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Phase diagram of the Hubbard chain with two atoms per cell
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We obtain the quantum phase diagram of the Hubbard chain with alternating on-site energy at half filling.
The model is relevant for the ferroelectric perovskites and organic mixed-stack donor-acceptor crystals. For
any values of the parameters, the band insulator is separated from the Mott insulator by a dimer phase. The
boundaries are determined accurately by crossing of excited levels with particular discrete symmetries. We
show that these crossings coincide with jumps of charge and spin Berry phases with a clear geometrical
meaning.
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The transition between a band insulator and a Mott in
lator in a one-dimensional~1D! model for ferroelectric
perovskites1 has been a subject of great interest in rec
years.1–9 The model describing this transition, original
proposed10 for the neutral-ionic transition in mixed-stac
donor-acceptor organic crystals,11,12 is

H52t(
is

~ci 11s
† cis1H.c.!

1D(
is

~21! inis1U(
i

ni↑ni↓ . ~1!

At a fixed value ofD, exact-diagonalization studies on ring
of up to 12 sites2,6 and Hartree-Fock calculations3 found evi-
dence of a transition with increasingU from a band insulat-
ing ~BI! ionic phase to a Mott insulating~MI ! quasineutral
phase, which could be expected on general grounds. Fur
more, the transition point was characterized4 as a metallic
point, with divergent delocalization. On the other hand
field theoretical approach,5 valid in the weak coupling limit
(D,U)!t, concluded that a spontaneously dimerized insu
ing ~SDI! phase~also called bond-ordered wave! intervenes
between the BI and MI phases. However, due to the lim
tions of this technique the precise extension of this ph
remained unknown. Very recently, density matrix renorm
ization group ~DMRG! investigations7,8 and a quantum
Monte Carlo ~QMC! approach9 found contradictory evi-
dence: the two DMRG calculations reached opposite con
sions regarding the existence of the SDI phase, while in
QMC results the SDI-MI phase transition was not observ
Thus, the existence of all these conflicting results calls fo
further investigation of this model.

In this Rapid Communication we clarify this controver
and accurately determine the whole ground-state phase
gram of Hamiltonian Eq.~1!. This is accomplished by the
combined use of the method of topological transitio
~MTT! ~jumps in charge and spin Berry phases!13–15and the
method of crossing excitation levels~MCEL! based on the
conformal field theory with renormalization grou
analysis.16,17 These methods, briefly explained below, a
somehow complementary in the sense that while the g
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metrical content of the MTT is more clearly displayed in t
strong coupling limit, the MCEL is based on a wea
coupling approach. A nice feature here is that they turn ou
be equivalent for this problem, so that the results obtain
are expected to be valid for all parameter values. State of
art diagonalization of rings with up to 16 sites are perform
to determine the phase boundaries with errors estimated
few percent oft.

The Berry phases are calculated numerically from
ground stateug(F↑ ,F↓)& of H̃(F↑ ,F↓) in rings of even
number of sitesL threaded by fluxesFs for spin s. The
HamiltonianH̃ differs from H in that the hopping term ha
the form 2t( is( c̃i 11s

† c̃iseifs /L1H.c.). One can mapH̃
with periodic boundary conditions~BC! into H with twisted
BC (ci 1Ls

† 5eifscis) using the canonical transformatio

cj s5ei j fs /Lc̃j s . The charge~spin! Berry phasegc (gs) is
the phase captured by the ground state when it is follow
adiabatically in the cycle 0<F<2p, keepingF↑5F↓5F
(F↑52F↓5F). Discretizing the interval 0<F<2p into
N11 points F r52pr /N (r 50,N), the Berry phases are
calculated using13

gc,s52 lim
N→`

ImH lnF )
r 50

N22

^g~F r ,6F r !ug~F r 11 ,6F r 11!&

3^g~FN21 ,6FN21!ug~2p,62p!&G J , ~2!

whereug(2p,62p)&5exp@i2p/L(j j(nj↑6nj↓)#ug(0,0)&.
An important property ofgc is that if the system is modi-

fied by some perturbation, the change in the polarizat
P↑1P↓ is proportional to the corresponding change ingc .3

