PHYSICAL REVIEW B, VOLUME 64, 125107

Nonadiabatic response of a finite fermion system to a time perturbation
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The nonadiabatic response to a time perturbation applied to a finite system modeled with the Hubbard
Hamiltonian has been investigated in the case where one atom of the cluster is continuously uncoupled
(monofragmentatio . . .). An exact solution has been derived using numerical procedures for the octahedron
cluster in the(47, 4]) electronic configuration. A comparison of the time evolution of the populati@h on
the moving atom has been carried out between our exact result and the so-called “one-determinant method,”
which is based on the propagation of only one Slater determinant. An analysis of the discrepancy between the
two results is illustrated on the dimer ca&B (A# B) in the (17, 1]) configuration. The calculations show that
more excitations are occurring in the exact calculation leading first to a more efficient initial filling of the
uncoupled atom population and secondly to a smaller valua(tf at the end of the processf). The
electronic correlation modifies the dynamics of the process but slightly
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[. INTRODUCTION will be shown by comparing the 1DM results to exact results
obtained with a complete determinants bd€l®B) calcula-

In the past years, experiments on cluster or on solid at théon performed on a relatively small 6-atom cluster.
scale of the femtosecond give new interest to the fundamen- Let us notice that practically the use of CDB method is
tal problem of the time dependent response theory wherlmited to small aggregatethecause the size of the basis
nonadiabatic phenomena are important. Some timeincreases exponentially with the number of cluster atdins
dependent works have been published recently. We mentidout clusters withN>10 can be studied with a truncated de-
some of them: (1) several laser-induced ultrafast phaseterminant basis. In this cases a control of the validity of the
transitions have been obserdetiwhere interesting transi- truncation process is necessary:
tions between two crystalline structures could oc¢2r,the A general question remains to be discussed about the ex-
excitation of the electrons in aggregate interacting with rapidension to any size of effects obtained for a small system. Let
charged monoatomic ion where ionization and capture coulds consider the core photoemission process which is charac-
occur® and (3) femtosecond neutralization dynamics in terized by the sudden appearance of localized strong attrac-
cluster-solid surface collisiorsin the case of the ion-cluster tive potential on a deep atom level. For aggregates, the nona-
collision, two main procedures have been used: either diabaticity of the electron response appears in the
semiclassical limit of a time dependent Hartree-Fockphotoemission spectrum as shakeup satellite rays at the low
descriptioR or a time dependent density functional energy side of the main ray. In bulk systems, the correspond-
approach to tackle problems involving large cluster, but in ing feature is an asymmetry of the main ray toward low
principle such procedures do not treat quite well the nonaenergies. Thus the shape of the photoemission spectrum
diabatic response. Theoretical analysis have been carried owhanges with the siz@vhich is obviously due to the discrete-
for the case of the analysis of the laser induced femtoseconuess of the electron level distributiphbut the relative impor-
graphitization of diamorftior in the electron emission yield tance of the nonadiabatic part in the spectrwhich can be
of charged clusters colliding with different surfaces at lowmeasured by the ratio between the main and the satgllites
energies. does not change much witk.

Let us mention another kind of time-dependent work In the present problem we will relate the differences be-
which deals with nanostructures. An electron wave pd€ket tween the 1DM and the CDB method to a physical event:
is generated in a potential well and oscillates between théhe cancellation at a given time of some atomic weights in
sides of the well. At each oscillation the electrons cross d@he molecular wave functions. As it is likely that such events
two-barrier heterostructure and a char@ét) increasing occur for any cluster sizes, we may think that our conclusion
with time is progressively trapped inside it. This charge re-on the preference to be given to the CDB method, drawn
acts on the moving electrons and at large time a chaotifrom a six-atom study, is valid for any cluster size.
behavior is reached. We consider an octahedral six-atom cluster with @n

