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Nonadiabatic response of a finite fermion system to a time perturbation
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~Received 21 February 2001; published 6 September 2001!

The nonadiabatic response to a time perturbation applied to a finite system modeled with the Hubbard
Hamiltonian has been investigated in the case where one atom of the cluster is continuously uncoupled
~monofragmentation . . . !. An exact solution has been derived using numerical procedures for the octahedron
cluster in the~4↑, 4↓! electronic configuration. A comparison of the time evolution of the populationn(t) on
the moving atom has been carried out between our exact result and the so-called ‘‘one-determinant method,’’
which is based on the propagation of only one Slater determinant. An analysis of the discrepancy between the
two results is illustrated on the dimer caseAB (AÞB) in the ~1↑, 1↓! configuration. The calculations show that
more excitations are occurring in the exact calculation leading first to a more efficient initial filling of the
uncoupled atom population and secondly to a smaller value ofn(t) at the end of the process (nf). The
electronic correlation modifies the dynamics of the process but slightlynf .

DOI: 10.1103/PhysRevB.64.125107 PACS number~s!: 71.10.Fd
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I. INTRODUCTION

In the past years, experiments on cluster or on solid at
scale of the femtosecond give new interest to the fundam
tal problem of the time dependent response theory wh
nonadiabatic phenomena are important. Some tim
dependent works have been published recently. We men
some of them: ~1! several laser-induced ultrafast pha
transitions have been observed1–3 where interesting transi
tions between two crystalline structures could occur,~2! the
excitation of the electrons in aggregate interacting with ra
charged monoatomic ion where ionization and capture co
occur;4 and ~3! femtosecond neutralization dynamics
cluster-solid surface collisions.5 In the case of the ion-cluste
collision, two main procedures have been used: eithe
semiclassical limit of a time dependent Hartree-Fo
description6 or a time dependent density function
approach7 to tackle problems involving large cluster, but
principle such procedures do not treat quite well the no
diabatic response. Theoretical analysis have been carried
for the case of the analysis of the laser induced femtosec
graphitization of diamond8 or in the electron emission yield
of charged clusters colliding with different surfaces at lo
energies.9

Let us mention another kind of time-dependent wo
which deals with nanostructures. An electron wave pack10

is generated in a potential well and oscillates between
sides of the well. At each oscillation the electrons cros
two-barrier heterostructure and a chargeQ(t) increasing
with time is progressively trapped inside it. This charge
acts on the moving electrons and at large time a cha
behavior is reached.

In most of the experimental results mentioned above
theoretical analysis was made in a one determinant me
~1DM! where the determinant is made up of the tim
dependent one-electron wave functions corresponding to
levels filled att50. In this paper we want to show that
good description of such violent excitations can be reac
only by developing the time-dependentN-electron wave
function on a basis ofN-electron determinants. This poin
0163-1829/2001/64~12!/125107~5!/$20.00 64 1251
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will be shown by comparing the 1DM results to exact resu
obtained with a complete determinants basis~CDB! calcula-
tion performed on a relatively small 6-atom cluster.

Let us notice that practically the use of CDB method
limited to small aggregates~because the size of the bas
increases exponentially with the number of cluster atomsN!
but clusters withN.10 can be studied with a truncated d
terminant basis. In this cases a control of the validity of t
truncation process is necessary.11–13

A general question remains to be discussed about the
tension to any size of effects obtained for a small system.
us consider the core photoemission process which is cha
terized by the sudden appearance of localized strong at
tive potential on a deep atom level. For aggregates, the n
diabaticity of the electron response appears in
photoemission spectrum as shakeup satellite rays at the
energy side of the main ray. In bulk systems, the correspo
ing feature is an asymmetry of the main ray toward lo
energies. Thus the shape of the photoemission spec
changes with the size~which is obviously due to the discrete
ness of the electron level distribution! but the relative impor-
tance of the nonadiabatic part in the spectrum~which can be
measured by the ratio between the main and the satell!
does not change much withN.

In the present problem we will relate the differences b
tween the 1DM and the CDB method to a physical eve
the cancellation at a given time of some atomic weights
the molecular wave functions. As it is likely that such even
occur for any cluster sizes, we may think that our conclus
on the preference to be given to the CDB method, dra
from a six-atom study, is valid for any cluster size.

