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We obtain the quantum phase diagram of the Hubbard chain with alternating on-site energy at half filling.
The model is relevant for the ferroelectric perovskites and organic mixed-stack donor-acceptor crystals. For
any values of the parameters, the band insulator is separated from the Mott insulator by a dimer phase. The
boundaries are determined accurately by crossing of excited levels with particular discrete symmetries. We
show that these crossings coincide with jumps of charge and spin Berry phases with a clear geometrical
meaning.
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The transition between a band insulator and a Mott insumetrical content of the MTT is more clearly displayed in the
lator in a one-dimensiona(1D) model for ferroelectric strong coupling limit, the MCEL is based on a weak-
perovskite has been a subject of great interest in recentoupling approach. A nice feature here is that they turn out to
years'™® The model describing this transition, originally be equivalent for this problem, so that the results obtained
proposed for the neutral-ionic transition in mixed-stack are expected to be valid for all parameter values. State of the
donor-acceptor organic crystafst?is art diagonalization of rings with up to 16 sites are performed

to determine the phase boundaries with errors estimated in a
t few percent oft.
HZ_I% (Ciy1,CisTH.C) The Berry phases are calculated numerically from the
ground stategg(®,,®)) of H(@T,rbl) in rings of even
number of sitesd threaded by fluxesb, for spin o. The
HamiltonianH differs from H in that the hopping term has

the form —t=,,(c!, ,,Ci,€%’'"+H.c.). One can maH

+AY (—1)ni,+UX nin, . 1)

At a fixed value ofA, exact-diagonalization studies on rings _ . o . ; . .
of up to 12 site$® and Hartree—lgock calculatiohfund evi- % with peTrlod|_c ti)f,,) undary conditiondC) into H with twisted
dence of a transition with increasing) from a band insulat- BC (C.‘.+L”ie "Cig) Using the canonical transformation
ing (BI) ionic phase to a Mott insulatingVIl) quasineutral ¢j,=el% ' c;,. The chargespin Berry phasey. (vs) is
phase, which could be expected on general grounds. Furthdfie phase captured by the ground state when it is followed
more, the transition point was characterizes a metallic ~adiabatically in the cycle €d<2m, keeping®,;=® =
point, with divergent delocalization. On the other hand, a(®;=—® =®). Discretizing the interval €P<2m into
field theoretical approachyalid in the weak coupling limit N+1 points &, =2=r/N (r=0N), the Berry phases are
(A,U)<t, concluded that a spontaneously dimerized insulatcalculated using
ing (SDI) phase(also called bond-ordered wavimtervenes
between the Bl and MI phases. However, due to the limita-
tions of this technique the precise extension of this phaseYe,s= — lim Im[ln I (9(®;,=®)[g(Pr1, D, 1))
remained unknown. Very recently, density matrix renormal- N=e o
ization group (DMRG) investigation5® and a quantum
Monte Carlo (QMC) approacﬁ found contradictory evi- X(g(Pn_1, = PN_1)|9(27,*2m)) } 2)
dence: the two DMRG calculations reached opposite conclu-
sions regarding the existence of the SDI phase, while in the , ,
QMC results the SDI-MI phase transition was not observedWhere|g(2m, =2)) = exdi2a/LE;j(nj; £n;)]/9(0,0)). _
Thus, the existence of all these conflicting results calls for AN important property ofy is that if the system is modi-
further investigation of this model. fied by some perturbatlon, the change'm the polgrlzsatlon
In this Rapid Communication we clarify this controversy P+ P, is proportional to the corresponding changeyin
and accurately determine the whole ground-state phase diblere P is the contribution of electrons with spim to the
gram of Hamiltonian Eq(1). This is accomplished by the Polarization of the system. Similarly, changes»ig are re-
combined use of the method of topological transitionslated to changes in the differenée — P, between the elec-
(MTT) (jumps in Charge and Spin Berry phaﬁéglsand the tric pola”zabl““es for spins up and dOV\}ﬁAPTiAPL
method of crossing excitation levelMCEL) based on the =€Aycs/2m[mod(e)]. A more crucial property is that in
conformal field theory with renormalization group Systems with inversion symmetry. and ys can only be
analysis'®!’ These methods, briefly explained below, areeither O orsr, which has led to the idea that= (v, ,vs) can
somehow complementary in the sense that while the gedse used as a topological vector to characterize different
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phases?® Such a possibility is clear in the strong-coupling
limit t—0, where(usually all particles are localized: one
can choose a gauge in which all scalar products in(EQ.
except the last one are equal to 1, so thats determined
by the sumi27/LS[Zgj(n;;+n;,). For example, if there is
one particle per site Y—o), it gives iw(L—1)
=im[mod(2mi)] for L even, and thery.= 7. Similarly, for

