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The Pauli paramagnetic susceptibiligyis unaffected by the electron-phonon interaction in the Migdal-
Eliashberg context. The adiabatic assumption of Migdal's theorem, however, is of questionable validity when
applied to very narrow-band systems as the fullerene compounds. In these materials therefore the nonadiabatic
effects are in principle relevant and quantities suchyaould be seriously affected by the electron-phonon
interaction. In this paper we investigate the Pauli spin susceptibility in the nonadiabatic regime by following a
conserving approach based on Ward’s identity. We find that a sizable renormalizatiodws to electron-
phonon coupling appears when nonadiabatic effects are taken into account. The intrinsic depengemte of
the electron-phonon interaction gives rise to a finite and negative isotope effect which could be experimentally
detected in fullerides. In addition, we find an enhancement of the spin susceptibility with temperature increas-
ing, in agreement with the temperature dependence olbserved in fullerene compounds. The role of elec-
tronic correlation is also discussed.
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. INTRODUCTION large, suggesting thatggbased metals could be labeled as
nonadiabatic systems.

The Pauli susceptibility of wide-band metals is usually ~ Recently, the finding of a superconducting transition at
co_nsidered as unre.normalized by electron-pho_non effects. A|3C=52 K in hole-doped €, single crystals has raised a re-
pointed out some time ago by Fay and Apbal.is actually  newed interest in these materidlslonzero isotope effects
affected by the electron-phonon coupling, the effect havingyng other properties strongly indicate that superconductivity
magnitude of ordemwpn/Er, where\ is the electron- i, fyjlerides is driven by electron-phonon interactiéns.
phonon CO"!p"ng“’Ph IS a ty_p|cal phonon frequency, arit However, the description of superconductivity of JRh,

Is the Fermi energy. For wide-band metalg,<Er and the i the traditional Migdal-EliashberdME) theory is

eIe_ctron—phonor_1 renormalization gfis therefore negligible. found to be inconsistent with respect to the adiabatic hypoth-
This result basically follows from the observation that theesis)\wph/EF<1 which is at the basis of the ME theory

lowest-order electron-phonon correctionytas a vertex dia- itself3 Instead, by relaxing the adiabatic hypothesis, a gen-

gram which, according to Migdal's theorefmis of order lized f lati hich includ diabatic ch s i
Nwp,/Eg . Hence the absence of phonon effectyiis just a ehralze ormutation which includes nonadiabatic channets in
the electron-phonon interaction provides a more self-

manifestation of the electron-phonon adiabaticity of norma ) o o
metals. consistent description of superconductivity, and suggests that

This situation may be somewhat different for weak ferro-the key ingredient for the high values at in Cqp-based
magnetic metals like Zrzo“® In this case, the electron- materials is a constructive nonadl_abatlc interference rather
phonon corrections compete with the exchange term, leadingan strong electron-phonon couplirfis.
to a possible phonon-dependent ferromagnetic transition In principle, the hypothesis that superconductivity in
temperature. Experiments have, however, reported onlfullerene compounds is enhanced essentially by nonadiabatic
small isotope effects in Zrznwith quite large error bars, electron-phonon effects can be sustained by the observation
leaving the problem of phonon-corrected weak-of independent signatures of nonadiabaticity. In this respect
ferromagnetism essentially unresolved. The recent discovergnd according to what we have pointed out at the beginning,
of giant isotope shifts in manganites proves, however, théauli susceptibility is a quantity where such signatures could
existence of ferromagnetic materials with important electronbe found. In this paper, we provide extensive calculations of
phonon effects in their magnetic propertres. x beyond the adiabatic limit by including nonadiabatic ef-