Here Ps is the contribution of electrons with spins to the
polarization of the system. Similarly, changes ings are re-
lated to changes in the differenceP↑2P↓ between the elec-
tric polarizabilities for spins up and down:14 DP↑6DP↓
5eDgc,s/2p@mod(e)#. A more crucial property is that in
systems with inversion symmetrygc and gs can only be
either 0 orp, which has led to the idea thatḡ5(gc ,gs) can
be used as a topological vector to characterize differ
©2001 The American Physical Society05-1
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phases.13 Such a possibility is clear in the strong-couplin
limit t→0, where~usually! all particles are localized: on
can choose a gauge in which all scalar products in Eq.~2!
except the last one are equal to 1, so thatgc is determined
by the sumi2p/L( j 50

L21 j (nj↑1nj↓). For example, if there is
one particle per site (U→`), it gives ip(L21)
[ ip@mod(2p i )# for L even, and thengc5p. Similarly, for
a Néel state it is easy to see thatgs5p, and for a charge
density wave ~CDW! with maximum order paramete
~D→`!ḡ5~0,0!. These values are consistent with t
changes inP↑6P↓ originated by the charge transport of a
electrons with a given spin to nearest-neighbor sites, requ
to change the extreme BI state withḡ5~0,0! to the Néel state
with ḡ5~p,p!. For the extreme MI state (U→`), which is a
spin-density wave~SDW!, we also haveḡ5~p,p!.13,15 By
continuity, one might expect that these values ofḡ character-
ize also the BI and MI phases in weak coupling. As e
plained below, this is confirmed by an analysis based on
MCEL. This change in topological parameters~which is
sharp even in finite systems! indicates nontrivial changes i
P↑6P↓ characteristic of a phase transition.

We find another phase withḡ5~p,0!. From field theory5

we know that this corresponds to the SDI phase with or
parameterD5( j s(21) j (cj 11s

† cj s1H.c.). If we consider
the more general Hamiltonian

H85H2~ tAB2t !(
is

~ci 11s
† cis1H.c.!~ni s̄2ni 11s̄!2

1V (
iss8

nisni 11s8 , ~3!

we confirm that the SDI phase ofH8, well established in
previous studies,15,17–20is smoothly connected with that ofH
for tAB→`. Furthermore, the model of Eq.~3! with D50
and (V,tAB2t).0 contains essentially the same phases
H, and allows a more detailed study of the relation betwe
the MTT and MCEL. ForV50, while DMRG results in
chains of 40 sites are unable to detect the opening of
exponentially small gap,15 the MTT predictions withL up
to 12 ~Ref. 15! practically coincide with those of field
theory for tAB;1 ~Refs. 18 and 19! and with exact results
for tAB→0.21

The MCEL is based on the fact that in a conformal fie
theory~which ultimately describes the low-energy physics
1D systems in the charge and spin sectors if they are gap!
the exponentn of the long-distance power-law decay of co
relation functionŝ O(x)O(x1d)&;d2n is given in terms of
excitation energies related to the operatorO(x) in the finite
ring. A crossing of appropriately chosen excitation energ
for different operators indicates a change in the characte
the dominant correlations at large distance~a phase
transition!.16,17 The relevant excitation energies forH8 with
D50 have been studied by Nakamura.17 In particular, in the
weak coupling limit it is known that there is a Gaussi
transition from the CDW to the SDI inH8(D50), with the
charge gap vanishing only at the transition point.17–19 This
transition is determined by the crossing of the lowest sta
with opposite parity under inversion and the same total m
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mentumK5p/a (a is the nearest-neighbor distance!, calcu-
lated with periodic~antiperiodic! BC if L54n(4n12).17 We
show that this crossing coincides with the jump ingc . In
Fig. 1 we representE(F)5^g(F,F)uH̃8ug(F,F)& for the
simplest case withL multiple of four. MinimizingE(F) with
respect toF and K̃ leads toF5p, K̃5p/a, and the Berry
phases are obtained adiabatically following this state. Us
cj s5ei j fs /Lc̃j s , one sees that while the total wave vectorK̃

of H̃8 remains constant asF is changed, in generalK5K̃
1(N↑F↑1N↓F↓)/(L a), where Ns is the number of par-
ticles with spins. The conditions leading to the minimum
energy (F5p,K̃5p/a) correspond to antiperiodic BC an
K50 in H8.

