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Rashba Hamiltonian and electron transport
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The Rashba Hamiltonian describes the splitting of the conduction band as a result of spin-orbit coupling in
the presence of an external field and is commonly used to model the electronic structure of confined narrow-
gap semiconductors. Due to the mixing of spin states some care has to be exercised in the calculation of
transport properties. We derive the velocity operator for the Rashba-split conduction band and demonstrate that
the transmission of an interface between a ferromagnet and a Rashba-split semiconductor does not depend on
the magnetization direction, in contrast with previous assertions in the literature.

DOI: 10.1103/PhysRevB.64.121202 PACS nuni®er71.70—d

Narrow-gap semiconductors, most notably InAs, play arderive the proper velocity operator. For comparison, we give
important role in the rapidly evolving field of spintronics. As similar expressions for the eigenstates and velocity operator
a nonmagnetic element in hybrid devices, these materials affer a Stoner-Wohlfarth ferromagnet. Finally, we calculate ex-
expected to help control the electron spin states, just like thglicitly the transmission coefficient between a ferromagnet
electron charge is controlled in conventional electronic de@nd a “Rashba-split” electron gas and show that the contact
vices. Part of this potential stems from the natural two-conductance is invariant with respect to a magnetization re-
dimensional electron ga€DEG) on clean InAs surfaces, Versal of the ferromagnet. .
which allows high-quality ohmic contacts to superconductors 1 h€ Hamiltonian of an otherwise free electron system, but
and ferromagnets. Another reason is the seminal paper dfcluding the Rashba spin-orbit scattering term réads:

Datta and Daswhich describes how the electrical field of an .

external gate electrode can be used to manipulate the preces- h2v? == =

sion of a conduction electron spin. Essential for this mecha- H=— 55 Ta(-iVXE).o, @
nism is the field-dependent spin-orbit coupling, which is

relatively large and well-established for the 2DEG on InAs.where « is an effective mass parameter and

It is now generally accepted that the spin-orbit interaction in:(o'xyo'ylg'z) is the vector of Pauli spin matrices. For a
narrow-gap 2DEGs is governed by the Rashba Hamiltohian 2DEG with a confining electric field normal to the interface
which increases linearly with the electron wave vector. E=(0,0E,):

The spin-orbit-interaction induced ‘spin-splitting’ is
sometimes confused with an exchange or Zeeman splitting. 52 ( P P ) J J

( z>< )

However, the latter require breaking of the time inversion
symmetry and are therefore fundamentally different from the
former. It is then not surprising that physical properties like P P 52 g2 g2
exciton spin splittings or, in the present context, spin- —(aEZ>(—+i—> Eo— _(_+ _)
dependent transport properties of narrow-gap hybrid devices ax - ay 2migx2 = gy?

are not well understood. In a recent paper, for example, it 2
was arguetithat the conductance of the interface between a ) )

ferromagnet and a spin-orbit spin-split semiconductor shoul§’Nere(aE;) is the expectation value over the lowest sub-
change on a flip of the magnetization direction of the ferro-Pand W'gh energy Eo. Experimentally, one. typically
magnet. This obviously cannot be correct because in the atposerves’ values for(aE,) on the order of 10'* eV m.
sence of an external magnetic field, the spin-quantizatiod he eigenstates for in-plane motiGdentified by their quan-
axis in the(isotropig semiconductor can be rotated with the tum numbersk= (k,,k,) ands==*1) are

magnetization direction, which should therefore be without

—_— | — + _
0 2m axz ayz IX ay

physical consequencésThe problem with the calculations L

of Ref. 3 can be traced to an incorrect treatment of the ve- b 1) =N ek Sl T &)
. . . . P ks ks '

locity operator, which in the presence of spin-orbit interac- 1

tion is not simply given byik/m, wherem is the effective

mass of an electron aridits wave vector. whereNg; is a normalization factor. From this expression for
It is the purpose of our communication to clarify the is- the eigenstates, it is immediately obvious that the Rashba-

sues mentioned above. First, we will discuss the nature of theplit subbands are not spin-polarize@he electron energy

eigenstates of the Rashba Hamiltonian in some detail andispersion relatiorEi reads[see Fig. 1a)]:
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E The above considerations for a 2DEG are only slightly
modified for a quantum wire. For the lowest mode:
2
. Px (@B
EO+ m | 7 Px
H(X,py) = , 8
a) e o ®
T P Botom
ke k
Px (@Ey)
— i
E JH m h
V=5 —= 9
x| _(eB) Py
h m
b) Note that there is no Rashba level splitting in a quantum dot.
N It is instructive to compare the Rashba Hamiltonian with
K that of a 2D noncollinear ferromagnet with a dispersion as
sketched in Fig. (b):
FIG. 1. Schematic representation of the conduction band struc- pi p2
ture of (a) a semiconductor in which the spin-degeneracy is broken >m + Z_y 0
by spin-orbit interaction as described by the Rashba Hamiltonian H. .= m m +AUYoU (10)
and (b) a spin-polarized exchange-split band ferromag&oner- nef 0 p2 p§ ze
Wohlfarth mode). >m + >m
hZ . s
Eci=Eot ﬁ[(k‘i‘SkR)z—ké], 4) where 2A is the exchange splitting and
cosf/2 e '¢sing/2
wherek= \/k2+ kyz, kr={(aE,ym/x2. U(8,¢)= (11)

