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Nonadiabatic Pauli susceptibility in fullerene compounds
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The Pauli paramagnetic susceptibilityx is unaffected by the electron-phonon interaction in the Migdal-
Eliashberg context. The adiabatic assumption of Migdal’s theorem, however, is of questionable validity when
applied to very narrow-band systems as the fullerene compounds. In these materials therefore the nonadiabatic
effects are in principle relevant and quantities such asx could be seriously affected by the electron-phonon
interaction. In this paper we investigate the Pauli spin susceptibility in the nonadiabatic regime by following a
conserving approach based on Ward’s identity. We find that a sizable renormalization ofx due to electron-
phonon coupling appears when nonadiabatic effects are taken into account. The intrinsic dependence ofx on
the electron-phonon interaction gives rise to a finite and negative isotope effect which could be experimentally
detected in fullerides. In addition, we find an enhancement of the spin susceptibility with temperature increas-
ing, in agreement with the temperature dependence ofx observed in fullerene compounds. The role of elec-
tronic correlation is also discussed.
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I. INTRODUCTION

The Pauli susceptibilityx of wide-band metals is usuall
considered as unrenormalized by electron-phonon effects
pointed out some time ago by Fay and Appel,1 x is actually
affected by the electron-phonon coupling, the effect hav
magnitude of orderlvph/EF , where l is the electron-
phonon coupling,vph is a typical phonon frequency, andEF
is the Fermi energy. For wide-band metals,vph!EF and the
electron-phonon renormalization ofx is therefore negligible.
This result basically follows from the observation that t
lowest-order electron-phonon correction tox is a vertex dia-
gram which, according to Migdal’s theorem,2 is of order
lvph/EF . Hence the absence of phonon effects inx is just a
manifestation of the electron-phonon adiabaticity of norm
metals.

This situation may be somewhat different for weak fer
magnetic metals like ZrZn2.1,3 In this case, the electron
phonon corrections compete with the exchange term, lea
to a possible phonon-dependent ferromagnetic transi
temperature. Experiments have, however, reported o
small isotope effects in ZrZn2 with quite large error bars,4

leaving the problem of phonon-corrected wea
ferromagnetism essentially unresolved. The recent disco
of giant isotope shifts in manganites proves, however,
existence of ferromagnetic materials with important electr
phonon effects in their magnetic properties.5

The possibility of having electron-phonon-dependent s
susceptibility is, however, not correlated exclusively to t
vicinity of magnetic instabilities. In fact, as long aslvph/EF
is not negligible, as in very-narrow-band systems,
electron-phonon vertex contributions are no longer unimp
tant so thatx is expected to acquire a phonon renormaliz
tion. The most promising candidates for the observation
this effect are the C60-based materials. Fullerene compoun
have in fact phonon modes extending up to 0.2 eV and Fe
energies of about 0.3 eV.6 Therefore,vph/EF is in principle
0163-1829/2001/64~12!/125104~8!/$20.00 64 1251
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large, suggesting that C60-based metals could be labeled
nonadiabatic systems.

Recently, the finding of a superconducting transition
Tc552 K in hole-doped C60 single crystals has raised a re
newed interest in these materials.7 Nonzero isotope effects
and other properties strongly indicate that superconducti
in fullerides is driven by electron-phonon interactions6

However, the description of superconductivity of Rb3C60

within the traditional Migdal-Eliashberg~ME! theory is
found to be inconsistent with respect to the adiabatic hypo
esis lvph/EF!1 which is at the basis of the ME theor
itself.8 Instead, by relaxing the adiabatic hypothesis, a g
eralized formulation which includes nonadiabatic channels
the electron-phonon interaction provides a more s
consistent description of superconductivity, and suggests
the key ingredient for the high values ofTc in C60-based
materials is a constructive nonadiabatic interference ra
than strong electron-phonon couplings.8,9