We consider an octahedral six-atom cluster with ans
atomic wave function centered on each site. We use the u
form of the Hubbard Hamiltonian to describe the electro
structure

H52l(
^ i , j &
s

ci ,s
1 cj ,s1U(

i
ni ,↑ni ,↓ , ~1!
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where the first term describes the hopping between two n
est neighbors (l5the hopping integral!. ci ,s

1 (ci ,s) are the
creation~annihilation! operators of an electron on sitei with
spin s. The other term inH is the intrasite electronic inter
action (ni ,s5ci ,s

1 ci ,s); U is the intra-atomic electronic cor
relation. ForU50 ~i.e., the free electron case!, the one-
electron levels of H are 24l ~non-degenerate!,
0l ~threefold degenerate!, and 2l ~twofold degenerate!. In
the present article we investigate the six-atom cluster w
the octahedron shape and with eight electrons in the e
tronic configuration~4↑, 4↓! to avoid all problems of degen
eracy of the initial state~in this configuration the level struc
ture is complete!. Such type of systems can be regarded
describing thep electrons in negatively charged or dop
carbon molecules.

To analyze the effect of the time-dependent perturbat
we expand the ground-state wave function of the system
all the atomic determinantsF i with six atoms and with the
electronic configuration~4↑, 4↓! ~the basis size is 215!:

uC~ t50!&5(
i

a i~ t50!uF i&. ~2!

Then we have to propagate the wave function by using
Schrödinger equation

i\
]uC~ t !&

]t
5H~ t !uC~ t !&. ~3!

The problem is reduced to finding the time evolution
the a i coefficients. In our case we are led to solve a syst
of 215 complex differential equations.

II. PRELIMINARY STUDY OF A TWO-ATOM CASE

Before giving our results on the octahedron we will d
cuss the dimer caseAB (AÞB) with the electronic configu-
ration ~1↑, 1↓! where an analytical solution is possible a
which illustrates well the differences between the appro
mate and the exact solutions. We callwA andwB the atomic
wave functions centered on atomsA and B and f1s(t)
5a(t)wAs1b(t)wBs the molecular ground state. In th
1DM the two electron wave function is given by the prop
gation of det„f1↑(t),f1↓(t)… using Eq.~3!. The time evolu-
tion is controlled bya(t) andb(t) which are derived from
the following differential equation:

i\F ]a

]t

]b

]t

G5H1~ t !Fa~ t !
b~ t !G . ~4!

H1 is the representation of the HamiltonianH in the one-
electron atomic basis (wA ,wB) which has a dimension o
two. With no loss of generality, we can write

H1~ t !5FH11~ t ! H12~ t !

H21~ t ! H22~ t !
G5F 0 2l

2l E G , ~5!
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whereE is the atomic energy difference of atomsA and B.
We observe that the equation fora(t) is governed by

i\
]a

]t
5H11a1H12b. ~6!

Let us examine the exact treatment; the Hilbert basis$)%
of the two atom system with the electronic configurati
~1↑, 1↓! is of fourth order:

uC1&5det~wA↑ ,wA↓!, uC2&5det~wA↑ ,wB↓!,

uC3&5det~wA↓wB↑!, uC4&5det~wB↑wB↓!. ~7!

The wave function is searched like

uC~ t !&5a1uC1&1b1uC2&1g1uC3&1d1uC4&. ~8!

Thus the time evolution of the wave function leads to t
calculation of the time evolution of the four coefficien
(a1 ,b1 ,g1 ,d1). But if we assume that the 1DM is correc
then these four coefficients are related toa,b, the coefficients
derived previously with the 1DM, and at every time they a
worth respectivelya2, ab, 2ab, and b2. But, moreover,
they are constrained to verify Eq.~3!, i.e.,

i\
d

dt S a2

ab
2ab

b2
D 5H2S a2

ab
2ab

b2
D . ~9!

H2 is the representation of the HamiltonianH in the basis
$)%

H2~ t !5F 0 2l l 0

2l E 0 2l

l 0 E l

0 2l l 2E

G . ~10!

Let us examine the differential equation fora2 given by
Eq. ~9!; it leads to

i\
]a2

]t
5 i\2a

]a

]t
52a$H11a1H12b%. ~11!

Therefore, ifa is not equal to zero, we can divide bya in Eq.
~11! and we obtain for this quantity the same equation as
the 1DM. But if a can go to zero, the division by zero i
incorrect and the two methods give different results. T
schematic behavior for the two methods applied to previ
conclusions obtained for the dimer can be straightforwar
generalized to larger clusters by saying that a difference
tween the two methods can be expected when one of
a i(t) coefficients~i.e., the atomic weight on one of the mo
lecular wave functions! goes to zero.

