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Well localized crystalline orbitals obtained from Bloch functions: The case of KNbO3
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The crystalline orbitals of KNbO3 are localized according to an iterative mixed Wannier-Boys scheme. The
transformed orbitals turn out to be extremely localized; their features and degree of localization are described
in terms of various indices. The spontaneous polarization and the effective Born charges of the various atoms
are evaluated starting from the localized Wannier function~LWF! centroids and from delocalized Bloch
functions through the Berry phase~BP! scheme. It turns out that the results provided by both approaches agree
very well ~for example, the spontaneous polarization is 0.3361 and 0.3347 C/m2 from the LWF and BP
methods, respectively!.
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I. INTRODUCTION

The crystalline orbitals~CO’s! describing the electronic
ground state of a periodic system are usually obtained
linear combinations of~delocalized! Bloch functions~BF’s!,
in order to exploit the block factorization of the Hamiltonia
matrix, because BF’s are bases for irreducible representa
of the translation group. Localized Wannier functio
~LWF’s! can be obtained by applying a unitary transform
tion to the CO’s and different degrees of localization can
obtained depending on the transformation. Transformati
that provide very well localized Wannier functions are p
ticularly useful for several reasons~see also the conclusion
in Ref. 1!.

~i! LWF’s permit an easy and intuitive description of th
electronic structure of crystalline compounds in terms
chemical concepts, such as lone pairs, shared electrons
covalent or ionic bonds;

~ii ! In terms of these localized states, many properties
be evaluated in an extremely simple and intuitive w
whereas expensive and not easy to implement methods
required, when delocalized CO’s are used. This is the c
for example, of the spontaneous polarization~DP! and the
effective Born charges2,3 (Z* ), which in the localized repre
sentation are nothing else than the difference in the dip
moment of the cell charge distributions evaluated at two
ferent geometries~see below for a more precise definition!,
whereas in the BF representation they are evaluated thro
a formalism based on Berry phases4–7 ~BP’s! that requires
the evaluation of complicated and expensive integrals.

~iii ! Well-localized WF’s can be used for the implemen
tion of postHartree-Fock estimates of the correlation ener
using the methods either of many-body perturbation8–10 or
configuration interaction or coupled cluster11,12 theories.

We have implemented a localization scheme that provi
extremely localized WF’s. It consists in the iteration of
Wannier-type transformation, applied to the subset of ba
we are interested in, followed by a Boys-typ
transformation.13,14 The method has been present
elsewhere15 and its efficiency and dependence on all comp
tational parameters have been discussed at length. In the
lowing section we shortly summarize the general feature
0163-1829/2001/64~12!/125102~8!/$20.00 64 1251
as

ns

-
e
s

-

f
nd

n
,
re
e,

le
-

gh

-
,

s

s

-
ol-

The aim of this paper is twofold.
~i! To provide an example of the capabilities of the loc

ization scheme as implemented in our computer progr
CRYSTAL. The localization scheme will be applied to KNbO3,
a ferroelectric material with a perovskitelike structure. T
degree of localization of the WF’s will be estimated in term
of various localization indices, usually adopted in molecu
quantum chemistry.16,17

~ii ! To evaluateDP andZ* in KNbO3 from the centroids
of the LWF’s, and compare them with the correspondi
quantities obtained from the BP algorithm.4–7 In principle,
both approaches should provide exactly the same res
when the same basis set and computational conditions
adopted~a BP option has recently been implemented in
CRYSTAL program18!. This is true, however, only in the limi
of very high accuracy and full convergence with respect
all computational parameters.

II. METHODOLOGICAL ASPECTS

The present calculations have been performed at
Hartree-Fock level with the periodicab initio CRYSTAL

code.19 CRYSTAL uses a variational basis set of BF’s obtain
from contracted Gaussian-type functions~GTF’s!. A GTF is
the product of a Gaussian~G! times a real solid spherica
harmonic. Each contracted GFT,wm(r2sm), is usually cen-
tered at an atomic sitesm , ~m51, . . . ,M labels the functions
centered in the primitive cell! and it will be referred to as an
‘‘atomic orbital’’ ~AO! in the following. The CO’s so defined
take the form

cs~r ,k!5 (
m51

M

am
s ~k!(

l 51

L

eik•Rlwm~r2sm2Rl !, ~1!