In principle, the hypothesis that superconductivity
fullerene compounds is enhanced essentially by nonadiab
electron-phonon effects can be sustained by the observa
of independent signatures of nonadiabaticity. In this resp
and according to what we have pointed out at the beginn
Pauli susceptibility is a quantity where such signatures co
be found. In this paper, we provide extensive calculations
x beyond the adiabatic limit by including nonadiabatic e
fects at different stages of a perturbation theory inlvph/EF .
We find that whenvph/EF is no longer negligible,~i! the
paramagnetic spin susceptibility can be considerably redu
with respect to the adiabatic limit and~ii ! it acquires a nega-
tive isotope effect and~iii ! a possible anomalous temperatu
dependence at constant sample volume. These feature
signatures of nonadiabatic electron-phonon interactions
predictions~ii ! and~iii ! are susceptible of experimental ver
fication. Such results suggest therefore that an important
could be played by a nonadiabatic electron-phonon inter
©2001 The American Physical Society04-1
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tion in determining magnetic properties and stimulate furt
theoretical and experimental work on this line.

II. PAULI SUSCEPTIBILITY BY WARD’S IDENTITY

As remarked in the Introduction, the effect of electro
phonon interactions on spin susceptibility has already
tracted some interest in the past mainly in relation to we
antiferromagnets. However, different approaches led to
ferent results,1,3 reflecting the lack of a controlled theory.

In our paper we use the functional formalism based on
Baym-Kadanoff technique to derive a conserving derivat
of Pauli susceptibility valid for both electron-phonon a
electron-electron interactions. The Pauli susceptibilityx is
calculated by knowledge of the spin vertex function which
related to the self-energy via a Ward’s identity.

Following the Baym-Kadanoff technique, we introduce
external magnetic fieldH coupled with the electrons whic
induces a magnetizationM. The interaction Hamiltonian de
scribing the coupling ofH with the electron spins is

Hh52h(
k,s

scks
† cks , ~1!

whereh5mBH (mB is the Bohr magneton! andcks
† (cks) are

creation~annihilation! fermionic operators for electrons wit
wave numberk and spin indexs561. The electron mag-
netizationM due to Eq.~1! is given byM5mB(ssns where
ns5(k^cks

† cks& and ^•••& denotes the statistical averag
We express now the magnetizationM in terms of the finite-
temperature single-electron propagator

Gs~k,t!52^Ttcks~t!cks
† ~0!&, ~2!

whereTt is the time ordering operator andt is the imaginary
time. Since^cks

† cks&5Gs(k,02), the magnetization can b
expressed as

M5mB(
k,s

sGs~k,02!5mBT(
n

(
k,s

sGs~k,n!e2 ivn02
.

~3!

In the above expression,Gs(k,n) is the thermal electron
propagator which satisfies the following Dyson equation:

Gs
21~k,n!5 ivn2e~k!1m1hs2Ss~k,n!, ~4!

where vn5(2n11)pT, n50,61,62, . . . , areMatsubara
frequencies,e(k) the electron dispersion,m the chemical
potential, andSs(k,n) is the electronic self-energy due t
the coupling to phonons and to the electron-electron inte
tion. The spin susceptibilityx is formally given by M
5xH wherex5@dM/dH#0 is the derivative of the magne
tization at zero field. Hence, from Eq.~3!, a general expres
sion for x is

x~T!5mB
2T(

n
(
k,s

sFdGs~k,n!

dh G
0

522mB
2T(

n
(

k
G~k,n!2G~k,n!, ~5!
12510
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whereG(k,n) is the electron propagator for zero magne
field which satisfies theH→0 limit of Eq. ~4!:

G21~k,n!5 ivn2e~k!1m2S~k,n!. ~6!

In the second term of Eq.~5! we have introduced the spin
vertex function

G~k,n!5
1

2 (
s

sFdGs
21~k,n!

dh G
0

. ~7!