The possibility of having electron-phonon-dependent spirfects at different stages of a perturbation theort iy,,/Er .
susceptibility is, however, not correlated exclusively to theWe find that whenw,,/Eg is no longer negligible(i) the
vicinity of magnetic instabilities. In fact, as long as,/Eg paramagnetic spin susceptibility can be considerably reduced
is not negligible, as in very-narrow-band systems, thewith respect to the adiabatic limit artd) it acquires a nega-
electron-phonon vertex contributions are no longer unimporitive isotope effect andii) a possible anomalous temperature
tant so thaty is expected to acquire a phonon renormaliza-dependence at constant sample volume. These features are
tion. The most promising candidates for the observation ofignatures of nonadiabatic electron-phonon interactions and
this effect are the g-based materials. Fullerene compoundspredictions(ii) and (i) are susceptible of experimental veri-
have in fact phonon modes extending up to 0.2 eV and Fernfication. Such results suggest therefore that an important role
energies of about 0.3 eG\/]'herefore,wph/EF is in principle  could be played by a nonadiabatic electron-phonon interac-
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tion in determining magnetic properties and stimulate furthemwhere G(k,n) is the electron propagator for zero magnetic

theoretical and experimental work on this line.

II. PAULI SUSCEPTIBILITY BY WARD'’S IDENTITY

As remarked in the Introduction, the effect of electron-

field which satisfies thél— 0 limit of Eq. (4):
G kN =iw,— e(k)+u—2(k,n). (6)

In the second term of EJ5) we have introduced the spin-

phonon interactions on spin susceptibility has already atYertex function

tracted some interest in the past mainly in relation to weak
antiferromagnets. However, different approaches led to dif-

ferent results;® reflecting the lack of a controlled theory.

In our paper we use the functional formalism based on th(?n
Baym-Kadanoff technique to derive a conserving derivation
of Pauli susceptibility valid for both electron-phonon and

electron-electron interactions. The Pauli susceptibijitys

calculated by knowledge of the spin vertex function which is

related to the self-energy via a Ward'’s identity.

Following the Baym-Kadanoff technique, we introduce an

external magnetic fieltH coupled with the electrons which
induces a magnetizatidd. The interaction Hamiltonian de-
scribing the coupling o with the electron spins is

Hh=—h2 oc},Ce,, (1)
k,o

whereh= ugH (ug is the Bohr magnetgrandc], (c,,) are

creation(annihilation fermionic operators for electrons with

wave numbek and spin indexo=*1. The electron mag-

netizationM due to Eq(1) is given byM = ug= ,on, where

n,=3.(cl C,) and(---) denotes the statistical average.

We express now the magnetizatibhin terms of the finite-
temperature single-electron propagator

Gk, 7)== (T Cro(T)Cl,(0)), (2)

whereT . is the time ordering operator ands the imaginary
time. Since(c},c.,)=G,(k,07), the magnetization can be
expressed as

M=ugX, 0G,(k0 )=ugT> > aG,(kn)e
k,o n k,o
3

In the above expressiorG,(k,n) is the thermal electron
propagator which satisfies the following Dyson equation:

G, '(k,n)=iw,—e(k)+u+ho—3 (k,n), (4)

where w,=(2n+1)#T, n=0,£1,+2,..., areMatsubara
frequencies,e(k) the electron dispersiory the chemical

dG, *(k,n)

r(k,n)=%2 o

0

Egs. (5) and (7), the notation[ - - - |, indicates that the
quantity in brackets must be calculated for zero magnetic
field. Plugging Eq.(4) into Eq. (7) the resulting verteX
satisfies the Ward’s identity,

I'(k,n)=1— % > o

a

d> ,(k,n)
dh

: ()
0
and since ,(k,n) is a functional of the electron propagator,
a self-consistent relation between E(B.and(8) is obtained
which permits us to calculate the spin susceptibility. At this
point, the spin susceptibility can be calculated once the
electron self-energy and its magnetic field dependence is
known.