It is easy to see that the inversionI c j s
† I †5c2 j s

†

[e2 iFscL2 j s
† is a symmetry ofH8(F↑ ,F↓) only if both Fs

are either 0 orp ~corresponding to periodic or antiperiod
BC!. At U5Uc(L) andF50 there is a crossing of the low
est levels withK̃5p/a and total spinS50. This crossing is
possible because the corresponding wave functions have
posite parity, and therefore they do not mix atF50. For
F→0 one can use perturbation theory inF, and forU near
Uc(L) the stateug(F)& is determined by a 232 matrix in-
volving the above mentioned two states forF50 with off-

FIG. 1. Energy per site as a function of fluxF↑5F↓5F for the

two lowest lying eigenstates within the subspace ofK̃5p/a, S
50. Parameters areL54, D50, tAB5t51, V52 and three differ-
ent values ofU as indicated. Full~dashed! line correspond to state
with gc50 (gc5p). For U5Uc(L)gc is undefined due to the de
generacy atF50.
5-2
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diagonal matrix elements linear inF. From the trivial solu-
tion to this problem one realizes that the product in Eq.~2!
for U→Uc(L)201 differs from that forU→Uc(L)101 in
sign. Hence,gc jumps at the same place where the tran
tions occurs according to the MCEL. While for thet2U
2V model (H8 with D505tAB2t) in weak coupling the
transition is second order and the charge gap vanishes a
transition, for (U,V)@t the transition is first order, from a
fully gapped CDW to a charge gapped SDW.17,20,22 As a
consequence, the MCEL loses its support from the confor
invariant ~massless! theory. However, in this limit the geo
metrical meaning of the jump ingc is very clear, as ex-
plained earlier, and justifies the method.

In the MCEL, the Kosterlitz-Thouless transition, whic
corresponds to the opening of a spin gap, is detected thro
the crossing of a singlet even under inversion with an o
triplet, with K50 and periodic BC~for L54n).17 At F50
or F5p, H8(F,2F) has SU~2! and inversion symmetries
which are lost for other values ofF. Therefore, a similar
analysis as above shows thatgs jumps at this point.14 If L
54n12, periodic and antiperiodic BC are interchange
When DÞ0 the symmetry under translations in one latti
spacinga is lost,K5p/a becomes equivalent toK50, and
the CDW order parameter is different from zero also in
SDI and MI phases. The field theory results forH show that
for (D,U)!t the spin transition retains the same feature5

The charge transition, which forD50 is described by the
sine Gordon model, forDÞ0 is determined by the doubl
sine Gordon model, and the universality class changes f
Gaussian to Ising. However, the transition remains sec
order and the charge gap vanishes at the transition.5 Then, at
this point and sufficiently low energies the charge secto
described by a conformal invariant theory, justifying t
MCEL.

In spite of the breaking of translational symmetry, fort
nately the relevant crossings forH can still be identified
looking for the ground-state energy in subspaces withK
50, total spin projectionSz50, and a definite parity unde
inversion and time reversal. The latter allows us to sepa
states with even and oddS. If the more general modelH8
with DÞ0 is considered, there are some regions of para
eters in which the charge transition corresponds to a cros
of first excited states within the above mentioned subspa
but we restrict ourselves here to the phase diagram ofH. For
this model, the connection between the jump ingc and a
symmetry switch of the ground state for appropriate BC
been noted earlier,2,3,6 but the relation with the MCEL has
not been discussed. Moreover, neither results forgs nor nu-
merical investigation of the SDI-MI transition has been
ported so far. The calculation ofgs in H presents technica
difficulties due to additional crossing of levels~not related
with phase transitions! which take place forK̃50. We have
verified numerically that the jumps ingc andgs correspond
to the above mentioned level crossings.

For givenD, we have calculated the critical on-site repu
sion Uc (Us) at which the charge~spin! transition takes
place. In addition, for smallU and D we have fixedU and
determined the critical valuesDc andDs . This was done by
12110
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fitting a quadratic polynomial in 1/L2 to the results forL
510, 12, 14 and 16, followed by an extrapolation toL5`.
This fit works very well forD>0.25 ~we sett51 as the unit
of energy unless otherwise stated!, and improves with in-
creasingD. The difference betweenUs(L) and Us(L12)
rapidly decreases withL if D is not too small. Instead, fo
small values ofD the finite size effects increase and, as
consequence, the error in the extrapolation becomes la
To estimate this error we have repeated the fits usingL58,
10, 12 and 14; forD50.05 this gives a new estimation ofUc
(Us) that differs from the previous one in 0.12~0.07!. For
D,0.05 the relative error inUc andUs becomes very large
and we do not present results since they lose quantita
validity ~except atD50, whereUc5Us50 for all L!. In-
stead, forD>0.25 the estimated error inUc ,Us is less than
0.06, and less than 0.03 forD>0.5.