In Eqs. ~5! and ~7!, the notation@•••#0 indicates that the
quantity in brackets must be calculated for zero magn
field. Plugging Eq.~4! into Eq. ~7! the resulting vertexG
satisfies the Ward’s identity,

G~k,n!512
1

2 (
s

sFdSs~k,n!

dh G
0

, ~8!

and sinceSs(k,n) is a functional of the electron propagato
a self-consistent relation between Eqs.~7! and~8! is obtained
which permits us to calculate the spin susceptibility. At th
point, the spin susceptibilityx can be calculated once th
electron self-energy and its magnetic field dependence
known.

III. NONADIABATIC PAULI SUSCEPTIBILITY

The electron-phonon interaction is usually neglected
calculations of the Pauli susceptibility although it ca
strongly renormalize other physical quantities.10 Indeed it
can be shown that the electron-phonon self-energy depe
on the external magnetic fieldh at least as

lim
h→0

Sep~k,n!;hO~vph/EF!, ~9!

wherevph characterizes the phonon frequency scale andEF
is the Fermi energy. In wide-band materials the adiaba
ratio vph/EF!1 and the electron-phonon contribution tox
can be consequently disregarded. From Eq.~9!, we see that
electron-phonon effects appear inx only at a nonadiabatic
level. Hence, any evidence of electron-phonon effects on
Pauli susceptibility could be a direct proof of a nonadiaba
electron-phonon coupling. This statement holds true as l
as phonon-modulated spin-orbit effects,11 not included here,
can be neglected. This should be, however, the case for
fullerene compounds and other systems with light atoms

In order to properly include electron-phonon interactio
in x we need then to explicitly specify the functional form
the nonadiabatic electron-phonon self-energy. Nonadiab
effects enter in a twofold way in the electron-phonon se
energy: finite-bandwidth effects and vertex diagrams. Th
two kinds of effects, of course, are of the same order
vph/EF , and there is no justification for neglecting verte
corrections with respect to finite-bandwidth effects.

In this paper we consider two approximation schemes
the electron-phonon self-energy. The first one is essenti
the mean-field theory which corresponds to the noncross
approximation. It is diagrammatically equivalent to th
Migdal-Eliashberg electron-phonon self-energy witho
4-2
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however, assuming an infinite electron bandwidth compa
to the relevant phonon energies. At this level only fini
bandwidth nonadiabatic effects are considered. The sec
one includes first-order electron-phonon vertex correcti
as well as finite-bandwidth effects in the framework on t
nonadiabatic Fermi liquid picture.9 Both approximation
schemes reduce to the adiabatic Migdal-Eliashberg limit
vph/EF→0.

A. Noncrossing self-energy

The self-consistent noncrossing approximation negle
the vertex corrections in the electron-phonon self-energy
for vph/EF!1 reduces to the ME theory of the electro
phonon-coupled system. The diagrammatic representatio
the electron self-energy is shown in Fig. 1 where the wig
line represents the phonon propagator and the dashed lin
electron-electron Coulomb repulsion. The correspond
compact expression of the noncrossing self-energy read

Ss~k!5(
k8

@V~k2k8!1Ie2 ivm02
#Gs~k8!, ~10!

where k and k8 are fermionic four-vectors defined ask
[(k,ivn) andk8[(k8,ivm). Moreover,(k[2T(n(k and
V(k2k8)[ug(k2k8)u2D(k2k8), where g(k2k8) is the
electron-phonon matrix element andD(k2k8) is the phonon
propagator.I is exchange Coulomb interaction which giv
rise to the Stoner enhancement factor.

By introducing Eq.~10! into the expression of the spin
vertex function~8! and using Eq.~7! we obtain

G~k!512(
k8

@V~k2k8!1Ie2 ivm02
#(

s

s

2 FdGs~k8!

dh G
0

511(
k8

@V~k2k8!1I #G~k8!2G~k8!. ~11!

The noncrossing approximation for the self-energy le
therefore to a self-consistent ladder equation forG(k,n)
~Ref. 12! ~Fig. 2!. If we consider dispersionless phonons
frequencyv0, the above ladder equations can be rewritten
the extended notation as

FIG. 1. Electronic self-energy within the noncrossing appro
mation.

