lowest-order Raman scattering amplitude vanishes.
frequency-dependent density-density correlation function The above forms can be generalized to the infiditénit
which is for nonresonant scattering by noting thetk) satisfies®
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d%e(k) points to establish our notation. The local Green’s function at
y(k)=2> Cia J1 . CoB (5)  the fermionic Matsubara frequenty,=i7T(2n+1) is de-
b a”hh fined by

with e(e,) the incoming(outgoing photon polarization. In ~BH, t
systems with hopping beyond nearest neighbors, it is nOanG(iwn):—TrTTdere“"nT<e Pad(n)d (O)S()\»,
possible to project completely onto ti#g, sector with just 0 Z

one choice of polarizations, since eithy, or B,, sectors 9)
will always be mixed in; it is possible to project onBygor  with

B,y With one measurement. In the infinite-dimensional limit,

with nearest-neighbor hopping only, we can choasg Z=Zy(p)+e PETHZ (u—-U), (10)
=€y,=1 for Ay, 6,=1 andg,,=(—1)* for By, and
€a=everi= 0y Ba=odi=1; €a=everi= 1, @Nd €,=o4q=0 for

the atomic partition function expressed in terms of

Byg- The resulting Raman scattering amplitudes are ZO(,u)zTrd<e‘ﬁHOS()\)), Ho= —,u,de. (11
1 In the above equations, the atomic Hamiltonidg, is the

ya (K)~c—e(K), g (K)~—= > (—1) cosk;, Hamiltonian of Eq(1) restricted to one site, witti =0, and
Pag P1g Jd =1 ' all time dependence is with respect lth,;. The evolution

(6)  operatorS(\) satisfies

and szg(k)ZO. Note that we include a constant tewrin B B4 , )
the A;4 amplitude, since it is allowed by symmetry. S()\)zexr{ - fo deo drdi()A(r=7)d(") |,

The nonresonant Raman response inBhgchannel has (12)
no vertex correctiot$® and is equal to the bare bubble. The , ) L )
key element needed to show this is that the irreducibld¥ith AM(7—7') a time-dependent atomic field adjusted to
charge vertex” is independent of momenturisince it is make ’the atomic Green§ function equal to the local lattice
local). Hence, we must evaluate a summation ovaf the Green'’s function. We define an effective medium by

form Gy liwn) =G M+ Sn=iwn+m—\p, (13)
1 _ 1 with 3, the local self-energy and,, the Fourier transforma-
; ﬁ 21 (—1)" cosk; S 3 , (7)  tion of N(7). The trace in Eq(9) can be evaluated directly to
= .
X+—d >, cosk; yield
=1

Gn=WoGo(iwy) +W1[Gg H(iwn) —UI™ (14
which arises when solving the Dyson equation for Ehl% with wo=1—w;,
responséand we can assume without loss of generality that
the imaginary part oiX is greater than zejo Writing the wy=exd — B(Eq— u)]1Zo(n—VU)/Z, (15)
fraction in Eq.(7) as the integral of an exponential,

and
1 “ ot p—\,
; 3 Zo(w)=2eP2 [ ——. (16
X+ —= > cosk n==c @n
Jd = The self-consistency relation needed to determipandG,

is to equate the local lattice Green’s function to the atomic
(8) Green'’s function via

, d
X+—= 2, cosk;
di=1

=—if dzexp{iz
0

” p(€)
allows us to decouple the summation over momentum to the Gn:f dﬁm, 17
sum overd identical terms, each multiplied by-(1)". This o " "
then vanishes for all eved and for oddd in the limit d  with p(€)=exp(— €’/ the noninteracting density of states
— o (due to the 1{d term). So the nonresonaly; 4 response for the infinite-dimensional hypercubic lattice.
reduces to the evaluation of the bare bubble. The iterative algorithm to solve fo6G, starts with3,
In the A,4 channel, the Raman scattering amplitude has=0. Then Eq(17) is used to findG,,, Eq.(13) is employed
the same symmetry as the irreducible charge vertex, so the extract the effective medium, EL4) is used to find a
corresponding summation over momentum does not vanismew local Green’s function, and then E@d3) is used to find
and the nonresonadt;; Raman response is renormalized by the new self-energy. This sequence of steps is then repeated
the irreducible charge vertex. until it converges, which usually requires only about a dozen
The Falicov-Kimball model can be solved exactly in the or so iterations. This algorithm can also be used on the real
infinite-dimensional limit by using dynamical mean-field axis (with suitably modified equationdo directly solve for
theory (see Ref. 16 for details We summarize the main the Green’s function and self-energy on the real axis.
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Once the Green’s functions are known, then the nonreso- 1 (= @
nant Raman response can be calculated directly. Bhe XBlg(V)ZEJ'%de%dGP(G)
channel is simple, since we need only evaluate the bare
bubble. Noting that the average of the square of Ehg | f(w) 1
Raman scattering amplitude is 1/2 then yields