where the sums run over theM AO’s in the reference cell and
the L cells of the system~actually L5`!. As regards the
atomic basis sets, small core pseudopotentials20–22have been
used for Nb and K~see Table I!. The Nb basis set contain
2sp shells~3G and 1G contractions! and 2d shells~3G and
1G contractions!. For K, 3sp shells~2-1-1 G contractions!
have been used. For oxygen, the same all electron basi
as in previous papers~see Refs. 23 and 24! has been adopted
©2001 The American Physical Society02-1
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TABLE I. Exponents and coefficients of the contracted Gaussian basis set adopted in the present s
Nb and K, in conjunction with Hay-Wadt small core pseudopotentials. The coefficients multiply individ
normalized Gaussian-type orbitals.

Niobium Potassium

Coeff. Coeff.

Shell Expt. s(d) p Expt. s(d) p

sp 4.013674 0.310659 20.241891 7.506000 20.0209 20.0495
2.968789 21.031337 0.020413 2.371 20.4292 0.0266
1.056328 1.044714 1.344745

sp 0.451074 1.0 1.0 0.913 1.0 1.0
0.3092 1.0 1.0

d 21.317193 20.016394
1.358360 2.487991
0.488781 4.631201

d 0.210860 1.0
1
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it contains 18 functions~a contraction of 8, 4, 1, 1, and
GTF’s for the 1s, 2sp, 3sp, 4sp, and d shells, respec-
tively!. The two outersp GTF’s have been reoptimize
~asp50.5 and 0.215 bohr22!. The d-shell exponent isad
50.6 bohr22.

The experimental tetragonal unit cell structural para
eters measured25 at 270 °C have been used:a53.997 Å and
c54.063 Å. With Nb in the origin the remaining
displacements25 ~in fractional units! along thec direction are
0.023 ~K!, 0.040 (OI), and 0.042 (OII ), where ‘‘OI ’’ labels
each of the two oxygen ions along thec axis and ‘‘OII ’’ the
four oxygen ions in the basal plane of the octahedron.

As regards the computational conditions for the eval
tion of the Coulomb and exchange series, the adopted t
cation tolerances are 6 8 6 6 17~see Ref. 19!. The shrinking
factors of the reciprocal space net, at which the Fock ma
is diagonalized, has been set to 8 corresponding to 75 re
rocal space points. The total energies obtained with this m
can be considered as fully converged.

A. Localized crystalline orbitals

In the present work the WF’svs(r ) are expressed in term
of the AO’s as

vs~r !5 (
m51

M

(
l 51

L

Cm,Rl

s wm~r2sm2Rl !. ~2!

Every set$vs(r2Rl)% l 51
L fulfills the orthonormality condi-

tion

E drvs~r2Rl !* vs~r2Rm!5d lm , ~3!

and spans a translationally invariant subspace, which her
ter will be referred to as thes band~note thats simply labels
a given band; it does not refer, in general, to a band b
with s-type orbitals!. The same subspace can also be
scribed in terms of BF’s, which are by definition stable und
lattice translations@see Eq.~1!#.
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The coefficientscm,Rl

s andam
s (k) in Eqs. ~1! and ~2!, re-

spectively, are related by Fourier-like transforms:

cm,Rl

s 5
V

~2p!3 E
BZ

dk eik•Rlam
s ~k!

5
1

L (
j 51

L

eik j •Rlam
s ~k j !, ~4!

am
s ~k!5(

l 51

L

e2 ik•Rlcm,Rl

s . ~5!

In the first equality of Eq.~4!, integration is performed ove
the first Brillouin zone~BZ! andV is the cell volume, while
in the second equality the finite approach is used andkj are
the nodes of a Monkhorst-Pack net within the BZ.26 In this
approach the number of points in the net,L, is the same as
the number of cells in direct space considered in Eq.~2!.
Therefore, infinite sums in Eqs.~1!, ~2!, ~4!, and ~5! are in
practice restricted to a finite number of terms.