FIG. 2. Diagramatic self-consistent expression of the spin ve
in noncrossing approximation.
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G~k,n!512T (
k8,m

@ ug~k2k8!u2D~n2m!

1I #G~k8,m!2G~k8,m!, ~12!

where

D~n2m!5
v0

2

~ ivm2 ivm!22v0
2

. ~13!

The electron propagator appearing in Eq.~11! satisfies the
Dyson equation~6! with the zero-field limit of the self-
energy~10!:

S~k,n!52T (
k8,m

ug~k2k8!u2D~n2m!G~k8,m!

1IT (
k8,m

G~k8,m!e2 ivm02
. ~14!

In the simplest case ofk-independent Coulomb repulsio
here considered the second term on the right side of Eq.~14!
gives rise just to a constant term which can be absorbed
a redefinition of the chemical potentialm8→m. We can then
neglect it since we shall consider only half-filled systems
which we setm850.

In an isotropic system the angular dependence of the s
energy and of the vertex function in Eqs.~12! and ~14! is
negligible and it can be dropped. Therefore, following t
same procedure reported in Ref. 12, we replace the elect
phonon interactionug(k2k8)u2 by its average over the Ferm
surface:

ug~k2k8!u2→ ^̂ ug~k2k8!u2&&FS[g2, ~15!

where

^̂ ug~k2k8!u2&&FS5

(
k,k8

ug~k2k8!u2d@e~k!#d@e~k8!#

(
k,k8

d@e~k!#d@e~k8!#

.

~16!

In this way, the electron self-energy becomes independen
the momentum,S(k,n)5S(n), and the electron propagato
becomes, at half-filling,

G~k,n!5
1

iWn2e~k!
, ~17!

where we have setS(n)5 ivn2 iWn . By using a constant
density of states,N0, the momentum summation in Eq.~14!
is transformed as(k8→N0*

2EF

1EFde and, under integration

over e, the renormalized frequencyWn becomes

Wn5vn2lpT(
m

D~n2m!
2

p
arctanS EF

Wm
D , ~18!

-

x

4-3
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wherel5N0g2 is the electron-phonon coupling constant. B
using Eqs.~15! and ~17!, also the spin-vertex function~12!
becomes momentum independent and, by following the s
steps as above, it reduces to

G~n!511T(
m

@lD~n2m!1I #
2EF

Wm
2 1EF

2
G~m!. ~19!

Finally, since the self-energy and the spin-vertex funct
depend only on the frequency, the summation overk can be
readily performed in Eq.~5! leading to

x~T!5xPT(
n

2EF

Wn
21EF

2
G~n!, ~20!

wherexp52mB
2N0. The spin susceptibility is then obtaine

by the solution of Eqs.~18!, ~19!, and~20!.

B. Vertex-corrected self-energy

In the vertex correction approximation, the electro
phonon self-energySep is modified with respect to the ME
one by the inclusion of the first electron-phonon vertex d
gram as shown in Fig. 3. By making use of the conden
notation introduced in Sec. III A, the vertex-corrected se
energy can therefore be written as follows:

Ss
ep~k!5(

k8
V~k2k8!Gs~k8!

3F11(
q

V~k2q!Gs~q2k1k8!Gs~q!G ,
~21!

whereq[(q,iv l). The derivative ofSs
ep(k) with respect to

h5mBH calculated at zero magnetic field is

FdSs
ep~k!

dh G
0

5(
k8

V~k2k8!FdGs~k8!

dh G
0

1(
k8,q

V~k2k8!

3V~k2q!G~q2k1k8!G~q!FdGs~k8!

dh G
0

1(
k8,q

V~k2k8!V~k2q!G~k8!G~q!

3FdGs~q2k1k8!

dh G
0

1(
k8,q

V~k2k8!V~k2q!

3G~k8!G~q2k1k8!FdGs~q!

dh G
0

~22!