III. RESULT FOR THE SIX-ATOM CLUSTER CASE

To illustrate our previous result, we study the nonad
batic response of a cluster submitted to a time depend
7-2
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NONADIABATIC RESPONSE OF A FINITE FERMIONIC . . . PHYSICAL REVIEW B 64 125107
perturbation. Let us consider the case where one atom o
cluster is continuously uncoupled~i.e., the bond between th
atom and the remaining cluster is broken! such that the hop-
ping integrall between the atom and its nearest neighbor
time dependent with the following expression:

l5l0 exp~2ht ! ~12!

and the energy on the uncoupled atom is

E5~Ef2Eat!@12exp~2ht !#1Eat, ~13!

whereEat is the atomic level andEf is the energy at the en
of the process. We have chosen this kind of time evolut
because it describes the sputtering phenomena11 or the
monofragmentation of an atom from a cluster after a sud
perturbation has excited the cluster~laser, collision, etc.!.
The parameterh is linked to the velocityv' of the un-
coupled atom by

h5gv' , ~14!

whereg21 is a characteristic distance of about 0.2 nm. W
also introduce a kinetic energyEK5 1

2 m v'
2 with m equal to

the carbon mass.
Let us investigate the case where one of the atoms of

octahedron in the electronic configuration~4↑,4↓! is un-
coupled and its trajectory is radial. As in Ref. 11 we ta
Ef2Eat523.6l0 ~l0 has been taken equal to 1 eV!, which
implies that as the atom is moving away it will take an e
cess of charges. The time evolution of the adiabatic eig
values of the HamiltonianH(t), given in Fig. 1, shows tha
the degeneracy of the levels is partially removed. The in
esting physical quantity during the uncoupling process is
population per spin directionn(t) on the uncoupled atom. A
the beginning of the process, all the sites are equivalent
n(t50)52/3. Let us report first results for the non
interacting case (U50). In Fig. 2 the time evolution is dis
played for various kinetic energies of the uncoupled ato
The exact method and the 1 DM have been investigated.
two methods give a time evolution and in particular a fin

FIG. 1. Time dependence of the adiabatic eigenvalues~eV! for a
kinetic energyEK51 keV of the moving atom.
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limit n(t5`) value which are different~the larger the dis-
crepancy, the larger the kinetic energy of the atom!. In Fig. 3
the weights on the atomic wave functions of the molecu
wave functionf2 are reported. One of them cancels in t
region 2310215s,t,6310215s; this fact is reminiscent o
the effect observed in the dimer calculation and explains w
in the same time interval the two methods lead to differ
results. In thet50 region the two curves vary ast3 ~this
point is shown in the Appendix. For larget values,n(t)
grows faster in the exact method. After a rapid increasen(t)
exhibits an oscillating behavior and finally reaches a cons
value nf . Here again the two kinds of results are differe
the period of oscillations is larger, and the valuenf is smaller
in the exact method. These effects can be understood. As
number of available states is larger in the exact method
transfer of charges from the level on the moving atom and
the remaining part of the molecule is more efficient and ra
charge exchanges occur. The second effect comes from
fact that the levels on the remaining part of the molecule
globally more excited in the exact calculation; as a con
quence the lowest levels have an average number of e
trons smaller in the exact calculation and they hardly fill t
emitted atom level.

FIG. 2. Time evolution of the population per spin on the leavi
atom @exact calculation~---!; one determinant method~—!# for the
free electron case (U50 eV): ~a! EK510 eV; ~b! EK510 keV.
7-3
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Let us examine the effect of the kinetic energyEK of the
leaving atom on the excitations of the system. This effec
qualitatively similar for the two methods. In Fig. 4, th
weight of the excitations@i.e., the state with one~two, etc.!
electron-hole pair# are reported forEK510 eV. At the begin-
ning there is only one state~the ground state! with a weight
of 1 at t50 which decreases for larger time@plot 4~a!#; then
the system is excited, excitations with one electron-hole p
appear first@plot 4~b!#, then excitations with 2~3! pairs„plot
4~c! @4~d!#…. For higher EK values, the excitations occu
faster with a large number of electron-hole pairs and wit
quite large contribution. The fact that the number of exci
tions is increasing withEK confirms our analysis on the de
crease ofn(t) and the increase of then(t) oscillation fre-
quency with increasingEK .