Let us now define theactivesubspaceS, which is spanned
by a given set ofs bands,s51, . . . ,N. HereS can be, for
instance, the subspace of theN valence bands obtained from
a Hartree-Fock calculation. It was shown in a previous wo1

that for nonconducting systems there exists a set of WF’s
span a givenS in the occupied space and are maxima
localized in coordinate space. Well localized WF’s are n
obtainable withCRYSTAL at a relatively low computationa
cost. In the following the method will be introduced briefl
while a complete discussion is reported elsewhere.15

The ‘‘wannierization’’ step starts from a guess for th
WF’s, $vs

(0)(r )%s51
N , which is supplied in input or obtained

using heuristic methods. The electron density of thesth WF
so obtained, which is assigned to the reference cell@see Eq.
~2!# is decomposed into atomic populationsqA,Rl

s of atomA

and celll using Mulliken analysis:
2-2
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qA,Rl

s 5 (
mPA

(
n,m

cm,Rl

s cn,Rm1Rl

s Smn
Rm, ~6!

where the first sum runs over the AO’s at atomA, Smn
Rm is the

overlap between the AO’swm(r2sm) and wn(r2sn2Rm),
and thecs coefficients are given by Eq.~2!. The electron
densities are normalized so that

(
l 51

L

(
A51

P

qA,Rl

s 51, ~7!

where the second sum runs over theP atoms in the reference
cell.

The Mulliken atomic populations are used to calculate
arrayGA

s which provides the lattice vectorRl assigned to the
periodic image of atomA, which displays the maximum
atomic population invs

(0)(r ):

GA
s 5Rl↔qA,Rl

s 5max$qA,Rm

s %m . ~8!

Therefore,GA
s denotes the primitive cell~i.e., an irreducible

set of atoms not necessarily all in the same lattice cel!
where thesth WF is mainly localized. A new functionFs(r )
~not necessarily a WF! is obtained for eachs band consider-
ing only the contributions of those AO’s that are within th
primitive cell defined byGA

s in vs
(0)(r ),

Fs~r !5 (
A51

P

pA
s (

mPA
cm,G

A
s

s,~0!
wm~r2sm2GA

s !, ~9!

where the second sum runs over them atomic orbitals at
atomA and weightspA

s read

pA
s 5H 0 if qA,Rl

s ,u, ; l 50, . . . ,L21,

1 otherwise.
~10!

u is a given threshold, which in the present calculation is
to 1021. WeightspA

s are employed to exclude the origin
WF tails from the model functionFs . Their role in the
present localization scheme is briefly discussed below.

The functionsFs(r ) are then retransformed into the B
representation using Eq.~5! and projected onto the activ
subspace at eachk j point of the Monkhorst net using th
projector

Pk j
5(

s51

N

ucs~k j !&^cs~k j !u, ~11!

where vector notation for the BFcs(r ,k j ), ucs(k j )&, is used.
The projected vectors are then symmetrically orthonorm
ized at eachk j and backtransformed into WF’s using Eq.~4!.
Finally, the atomic populations are calculated for eachvs
and, when required, each one is shifted a given lattice ve
in order to ensure that most of the electron population
contained within the reference cell. The resulting WF
vs

(1)(r ) are the input to the next step: the Boys step.
In the Boys step a unitary transformationUst is applied

that maximizes the functionalVB ,
12510
e

t

l-

or
s

VB5( s,s8
N u^vs

~2!ur uvs
~2!&2^vs8

~2!ur uvs8
~2!&u2, ~12!

wherevs
(2)(r )5( t51

N Ustv t
(1)(r ). The computational proce

dure used to maximizeVB is exactly the same as reported f
the molecular Foster-Boys method.13,14 The output WF’s
vs

(2)(r ) are then tested for convergence. If convergence
not achieved, thevs

(2) are used as a guess in the next ‘‘wa
nierization’’ step and the process continues.

The role of the Boys step consists in refining the localiz
tion performed in the previous wannierization step by exp
itly introducing a minimization of the most relevant of
diagonal terms in the matrix representation of ther
operator.1,2,15 The better localized character of the resulti
LWF’s allows one to define more suitable model functio
Fs to be used in the next iteration, improving efficiency
the next wannierization step. Accordingly, the degree of
calization of the WF’s is improved at each cycle of the ite
tive scheme, and, as shown in Ref. 15, the functions obta
at the end of the process can be considered very good
proximations to globally optimized LWF’s.