FIG. 3. Vertex-corrected electron-phonon self-energy.
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and by rearranging the four-vector indices and using Eqs.~7!
and ~8! the spin-vertex equation reduces to

G~k!511(
k8

@Ṽ~k,k8!1I #G~k8!2G~k8!, ~23!

where the electron-phonon kernelṼ(k,k8) is

Ṽ~k,k8!5V~k2k8!F112(
q

V~k2q!G~q!G~q2k1k8!G
1(

q
V~k2q!V~q2k8!G~q!G~k1k82q!.

~24!

A graphical representation of Eqs.~23! and ~24! in terms of
Feynman diagrams is shown in Fig. 4.

In comparison with Fig. 2, the kernel of the spin susce
tibility resulting from the vertex-corrected self-energy
modified by additional electron-phonon contributions rep
sented by vertex and cross diagrams. This set of diagram
therefore quite similar to those encountered in the theory
nonadiabatic superconductivity. They however differ in t
orientation of the electron propagators~particle-hole rather
than particle-particle contributions!, leading to a different
momentum dependence of the cross term. The evaluatio
the kernel~24! can therefore be carried on by following
scheme similar to the one already employed in previo
works.9,13

Let us first evaluate the zero-field self-energy entering
electron propagators in Eq.~24!. As discussed before, th
Coulomb self-energy provides just a constant term which
be absorbed into the definition of the chemical potential. T
total self-energy reduces therefore to the electron-pho
one which from Eq.~21! can be written in the compact form

S~k,n!52T(
m

(
k8

ug~k2k8!u2D~n2m!

3@11P~k,k8;n,m!#G~k8,m!, ~25!

FIG. 4. Diagrammatic self-consistent expression of the spin v
tex in the vertex-corrected theory.
4-4
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where we have introduced the vertex function given by

P~k,k8;n,m!52T(
l

(
q

ug~k2q!u2D~n2 l !

3G~q2k1k8,l 2n1m!G~q,l !. ~26!

In analogy with the noncrossing approximation, we elim
nate the angular dependence of the self-energy by repla
the whole electron-phonon matrix element, including the v
tex correction, by its average over the Fermi surface:

ug~k2k8!u2@11P~k,k8;n,m!#

→ ^̂ ug~k2k8!u2@11P~k,k8;n,m!#&&FS

5g2@11lP~Qc ;n,m!#. ~27!

An analytic expression of the Fermi-averaged vertex fu
tion P(Qc ;n,m) can be obtained by using standard fie
theory techniques. The derivation follows closely the o
outlined in Ref. 9, and here we present only the final res

P~Qc ;n,m!5T(
l

D~n2 l !S B~n,m,l !

1
A~n,m,l !2B~n,m,l !@Wl2Wl 2n1m#2

~2EFQc
2!2

3HA11S 4EFQc
2

Wl2Wl 2n1m
D 2

21

2 lnF1

2
A11S 4EFQc

2

Wl2Wl 2n1m
D 2G J D , ~28!

where

A~n,m,l !5~Wl2Wl 2n1m!FarctanS EF

Wl
D

2arctanS EF

Wl 2n1m
D G , ~29!

B~n,m,l !5~Wl2Wl 2n1m!
EFWl 2n1m

@EF
21Wl 2n1m

2 #2

2
EF

EF
21Wl 2n1m

2
. ~30!