a Neel state it is easy to see thgt=m, and for a charge
density wave (CDW) with maximum order parameter
(A—»)y=(0,0). These values are consistent with the
changes inP, + P, originated by the charge transport of all

electrons with a given spin to nearest-neighbor sites, required

to change the extreme Bl state with-(0,0) to the Neel state
with y=(mr,1r). For the extreme MI statd(— ), which is a
spin-density wavegSDW), we also havey=(m,7).1*1° By
continuity, one might expect that these valuey@haracter-
ize also the Bl and MI phases in weak coupling. As ex-
plained below, this is confirmed by an analysis based on th
MCEL. This change in topological parametefwhich is
sharp even in finite systemmdicates nontrivial changes in
P, =P, characteristic of a phase transition.

We find another phase with=(,0). From field theory
we know that this corresponds to the SDI phase with orde
parameterD=2jU(—1)j(c;r+1acjg+ H.c.). If we consider
the more general Hamiltonian

H'=H—<tAB—t>Z (¢, 15Cigt H.C) (Mg N4 1)

+Vz NigNit167 s (3)

oo’
we confirm that the SDI phase &f’, well established in
previous studie$>!’~2%s smoothly connected with that f
for tag— . Furthermore, the model of E@3) with A=0

and (V,t,g—t)>0 contains essentially the same phases a . . S .
Vitas—1) I aly P f;tedwnh periodiqantiperiodig BC if L=4n(4n+2).}" We

H, and allows a more detailed study of the relation betwee
the MTT and MCEL. ForV=0, while DMRG results in

RAPID COMMUNICATIONS

PHYSICAL REVIEW B64 121105R)

0.8}
E(®)
0.4}
0.0}

-0.4

0.8 -. )
E(®)

0.4

0.0F

-0.4

e

0.8F
E(®)

0.4r

r 0.0

-0.4
-1.0

FIG. 1. Energy per site as a function of fldx = ® = for the
two lowest lying eigenstates within the subspaceKof /a, S
=0. Parameters ale=4, A=0, t,g=t=1, V=2 and three differ-
ent values olJ as indicated. Ful{dashedl line correspond to states
with y.=0 (y.=). ForU=U,(L)y, is undefined due to the de-
generacy atb=0.

entumK = 7r/a (a is the nearest-neighbor distancealcu-

show that this crossing coincides with the jumpqyg. In

chains of 40 sites are unable to detect the opening of afig. 1 we represenE(®)=(g(®,®)|H’|g(d,d)) for the

exponentially small gaf® the MTT predictions withL up
to 12 (Ref. 15 practically coincide with those of field
theory fortag~1 (Refs. 18 and 1Pand with exact results
for tag— 0.2

The MCEL is based on the fact that in a conformal field
theory(which ultimately describes the low-energy physics of
1D systems in the charge and spin sectors if they are gaple
the exponenv of the long-distance power-law decay of cor-
relation functiong§ O(x) O(x-+d))~d ™" is given in terms of
excitation energies related to the opera@x) in the finite

ring. A crossing of appropriately chosen excitation energies '
for different operators indicates a change in the character 6F €

the dominant correlations at large distan¢ea phase
transition.’®1” The relevant excitation energies foi’ with
A=0 have been studied by Nakamdfdn particular, in the
weak coupling limit it is known that there is a Gaussian
transition from the CDW to the SDI iil’(A=0), with the
charge gap vanishing only at the transition pdint® This

simplest case with multiple of four. Minimizing E(®) with

respect tod andK leads tod=, K=/a, and the Berry
phases are obtained adiabatically following this state. Using

c;,=e'1¢s/c;,, one sees that while the total wave vedtor

of H' remains constant a® is changed, in generdl =K
+(N;®,+N ,® )/(La), whereN, is the number of par-

Sticles with sping. The conditions leading to the minimum

energy (b= K= m/a) correspond to antiperiodic BC and
K=0inH".