o+tv+u—2(o+v)—€ Ima)-i-,u,—E(a))—e

. __I G(iwy) = G(iwpy) flo+v) 1
XBlg(IVI)_ 2 ; iv+2(lw,) —2(iwgg)) (18 + wt+p—3*(w)—€ mw-l— v+u—2(o+v)—€l|’

(21)

for the Raman response on the imaginary axis. This formula
can be easily analytically continued to the real axis by fol-Using the definition of the spectral function
lowing the same procedure outlined in the calculation of the

dynamical charge susceptibility:rewrite the sum over Mat- 1 1
subara frequencies by a contour integral of advanced or re- Ale,w)=- ;Imw-l—,u,—z(w)— €
tarded Green'’s functions and self-energies multiplied by the . . . .
Fermi factor, and then deform the contours to the real axi@nd taking the imaginary part of EQ1) then yields
picking up any poles in the complex plane. Under the as- . .

sumption that there are no extra poles when the contours are |y Xe (V)=% f d“’f dep(e)

deformed, one ends up with the following expression for the g 2 )« —

B4 response:

(22

X[f(w)—f(o+v)]A(e,w)A(€,0+ V),

G(w)—G(w+v) “vo(v), (23

_I oo
Xe, (V) 4Wf—wdw[ f(w) v+3(w)—Z(0+v) which is the Shastry-Shraiman relation—the imaginary part
. . of the nonresonari;; Raman response is proportional to the
(o) G*(w)-G*(w+v) () (o frequency times the optical conductivity(»). This con-
3% (0)—3* (w+v) clusion comes from comparing the integration in E2B) to
the well-known result for the optical conductivity on the
G*(w)—G(w+v) infinite-d hypercubic latticé® Note that this final formula for
v)] " ) (19 the Raman response depends only on the shape of the spec-
v+3* (o)~ X(0+) tral function. Since the derivation was model independent
(like the derivation of the optical conductivif), this form
with f(w)=111+exp(Bw)] the Fermi function. We verify for the nonresonari,; Raman response holds for all mod-
that this expression is indeed accurate, by using the spectrals. (Similarly, in models with next-nearest-neighbor hop-
formula to calculate the Raman response on the imaginaring, one can also show that the nonresorgg response
axis and comparing it to the result directly calculated froma|so satisfies the Shastry-Shraiman relajiahle note that
the expression in Eq(18). We find that the results rarely this is a consequence of the momentum-independent self-
differ by more than 1 part in 1000, confirming the accuracyenergy—any dependence of the self-energy on momentum
of the analytic continuatioriwe believe, but cannot prove, will generally violate the Shastry-Shraiman relation, al-
that no additional poles exist in the Complex pIane, Wthhthough it may still be an accurate approximaﬂon_
would mean the analytic continuation is exact TheA, 4 response is more complicated, because it requires
We can use the expression in E(9) to prove the 3 proper treatment of the vertex contributions. Fortunately,
Shastry-Shraiman relation. Using the identity that relates thégne charge vertex for the Falicov-Kimball model is well
local Green'’s function on the lattice to the self-energy in Eq.known'” and assumes a simple forfor i v, #0)
(17) (but evaluated on the real axis rather than the imaginary
axis) yields 1 3(iwy)—2(iwny)

F(iwmaiwn;iVl):ﬁm,n?G(iw ) —Gliwns))
n n

(29)

G(w) ~G(o+) Hence, the Raman response in g channel can be found
v+3(0)—2(0+v) by solving the relevant Dyson’s equation, using the above
form of the charge vertex. The set of Feynman diagrams is
shown in Figs. 1 and 2. Note that we have to solve these two