The present expression ofP(Qc ;n,m) is an improvement of
the previous calculation presented in the Appendix of Re
by explicitly including the self-consistent self-energy reno
malization. The parameterQc is a dimensionless momentum
describing the relevant momentum scale of the electr
phonon scattering process. In conventional metals, suc
the low-temperature superconductors, the maximum
changed phonon momentumqc is about the Debye vectorqD
andQc;qD/2kF;1. It is well known, however, that in sys
tems with low density of charge carriers, as fullerene’s co
pounds and cuprates, the electrons scatter only with ch
12510
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fluctuations of long wavelength because of the strong e
tronic correlation. In fact, in strongly correlated systems,
electrons are surrounded by giant correlation holes wh
suppress charge density fluctuations with lar
momenta.14–16 The relevant exchanged phonon scale is th
quite smaller than the Debye vector:qc,qD and Qc
5qc /2kF,1. As a consequence the effective electro
phonon interaction is suppressed for momenta larger t
some cutoffqc which depends on the filling factor and on th
Coulomb repulsion. In Eq.~28! and in the following, we
have modeled this situation by introducing a sharp mom
tum cutoff qc . It can be used as a free parameter to dist
guish between weak- and strong-correlation cases, wherqc
is small for strong-correlated systems and of order 1
weakly interacting electrons.

As usual, the self-energy effects can be expressed
convenient form by means of the renormalized frequenc
Wn5vn@12S(n)/( ivn)# obtained by integrating Eq.~25!
over the energy. In the vertex-corrected theory they fulfill t
self-consistent relation

Wn5vn2pTc(
m

l@11lP~Qc ;n,m!#

3D~n2m!
2

p
arctanS EF

Wm
D . ~31!

By using the momentum-independent self-energy~31!,
the spin-vertex function~23! can be rewritten as

G~k,n!512T (
k8,m

@ I 1Ṽ~k,k8;n,m!#
G~k8,m!

@ iWm2e~k8!#2
,

~32!

where the nonadiabatic electron-phonon spin ker
Ṽ(k,k8;n,m) is given by

Ṽ~k,k8;n,m!5ug~k2k8!u2D~n2m!@112P~k,k8;n,m!#

1C~k,k8;n,m!. ~33!

Here P(k,k8;n,m) is again the first vertex correction give
in Eq. ~26! and C(k,k8;n,m) is the cross correction whos
explicit expression is given below:

C~k,k8;n,m!5T(
l

(
q

ug~k2q!u2ug~q2k8!u2

3
D~n2 l !D~ l 2m!

@ iWl2e~q!#@ iWn1m2 l2e~k1k82q!#
.

~34!

Coherently with the approximations performed on t
self-energy and with the Ward’s relation~8!, we evaluate
G(k,m) by replacing the kernel~33! by its momentum aver-
age over the Fermi surface:

Ṽ~k,k8;n,m!→ ^̂ Ṽ~k,k8;n,m!&&FS5Ṽ~Qc ;n,m!, ~35!

where
4-5
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Ṽ~Qc ;n,m!5lD~n2m!@112lP~Qc ;n,m!#

1l2C~Qc ;n,m!. ~36!

An explicit expression ofC(Qc ;n,m) can be also derived by
using the same procedure as forP(Qc ;n,m). We find

C~Qc ;n,m!5T(
l

D~n2 l !D~ l 2m!H 2B~n,2m,l !

1
A~n,2m,l !2B~n,2m,l !~Wl2Wl 2n2m!2

2EF
2Qc

2uWl2Wl 2n2mu

3arctanS 4EFQc
2

uWl2Wl 2n2mu D J , ~37!

where the functionsA and B are reported in Eqs.~29! and
~30!.

The final expression of the ladder vertex equation bey
the adiabatic approximation is readily obtained from E
~32!–~36!. The result of the integration over the electron e
ergy gives

G~n!512lT(
m

@ I 1Ṽ~Qc ;n,m!#
2EF

Wm
2 1EF

2
G~m!.

~38!

Finally, the spin susceptibility in the vertex-corrected a
proximation is obtained by plugging Eq.~38! into Eq. ~20!.

IV. RESULTS

We are now in the position to calculate the Pauli susc
tibility x and to evaluate the effects onx of the electron-
phonon interaction, both in the noncrossing approximat
and in the vertex corrected theory. Of course, when the a
batic parameterv0 /EF or the electron-phonon coupling con
stant l is turned to zerox would reduce to the simple
Stoner-enhanced susceptibility

lim
l→0

x~T!5 lim
v0 /EF→0

x~T!5
x0~T!