The resulting phase diagram is presented in Fig. 2.
qualitative agreement with field theory results,5 and for all
values ofD, the transition from the BI phase to the MI pha
with increasingU takes place in two steps: first, a charg
transition to the SDI phase atU5Uc occurs, and then, for
U5Us.Uc , the spin gap closes. The behavior in the stro
coupling limit is quite different from that of thet2U2V
model, for which a first order CDW-SDW transition occu
and is easily understood in terms of perturbation the
~PT!.17,20,22Instead,H remains nontrivial fort→0 as long as
U22D;t, since charge fluctuations are still possible. As
consequence of this delocalization of charges,gc inside the
SDI phase cannot be calculated analytically just adding
position of the charges, as we explained before forD→` or
U→`. For t50 the SDI phase is absent, and PT int di-

FIG. 2. Ground-state phase diagram ofH at half filling. The
dashed line corresponds to the field theory resultDs

f t ~see main
text!. The open ~full ! symbols were obtained keepingU(D)
constant.
5-3
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verges atU52D where the BI-MI transition takes place. Fo
t!uU22Du!U PT is valid, and can be used to calculate t
energy of the BI and MI phases for negative and posit
U22D, respectively. The MI phase in this limit is describe
by a Heisenberg model with exchangeJ52t2/(U22D). The
energies up to second order int are given byEBI5U22D
14t2/(U22D) and EMI52J ln 2. While the SDI phase
cannot be described by PT int, its boundaries are very accu
rately determined by our method for smallt. The jumps in
Berry phases have very little size dependence and show
Uc.2D11.33t andUs.2D11.91t for t!(D,U). The fact
that the SDI phase exists for positive values ofU22D was
to be expected from the asymmetry ofEBI andEMI under a
change of sign ofU22D.

The results for (D,U)@t can be extended qualitativel
to D;t. The SDI has a nearly constant width;0.6t, and
both Us and Uc increase slightly with decreasingD. For
D,1 the critical valuesUc and Us decrease abruptly, unti
they reachUc5Us50 atD50. However, in the region 0,D
,0.25 (0,U&2) the relative errors inUc , Us become
larger with decreasingD; in particular, forD&0.1 our results
are not quantitatively reliable. For (D,U)!t, the spin tran-
sition can be estimated integrating out the charge degree
freedom, assuming that they are described by a free mas
boson. This leads to a renormalization of the effective in
action g1' responsible for the opening of a spin gap in t
sine Gordon model which describes the spin sector at
energies.5 From the vanishing of the renormalizedg1' one
obtains the approximate field theory resultDs

f t

;EgAU/(8pt), whereEg is the gap forD50 and is known
from the Bethe ansatz solution. ForU!t, Eg

>(8/p)AtUexp(22pt/U), and the exponential dependen
dominates the behavior ofDs

f t . Due to the numerical uncer
tainties forD&0.1, we cannot establish where this expone
tial dependence deviates from the actual SDI-MI bound
tt
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For small D and any value ofU, an accurate field theory
result for Ds might be obtained using a bosonization a
proach which starts from the exact solution forD50.23

The SDI order parameterD couples directly with optical
phonons with wave vectorK50 and, therefore, the latte
should increase the extension of this phase. In principle,
can include these phonons in the numerical calculations
ing the adiabatic approximation. However, due to the bre
ing of inversion symmetry our method cannot be used to fi
the phase boundaries in this case. QMC calculations sug
that in the adiabatic approximation the whole MI phase d
appears and the SDI takes its place.9 This is not necessarily
the case if the dynamics of the phonons is included.5 We
must emphasize that in the MI phase both dimer-dimer
spin-spin correlation functions have the same leading pow
law decay at large distances. The dominance of spin-s
correlations due to logarithmic corrections characterizes
MI phase.15,18,19 This renders it very difficult to determine
the SDI-MI boundary by direct numerical evaluation of co
relation functions.15

In summary, we have determined the quantum phase
gram of the Hubbard chain with alternating on-site energ
at half filling using topological transitions. The method
justified from geometrical considerations in the strong co
pling limit ( t→0) and by field theory arguments in th
weak-coupling (U,D)!t region. We confirmed the existenc
of a spontaneously dimerized phase and determined
boundaries for the first time.
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