* p(e) -
:f de ) coupled equations for th&;; Raman response.

o [otp—3(o)-€ellotrviu—3(o+v)=e] The difference between the two diagrams shown in Figs.
(20 1 and 2 is the number of factors of the Raman scattering
amplitude y; the nonresonant Raman response requires the

Employing this identity and related ones for the advancediressed response that has only one power-ethis dressed
Green’s functions in Eq19) produces response satisfies a simple Dyson equation, shown in Fig. 2.
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o S i)
é v Y X(Iwmilwn,IVl)_l+X0(iwm;iVI)TF(iwmaiwm;iVI)’
(25

with the irreducible charge vertex function found in E2¢),
-T}C r Gliwy) ~Gliwg.)

lwp;iv)=—": - - 26
Xollon ) == 1 S o~ S(iwn) 20
FIG. 2. Supplemental Feynman diagrams for the nonresonargnd
A4 Raman response. These diagrams are identical to those in Fig. 1
except they have one fewer power of o iv) c(G,—Gpi1)—Z,G +Zn+|Gn+|
wnlv)=—
Xo n | |V| +2 2n+|
We denote the dressed response function in Fig. 2 by (27)

X' (loy,iw,;iv). Then a straightforward evaluation of the Here we used the notatiod,=iw,+u—2(iw,). Now,
Feynman diagrams and a solution of the Dyson equatioknowledge ofy’ allows us to solve for the Raman response
produces in Fig. 1. The end result is

. Xo(i@n;iv) = [xo(iwn;iv)+GuGny T (iwn iwy;iv)
XAlg(Iyl):T; 1+ xoliown;iv) Tl (0w, ,iwg;iy) '

(28)

where the charge vertex is found in E@4), the bare sus- vanishes since the individual summations converge and one
ceptibility x, is found in Eq.(26), and the other bare suscep- can change the summation indax-n+1 in the first term
tibility xo (which is where all of the dependence li¢ss [we similarly note thal,(%,—X ) =0]. Hence we arrive
- at the final form for the nonresonaAty Raman response:
Xoli®n;iv)=[=c*(Gn—Gni1) +2¢(ZyGn—Zn+1Gn+1)

. T (2n—2h41)GhG
+Z0—Zns 1 — 232G+ 2%, G v +3, Xy (iv)= m D nX (in(:I 'ivn|) n+l
n 0 n»
=+l (29
- ! (0= ne)i91+ 30— 3n 1)

Surprisingly, all of thec dependence actually drops out of the = ; 1
nonresonanf;y Raman responsg@s it does in conventional bon Gn+l Gn
metald). This can be seen by substituting the representations (30)

for xo and ' into the denominator in the first term of Eq.
(28). One finds that the summation for the first term can thent is a straightforward exercise to perform a similar analytic
be written in the general fornX, (Y,—Y,.)/iv,, which  continuation of this expression. The result is

i [E(w)—2(w+v)][v+2(w)—2(w+7)]
XAlg(V):%f—wdw[f( G Yo+v)-G How)
[2*(10) 3w+ ) ]|[v+3%(w) =2 (0 +v)]
G ¥ (w+v)-G ¥ (w)

—f(o+

[2*(w)—2(w+v)][v+2* (0)—2(w+ V)]

~[f(w)~ 0+ )] oty G (e

(31

B. Resonant Raman response to view this scattering is to “separate” the two-photon-two-
Resonant Raman scattering arises from a fourth-ordeglectron ve.rtex of nonresonant Raman spattering in_ Fig.. 1
process with respect to the photon vector potential. One wainto two single-photon-two-electron vertices. Keeping in
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(a) (b) .y (@)
\" \" V. V
M v v Vv v

> > r
3 Y A \ ~—
A=Y =4 Yy -T4 Y
< < — S
Vi vi Yo Vi < < ———
v v v v =

I .