Ill. NONADIABATIC PAULI SUSCEPTIBILITY

The electron-phonon interaction is usually neglected in
calculations of the Pauli susceptibility although it can
strongly renormalize other physical quantitf@sindeed it
can be shown that the electron-phonon self-energy depends
on the external magnetic fieldat least as

lim % ®A(k,n)~hO(wpn/Ef),
h—0

(€)

where w,, characterizes the phonon frequency scale Bad
is the Fermi energy. In wide-band materials the adiabatic
ratio wp,/Ep<1 and the electron-phonon contribution o
can be consequently disregarded. From @g. we see that
electron-phonon effects appear ynonly at a nonadiabatic
level. Hence, any evidence of electron-phonon effects on the
Pauli susceptibility could be a direct proof of a nonadiabatic
electron-phonon coupling. This statement holds true as long
as phonon-modulated spin-orbit effettsyot included here,
can be neglected. This should be, however, the case for the
fullerene compounds and other systems with light atoms.

In order to properly include electron-phonon interactions

potential, andX,(k,n) is the electronic self-energy due to i, \ e need then to explicitly specify the functional form of
the coupling to phonons and to the electron-electron interaGnhe nonadiabatic electron-phonon self-energy. Nonadiabatic

tion. The spin susceptibilityy is formally given by M

= xH where y=[dM/dH], is the derivative of the magne-
tization at zero field. Hence, from E(B), a general expres-
sion for y is

dG,(k,n)
dh

>

k,o

X(T)=uiT>
n 0

=—2p5T2 2 G(k,n)’T(k,n), (5)

effects enter in a twofold way in the electron-phonon self-
energy: finite-bandwidth effects and vertex diagrams. These
two kinds of effects, of course, are of the same order in
wpn/Eg, and there is no justification for neglecting vertex
corrections with respect to finite-bandwidth effects.

In this paper we consider two approximation schemes for
the electron-phonon self-energy. The first one is essentially
the mean-field theory which corresponds to the noncrossing
approximation. It is diagrammatically equivalent to the
Migdal-Eliashberg electron-phonon self-energy without,
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‘ﬂ T(k,m)=1-T> [Jg(k—k")|?D(n—m)
Z _ + I M k’,m

! 2 ’
FIG. 1. Electronic self-energy within the noncrossing approxi- +1]G(k",m)7T'(k",m), (12)
mation. where
however, assuming an infinite electron bandwidth compared w2
to the relevant phonon energies. At this level only finite- D(n—m)=— - 0 L (13
bandwidth nonadiabatic effects are considered. The second (fop—ion) — oy

one includes first-order electron-phonon vertex corrections

as well as finite-bandwidth effects in the framework on the The electron propagator appearing in Exfl) satisfies the
nonadiabatic Fermi liquid picture.Both approximation Dyson equation(6) with the zero-field limit of the self-
schemes reduce to the adiabatic Migdal-Eliashberg limit foenergy(10):

wpn/ Eg—0.
S(k,n)=-T2 |g(k—k")|2D(n—m)G(k’,m)
A. Noncrossing self-energy k’.m
The self-consistent noncrossing approximation neglects , w0~
the vertex corrections in the electron-phonon self-energy and * ITkZm G(k’,mje o™ . (14

for wyn/Ep<1 reduces to the ME theory of the electron-
phonon-coupled system. The diagrammatic representation &fi the simplest case dk-independent Coulomb repulsion
the electron self-energy is shown in Fig. 1 where the wigglyhere considered the second term on the right side of E).
line represents the phonon propagator and the dashed line th@ves rise just to a constant term which can be absorbed into
electron-electron Coulomb repulsion. The corresponding redefinition of the chemical potential — w. We can then
compact expression of the noncrossing self-energy reads neglect it since we shall consider only half-filled systems for
which we setu’ =0.
In an isotropic system the angular dependence of the self-
Ea(k>=2 [V(k—k")+le 'en® ]G (k"), (10) energy and of the vertex function in Eq42) and (14) is
K’ negligible and it can be dropped. Therefore, following the
same procedure reported in Ref. 12, we replace the electron-
where k and k' are fermionic four-vectors defined ds  phonon interactiohg(k—k’)|? by its average over the Fermi
=(k,iw,) andk’=(k’,iwy). Moreover,2,=—T=,3, and  surface:
V(k—k")=|g(k—k")|?D(k—k’), where g(k—k’) is the
electron-phonon matrix element aBdk— k') is the phonon lg(k—k")[P—={lg(k—k")|[*)rs=0?, (15
propagatorl is exchange Coulomb interaction which gives
rise to the Stoner enhancement factor. where
By introducing Eq.(10) into the expression of the spin-
vertex function(8) and using Eq(7) we obtain E lg(k—k")|26 (k) ]S e(k")]