In most of the experimental results mentioned above th@tomic wave function centered on each site. We use the usual
theoretical analysis was made in a one determinant methddrm of the Hubbard Hamiltonian to describe the electronic
(1DM) where the determinant is made up of the time-structure
dependent one-electron wave functions corresponding to the
levels filled att=0. In this paper we want to show that a
good description of such violent excitations can be reached N
only by developing the time-dependeit-electron wave H:_)‘Z ci’(,cj,(,JrUZ NipNi, g @
function on a basis oN-electron determinants. This point Sr"')
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where the first term describes the hopping between two neawhereE is the atomic energy difference of atorAsand B.
est neighbors X =the hopping integral cif(, (ci,) are the We observe that the equation fa(t) is governed by
creation(annihilatior) operators of an electron on sitevith
spin . The other term irH is the intrasite electronic inter-
action (ni,(,=ci+]ocijg); U is the intra-atomic electronic cor-
relation. ForU=0 (i.e., the free electron casethe one- ) ]
electron levels of H are -4\ (non-degeneraje Let us examine the exact treatment; the .H|Ibert .b@H}s.
O\ (threefold degenerateand 2 (twofold degenerae In of the t\_/vo atom system with the electronic configuration
the present article we investigate the six-atom cluster witf11, 1) is of fourth order:
the octahedron shape and with eight electrons in the elec- _ _
tronic configuration(47, 4]) to avoid all problems of degen- [W1)=delenr.on),  [V2)=delen;.ga)),
eracy of the initial statéin this configuration the level struc- . _
ture is complete Such type of systems can be regarded as Vo) =delon ea)),  [Va)=delogea))- ™
describing ther electrons in negatively charged or doped The wave function is searched like
carbon molecules.
To analyze the effect of the time-dependent perturbation, V()= as| W)+ B Vo) + 1| Va)+ 81 Vy). (8
we expand the ground-state wave function of the system on ) ) )
all the atomic determinant®; with six atoms and with the Thus'the time evglutlon of the wave function Iead§ FO the
electronic configuratio4], 4|) (the basis size is 215 calculation of the time evolution of the four coefficients
(a1,B1,71,01). But if we assume that the 1DM is correct
then these four coefficients are relatedvg, the coefficients
|\If(t=0)>=z a;(t=0)|D;). (2)  derived previously with the 1DM, and at every time they are
! worth respectivelya?, aB, —aB, and 8. But, moreover,
Then we have to propagate the wave function by using th&hey are constrained to verify E(B), i.e.,

. da
|ﬁE:Hlla+leﬂ. (6)

Schralinger equation o? 2
alw(b) n 3| @By | of
ih = =HO|¥ (D). ® | —ap | M| —ap |- ®
B B
The problem is reduced to finding the time evolution of . . o .
the «; coefficients. In our case we are led to solve a systenh_[ H is the representation of the Hamiltonibin the basis
of 215 complex differential equations. }
0O —-x N O
II. PRELIMINARY STUDY OF A TWO-ATOM CASE _ 0o —
Before giving our results on the octahedron we will dis- Ha(t)= A o E | (10)
cuss the dimer cas&B (A+ B) with the electronic configu-
ration (17, 1]) where an analytical solution is possible and 0 —-» N Z2E

which illustrates well the differences between the approxi-
mate and the exact solutions. We call and ¢ the atomic
wave functions centered on atords and B and ¢q,(t)
=a(t)pa,+ B(t) g, the molecular ground state. In the da? Ja

1DM the two electron wave function is given by the propa- ih——=ih2a—=2a{Hja+H,B}. (11
gation of de(¢q(t),¢q,(t)) using Eq.(3). The time evolu- at at

tion is controlled bya(t) and B(t) which are derived from  Therefore, ifa is not equal to zero, we can divide byin Eq.

Let us examine the differential equation faf given by
Eqg. (9); it leads to

the following differential equation: (11) and we obtain for this quantity the same equation as in
the 1DM. But if @ can go to zero, the division by zero is
f?_a incorrect and the two methods give different results. The
. at a(t) schematic behavior for the two methods applied to previous
i =H1(0] 51y |- (4)  conclusions obtained for the dimer can be straightforwardly
B B(1) . : .
i generalized to larger clusters by saying that a difference be-

tween the two methods can be expected when one of the
«a;(t) coefficients(i.e., the atomic weight on one of the mo-

H, is the representation of the Hamiltoni&hin the one- :
lecular wave functionsgoes to zero.

electron atomic basisg,,¢g) Which has a dimension of
two. With no loss of generality, we can write