JJJJ'vi v, Vo Vo A v r
[

—] = 4 Y -T4 Y

FIG. 3. Bare resonant Raman scattering diagrams. (@hen- —— |
crossed(b) first partially crossed(c) second partially crossed, and $
(d) fully crossed diagrams are all shown. The straight lines are L L
momentum-dependent Green'’s functions, the wiggly lines are pho- v N v v N v <
ton propagators, and the vertex factors are the dot product of the v v
photon polarization with the Fermi velocity as described in the text ) ) )
(vi=6-V, v,=€,V). Note that the two partially crossed dia- FIG. 4. Renormahzed resonant Raman scattering diagrams for
grams(b) and (c) are equal to each other. Figs. 3a) and 3d) in the B,4 and B, channels. We suppress the

photon lines that are explicitly shown in Fig. 3, for simplicity. (&)

mind the direct and exchange possibilities results in fou®"e has the diagrams for the Raman response, whilgbjirthe
distinct bare resonant Raman scattering diagrams, which afyPPlémental Dyson equation needed to solve for the dressed Ra-
depicted in Fig. 3(a) the uncrosseirect diagram,(b) the man response is given. The only difference fordﬂs@ anddeg

first partially crossed diagram(c) the second partially channels is the choice of polarization vectersand &, and we
crossed diagram, andi) the fully crossediexchange dia- have suppressed the incoming and outgoing indices on the vertices

. - v. The symboll" denotes the local irreducible charge vertex. Note
gram. In all relevant cases, the partially crossed diagréms . only the direct and exchange diagrdifigs. 3a) and 3d)] are
and(c) are equal to each other.

i .. renormalized.
In general, the Raman vertices for resonant scattering in-

volve expectation values of the momentum operator betweefactors are odd itk and the irreducible charge vertex hag,

the conduction band and the excited states. However, in theymmetry, there can be no renormalization of any single ver-
single-band model, the Raman vertices in Fig. 3 are equal téx. Similarly, one can argue that there are no three-particle
the dot product of the photon polarization vec®rwith or four-particle vertex renormalizations possible either. The

Fermi velocityv: only possibility is a two-particle vertex that connects oppo-
site Green’s function lines. In th&, resonant Raman scat-
de(k)  t* f[erir'lg channel, all poss[ble vertical and honzontal renormal-
V.= = — sink,. (32)  izations of each bare diagram are possible. ForBieand
IKq \/a B,y channels, there are simplifications. One can quickly

verify that in both of those cases the prodectve,-v is

Again, we distinguish between the incoming photon polar-orthogonal to thed;, symmetry, so the partially crossed dia-
ization ¢ and the outgoing photon polarizatieg. The dif-  grams(b) and (c) cannot have any renormalization either.
ferent symmetry channels are projected by appropriat@&urthermore, this also implies that attaching a vertical charge
choice of the polarization vectors. We choagg=¢€,,=1  vertex to either the€a) or the (d) diagram vanishes for the
for Ay, 6,=1, ande,,=(—1)" for Byg, ande ,—everi= 0, same reason. But a horizontal attachment of the vertex is
€ a=o0dd= 1, €oa=ever= 1, @Nd€y,—oqq=0 fOr Byg. It is im-  possible in both thé¢a) and (d) diagrams. Hence, the renor-
portant to note that in all cases a single factoreof is an  malized resonant Raman scattering in both Big and B,
odd function ofk, so the only way to get nonzero summa- channels is described by the coupled set of equations in Fig.
tions over momentum is to have an even numbereof 4. A similar, but more complicated, set of diagrams is needed
factors in any given integration. for the Ay4 channel, where renormalizations are present on

In general, the bare resonant Raman scattering diagranith the vertical and horizontal pairs of legs for all diagrams.
must be renormalized by attaching appropriate irreducibléVe do not show those Feynman diagrams here.
charge vertex functiong@nd higher-order generalizations, if ~ Evaluation of these diagrams and their analytic continua-
possible to all relevant Green’s function legs. Since @l tion to the real axis is tedious. We leave that task for a future
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(a) (b)

DOS [1/4]

FIG. 5. Bare mixed Raman response. The single-photon vertices
are multiplied by the respective factor of the polarization vector
dotted into the Fermi velocity, while the two-photon vertex is mul-
tiplied by the corresponding Raman scattering amplitude. Note that
no renormalization is possible for tie, channel, but the diagram
is renormalized in thé\,4 channel.