The normalization factor of the eigenfunctions can be de- e¢sing/2  —cos6/2

termined in different ways. Normalization of the probability js 5 ynitary rotation matrix corresponding to a magnetization
distribution [dr|¢is(r)|?=1 givesNigs=1/y2S whereS is

the area of the 2DEG. However, for a calculation of the
transport properties it is more convenient to normalize th
states such that its currents are unity in the transportxsay
direction. To this end we have to compute the expectation 52

value of the current or velocity operator which, in the pres- — k2 A

direction of n3=(sinGCOSqo,sinesinqo,cosa). For plane

ave states with wave vect@randm= (0,— 1,0) the Hamil-
onian for the ferromagnet

ence of the Rashba term, are not simply proportional to the H K o= A 2m 12)
gradient operator anymore. The proper matrix representation nefl U= 597757 ) 2 ) (
in spinor space can be derived via the Hamilton equation of —iA %k
motion:
T oH . oH . oH is formally equivalent to that of the Rashba Hamiltonian
4= o5 P== o0 X=ox=o i = o (5)
p a9 IPx X 2
The velocity operator in thg-direction therefore reads: %kz AR
2 4 Hr= 72 13
—i—— I{aE —iAE —K?
1 "m ox (a2 R omK
V=7 w2 5 | (6) _ _ .
—i(aE) —i— — with Ag=(aE,)(ks—iky). In the ferromagnet the velocity
z m dx operator is always diagonal in spin space, however:

Requiring( ¢is(r) vy dis(r)) =1 we find

p(1 O
m 1 UX,an(klal(p): m 0 l . (14)
Nis= E —k . (7)
kx( 1+5?R In order to demonstrate explicitly that transport through a

Rashba semiconductor/ferromagnet junction does not depend
This value diverges when the group velocity vanishes, i.e.pn the magnetization direction of the ferromagnet, it is suf-
for s=—1 atk=kg. ficient to consider the simple case of a single mode quantum
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Pl
Ferromagnet InAs U*(W W)H U(W 7,) 2m
A A R A A =
2 2 2 2 0 p_f(
I 2m
< >a( 0 1)
X{aE,) — ,
ox\—1 0
21y
(19
X N . . L
yielding the following eigenstates along the quantization

‘ | (—y) axis of the ferromagnet

m 1
FIG. 2. The system under consideration: we discuss the conduc- Ut (xX)= —( ) (19
P V 7 \k2+K2\0

tance of a ferromagnet-semiconductor hybrid quantum point con-

tact. The band structures of the two materials are depicted in Fig. 1.

The constriction separating the two materials symbolizes the single- m 0

channel adiabatic transport we assume in our calculation. The fer- Uqﬁf_(x): —( 1). (20
romagnet is magnetized in they-direction and the current flows in fi Vkg+ kg

the x-direction. On the left side we assume first a half-metallic ferromagnet

) ) ) N ) for which the conduction electrons are either all spin up or
point contact(Fig. 2) without an additional interface poten- down with wave vectokg :

tial barrier. A ferromagnet on the left side of the contats

electronic states will be indicated by superscriptin the ¢ m (1

following) is attachedat x=0) to a Rashba semiconductor ¢ (X)= WE' FX( O)’ (21)
on the right(superscriptR). In the semiconductor we have F

eigenstates at the Fermi ener&y&=(ﬁ2/2m)k§ at wave m

vectorsk= —sky+ \/k2R+ sz which are taken to be positive qbf(x)= \/We'kFx( 1) (22

in the following. The states at the Fermi energy are right

moving: Assuming that the spin is up on the left side, we can now
write the eigenstates of the ferromagnet in terms of the re-
flection coefficientr :

1

ol |

[m
XT(x)= Tike

On the side of the Rashba-split semiconductor, we have
transmission for one spin direction only, which corresponds