Convergence is tested using the so-called atomic delo
ization indexL, which provides a measure of the extent
the WF’s in terms of number of atoms,16

L5F 1

N (
s51

N

~ls!21G21

, ~13!

where the atomic extent of the singlesth WF, ls, reads

ls5F (
A51

P

(
l 51

L

~qA,Rl

s !2G21

. ~14!

Calculation stops at cyclen if uLn2Ln21u is less than a
given tolerance, which in the present case is 1025e22.

Concerning the initial guess needed to start the proced
it is shown elsewhere15 that the choice is not critical for ionic
systems, as those considered in the present case, and a
of Fs vectors that fulfill the conditions of being linearly in
dependent and well localized within the reference cell is
equate. In the present work such vectors are obtained f
Eq. ~9!, using GA

s 50, ;A, s, and cm,0
s,(0)5mm

s (0), where
am

s (0) are the BF coefficients calculated in the se
consistent field~SCF! step atk50.

Let us finally describe shortly the role of thresholdu in
Eq. ~10!. As discussed in Ref. 15, in systems with large u
cells the matrix elementsGA

s for atomsA in the WF tails may
not be correctly assigned by means of Eq.~8! due to the
numerical fluctuations in the initial stages of the localizati
scheme. It is also shown that in such cases, if model fu
tions Fs are defined considering all the AO contributions
Eq. ~9! ~i.e., all elements ofpA

s equal to 1!, the scheme eithe
diverges or yields loosely localized WF’s. On the contra
by using a suitable value ofu in Eq. ~10!, the indetermination
in the definition of the WF tails is avoided, as the corr
sponding terms are canceled in Eq.~9!; as a result, a good
convergence is in practice ensured.
2-3
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This scheme differs in many aspects from the recent p
posal by Marzari and Vanderbilt.1 First of all, it is a two-step
self-consistent procedure, alternating a wannierization s
applied to allk points and a Boys-type localization applie
to the Wannier functions of the reference cell only. In t
case of Marzari and Vanderbilt, on the contrary, the locali
tion is performed through a global numerical optimizati
applied to all vectors at eachk point. A second major differ-
ence is related to the basis set adopted in the SCF calc
tion: plane waves or atomic orbitals. Many technical aspe
of the two localization schemes are intimately related to
adopted basis set.

B. Spontaneous polarization and effective Born charges

The spontaneous polarization has been evaluated in
ways.

The first way is based on the use of BF’s. We refer to
original paper for the formalism4–7 as implemented in the
CRYSTAL code.18 Essentially, we compute the spontaneo
polarization as a change in BP’s~Refs. 27 and 28! from the
centrosymmetric to the ferroelectric structure. The main f
mula of the Berry phase theory for closed shell systems,
to King-Smith and Vanderbilt,4 can be cast as

DPel52
i

~2p!3 E
BZ

dk@^F~1!~k!u¹kF
~1!~k!&

2^F~0!~k!u¹kF
~0!~k!&#, ~15!

where

uF~e!~k!&5
1

A~2N!!
uu1

~e!~k!ū1
~e!~k!¯uN

~e!~k!ūN
~e!~k!u

~16!

is the Slater determinant built from the periodic parts of
COcn

(e)(k),

us
~e!~k!5exp~2 ik•r !cs

~e!~k!, ~17!

BZ stands for the Brillouin zone,e is a parameter describin
the deformation from the one (e50) to the other geometry
(e51), andN is the number of bands considered.

In practical implementation, the integral in Eq.~15! is
performed over an arbitrary discretek-point set. We use a
uniform mesh withL5I 13I 23I 3 points along the primitive
Gi reciprocal lattice vectors:

k j 1 j 2 j 3
5

j 1

I 1
G11

j 2

I 2
G21

j 3

I 3
G3 , ~18!

where j i50, . . . ,I i21.
In the basis of the LWF’s,DPel takes a much simple

form

DPel5
1

V
~ r̄ ~1!2 r̄ ~0!!, ~19!

whereV is the primitive cell volume and
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r̄ ~e!522 (
s51

N E drr uvs
~e!~r !u2. ~20!

Here the sum runs either over the occupied or vale
bands.

From theDP data, the dynamical charge tensorZp,ag* as-
sociated with each ionp of the system can be deduced. Th
tensor describes the response of the system, in terms o
larization changes, to a periodic displacementup of ion p
under a lattice straing and/or a fielda. The corresponding
tensor is defined as the derivative ofDP with respect to the
atomic sublattice displacements:3

Zp,ag* 5V
]DPa

]up,g
. ~21!