FIG. 6. Interacting density of states for the Falicov-Kimball
o ' model. Results are shown far=0.5, 1, 1.5, 2, and 4the numbers
publication. But we do note that both of the renormalizedin the figure label the value dfi). Note how the system first de-

diagrams(a) and (d) of Fig. 3 will have the zero-frequency velops a pseudogafl.0) before the metal-insulator transition at
(iv,=0) piece of the irreducible charge vertex renormalizingU =1.5. The density of states is independent of temperature.

them. This is the nondiagonal piece of the charge vertex, and
it can get large when the system is tuned to lie near a phase-

separation transition. Hence, we expect the resonant Raman The Falicov-Kimball model has a ground state that is not
scattering to be enhanced whenever one is close to a phaséermi liquid because the lifetime of a quasiparticle is finite
separation. Note that this enhancement will occur for all phoat the Fermi energy. In addition, the imaginary part of the
ton frequencies, since the zero-frequency vertex couples adlelf-energy has the wrong sign of curvature to be a Fermi
such diagrams; this implies that one will not see this effecliquid. We study the model at half filling. A9 increases, the
by tuning through a resonant frequency. system first enters a pseudogap phase, where spectral weight
is depleted near the chemical potential, and then undergoes a
metal-insulator transitiorithe pseudogap phase is possible
C. Mixed Raman response because the ground state is not a Fermi liguldhe interact-

The mixed Raman response comes from the cross termad density of state¢DOS) is, however, temperature inde-

between the linear and quadratic terms in the vector pote Jendent for fixedJ and fixed electron fillings? It is plotted

tial A h th di h ¢ inale-photon_t n Fig. 6 for a range of values d&J: U<0.65 corresponds to
lal. AS such, these diagrams have two single-photon—twog weakly correlated metal, while a pseudogap phase appears

eI_ectron vertices and one twq-photon—Mo-electrpn VerteXor 0.65<U<1.5 moving through a quantum-critical point at
Since the B,; Raman scattering amplitude vanishes for\;_1 5 tg the insulator phasd>1.5 (we neglect all pos-

nearest-neighbor hopping on a hypercubic lattice, there is ngj|e charge-density-wave phases here

mixed Raman response for that channel. The bare mixed |, Fig. 7(a) we plot the nonresonat;; Raman response
Raman response is shown in Fig. 5. There are two possiblg 5 fixed temperatur&=0.5 for different values o). For
diagrams corresponding to the direct or exchange processesmall values ofU, a small scattering intensity is observed
In the B4 channel, the dressed mixed response is equal tdue to the weak interaction among “quasiparticles,” provid-
the bare mixed response, since the irreducible charge vertgig a small region of phase space allowable for pair scatter-
cannot be inserted anywhere. For thg, channel, the bare ing. The peak of the response reflects the dominant energy
mixed response is renormalized by the irreducible chargecale for scattering, as is well known in metaland the
vertex in a similar way to how it renormalized the nonreso-high-energy tail is the cutoff determined by the finite-energy
nant Raman response. We do not present any numerical rgand. This shape is also understandable from the Shastry-
sults for the mixed Raman response here, but will do so irshraiman relation—since the optical conductivity is a
another publication. It turns out that one can show that in the orentzian, the Raman response is just proportional to
B4 channel with nearest-neighbor hopping only, the mixeday/[ v+ a?], which assumes the above form. A$ in-
response is a @/correction and can be neglected; it cannotcreases, the low-frequency response is depleted as spectral
be neglected for thé\,4 sector. The M correction forB,;  weight gets shifted into a large charge-transfer peak at a
arises from the fact that the summation over momentum hagequency~U. The charge-transfer peak begins to appear
a “form factor” proportional to co)(—1) Sinz(kj)(—l)J- for values ofU for which the DOS is still finite at the Fermi
This term cancels when summed oveandj except fori  level (U=1) and becomes large in this pseudogap phase
=]. This latter constraint forces the mixed diagram to be aefore growing even larger in the insulating phase. Notice
1/d correction. In theA,q case, there are no factors of how low-frequency spectral weight remains even as one is
(—1), so the terms with ali andj contribute, and it is an well on the insulating side of the quantum-critical poikt (
O(1) term. =4) and at a temperature much lower than the gap. It is

Ill. RESULTS
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FIG. 7. Nonresonanta) B, and (b) A;; Raman response for FIG. 8. (a) NonresonanB,, Raman response for a range of

different values otJ at T=0.5. The Raman response is measured intemperaturesT=0.05,0.2,0.3,0.5,0.9) fdg =2 (which lies just on

arbitrary units. Notice how the vertex corrections suppress the lowthe insulating side of the metal-insulator transifiand (b) non-
frequency spectral weight in th&, channel. resonantA,; Raman response for the same temperaturas=ap.