12IN0

x0~T!

xP

, ~39!

wherex0(T) is the free-electron Pauli susceptibility:

x0~T!522mB
2T(

n
(

k

1

@ ivn2e~k!#2
5xP@122 f ~EF!#,

~40!

where f (EF) is the Fermi distribution function atEF .
In the following we will denote the zero electron-phono

limit in Eq. ~39! asxee and it will be used as a compariso
element to evaluate the effects of the electron-phonon in
action.

In Fig. 5 we plot the total spin susceptibility~electron-
electron 1 electron-phonon scattering! as function of the
electron-phonon coupling and of the adiabatic parameter
zero temperature. Dashed lines are the results obta
12510
d
.
-

-

-

n
a-

r-

or
ed

within the noncrossing approximation while the solid lin
are the data for the vertex-corrected theory. For this la
case we show the results for different values of the mom
tum cutoff Qc (Qc50.1, 0.3, 0.5, 0.7, 1.0).

The first main result of Fig. 5 is that the inclusion of th
electron-phonon coupling,in the nonadiabatic regime
v0 /EF>0, yields a sensible reduction ofx with respect to
the pure electronic spin susceptibility. As expected this eff
vanishes asl→0 ~right panel! or v0 /EF→0 ~left panel!.
Note that both the noncrossing and vertex-corrected theo
yield similar reduction. This is quite different from the situ
ation encountered in the superconducting pair
channel,8,9,13 where the effect of the vertex corrections
much stronger and highly dependent onQc .

The results of Fig. 5 suggest that some care is neede
estimating the value of the bare density of states from pa
magnetic susceptibility measurements. Indeed, our ana
shows thatx is not simply related to the density of states
Eq. ~39!. Namely, disregarding the electron-phonon effe
would lead to a substantial underestimation of the bare d
sity of states from a spin susceptibility measurement as l
as the electron-phonon interaction is in the nonadiabatic
gime.

A more clear signature of the nonadiabatic effects is p
vided by the isotope dependence of the spin susceptibility
Fig. 6 we report the numerical calculations of the isoto
coefficientax52dlogx/dlogM, whereM is the ion mass, as
a function of the adiabatic ratiov0 /EF and of l. Both the
noncrossing~dashed lines! and the vertex-corrected~solid
lines! theories predict negative values ofax . Compared to
the noncrossing data, the vertex-corrected results show
small values ofQc a stronger dependence onv0 /EF andl,
leading toax of about20.1. The observation of the isotop
effect, which should be absent in metals fulfilling the M
framework, could be therefore stringent evidence of a n
adiabatic electron-phonon coupling. Note that a previo
analysis of experimental data of some superconducting p
erties has demonstrated the failure of the ME theory
Rb3C60, pointing out the breakdown of Migdal’s theorem

FIG. 5. Spin susceptibility as function of the adiabatic parame
v0 /EF and of the electron-phonon couplingl for N0I 50.4. Dashed
lines represent the spin susceptibility for a noncrossing approxi
tion, solid lines for the vertex-corrected theory~from the lower to
the upper line:Qc50.1, Qc50.3, Qc50.5, Qc50.7, Qc51.0).
4-6
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fullerides. In this respect, a measurement ofax in C60 com-
pounds would represent a direct and independent test o
relevance of the nonadiabatic electron-phonon interactio

From a qualitative point of view, the zero-temperature b
haviors of both the noncrossing and vertex-corrected theo
give substantially similar results. An interesting different
tion among the two approximations arises in the tempera
dependence ofx. In Fig. 7 we report the calculated temper
ture dependence of the Pauli susceptibility for different v
ues of v0 /EF and l. The noncrossing approximatio
~dashed lines! yields a monotone decreasing ofx as the tem-
peratureT increases. This is basically due to the phon
cutoff in the ladder equation for the susceptibility, Eq.~19!.
On the other hand, the vertex-correctedx ~solid lines! has a
richer temperature dependence which becomes more im
tant aslv0 /EF increases. Starting fromT50, the basic fea-
ture is represented by an initial increase ofx with T followed
by a decreasing for larger temperatures. Although the
creasing part is ratherQc independent, the initial increase o

FIG. 6. Isotope effect on the spin susceptibility as a function
v0 /EF (l50.7, N0I 50.4) and as function ofl (v0 /EF50.7,
N0I 50.4). Solid lines and dashed line as in previous figures.