H (1) le(t)}:{ 0 _7\}
Hoy(t)  Hoo(t) -N EJ

III. RESULT FOR THE SIX-ATOM CLUSTER CASE

(5) To illustrate our previous result, we study the nonadia-

Hq(t)= . : .
1V batic response of a cluster submitted to a time dependent
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FIG. 1. Time dependence of the adiabatic eigenvala®$ for a
kinetic energyEy =1 keV of the moving atom.
perturbation. Let us consider the case where one atom of the o7 T
cluster is continuously uncoupléde., the bond between the
atom and the remaining cluster is brokesnich that the hop-
ping integral\ between the atom and its nearest neighbors is
time dependent with the following expression:

n(t)

0.70 |

)\:)\0 exq_ﬂt) (12)

i
0.68 H

and the energy on the uncoupled atom is

E=(Ei—Ew[l1—exp(—nt)]+E4, (13 0.66

0. 2. 4. 6. 8. 10.
whereE is the atomic level an&; is the energy at the end  (® «(10s)

of the process. We have chosen this kind of time evolution

becaus% it describes the sputtering phenoﬁ?ena the FIG. 2. Time evolution of the population per spin on the leaving
monofragmentation of an atom from a cluster after a suddeﬁfénglixc?gnciggfg;’\);) _On?a;jeEter:ml'gag;_Tbe)tgdd:_)l]ofﬁg\tlhe
perturbation has excited the clustdaser, collision, etg. ’ K ’ K '

The parametery is linked to the velocit of the un-
coupl%d atom tX/ Yo, limit n(t=«) value which are differenfthe larger the dis-

crepancy, the larger the kinetic energy of the gtdm Fig. 3
(14)  the weights on the atomic wave functions of the molecular
wave function¢, are reported. One of them cancels in the

where y~ ! is a characteristic distance of about 0.2 nm. Weregion 2x 10~ °s<t<6x 10~ !5s; this fact is reminiscent of
also introduce a kinetic enerdyy = %muf with m equal to  the effect observed in the dimer calculation and explains why
the carbon mass. in the same time interval the two methods lead to different

Let us investigate the case where one of the atoms of theesults. In thet=0 region the two curves vary as (this
octahedron in the electronic configuratiddf,4]) is un-  point is shown in the Appendix. For largevalues,n(t)
coupled and its trajectory is radial. As in Ref. 11 we takegrows faster in the exact method. After a rapid increa@é
E;—E,= —3.6\¢ (\o has been taken equal to 1 gWhich  exhibits an oscillating behavior and finally reaches a constant
implies that as the atom is moving away it will take an ex-valuen;. Here again the two kinds of results are different,
cess of charges. The time evolution of the adiabatic eigenthe period of oscillations is larger, and the vatyds smaller
values of the Hamiltoniaiki(t), given in Fig. 1, shows that in the exact method. These effects can be understood. As the
the degeneracy of the levels is partially removed. The internumber of available states is larger in the exact method the
esting physical quantity during the uncoupling process is theransfer of charges from the level on the moving atom and on
population per spin direction(t) on the uncoupled atom. At the remaining part of the molecule is more efficient and rapid
the beginning of the process, all the sites are equivalent ancharge exchanges occur. The second effect comes from the
n(t=0)=2/3. Let us report first results for the non- fact that the levels on the remaining part of the molecule are
interacting caselY =0). In Fig. 2 the time evolution is dis- globally more excited in the exact calculation; as a conse-
played for various kinetic energies of the uncoupled atomguence the lowest levels have an average number of elec-
The exact method and the 1 DM have been investigated. Thieons smaller in the exact calculation and they hardly fill the
two methods give a time evolution and in particular a finalemitted atom level.

=YVl

125107-3



R. J. TARENTO, P. JOYES, AND J. VAN de WALLE PHYSICAL REVIEW B4 125107

1.00

040 [ 0.90 -

0.30 | =
Z os0 |

0.20 |
070 | /

0.10 -

: : : : 0.60

0. 2. 4. 6. 8. 10.
(10™%s)

0. 5 10.

0.00 H(10"%s)

FIG. 5. Exact time evolution of the population per spin on the
deaving atom with the kinetic energyEx=10 eV, U

FIG. 3. Time dependence of the weights on the atomic wav
=0 eV (—),U=2 eV (--), andU=4 eV (---).

functions of the molecular wave functiap, (U=0 eV).