Here, due to symmetry constraints, only thez components of
DP, up,g , and Born~or transverse! effective charges2 ~with-
out any applied electric field! are considered. The Born
chargesZp* obey the acoustic sum rule

Sa5(
p

Zp* 50. ~22!

These charges can be computed directly from their defini
in Eq. ~21!, i.e., from the polarization variation induce
by the displacement of each atomic sublattice. In pract
we deduce the derivative from a linear regression of
polarization variation versus the atomic displaceme
curve.

III. RESULTS AND DISCUSSION

A. Localized crystalline orbital of KNbO 3

With the basis sets defined in Sec. II~small core pseudo-
potentials for K and Nb! there are 22 core electrons~8 in the
3sp shell of K, 8 in the 4sp shell of Nb, and 6 in the 1s shell
of the three oxygen atoms! and 24 valence electrons~1 for
4s of K, 2 for 5s, and 3 for 4d of Nb, 18 for 2sp of the three
oxygen atoms! in the unit cell corresponding to 11 core an
12 valence occupied bands. The band structure of all oc
pied states is reported in Fig. 1, where the characterizatio
bands in terms of the most widely contributing atomic orb
als is also indicated. The very large gaps between bands
lack of any dispersion of most bands as a function ofk, and
conservation of degeneracy confirm both the core nature
the lowest bands and the very ionic nature of the compou
Only for the 2s and 2p states of oxygen is some degree
dispersion observed, and degeneracy is removed to som
tent.

The main features of the LWF’s, as resulting from t
localization process extended to all the occupied bands,
reported in Table II. The localization indicesls of the LWF’s
corresponding to K and Nb inner electrons are very close
1, confirming the core nature of these states. They are c
acterized by short distances of the centroids from the ato
indicated in the first column of Table II~0.31–0.36 Å! and
quite smallss values, which are defined with respect to t
centroidr0

s as follows:
2-4
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ss5AE uvs~r !u2~r2r0
s!2dr . ~23!

It is interesting to notice thats andp states of K mix to give
four equivalent WF’s, whereas in the Nb case, probably o
ing to the larger energy difference,s andp do not mix very
much. Also in the case of oxygen, the corresponding W
have essentially an atomiclike character, with a localizat
indexls equal to 1.13 and 1.23~we remind the reader that i
the case of pure covalent bands, such as in bulk siliconls

>2!. The distance from the ‘‘reference’’ atom is, howeve
larger in this case, as well as the correspondingss values. It
is worth noting that the ‘‘extent,’’ss, of the largest WF~0.9
Å! is about half the Nb-O distance~2 Å!.

It is also interesting to analyze the LWF’s in terms
contributions to the atomic populations as defined in Eq.~6!.
The result of this analysis for the more diffuse LWF’s

FIG. 1. Valence band structure of cubic KNbO3. Energies in a.u.
12510
-

’s
n
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reported in Table III. These are the two WF’s that are mai
localized on OI ; they will be referred to as type 1 and 2.
turns out that 94% and 89% of the electron density is loc
ized on OI for vs5type 1 and vs5type 2, respectively. When
also the two nearest neighbors of OI are considered, more
than 99% of the density is obtained and 99.95% when
10–12 most important atomic contributions are summed
These features confirm that also these valence states ar
tremely localized, though not as much as in the case of th
and Nb core states, where a single atom contributes m
than 99.9% of the electron density. The extremely localiz
nature of type 1 and 2 WF’s is still more evident from Fig.
where the WF’s themselves and their square~electron charge
density! are represented. In particular, the charge den
maps, in the bottom part of the figure, show that the LW
are completely localized on OI . Nevertheless, the sma
contribution from Nb in the right figure must not be n
glected: it indicates some bonding character ofv type 2, which
is at the origin of the very high value ofZ* of this atom~see
below!.

It is interesting to observe what happens when only
subset of bands is localized. The results are shown in Ta
IV. When only the highest 9p oxygen states are localize
~highest part of the table! the localization is incomplete, be
cause thep states cannot mix withs states. If the second an

TABLE II. Characterization of the LWF’s. For each set ofNs

equivalent LWF’s (vs), ls is the localization index@see Eq.~14!#
ds is the distance of thevs centroid from the nearest atom~first
column!, andss is a measure of the extent ofvs @see Eq.~23!#.