K.k
(lg(k=k")[*)rs=

S dG,(k’ /
T(k)=1-2 [V(k—k')+le"'om® 13 % %} > de(k)1ole(k)]
’ o k,k’
‘ ’ 16
=1+ [V(k—k')+1]1G(k")?I'(k'). (1) In this way, the electron self-energy becomes independent of
k/

the momentumy; (k,n) =3 (n), and the electron propagator

becomes, at half-filling,
The noncrossing approximation for the self-energy leads

therefore to a self-consistent ladder equation Faik,n) 1
(Ref. 12 (Fig. 2. If we consider dispersionless phonons of G(k,n)= W, —e(k)’ (17)
frequencywg, the above ladder equations can be rewritten in "
the extended notation as where we have se¥ (n)=iw,—iW,. By using a constant
density of statesNg, the momentum summation in EGL4)
> is transformed asEk,HNoffEEde and, under integration
r = é r|+ r over €, the renormalized frequendy/, becomes
FIG. 2. Di ic self-consi i i 2 Er
. 2. Diagramatic self-consistent expression of the spin vertex W= w,— )\WTZ D(n— m)—arctar( _) , (18)
in noncrossing approximation. m T W,
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FIG. 3. Vertex-corrected electron-phonon self-energy.

where\ =Nyg? is the electron-phonon coupling constant. By
using Egs.(15) and (17), also the spin-vertex functiofi2)

becomes momentum independent and, by following the same

steps as above, it reduces to

2E
W2 +E2

m

[(n)=1+T>, [A\D(Nn—m)+1] r'(m). (19

PHYSICAL REVIEW B4 125104

r=§r+§r

%

+ ¢ rl+ ¢
S

+ o r

FIG. 4. Diagrammatic self-consistent expression of the spin ver-
tex in the vertex-corrected theory.

Finally, since the self-energy and the spin-vertex function

depend only on the frequency, the summation dvean be
readily performed in Eq(5) leading to

x(T)—xPTg —w§+E§””)’ (20)

where y,= 2,u§N0. The spin susceptibility is then obtained
by the solution of Eqs(18), (19), and(20).

B. Vertex-corrected self-energy

In the vertex correction approximation, the electron-

phonon self-energy P is modified with respect to the ME

one by the inclusion of the first electron-phonon vertex dia-
gram as shown in Fig. 3. By making use of the condensed
notation introduced in Sec. Il A, the vertex-corrected self-

energy can therefore be written as follows:
2Rk =2 V(k—K)G,(K')
k!

X

1+§ V<k—q>GU<q—k+k'>Gq<q>}

(21)

whereq=(q,iw|). The derivative o2, A(k) with respect to
h=ugH calculated at zero magnetic field is

|

dXZAk)
dh

dG, (k")
dh

=> V(k

K’

+> V(k—k")

k’,q
}0

—k’)

0 0

dG,(k’)
dh

XV(k—q)G(q—k+ k’)G(q){

+ >, V(k—k)V(k—q)G(k')G(q)
k'.q

dG, (q—k+k'
X{ »d )

dh
X G(k')G(q—k+k')

+ ) V(k—k")V(k—q)

k'.q
L

0

dG,(q)
dh

(22

and by rearranging the four-vector indices and using Ef)s.
and (8) the spin-vertex equation reduces to

F(k)=1+> [V(kk')+1]1G(k")2T(K"), (23
k/

where the electron-phonon kerné(k,k’) is
V(kk)=V(k—K)|1+2>, V(k—q)G(q)G(q—k+k’)
q

+§ V(k—q)V(g—k')G(q)G(k+k'—q).
(24

A graphical representation of EgR3) and(24) in terms of
Feynman diagrams is shown in Fig. 4.