The lines are labeled by their temperat(egcept forT=0.2 which
these spectral features that are characteristically seen in theunlabeledi Note how theB, 4 response has low-frequency spec-
experiments and which can only be seen in a theory thatal weight that develops rapidly at an onset temperaturel of
approaches the quantum-critical point. ~0.2 (the low-frequency responses Bt0.5 andT=0.9 overlap

In Fig. 7(b), we show the nonresonait;; Raman re- and note the isosbestic point at-1. The ratio of the range in
sponse. As shown above, m@g response is independent of frequency over which the low-frequency weight increases and the
the value ofc. The general behavior is similar to that of the onset temperature is about 5. There are no anomalous features in the
B4 channel excepli) at weak coupling the Raman scattering Aqq Spectrum.

is more symmetric and pushed to. h_igher ene(@ythe ver- guantum critical point while the “A” is determined by the

tex corrections suppress all nontrivial low-frequency Ramanyiqih of the lower Hubbard bangivhich remains finite at the
response, andii ) the widths of the charge-transfer peaks aréquantum-critical point hence the ratio can become very

enhanced. _ large near the quantum-critical poi@nd should decrease in
Since the Raman response displays anomalous features gy |arget limit).
the insulating side of the metal-insulator transition, we first  The nonresonant Raman response is plotted in Fig. 9 for a
present results fot) =2, just on the insulating side of the number of different temperaturesldt=1. Note how theB,
quantum critical point. In Fig. @), we plot the temperature response has nontrivial low-energy spectral weight, even
dependence. The total spectral weight increases dramaticalfiough it is not completely separated from the charge-
with decreasing temperature as charge-transfer processes leansfer processes. Even in this case, one can see the low-
come more sharply defined. At the same time, the lowtemperature development of an isosbestic point kearfor
frequency response depletes with lowering temperaturesemperatures below abotit=0.3. As the low-energy spectral
vanishing at a temperature which is on the order of The weight is depleted, the peak becomes more symmetric in
=0 insulating gagwe are unable to analytically estimate the shape. In theA,q channel, the response sharpens, and the
crossover temperatureThis behavior is precisely what is Peak moves to lower energy as the temperature is lowered. In
seen in experiments ®nFeSi and of underdoped fact, the low-energy spectral weight actually increaseb ias
La,_,Sr,Cu0, at low temperatures where both the isosbestidowered. There is no indication of a separation of the re-
point and the low-temperature spectral weight depletion ca§PONse into low- and high-energy features that have a differ-
be seen. Similar results are also SeEnSmE,, but a low- €Nt temperature dependen@s seen for thd,, responsg
energy peak also develops in that material at low tempera; Thﬁ Big s;pectr];al—we|gkht tranfsfer tfrom RW frequiznmes tob
tures. In theA,, channel[Fig. 8b)], we see the same sharp- - '© ct_?r%e-brans er p?_a ?fs‘l aRunc lon o emper_aturet can be
ening of the charge-transfer peak at lol but the low- gquantiied by separaling the =aman response Into two fre-

energy response is much smaller and changes much moggjons determined by the isosbestic point and plotting the
. ) . . io of the low-fr n ral weigh mperaflr
slowly with T (but, in fact, increases akis lowered. to of the low-frequency spectral weight at temperattire

! . to the low-frequency spectral weight @t=0.95 versus re-

If one were to interpret the temperature at whichBYg  §,ced temperaturd/0.95 (Fig. 10. ChoosingU/2 as the
Raman spectral weight starts to deplete as the “tr_ans't'orl‘ocation of the isosbestic pointwhich divides the low-
temperature™T; and the range of frequency over which the frequency and high-frequency regionsre find that the re-
weight is depleted as the gap, then one would conclude duction of spectral weight from high to low temperatures is
that near the quantum-critical poinf\2kg T >1. This is be-  over 50% even in the weak pseudogap phase, and decreases
cause the T.” is effectively determined by the gap in the by well over three orders of magnitude dsincreases into
single-particle density of state@vhich is small near the the insulating phasel=4).
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o T ' T ' frequency spectral weight, so one might expect there to be a

