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Thomas-Fermi charge mixing for obtaining self-consistency in density functional calculations
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We present a method for charge mixing in self-consistent density functional calculations which uses the
Thomas-Fermi-von Weizser equation to solve implicitly for the charge density response function to the
potential. This approach has significant improvements over existing methods, particularly for inhomogeneous
systems with large unit cells which commonly suffer from poor convergence due to charge sloshing.

DOI: 10.1103/PhysRevB.64.121101 PACS nunt®er71.15.Dx
Ab initio electronic structure calculations have become an p(r)
integral part of the study of material properties. Density V palp]=> vion(r—R)+j—,d3r’+,uxc(p(r)).
functional theory(DFT) (Refs. 1 and Ris the most widely R [r—r’|
usedab initio approach in large scale material simulations. 2

Accurate predictions of mechanical properties, such as harcﬁerevion(r) is the local part of the ionic pseudopotential

ness, and electronic properties, such as conductivity, hav&nd,uxc(p(r)) is the LDA exchange-correlation potential.

made it an indispensable tool. As a result of ever-increasing MatchingV;,(r) with V,(r) is often done iteratively by

processor speeds and parallelization, larger and larger SyBFoducing aV-”‘”(r) for the m+1th iteration from the
tems can be simulated with DFT basel initio methods. | (1) V (r)'f . . : i
in(I), Vout pairs of the lasim iterations. The genera

Studying these larger systems is crucial for our understancf-_v A . = .
ing of complex systems/materialsurfaces, interfaces, de- ton of Vir; (r)is callled potentialcharge mixing as a mix-
fects, amorphous, elc.However, as the size of the systems turé of Viy(r) and V,,(r) generates th&,(r). An often
has become larger, the old problem of charge sloshing hd¢sed linear mixing scheme is

resurfaced as a major issue. This problem comes from the el m m

slow convergence of the self-consistent potential in the po- Vin =(1=A)Vi+AVqy,. (©)

tential (or chargg mixing schemes commonly used in theselt is easy to see why such mixing schemes cause instability.

icsaltceusl?;ljon\?v'hl;irisaé?g;e :f'ﬁ'g?t&%ﬁg';‘:;;'min_g;ﬁhv%/g};mt V(1) be the final self-consistent local potential giving
saker eduation to solve for tﬁe electronic response functionwzv_vsc' The resulting output Coulomb potential,
' . which is the dominant term and causes the charge sloshing,
of the system. The time spent for the solution of the Thomasi-S given in reciprocal space by,
Fermi-von Weizseker equation is minimal for large systems '
as it only involves a minimization on the charge density and
not the wave functions. sveoul(q)=S
; out (a)
There are generally two approaches to handling the self- q
consistency in a DFT calculation. The first approach is to
consider the total energ[{¢;}] as a function of only the x(d.q’) is the susceptibility defined axséViy=dpout,
Kohn-Shari wave functions{;} or the potentiaf. As a re-  Which typically has a magnitude of order one.
sult, minimization methodse.g., the conjugate gradient From Egs. (3) and (4) we have sV{i*'=[(1-A)
method are used to directly minimize the functional +AJ]éV{, . Notice that for a big systerfor any system with
E[{#:}].° There are drawbacks to such an approach as ibne long dimensiorlL), the smallest nonzerg in (4) [q
requires a lot of computer memory and many computation=0 does not contribuies (2#/L). As a result, the magni-
ally efficient linear algebra techniques cannot be used. Theude of the maximum eigenvalue 8f e, in (4) is large. If
second and most heavily-used approach is to change the noA-is a constant larger thg/e;|, then the magnitude of the
linear minimization ofE[{#;}] to an eigenvalue problem, maximum eigenvalue of(l—A)+AJ] is larger than one,
but with an additional self-consistent requirement. We firstand the iterative process is divergent. This is the origin of the
require{y;} to satisfy the Kohn-Sharteigenvalug¢ equation  charge sloshing problem. A small error &V;, will be am-
plified in 6V,,;. As a result, some calculations need small
values for A(e.g., 0.0} leading to very slow convergence.
This problem associated with simple mixing schemes is dis-
. cussed extensively in Annett's wofk.
Vin(r) is a given input potential, and,(r) is the nonlocal A better method is to use a matri in place of a scalar.
potential existing only in pseudopotential calculations. NowAny A that leads to the magnitude of the maximum eigen-
for {¢;} in this self-consistent fieldSCPH calculation to be value of[(I —A)+AJ] to be smaller than one will have a
the minimum ofE[{¢;}], the potentiaV;,(r) must equal the convergent iteration. The be#t is the one which leads to
output potentiaV,,(r), calculated from the occupied charge [(I —A)+AJ]=0, thus A=(1—J)" 1. This approach was
densityp(r) =3 cocd #%il?, used in Ref. 7 in the early days ab initio calculations.