In comparison with Fig. 2, the kernel of the spin suscep-
tibility resulting from the vertex-corrected self-energy is
modified by additional electron-phonon contributions repre-
sented by vertex and cross diagrams. This set of diagrams is
therefore quite similar to those encountered in the theory of
nonadiabatic superconductivity. They however differ in the
orientation of the electron propagatdizarticle-hole rather
than particle-particle contributiopsleading to a different
momentum dependence of the cross term. The evaluation of
the kernel(24) can therefore be carried on by following a
scheme similar to the one already employed in previous
works 213

Let us first evaluate the zero-field self-energy entering the
electron propagators in Eq24). As discussed before, the
Coulomb self-energy provides just a constant term which can
be absorbed into the definition of the chemical potential. The
total self-energy reduces therefore to the electron-phonon
one which from Eq(21) can be written in the compact form

S(k,n)=—T2> > |g(k—k")[?2D(n—m)
m k'

X[1+P(k,k";n,m)]G(k’,m), (25
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where we have introduced the vertex function given by  fluctuations of long wavelength because of the strong elec-
tronic correlation. In fact, in strongly correlated systems, the
P(kK :nm=—T k—a)|2D(n—1 electrons are surrounded k_)y giant corr.elatlon h.oles which
( n.m) 2| % l9tk=@)I*D(n=1) suppress charge density fluctuations with large
, momenta*~'® The relevant exchanged phonon scale is thus
XG(q—k+k",I=n+m)G(q,l). (26)  quite smaller than the Debye vectog.<qp and Q.

. . . . L= <1. i -
In analogy with the noncrossing approximation, we elimi- do/2ke=1. As a consequence the effective electron

nate the angular dependence of the self-energy by replacirPhonon interaction is suppressed for momenta larger than

the whole electron-phonon matrix element, including the ver-s’q)me cutofitc which depends on the filling factor and on the

tex correction, by its average over the Fermi surface: Coulomb repulsu_)n. _In E.Q(ZB) f?‘”d n the following, we
have modeled this situation by introducing a sharp momen-

lg(k—Kk")|[1+P(k,k’;n,m)] tum cutoffq.. It can be used as a free parameter to distin-
) guish between weak- and strong-correlation cases, wiere
—{lg(k=k)[[1+P(k,k’;n,m)])es is small for strong-correlated systems and of order 1 for

9 . weakly interacting electrons.
=g 1+ AP(Qc;n,m)]. 27 As usual, the self-energy effects can be expressed in a
An analytic expression of the Fermi-averaged vertex funcconvenient form by means of the renormalized frequencies
tion P(Q.;n,m) can be obtained by using standard field W,=w,[1—-3(n)/(iw,)] obtained by integrating Eq25)
theory techniques. The derivation follows closely the oneover the energy. In the vertex-corrected theory they fulfill the
outlined in Ref. 9, and here we present only the final resultself-consistent relation

P(Q¢;n,m)=T> D(n—1)| B(n,m,l) Wo=wn=7Te2, N[1+AP(Qc;n,m)]
|
2 2 Ee
+A(n,mJ)—B(n-m,|)[W|—W|7n+m] X D(n—m)—arctan ;- | (31
(2E¢Q?)? "
. . By using the momentum-independent self-ene(gy),
[ \/ 4EEQg ) the spin-vertex functiori23) can be rewritten as
X 14| ————]| -1
V\/I_Wl—n+m ,
7 2 C(k,n)=1-T>, [1+V(kk';n,m)] I'(k’.m)
1 4E 1 = - L] R RE] fl
. m{_\/ﬁ(;%) ] - o [IWo— (k') 2
2 WI_Wlfner (32)
where !vhere the nonadiabatic electron-phonon spin kernel
V(k,k";n,m) is given by
— (W _ _F ~
AL =W =Wi-nem) a”tafvvl) V(k,K';n,m)=|g(k—K')[2D(n—m)[ 1+ 2P(K,K’;n,m)]
+C(k,k";n,m). (33