S 02F x 0.05 (a)- frequency where the response does not depend dof

o 0‘3 4 course this does not establish that an isosbestic point must

0 o4 L - | exist; it just motivates such an existepc&he isosbestic

L@ 0.5 point in the B;; Raman response then follows from the

s 0.9 T Shastry-Shraiman relation, since multiplying the optical con-
0 : L . ductivity by a frequency will not modify the appearance of

an isosbestic point.

We attribute the presence of anomalous low-frequency
and low-temperature response in a system which is a
strongly correlated insulator to the appearance of thermally
activated transport channe(gdeed, the only temperature
©0.02 |/ . ~ ] dependence to the Raman response comes from Fermi fac-
3 y : tors in an integral In the insulating phase at zero tempera-
ture, the only available intermediate states created by the
light must involve double-site occupancy of a conduction
and a localized electron, with an energy costofThis gives

FIG. 9. Nonresonanta) B4 and (b) A;; Raman response &t the large charge-transfer peak. As the temperature is in-
=1 for T=0.9, 0.5, 0.3, 0.1, 0.05. The lines are labeled by thecreased, double occupancy can occur and as a result light can
temperature. Note how thB,, response develops an isosbestic SCatter electrons to hop between adjacent unoccupied states
point at low temperatures, but the low-frequency depletion is moreither directly or via virtual double occupancies. The number
modest here than in the insulating phase. Ragresponse has no of electrons which can scatter in this fashion increases with
anomalous features, but the peak of the response moves to lowdicreasing temperature, leading to an increase in the low-
energies as the Raman response sharpens at low temperature. In ffRAuency spectral weight. The frequency range for this low-

moderate to low-frequency range, the Raman response increasesfg@duency Raman response is determined by the lower Hub-
T is lowered. bard bandwidth, which is typically much larger than the

temperature at which these features first appear.

There is also a more mathematical explanation to the low-
?_equency spectral response. If we examine the integral for
he B,; Raman response in E(L9), we note three important

response

Frequency [t]

The origin of the isosbestic point in the nonresonBiy
response is mysterious, but can be motivated by the Shastr

Shraiman relatiod.Since the optical conductivity satisfies a ints. (i) the imaginary part of the Raman response is pro-
sum rule, the appearance of an isosbestic point there is nQPMN's: ginary p . P IS P
ortional to the real part of the integrafithe terms within

surprising, as any decrease in Iow-frequ_ency spectral_wei_gf&e braces in Eq(19)], (ii) the integrand vanishes if the
must be compensated by a corresponding increase in hlgra;reen,s functionsand self-energyat @ andw-+ v are both

real, and(iii) all temperature dependence arises from the
Fermi factors, since bots andX, are temperature indepen-
dent. In the insulating regime, the DOS breaks into two
pieces, a lower subband centered-dt)/2 with a width of
O(1) and an upper subband @t2 with a width of O(1).
The Green’s functions are complex only when the frequency
argument lies within one of the bands. Hence there are two
main contributions to the Raman respon@gintraband pro-
cesses, where~ —U/2 or U/2 andv~1, and(ii) interband
processes, where~ —U/2 and v~U. The interband pro-
cesses, withv~U, are what give rise to the charge-transfer
peaks seen in the Raman response; these processes survive
even atT=0. The intraband processes, with=1, give rise
to the low-frequency spectral features. At low temperatures,
. PR R N E— these features are proportionalftaw) — f (w+ v) which can
0 62 04 06 08 1 be approximated by exp(U/2T)[1—exp@T)] in the insu-
Reduced temperature lating phase. Hence, we expect the low-frequency spectral
weight to be proportional to exp(U/2T) in the larget
FIG. 10. Ratio of low-frequency spectral weight at temperaturelimit. In the A, channel, the charge vertex makes the inte-
T to the low-frequency spectral weight &t=0.95 plotted vs re-  grand more complicated to analyzbut the response still
duced temperatur€/0.95 for different values of). The values ofJ separates into interband and intraband processesl the
are 0.5, 1, 1.5, 2, and 4, and the curves correspond to increasingsrtex corrections end up ultimately suppressing the low-
values ofU starting at the top with 0.5 and running to the bottom at frequency response.
4. Note how the sharpening of the Raman responseisgowered Last, we plot the inverse slope of the Raman response in
results in significant reductions to the low-frequency spectralFig. 11 as a function of temperature for different valuesof
weight even in the metallic case. In the strong insulatorThe inverse Raman slope is the reciprocal of the slope of the
phase, the spectral weight decreases by over three orders of magiaman response in the limit as—0. Since the self-energy
tude U=4). is temperature independent, we might expect a constant Ra-