. 1 . 1
P ()= Ne_"‘*X( : ): N ()= Ne_'kx( _j to a wave vectok
(16)

m . 1
R — ik x
. - 0=t \| ———=e ( ) (24)
with normalization ! K3+ K2 0

wheret, , is the transmission coefficient. The transport co-
N= fm /1 /m 1 17) efficients are determined by the requirement of the continuity
" V2i Vketsky V24 V K2+Kk2 of the wave function and its flugot simply the derivative

R at the interfacex=0:

. 1
(ﬁgi(X) — Ne|k+x i

| o co=ne}) as

el (23)

1 —ik
o/ Trie THEX
and left moving

The flux normalization reflects the identical group velocities £00)= (0 25
for the two bands. The normalization is invariant under a Xi(0)=x;10), @9
unitary transformation which diagonalizes the Hamiltonian. g(x)| _ m(X)| (26)
We have seen above that we can interpret the Rashba semi- UxX A Ix=07UxXy x=0-

conductor as a pseudoferromagnet in which the magnetizarhe condition for flux continuity can be rewritten as
tion is rotated from thez to the —y direction, and with a

L(_-de?)entdekpt e?hchangetfspli'gtin&._Wef ?ri]mpflify the situta- P : )‘ hilo e m .
ion by taking the quantization axis of the ferromagnet par-— — y7(x =—| —+ikg|t; \/ —F=—=€"*
allel to the pseudomagnetization of the Rashba Hamiltoniad™ 7 x=o 'M1dX fiNkg+ ke -0
by transforming the Rashba Hamiltonian as follows: (27)
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% i The interface conductance should therefore not affect
:E(k++kR):EtT kgt Kg. (28)  anisotropies due to interference effects in the Datta
transistort

We can now calculate the conductance via the Landauer for- We hope that this paper will help to dispel the confusion
mula: concerning the transport properties of semiconductors with
spin-orbit interactions. We compared eigenstates and velocity
e operators for two systems, a nonmagnetic 2DEG in the pres-
GT:F“HZ:F I ence of the Rashba Hamiltonian and a noncollinear Stoner-
(14 V1+(kr/ke)?) Wohlfarth model ferromagnet. As expected, the transmission

To calculateG, , we flip the magnetization of the ferromag- coefficient of an interface between a ferromagnet and a
net on the left side, yielding as incoming state Rashba-split semiconductor is found independent on the

magnetization direction of the ferromagnet.
m 0 0 Note that the independence of the total conductance of a
XT0=\ 71— )+rle“‘FX( )
hike 1 1
while transmission occurs only into

2 e? 41+ (kg/ke)?

(29

e'kex (300  single ferromagnetic/normal metal interface on the magneti-
zation direction is quite general, but does not mean that the
interface is not spin-selective. Indeed, a ferromagnet
does—in the absence of a significant conductivity
m _ 0 mismatch—inject a net spin into the nonmagnetic material,
X‘f(x)ztl Te”‘x( 1). (31)  with efficiencies that depend on the specific electronic band
i VKkgt+ kg structure$:® Small modulations of a single interface conduc-
tance could be achieved in principle by forcing the magneti-
zation vector of the ferromagnet into directions which devi-
ate from the crystal symmetry axes. However, in order to
detect a strongly spin-polarized interface transmission by a
transport experiment, an analyzing ferromagnet is essential.
This is employed, of course, in the giant magnetoresistance
effect. In semiconductors, the spin-polarized current can also
be detected by the circular optical polarization of the elec-

and, comparing this expression with Eg8), we see that the troluminescence of a light emitting diod.

transmission coefficient is identical for up and down spins Note addedAfter submission of this manuscript, we re-
Lo : | for up PINS-caived a preprint by dicke and Schroll with similar results.
This is in contrast with the counterintuitive results of Ref. 3

: ) . Bruno and Pareek, cond-mat/0105506, report numerical cal-
where, we believe, an incorrect velocity operator has beeq|ations for the same system. In contrast to what we report
applied. , o , here, the latter authors find a small anisotropy in the trans-
. Slnc_e the e_ffectlve—mass Rashba I—]amﬂtoman of ([Ehis port as a function of the magnetization angle. These anisotro-
isotropic, the interface conductance is invariant under arbipjes are allowed byCasimir-Onsag@rsymmetry, but they
trary rotations of the magnetization direction. In addition, theyanish for the effective mass Hamiltonidh), which does
above calculations may be generalized to transmission froriot contain any “warping” corrections which reflect the re-
a weak ferromagnet with both spins occupied up to Fermduced symmetry of the crystalline lattice.
numbersk,,; with

e’ 4\kE+ K2
G- > ———- (34)
o=T (14 V(K5 +K2)IK2)

Flux continuity gives

1%
Ufo(X)|x:O:ﬁ 5Xf(x)|x:02 UXX?(XHX:O (32

=tlﬁ(k_—kR)=ﬁtl k&+ k2 (33
m m
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