It is easy to see that the inversiohc],IT=c’,,
“I’vc[,ja is a symmetry oH' (P, ,® ) only if both® ,
are either O orr (corresponding to periodic or antiperiodic
BC). At U=U,(L) and®=0 there is a crossing of the low-

est levels withK = 77/a and total spirS=0. This crossing is
possible because the corresponding wave functions have op-
posite parity, and therefore they do not mix &t=0. For
®—0 one can use perturbation theorydn and forU near

transition is determined by the crossing of the lowest statet) (L) the statgg(®)) is determined by a 22 matrix in-

with opposite parity under inversion and the same total mo

volving the above mentioned two states fbr=0 with off-
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diagonal matrix elements linear fh. From the trivial solu-
tion to this problem one realizes that the product in .

for U—U.(L)—07 differs from that forU —U,(L)+0" in
sign. Hence,y. jumps at the same place where the transi-
tions occurs according to the MCEL. While for the-U

—V model H' with A=0=t,g—1t) in weak coupling the
transition is second order and the charge gap vanishes at the
transition, for J,V)>t the transition is first order, from a
fully gapped CDW to a charge gapped SBW%?As a
consequence, the MCEL loses its support from the conformal
invariant (masslesstheory. However, in this limit the geo-
metrical meaning of the jump in, is very clear, as ex-
plained earlier, and justifies the method.

In the MCEL, the Kosterlitz-Thouless transition, which
corresponds to the opening of a spin gap, is detected through
the crossing of a singlet even under inversion with an odd
triplet, with K=0 and periodic BQfor L=4n).}” At ®=0
or &=, H'(®,—®P) has SUY2) and inversion symmetries,
which are lost for other values ob. Therefore, a similar
analysis as above shows thag jumps at this point? If L
=4n+2, periodic and antiperiodic BC are interchanged.
When A#0 the symmetry under translations in one lattice
spacinga is lost, K= m/a becomes equivalent t§=0, and
the CDW order parameter is different from zero also in th
SDI and MI phases. The field theory results Fbishow that
for (A,U)<t the spin transition retains the same featdres.
The charge transition, which fok=0 is described by the

U-2A

U-2A
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FIG. 2. Ground-state phase diagram kfat half filling. The
edashed line corresponds to the field theory reﬂﬂt (see main
text). The open (full) symbols were obtained keeping(A)
constant.

sine Gordon model, foA#0 is determined by the double fitting a quadratic polynomial in L? to the results forL
sine Gordon model, and the universality class changes from:10, 12, 14 and 16, followed by an extrapolationlLte .

Gaussian to Ising. However, the transition remains secongthis fit works very well forA=0.25(we sett=1 as the unit

order and the charge gap vanishes at the transitidren, at

of energy unless otherwise state@nd improves with in-

this point and sufficiently low energies the charge sector igreasingA. The difference betweeb (L) and U (L +2)
described by a conformal invariant theory, justifying therapidly decreases with if A is not too small. Instead, for

MCEL.

small values ofA the finite size effects increase and, as a

In spite of the breaking of translational symmetry, fortu- consequence, the error in the extrapolation becomes larger.
nately the relevant crossings fét can still be identified To estimate this error we have repeated the fits uhiﬁ@,
looking for the ground-state energy in subspaces With 10, 12 and 14; foa=0.05 this gives a new estimation of,
=0, total spin projectiors,=0, and a definite parity under (u,) that differs from the previous one in 0.12.07. For
inversion and time reversal. The latter allows us to Separatg<0'05 the relative error ||hJC and US becomes very |arge’

states with even and odd If the more general modet’

and we do not present results since they lose quantitative

with A#0 is considered, there are some regions of paramyalidity (except atA=0, whereU,=U.=0 for all L). In-

eters in which the charge transition corresponds to a crossingead, forA=0.25 the estimated error id.,Us is less than
of first excited states within the above mentioned subspaces, 06, and less than 0.03 far=0.5.

but we restrict ourselves here to the phase diagrahh. éfor
this model, the connection between the jumpyinand a

The resulting phase diagram is presented in Fig. 2. In
qualitative agreement with field theory resultand for all

symmetry switch of the ground state for appropriate BC hagalues ofA, the transition from the Bl phase to the MI phase
been noted earliér;® but the relation with the MCEL has with increasingU takes place in two steps: first, a charge

not been discussed. Moreover, neither resultsyfonor nu-

transition to the SDI phase &t=U_ occurs, and then, for

merical inVeStigation of the SDI-MI transition has been re-U = US> UC! the Spin gap closes. The behavior in the Strong

ported so far. The calculation ofs in H presents technical
difficulties due to additional crossing of leve(sot related
with phase transitionswhich take place foKk =0. We have
verified numerically that the jumps i, and y5 correspond
to the above mentioned level crossings.