FIG. 7. Temperature dependence of the spin susceptibility
different values ofv0 /EF and l and N0I 50.4. Solid lines and
dashed line as in previous figures.
12510
he

-
es
-
re

-

n

or-

e-

x is steeper for lower values of the momentum cutoff. No
for example, that forl50.7, v0 /EF50.7, andQc50.1, at
T/v0.0.2 the susceptibility is enhanced by a 8%–9% of
value atT50. Although this increase is rather small, it
nevertheless an interesting feature since it is not relate
any increase of the lattice constant due to thermal expan
~the calculations reported here in fact are done for cons
volumes!. Experimentally, in fact,x at T.300 K is found to
be larger than its value atT;25 K of ;30% and;40% for
K3C60 and Rb3C60, respectively.17,18 Moreover, recent data
suggest a following decrease ofx in K3C60 by increasing
temperature.19 The initial increase ofx with temperature is
currently explained by a temperature enhancement of
density of states at the Fermi level due to the thermal exp
sion of the unit cell. Note, however, that a power law depe
dence of the density of state on the lattice constant is
sufficient to reproduce the observed increase ofx, while a
stronger dependence like an exponential law needs a q
small value of the Stoner enhancement, (12N0I )21.1.3, to
fit the experimental data ofx.18 Such small Stoner enhance
ment is in contrast to recent Monte Carlo calculations wh
estimate (12N0I )21.3.20 Although a detailed study of the
effect of the thermal expansion onx is beyond the scope o
this paper, the results of Fig. 7 suggest that the electr
phonon contribution could be an additional source for
temperature dependence ofx. Of course, firmer evidence o
the role of nonadiabaticity would be the measurement of
temperature dependence ofx for a constant sample volume
in the spirit therefore of the constant volume resistivity e
periment of some years ago.21

An alternative explanation of the nonmonotone tempe
ture dependence ofx has recently been attributed to possib
effects of mobile ions K1.19 This argument would predict
however, a finite isotope effect onx by alkali isotopic sub-
stitution and no carbon isotope effect whereas in nona
batic theory an opposite trend is expected.

V. CONCLUSIONS

In this paper the nonadiabatic theory of the Pauli s
susceptibility in narrow-band systems has been formulate
order to identify possible signatures of nonadiabatic electr
phonon coupling in fullerides. We have identified pecul
features that can be considered as hallmarks of a rele
electron-phonon couplingin the nonadiabatic regime. In par-
ticular, an effective reduction of the spin susceptibility by t
nonadiabatic electron-phonon coupling has been found
contrast to the conventional ME framework where
electron-phonon renormalization is expected. In addition,
predict a finite negative isotope effect onx which we suggest
as a possible experimental test. The Pauli spin susceptib
of x also acquires in nonadiabatic regime an anomalous t
perature dependence in qualitative agreement with the
perimental data.

The results of the present work are particularly interest
in the framework of the theory of nonadiabatic supercond
tivity, where the same nonadiabatic interferences, at the
gin of the electron-phonon renormalization ofx, open new
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attractive channels in the Cooper pairing and play therefo
positive role with respect to the superconducting onset
this perspective the simultaneous effect of the nonadiab
channels on the Cooper pairing and on the Pauli suscep
un

.

.
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a
n
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ity in fullerenes is worth further investigation. Nonadiaba
effects could be, for instance, responsible for the anoma
Tc vs x dependence in ammoniated alkali-dop
fullerides.22–24
.
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