Atom Ns l2(e22) ds ~Å! ss ~Å!

O 3 1.228 0.398 0.847
O 9 1.133 0.319 0.859
K 4 1.003 0.356 0.719
Nb 3 0.981 0.317 0.643
Nb 1 0.978 0.314 0.638
TABLE III. Characterization ofv type 1 andv type 2 ~first and second entries in Table II!. qA,Rl

s ~in ueu! is the
fraction of the total density of thevs attributed to atomA in cell l according to a Mulliken partition@see Eq.
~6!#. Qs is the incremental sum of theqA,Rl

s contributions to thevs total charge~only contributions larger than
u0.0001ieu are reported!. Charge density is normalized to 1.

Type A Rl qA,Rl

s A Rl qA,Rl

s A Rl qA,Rl

s Qs

1 OI ~0,0,0! 0.9380 0.9380
Nb ~0,0,0! 0.0380 Nb ~0,0,21! 0.0205 0.9973
OII ~0,1,0! 0.0009 OII ~1,0,0! 0.0006 OII ~0,0,21! 0.0004
OII ~0,0,0! 0.0002 Nb ~0,1,0! 0.0002 Nb ~0,1,21! 0.0001
Nb ~0,21,21! 0.0001 OI ~0,0,1! 0.0001 Nb ~1,1,0! 20.0001
K ~1,1,0! 20.0003 0.9995

2 OI ~0,0,0! 0.8880 0.8880
Nb ~0,0,21! 0.0861 Nb ~0,0,0! 0.0179 0.9920

OII (2) ~0,0,21! 0.0019 OII (2) ~1,0,21! 0.0018 OI ~0,0,21! 20.0022 0.9972
OII (2) ~0,1,0! 0.0006 OII (2) ~0,0,0! 0.0004 OI ~0,0,1! 0.0002

Nb ~0,0,22! 0.0002 Nb ~0,0,1! 0.0001 0.9997
2-5
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FIG. 2. Isoline representation ofv type 1 and
v type 2 ~top! and the corresponding electro
charge density (uvsu2) maps~bottom! in the~100!
plane of cubic KNbO3. Consecutive isolines dif-
fer by 0.005 bohr23/2 in the maps ofvs and by
0.001 e/bohr3 in the isodensity maps. Solid
dashed, and dot-dashed lines denote posit
negative, and zero values. Dark and pale gr
circles mark the OI and Nb nuclei, respectively
The total charge density map in the same sect
is reported below for reference~0.01e/bohr3 be-
tween isolines!.
th

he
-

by

-
is,
third sets of states from top are also included, namely, thepK

andsO states, the resulting WF’s are extremely close to
ones obtained with the full set. When also thep Nb states are
included in the localization, only marginal differences in t
indicesls, ss, andqA,R

s are observed with respect to a lo
calization of all the occupied orbitals.
12510
e
B. Spontaneous polarization and related quantities

As had been pointed out since the pioneering papers
King-Smith and Vanderbilt4 and Resta,5–7 important physical
properties such as the effective Born chargesZ* and the
spontaneous polarizationDP take an extremely simple ex
pression in terms of the LWF’s. In the delocalized BF bas
2-6
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on the contrary, things are more complicated and the ca
lation of both these quantities became possible only with
elegant formulation of the BP approach by King-Smith a
Vanderbilt4 in 1993. As a matter of fact, both formulation
are expected to provide the same results, in principle
practice all technical details related to the specific implem
tations will introduce a certain amount of error that is dif
cult to determinea priori. In this section, we compare theZ*
andDP data for KNbO3 as obtained by these two alternativ
methods. In Table V, the values ofDP are reported as a
function of the shrinking factorsI 1 ,I 2 ,I 3 for the three recip-
rocal lattice vectors. TheDPx andDPy components are ex
pected to be zero by symmetry and, as point symmetry is
imposed on the system in either scheme, the deviation
DPx andDPy from zero is a measure of numerical noise.
turns out that forI 15I 25I 3512 it is on the order of 1026

with the LWF approach, whereas it is much smaller (10216)
with BP’s. Nevertheless, as regardsDPx , the two methods

TABLE IV. Evolution of the WF characteristicsls, ss, andqA,R
s

~see Tables II and III for definition! as a function of the numberM
of bands involved in the localization process.Ns is the number of
equivalentvs functions. In all cases, theM BF’s with higher energy
are considered~M510 in Table II!.