0.8

0.6 -

0.4

Spectral weight ratio
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1000 F—T——T——T—— T metallic single-particle density of states can have an addi-
F oy U=0.25 ] tional Fermi liquid peak at low frequencies which will add
1 new features to the Raman respoffsbut on the insulating
| side of the transition, where most of the anomalous behavior
s -r—e— U=t is seen, the single-particle density of states must be similar to
100 £\ ...l U=1.5 E that of the Falicov-Kimball mode({except for some addi-
EoL 3 tional weak temperature dependence of the interacting)DOS
since an insulator has no low-energy spectral weight. Hence,
these anomalous Raman scattering results are expected to be
essentially model independefgince they only depend on
the interacting DOB
In this work, we also illustrated how one can calculate
1 both the resonant and the mixed Raman scattering responses
A T T T T as well. We showed how the bare diagrams are renormalized
0 02 04 06 038 1 for the different symmetry sectors, but did not perform any
Temperature numerical calculations here.
Our theoretical results compare quite favorably to the ex-
FIG. 11. Inverse Raman slope as a function of temperature. Thgerimental results seen in a variety of different materials
inverse Raman slope measures the scattering rate of the “quasipqdanging from mixed-valence compouﬁdsto Kondo
ticles” of a correlated metal. As the system enters the pseudogagsylators to the underdoped high-temperature supercon-
phase, the inverse slope starts to increase at low temperatures, iﬁuoting oxide<¢—6 The experimental data illustrate the three
creasing dramatically as one enters the correlated insulddor ( -haracteristic features seen in our thediythere is a rapid
=2). rise in the low-frequency spectral weight at low temperatures

(at the expense of the high-frequency spectral wejdh?

man slope as a function of temperature, as is the case with . - . . .
disordered Fermi liquid. However, this is not the case due t(’gﬁere is an isosbestic point, a) the range of frequency

the formation of a thermally generated band for scatteringOver which the low-frequency weight appears is much larger

For small values ol the temperature dependence of thethan the onset temperature, where it is first seen. Our model
Raman inverse slo é is Weakpdue to the F:t?em erature ind glways produces an isotropic gap, so we are unable to illus-

P PS U ate the symmetry-selective behavior seen in the copper ox-
pendence of the self-energy. However, as the single-particl

. fdes where only thd,4 response is anomalous and thg,
bands begin to separate, the relevance of thermally generat o 19 . L
double ogcupancire)s becomes more pronounced )z/ar?d the in[]d.BZQ responses are mgtalhc. But our results do indicate a
verse slope rapidly rises at low temperatures. As the Systemunlversahty and mo'del mdependenpe of the R?‘”?a” re-
. ) . sponse on the insulating side of, but in close proximity to, a
becomes more insulating, the low-temperature inverse slop itical point. We beli his is th h
increases dramatically due to the depletion of the IOW_quantur_n-crltlca point. We believe this is the reason why so
frequency spectral weight. Ad) increases from the many different materials show the same generic behavior in

seudogap phase into the insulating phase, the tem eratutrheeir electronic Raman scattering.
P gap p gp y P In future work we will examine nonresonaBty Raman

d_ependence of the Rama_n nverse slppe indicates the formg(_:attering in the Hubbard mod&knd will examine resonant
tion of gapped excitations(assuming the formT[1

+ cosh@/{2T})], with A the gap in the single-particle DQ'S and mixed Raman scattering effects in the Falicov-Kimball
. X model.
Such behavior has been seen in the underdoped cuprate

materials.

Inverse Raman Slope
/
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