: (29)
Here P(k,k’;n,m) is again the first vertex correction given
in Eqg. (26) and C(k,k’;n,m) is the cross correction whose
EFW—n+m explicit expression is given below:
[EE+WE piml?

<:<k,k';n,m>:T2I % lg(k—a)|?g(q—k")|?

Er
Tow (30
EFtWinim D(n—1)D(I—m)
The present expression B{Q.;n,m) is an improvement of ~ [IW,— e(q) I[IW,sm_— e(k+k' —q)]
the previous calculation presented in the Appendix of Ref. 9
by explicitly including the self-consistent self-energy renor- (34)

Lnahzggon. ;Lhe pallramett@c IS atzlmensmlnles? momelnttim Coherently with the approximations performed on the
escribing the relevant momentum scale ot the elec ronéelf—energy and with the Ward’s relatioi®), we evaluate

phonon scattering process. In conventional metal_s, such qs(k m) by replacing the kerngB3) by its momentum aver-
the low-temperature superconductors, the maximum ex: . '’

. ver the Fermi surface:
changed phonon momentusp is about the Debye vectay, age overthe Fefmi surace

andQ.~qp/2kg~1. It is well known, however, that in sys- V(K k' UK K Ry .
tems with low density of charge carriers, as fullerene’s com- (kkn,m) = (VK K0, m)hes=V(Qe:n.m), (35
pounds and cuprates, the electrons scatter only with chargehere
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V(Q¢:n,m)=AD(n—m)[1+2\P(Q.;n,m)]

+\2C(Q¢;n,m). (36) 09 | + 4
An explicit expression o€(Q.;n,m) can be also derived by
using the same procedure as Q. ;n,m). We find g 081 \ T 7
= I
= o7} at
C(Qe;n,m=T2 D(n—1)D(I—m){ 2B(n,—m]) _ 3
[ S
06 | 3 3
) A=0.7 ©/E=0.7
A(n,—m,1)—B(n,—m,D(W,—W,__p) T
+ 2 2 0.5 PN I AT IR PN I N ST
2EF QW — W, _p_p 00 02 04 06 08 00 02 04 06 08 1.0
o,/E; A
4ERQ}
Xarcta W ) (37 FIG. 5. Spin susceptibility as function of the adiabatic parameter
b enem wo/Eg and of the electron-phonon couplingfor Nol =0.4. Dashed

where the function# and B are reported in Eqg29) and lines represent the spin susceptibility for a noncrossing approxima-

(30). tion, solid lines for the vertex-corrected thedfyom the lower to
The final expression of the ladder vertex equation beyond® UPPer lineQc=0.1,Qc=0.3, Q:=0.5, Q:=0.7, Qc=1.0).

the adiabatic approximation is readily obtained from Egs.

(32)—(36). The result of the integration over the electron en-Within the noncrossing approximation while the solid lines
ergy gives are the data for the vertex-corrected theory. For this latter

case we show the results for different values of the momen-
_ 2E; tum cutoff Q. (Q.=0.1, 0.3, 0.5, 0.7, 1.0).
F(n)zl—)\TE [1+V(Qc;n,m) ] ———=T'(m). The first main result of Fig. 5 is that the inclusion of the
m Wt Er electron-phonon coupling,in the nonadiabatic regime
(38 wo/E=0, yields a sensible reduction gf with respect to