M Atom Ns ls(e22) ss ~Å! qA,R
s (ueu)

9 O 3 1.317 1.088 0.867
3 1.254 1.061 0.891
3 1.166 1.021 0.925

15 O 6 1.253 0.897 0.889
6 1.137 0.922 0.937

K 3 1.004 0.822 0.998

19 O 3 1.240 0.848 0.895
9 1.135 0.862 0.938

K 4 1.003 0.718 0.999
Nb 3 0.982 0.732 1.009

TABLE V. Dependence of the spontaneous polarization vec
DP ~in C/m2! on the shrinking factors,I 1 , I 2 , I 3 defining the re-
ciprocal space mesh as evaluated through BP and LWF.N is the
corresponding number ofk points in the irreducible Brillouin zone
The experimental geometry~Ref. 25! has been used.x(2y) stands
for x3102y. The experimental value ofDP is 0.37 C/m2.

I 1I 2I 3 N DPx DPy DPz

2 2 2 6 6~216! 0. 0.3199
4 4 4 18 3~216! 3~216! 0.3296

BP
4 4 8 30 1~216! 1~216! 0.3340
4 4 12 42 1~216! 8~217! 0.3348
8 8 8 75 2~215! 1~215! 0.3339
8 8 12 105 6~216! 8~216! 0.3347

4 4 4 18 3~23! 3~23! 0.3378
LWF 8 8 8 75 3~25! 3~25! 0.3362

12 12 12 196 6~26! 6~26! 0.3361
12510
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agree to within the third decimal~which corresponds to a
0.2% difference! and the LWF scheme converges much mo
rapidly than BP’s with increasing the shrinking factors.

Further evidence of the equivalent accuracy of the t
schemes is provided by Table VI and Fig. 3. The values
Z* reported in the table for all atoms are obtained from E
~21!. Both methods provideZ* values that differ by 1023ueu

TABLE VI. Born effective chargesZ* ~in ueu!, acoustic sum
rule Sa ~in ueu!, andDPtot ~in C/m2! obtained by using the BP an
LWF schemes.I 15I 254, I 3512 and I 15I 25I 358 have been
used for the BP and LWF calculations, respectively.

Method ZNb* ZK* ZOI
* ZOII

* Sa DPtot

BP 8.073 1.001 25.964 21.556 20.0003 0.347
LWF 8.089 1.000 25.985 21.552 0.0004 0.348

r

FIG. 3. Spontaneous polarization~DP, in C/m2! as a function of
the ferroelectric distortione when the BP~top, circles! or the LWF
~down, squares! schemes are used.e51 corresponds to the exper
mental geometry of the ferroelectric structure at 270 °C~Ref. 25!.
The dashed line is obtained by linear interpolation ofDP in the 0
<e<1 interval. The shrinking factors areI 15I 25I 354.
2-7
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on average~the largest difference is observed forOI and
amounts to 0.4%ZOI

* !. The deviation from the sum rule@Eq.

~22!# is on the order of 1024 and very similar values of the
total polarization

DPtot5(
A

ZA* uA ~24!

are also obtained, which differ only by about 0.3%. Figure
representsDP as a function ofe, the degree of deformation
of the lattice from the symmetric (e50) to the experimenta
(e51) deformed geometry. It shows that the two approac
agree not only at the experimental deformation (e51) but
also for much smallere values and the curve is perfectl
linear in the full range.29–31
ol

re

y

J

-
is

12510
3

s

IV. CONCLUSIONS

It has been shown that the recently implemented locali
tion scheme in theCRYSTAL program19 is not only a useful
tool for the interpretation of the electronic structure of cry
talline compounds in terms of chemical-like concepts, bu
can be applied for economical and accurate evaluations
important physical properties such asZ* charges and the
spontaneous polarizationDP, as a valuable alternative to th
BP approach. Both computational approaches will be av
able in the forthcoming release of theCRYSTAL package,
CRYSTAL2001.
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