— 41
7 x(9,9")6Vin(q')=JéVin. (4)

[—3V2HVin(ND+ V(D= . (1)
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Notice that,| —J(q,q’) is just the dielectric matrix(q,q’).  for each self-consistent cycle is a relatively small fraction of

Unfortunately, in moder large scale calculations, the fullthe total time. Although more advanced kinetic energy func-
dielectric matrix of the system is difficult to calculate or tionals do exist/ we found that the use of the TFW form is

estimate. Thus, often an approximatés used. One popular Sufficient for our purpose.

approximation is Kerker mixin§,which uses the Thomas- The full dielectric functione(r,r’) is not solved explic-

Fermi dielectric function for the homogeneous electron gasitly Which would be too expensive, instead we solve for it

and leads to a diagona\(q,q’) proportional tog?(g? !mplicitly. So given aV;, andV pair from the Pulay mix-

+Q(2)). For homogeneous systems this damps the chargi 9: accpr_ding to the T.FW formgla, we ask what is wfm
sloshing and significantly speeds up the convergence. at satisfies self-consistency. First, to makg; the solution

m of Vi,, we have to modify the TFW formula. With2/2(r)

In the above discussion, onl, and Vg, of the m'th ; . -
iteration are used to construc™ 1. In principle =@ou(r), the wave function type equation for the modified
mo ' TFW formula is:

{VI,(r),Vy,(r)} for all the previousm iterations can be

us_ed. In the _vvork of Dederichs and Zel?eflollowing a de? [—%V2+apﬁ’f{(r)JrVin(r)+Vn|(r)]goout(r)+AW(r)
tailed analysis, the constant A for each self-consistent itera-
tion is readjusted according to thg,, V. of the previous =er@our), ()

cycles. The Broydel! method updated, the inverse of the
Jacobian matrixXcharge dielectric matrixof the nonlinear
function HVi,1=(Vin—Voul Vinl), with the current
(Vin Vour) pair. However, it suffers from poor convergence

most noticeably when Ed1l) is not solved to high accuracy . . : :
- L . atomic wave functions and their occupatipaserage of the
for every SCF cycle. In the initial SCF cycles, it is not effi- .
s,p.d, ... angular momentum dependent nonlocal atomic

cent 1o have a gh accuracy forthe eigenvectors Sice WELC,goporeniaay is the Fermi energy in he Kohn-Sham

. . _new  Calculation. AW(r) is a term introduced to modify the TFW
A more recent approach takes a linear combinatgp . : :
Y d find . £1[\ynew_yne formula, so thap,,. is the solution withv;,, of (5). There are
B |-l Tin s an | Inds .a m|n|mgm of | out in ] other ways to introduce this term such as replacing the single
_||E'Cé1[1v°”t:-v,5”]”' ) WItP 2G=1. In tr_ns Pulay  term by a potential multiplyinge,«(r); but after some tests,
scheme;’ the “in” and “out” potential are not mixed. Thus, e found that(5) is more stable. AftedW(r) is calculated,

; [
after the{Cy} are obtainedy;”" andVqi'==C, Vo, canbe  he total TFW energy functional, from whidis) is derived,
mixed using, for example, the Kerker mixing leading to ajg:

Pulay-Kerker (PK) mixing scheme. G. Kresse and J.

where a=(37%)%3, and theap?? term is the TF kinetic
energy.V,(r) is a local potential representing the nonlocal
part of the potential in a Kohn-Sham pseudopotential wave

function calculation. This is done by a weightéby the

Furthmiller'? showed the equivalence of the Pulay scheme 1., 2 12 3 s

to the modified Broyden method of D. D. JohnsdiThe PK ETFVV[P]ZJ [— 2P OV + g ap™™(r)
method works well for homogeneous systems partly because

the dielectric function of such systems can be approximated +p(r)[Vi'0n(l’)+Vn|(r)]

by the Thomas-Fermi dielectric function of a homogeneous

electron gagthe basis of the Kerker mixingHowever, for +Epxd pl+ 2AW(r) p2(r) { dr, 6)

inhomogeneous systems the homogeneous electron gas is no

longer a good approximation for the dielectric function. . .
Thus, for a surface calculation, the PK method may not con\-Nhere Enuxcdp(r)] is the conventional LDA Hartree and
verge, as will be shown later exchange-correlation energy functional for a given charge