Finally, the spin susceptibility in the vertex-corrected ap-the pure electronic spin susceptibility. As expected this effect
proximation is obtained by plugging EB8) into Eq.(20).  Vanishes as\—0 (right pane] or wo/Er—0 (left pane).
Note that both the noncrossing and vertex-corrected theories
V. RESULTS yield similar reduction. This is quite different from the situ-
ation encountered in the superconducting pairing
We are now in the position to calculate the Pauli suscepehannef®!® where the effect of the vertex corrections is
tibility y and to evaluate the effects gn of the electron- much stronger and highly dependent @g.
phonon interaction, both in the noncrossing approximation The results of Fig. 5 suggest that some care is needed in
and in the vertex corrected theory. Of course, when the adiaestimating the value of the bare density of states from para-
batic parametet,/Eg or the electron-phonon coupling con- magnetic susceptibility measurements. Indeed, our analysis
stant A is turned to zeroy would reduce to the simple shows thaty is not simply related to the density of states by

Stoner-enhanced susceptibility Eq. (39). Namely, disregarding the electron-phonon effects
- would lead to a substantial underestimation of the bare den-
. . X0 sity of states from a spin susceptibility measurement as long
l'mOX(T): I/'gn OX(T): Xo(T)’ B9 as'the electron-phonon interaction is in the nonadiabatic re-
- vorEET 1-1INg gime.
P A more clear signature of the nonadiabatic effects is pro-
where xo(T) is the free-electron Pauli susceptibility: vided by the isotope dependence of the spin susceptibility. In
Fig. 6 we report the numerical calculations of the isotope
) 1 coefficientar, = — dlogy/dlogM, whereM is the ion mass, as
Xo(T)=—2u3T> > .—kZZXP[l_Zf(EF)L a function of the adiabatic rati@y/Er and of\. Both the
"k [Ton—e(k)] (40) noncrossing(dashed lingsand the vertex-correctetsolid

lines) theories predict negative values @f . Compared to
wheref(Eg) is the Fermi distribution function &g . the noncrossing data, the vertex-corrected results show for
In the following we will denote the zero electron-phonon small values ofQ. a stronger dependence an/Er andA,
limit in Eq. (39) as x*and it will be used as a comparison leading toa, of about—0.1. The observation of the isotope
element to evaluate the effects of the electron-phonon intereffect, which should be absent in metals fulfilling the ME
action. framework, could be therefore stringent evidence of a non-
In Fig. 5 we plot the total spin susceptibilielectron-  adiabatic electron-phonon coupling. Note that a previous
electron + electron-phonon scatteringas function of the analysis of experimental data of some superconducting prop-
electron-phonon coupling and of the adiabatic parameter foerties has demonstrated the failure of the ME theory for
zero temperature. Dashed lines are the results obtaine®b;Cgy, pointing out the breakdown of Migdal’s theorem in
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00 T T T R T T T T x is steeper for lower values of the momentum cutoff. Note,
for example, that foh =0.7, wg/E=0.7, andQ.=0.1, at
T/ wy=0.2 the susceptibility is enhanced by a 8%—9% of its
-0.04 - TN\ 7 value atT=0. Although this increase is rather small, it is
+ N ; nevertheless an interesting feature since it is not related to
- \ ] NN any increase of the lattice constant due to thermal expansion
g -0.08 oo S| (the calculations reported here in fact are done for constant
- ~ volumes. Experimentally, in facty at T=300 K is found to
042 =k be larger than its value 8~ 25 K of ~30% and~40% for
A=0.7 0y/E.=0.7 K3Cqo and RRCyq,, respectively’*® Moreover, recent data
T suggest a following decrease gfin K;Cgy by increasing
temperaturé? The initial increase ofy with temperature is
currently explained by a temperature enhancement of the
density of states at the Fermi level due to the thermal expan-
FIG. 6. Isotope effect on the spin susceptibility as a function ofSION Of the unit cell. Note, however, that a power law depen-
wo/Ex (\=0.7, Nol=0.4) and as function oh (w,/Eg=0.7, dence of the density of state on the lattice constant is not
Nol =0.4). Solid lines and dashed line as in previous figures.  sufficient to reproduce the observed increaseyofvhile a
stronger dependence like an exponential law needs a quite
, ) , small value of the Stoner enhancement-(4,1) "'=1.3, to
fullerides. In this respect, a measuremeniqfin Cgo COM- it the experimental data of.1® Such small Stoner enhance-
pounds would represent a direct and independent test of th@ent is in contrast to recent Monte Carlo calculations which
relevance of the nonadiabatic electron-phonon interaction. agtimate (FNgl) =3 2% Although a detailed study of the
From a qualitative point of view, the zero-temperature beffect of the thermal expansion gnis beyond the scope of
haviors of both the noncrossing and vertex-corrected theorigg,;g paper, the results of Fig. 7 suggest that the electron-
g_ive substantially similar r_esult_s. An i_ntere_sting differentia- phonon contribution could be an additional source for the
tion among the two approximations arises in the temperaturgsmperature dependence pf Of course, firmer evidence of
dependence of. In Fig. 7 we report the calculated tempera- the role of nonadiabaticity would be the measurement of the
ture dependence of the Pauli susceptibility for different Va"temperature dependence pffor a constant sample volume,
ues of wo/Er and A. The noncrossing approximation i the spirit therefore of the constant volume resistivity ex-
(dashed lineyields a monotone decreasing pfas the tem-  pariment of some years agb.
peratureT increases. This is basically due to the phonon  an alternative explanation of the nonmonotone tempera-
cutoff in the ladder equation for the susceptibility, E&9).  yre dependence gf has recently been attributed to possible
On the other hand, the vertex-correctedsolid lines has a  effects of mobile ions K.X This argument would predict,
richer temperature dependence which becomes more impo,ever, a finite isotope effect op by alkali isotopic sub-
tant ash wo/Er increases. Starting froM=0, the basic fea-  gjtution and no carbon isotope effect whereas in nonadia-