Let us examine the effect of the kinetic eneifgy of the  on the proceséFig. 5) for the exact calculation. The oscilla-
leaving atom on the excitations of the system. This effect isionsn(t) disappear wheht) increases. For the same uncou-
qualitatively similar for the two methods. In Fig. 4, the pling condition, the introduction o) tends to slightly de-
weight of the excitationgi.e., the state with on@wo, etc)  crease the value; . This is physically due to the fact that the
electron-hole pajrare reported foE,=10eV. At the begin-  electrons are less mobile and the filling of the emitted atom
ning there is only one stafg¢he ground stajewith a weight  level is worse.
of 1 att=0 which decreases for larger tirhglot 4(a)]; then Finally, we investigate the uncoupling case where the en-
the system is excited, excitations with one electron-hole paiergy E is constant E=E_); only the hopping term has a
appear firsfplot 4(b)], then excitations with 23) pairs(plot  time dependence. The calculation shows that fo
4(c) [4(d)]). For higherEy values, the excitations occur >10eV the leaving atom always takes some electron even
faster with a large number of electron-hole pairs and with &or large U. For Ex=1 eV, i.e., for a very slow departure
quite large contribution. The fact that the number of excita-and forU=5 eV (Fig. 6) n(t) increases in a first step then
tions is increasing witlEy confirms our analysis on the de- decreases to a lower value than the initial one. For the first
crease ofn(t) and the increase of the(t) oscillation fre-  part of then(t) evolution, the effect is due to the hopping
quency with increasin@ . term but the electrons in the cluster feel an effective electron

Now let us examine the effect of the electronic correlationrepulsion which is smaller than the atomic electron repulsion

on the atom and so, in the second step they try to jump back

1.0 T T T

0.8 |

0.6 |-

0.4 |

2. 0.55
H{10™s) 0. 2. 4. 6. 8.
(107" s)
FIG. 4. Time dependence of the weight of the excitatifires,

states with one(two, three, etg. electron-hole pairs for Ex FIG. 6. Exact time evolution of the population per spin on the
=10 eV: the contributions with(@,2,3 electron-hole pairs are re- leaving atomEx=1 keV,U=5 eV (the atomic level of the leaving
ported respectively in plot&) [(b), (c), (d)]. atom has been kept equal to the atomic level of the cluster
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APPENDIX: t2 DEPENDENCE OF n(t) AT THE
IV. CONCLUSION BEGINNING OF THE PROCESS

Let us discuss the main results of this work on the mono- The time dependent Hamiltonian can be recast into the
fragmentation type perturbation. Our results show that dollowing form:
1 DM is badly adapted to these dynamical problems. This H=Hy+(1—e ")H
remark is valid even when the energy of the incident charge 0 3
is low (Ex=10eV) since both tha(t) behavior anch; are ~ whereH, andH; are time independent. For the wave func-
strongly different from the exact results. As we discussedion of H is a search with the following perturbation form:
before, this remark can be extended to calculations on sys- U= ot et i
tems with intermediary sizes-100 atoms It seems that an 0 YRV
important improvement can be expected with the use, instea@hereyy is the wave function of the unperturbed system and
of the 1DM, of a determinant basis correctly truncated as it/r @nd; the real and imaginary part of the perturbed wave

has been done in previous works®? function. _ o
We also observe that the introduction of the relatively — Therefore from Eq(3) we have the following relations:

large U intra-atpmic repu!sion energ_ies d_oes not change Cdv,  dV,

much the evolution of the final population with Ex though ih T_h ar

interesting differences appear in th@) behavior which can

be physically understood. =Hy(Vo+ TR +iHoW,+(1—e ™H,P,
The present article deals with a finite cluster which has . _

some attractior(use of the exact diagonalization method +(1—e ")Ha(Vr+iVv,). (A1)

nevertheless let us mention that there are some problems {9y small time. EquatioltAl) gives two relations
extrapolate the predictions obtained with some small cluster
calculations to get a reliable understanding of an infinite sys- d¥g d?Wg dv,
tem due to the appearances of certain scales of energies as- ﬁT: HoWi, # dz o gt -
sociated with the cluster size. If we want to study the bulk, .

A second order calculation leads #g and ¥, ,

an appropriate way will be to embed the cluster.

Let us make a final remark. The discrepancy between the E2 W, 7
1DM and the CDB method obtained in this study is more ~ ¥g= —tZW\PO, Wi=—Bop—— %t2H3\P0.

general and could be obtained with other perturbations. Only
the magnitude of the discrepancy depends on the studiethe second order calculation of the populatipa.,|¥|?) on

system. the moving atom leads to the termtifibeing zero.
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