coupling limit is quite different from that of the—U—-V
model, for which a first order CDW-SDW transition occurs
and is easily understood in terms of perturbation theory
(PT).1"20-22|nstead H remains nontrivial fot—0 as long as
U—-2A~t, since charge fluctuations are still possible. As a

For givenA, we have calculated the critical on-site repul- consequence of this delocalization of charggsinside the

sion U, (Ug) at which the chargdspin transition takes
place. In addition, for smalU and A we have fixedU and

SDI phase cannot be calculated analytically just adding the
position of the charges, as we explained beforeAXfescw or

determined the critical values, andAg. This was done by U-—«. Fort=0 the SDI phase is absent, and PTtidi-
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verges at) =2A where the BI-MI transition takes place. For For smallA and any value olU, an accurate field theory
t<|U—2A|<U PT is valid, and can be used to calculate theresult for A, might be obtained using a bosonization ap-
energy of the Bl and MI phases for negative and positiveproach which starts from the exact solution fior-0.23

U—2A, respectively. The MI phase in this limit is described  The SDI order parametdd couples directly with optical

by a Heisenberg model with exchangie 2t%(U—2A). The  phonons with wave vectoK=0 and, therefore, the latter
energies up to second order tirare given byEg;=U—2A  should increase the extension of this phase. In principle, one
+4t?/(U—24A) and Ey;=—JIn2. While the SDI phase can include these phonons in the numerical calculations us-
cannot be described by PT inits boundaries are very accu- jng the adiabatic approximation. However, due to the break-
rately determined by our method for smallThe jumps ining of inversion symmetry our method cannot be used to find
Berry phases have very little size dependence and show thife phase boundaries in this case. QMC calculations suggest
Uc=2A+1.33 andUs.: 20+ 1'911, for t<(A,U). The fact  ihat'in the adiabatic approximation the whole Ml phase dis-
that the SDI phase exists for positive valuesbf 2A was appears and the SDI takes its pldcEhis is not necessarily

to be expected from the asymmetry$, andEy undera o caqe if the dynamics of the phonons is inclutiétle

chaTr;]%e r(()efsSII(f:]sn f%frJ_ZUA;N can be extended qualitativel must emphasize that in the M| phase both dimer-dimer and
u 4,U) X 0 guaiitatively spin-spin correlation functions have the same leading power-
to A~t. The SDI has a nearly constant width0.6, and . ) . i
. . : . law decay at large distances. The dominance of spin-spin
both Us and U, increase slightly with decreasing. For correlations due to logarithmic corrections characterizes the
- " .
A<1 the critical valuedJ, and U decrease abruptly, until MI phase>1819This renders it very difficult to determine

they reachJ.=Us=0 atA=0. However, in the regionQA . . .
<0.25 (0<U=2) the relative errors inJ,, U, become the $DI-MI bpund5ary by direct numerical evaluation of cor-
relation functions:

larger with decreasing; in particular, forA=<0.1 our results . .
g g;inp In summary, we have determined the quantum phase dia-

are not quantitatively reliable. FoA(U)<t, the spin tran- o . : )
9 y () b gfam of the Hubbard chain with alternating on-site energies

sition can be estimated integrating out the charge degrees - . . o :
freedom, assuming that they are described by a free massik h"’.‘” filling using topologlcal.trans.mons.. The method is
|ustified from geometrical considerations in the strong cou-

boson. This leads to a renormalization of the effective inter:": o . .
pling limit (t—0) and by field theory arguments in the

actiong,, responsible for the opening of a spin gap in the ) . . .
sine Gordon model which describes the spin sector at low/eak-coupling U,A)<t region. We confirmed the existence

energies. From the vanishing of the renormalizeg, one of a sp_ontaneously dir_nerized phase and determined its
obtains the approximate field theory resum;t boundaries for the first time.

~EgyU/(87t), whereEg is the gap forA=0 and is known One of us(A.A.A.) thanks D. C. Cabra for useful dis-
from the Bethe ansatz solution. FolU<t, Ey; cussions and acknowledges computer time at the Max-
=(8/m)\tUexp(—27t/U), and the exponential dependence Planck Institute fu Physik Komplexer Systeme. The authors
dominates the behavior df;‘. Due to the numerical uncer- were partially supported by CONICET. This work was
tainties forA<0.1, we cannot establish where this exponen-sponsored by PICT 03-00121-02153 and PICT 03-03833
tial dependence deviates from the actual SDI-MI boundaryfrom ANPCyT and PIP 4952/96 from CONICET.
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