ture is represented by an initial increaseyofith T followed  patic theory an opposite trend is expected.
by a decreasing for larger temperatures. Although the de-

creasing part is rathé. independent, the initial increase of V. CONCLUSIONS

-0.16 PR T WIS SO M P S ST S S
00 02 04 06 08 00 02 04 06 08 1.0
w/E: A

o In this paper the nonadiabatic theory of the Pauli spin

susceptibility in narrow-band systems has been formulated in
09 order to identify possible signatures of nonadiabatic electron-
08 - phonon coupling in fullerides. We have identified peculiar
07 L features that can be considered as hallmarks of a relevant
?ﬁ“’ o6 L glectron—phonon couplin’r‘m. the nonadia_batic regimgp par-
= ticular, an effective reduction of the spin susceptibility by the
be VO —t——t nonadiabatic electron-phonon coupling has been found in
|’:‘ 0.9 contrast to the conventional ME framework where no
= 08 = electron-phonon renormalization is expected. In addition, we
07 L predict a finite negative isotope effect grwhich we suggest
06 L as a possible experimental test. The Pauli spin susceptibility
' of y also acquires in nonadiabatic regime an anomalous tem-
0% 0 0z 04 00 02 04 o6 perature dependence in qualitative agreement with the ex-

T/w, perimental data.
The results of the present work are particularly interesting
FIG. 7. Temperature dependence of the spin susceptibility foin the framework of the theory of nonadiabatic superconduc-
different values ofwy/Er and A and Nyl =0.4. Solid lines and tivity, where the same nonadiabatic interferences, at the ori-
dashed line as in previous figures. gin of the electron-phonon renormalization »f open new
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attractive channels in the Cooper pairing and play therefore #y in fullerenes is worth further investigation. Nonadiabatic
positive role with respect to the superconducting onset. Ireffects could be, for instance, responsible for the anomalous
this perspective the simultaneous effect of the nonadiabatit, vs y dependence in ammoniated alkali-doped

channels on the Cooper pairing and on the Pauli susceptibifullerides??~2*
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