Now let us examine the effect of the electronic correlat

FIG. 3. Time dependence of the weights on the atomic w
functions of the molecular wave functionf2 (U50 eV).

FIG. 4. Time dependence of the weight of the excitations@i.e.,
states with one~two, three, etc.! electron-hole pairs# for EK

510 eV: the contributions with 0~1,2,3! electron-hole pairs are re
ported respectively in plots~a! @~b!, ~c!, ~d!#.
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on the process~Fig. 5! for the exact calculation. The oscilla
tions n(t) disappear whenU increases. For the same unco
pling condition, the introduction ofU tends to slightly de-
crease the valuenf . This is physically due to the fact that th
electrons are less mobile and the filling of the emitted at
level is worse.

Finally, we investigate the uncoupling case where the
ergy E is constant (E5Eat); only the hopping term has a
time dependence. The calculation shows that forEK
.10 eV the leaving atom always takes some electron e
for large U. For EK51 eV, i.e., for a very slow departur
and for U55 eV ~Fig. 6! n(t) increases in a first step the
decreases to a lower value than the initial one. For the
part of then(t) evolution, the effect is due to the hoppin
term but the electrons in the cluster feel an effective elect
repulsion which is smaller than the atomic electron repuls
on the atom and so, in the second step they try to jump b

e

FIG. 5. Exact time evolution of the population per spin on t
leaving atom with the kinetic energyEK510 eV, U
50 eV (—), U52 eV (¯), andU54 eV ~---!.

FIG. 6. Exact time evolution of the population per spin on t
leaving atomEK51 keV,U55 eV ~the atomic level of the leaving
atom has been kept equal to the atomic level of the cluster!.
7-4
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NONADIABATIC RESPONSE OF A FINITE FERMIONIC . . . PHYSICAL REVIEW B 64 125107
to the cluster to decrease the correlation energy. This effe
appearing for largeU, but as the effect ofU is to decrease the
dynamics of the electrons, the jump is only possible fo
very small value ofEK .

IV. CONCLUSION

Let us discuss the main results of this work on the mo
fragmentation type perturbation. Our results show tha
1 DM is badly adapted to these dynamical problems. T
remark is valid even when the energy of the incident cha
is low (EK510 eV) since both then(t) behavior andnf are
strongly different from the exact results. As we discuss
before, this remark can be extended to calculations on
tems with intermediary sizes~;100 atoms!. It seems that an
important improvement can be expected with the use, ins
of the 1DM, of a determinant basis correctly truncated a
has been done in previous works.11–13

We also observe that the introduction of the relative
large U intra-atomic repulsion energies does not chan
much the evolution of the final populationnf with EK though
interesting differences appear in then(t) behavior which can
be physically understood.

The present article deals with a finite cluster which h
some attraction~use of the exact diagonalization method!,
nevertheless let us mention that there are some problem
extrapolate the predictions obtained with some small clu
calculations to get a reliable understanding of an infinite s
tem due to the appearances of certain scales of energie
sociated with the cluster size. If we want to study the bu
an appropriate way will be to embed the cluster.

Let us make a final remark. The discrepancy between
1DM and the CDB method obtained in this study is mo
general and could be obtained with other perturbations. O
the magnitude of the discrepancy depends on the stu
system.
e

W
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APPENDIX: t3 DEPENDENCE OF n„t… AT THE
BEGINNING OF THE PROCESS

The time dependent Hamiltonian can be recast into
following form:

H5H01~12e2ht!H3 ,

whereH0 andH3 are time independent. For the wave fun
tion of H is a search with the following perturbation form:

c5c01cR1 ic i ,

wherec0 is the wave function of the unperturbed system a
cR andc i the real and imaginary part of the perturbed wa
function.

Therefore from Eq.~3! we have the following relations:

i\
dCR

dt
2\

dC i

dt

5H0~C01CR!1 iH 0C i1~12e2ht!H3C0

1~12e2ht!H3~CR1 iC1!. ~A1!

For small time. Equation~A1! gives two relations

\
dCR

dt
5H0C i , \

d2CR

dt2
5H0

dC i

dt
.

A second order calculation leads tocR andc i ,

CR52t2
E0

2

2\2 C0 , C i52E0

tC0

\
2

h

2\
t2H3C0 .

The second order calculation of the population~i.e., uCu2! on
the moving atom leads to the term int2 being zero.
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