In our approach we use the Thomas-Fermi-von Weiz- density p(r). It should be noted that in our scher®,,

o . . : .~ Vyui are the result of Pulay mixing but we have ugeg
saker (TFW) equatiort to directly solve for the dielectric ' ou : ) : t
( ) &q y M the direct result of the fth SCF iteration. As a result

response, instead of using the homogeneous electron gag’out _
model. For smally, this step replaces the Kerker mixing of Yout iS N0t theVipalpoud of Eq. (2). To restore this rela-

VIEW with VW We will refer to this method as the Pulay- tiOnship in Eq.(6) we have replaced/;o, by Vipn=Vion

Thomas-Fermi(PTP mixing scheme. The Thomas-Fermi T Vout™ Vipalpoud- The minimum energy oErew{p] is

model has been widely used to describe the dielectric rethen solved usigg a conjugate gradient algorithm. anéetfinal

sponse function, and results compare well with other methSolution givespgii{(r) and the corresponding potenti] iy
ods such as the random phase approximdﬁo’f’he TFW equal tOVinneXt, within the TFW formalism, and thus satisfy-
formula has also been used to study the dielectric fundfion. ing self-consistency. This is the TFW mixed potential which
The advantage of the TFW formula is that the charge densityvill be used for the next iteration of the Kohn-Sham equa-
is smooth and realistic near the atomic nucleus and in th&ons Eq.(1). However, since the nonlocal potentig),(r) is
classically forbidden regions. Since an explicit solution oftreated in a very approximate way along with inherent limi-
the TFW equation for a given inhomogeneous system is extations in the TFW formula, the largg components in
pected to describe the dielectric function well, especially forV¥*(q) may be inaccurate. Consequently, we use the con-
small g componentsthe cause of the charge sloshings  ventional Kerker mixing for largg components inV)¢*{(q).

use for potential mixing should speed up convergence. For We will now present some data for simulations using the
large systems, the time spent on solving the TFW equatiomFW formula for plane-wave pseudopotential calculations
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FIG. 1. () AW correction to the TFW equation in th&-10
plane for bulk GaAs(b) Vi,p*? in the (1-10) plane for bulk GaAs.
AW andV;,p*? are in the same arbitrary units.

FIG. 2. (E-Eja) Vvs time for (a) 6 layers GaAs—6 layers
vacuum,(b) 40 layers GaAs displaced randomly by small amounts,
(c) 20 layers GaAs—20 layers InAg]) 20 layers GaAs—20 layers

. . vacuum(e) 20 layers Al-20 layers vacuum. Br, PK, and PTF refers
using the LDA. While we have presented most of the formal-, he Broyden, Pulay-Kerker, and Pulay-Thomas-Fermi charge

ism for our approach in the context of a plane-wave pseudomixing schemes. Each point represents one SCF step. All simula-
potential calculation we believe our method may also be adions were performed on a Cray T3E900 using 16 processota)or
vantageous for other DFT based approaches such as thg and 64 processors fab), (c) and (d).

FLAPW method.

In order to examine the role of th&®W(r) correction to  surface states in the band d&for the GaAs surface, similar
(5), Fig. 1(a) shows the correction for bulk GaAs in th&l0)  findings would have resulted for the fully relaxed positions.
plane. For comparison, Fig(H) shows the plot ofV;,p2. Figures Za)—2(e) show a comparison of convergence for the
We have used the final converged charge density and potefive systems with the PTF mixing scheme, the Pulay-Kerker
tial. Figure 1 shows\W(r) to be much smaller tha;,p*>  (PK) and Broyden(Br) schemes using an unconstrained con-
which illustrates the general accuracy of the TFW equationjugate gradien{CG) algorithm for the electronic minimiza-
However, AW(r) is appreciable near the atoms, wheretion (diagonalization'® We used 10 CG stepsipdates for
Vi,pY? is the largest, showing why it is necessary to intro-each SCF cycle, 25 Rydberg cutoff, and a 1x4x4 Monkhorst-
duce this term. The larger value afW(r) near the nuclei Pack mesh for all calculations. The Y-axis is the difference in
can be attributed to the approximate treatment of the nonloenergy at each SCF cycle from the final converged total en-
cal pseudopotentials and to the kinetic energy which is highergy and theX axis is the time per processor. All the simu-
est near the nuclei. lations were carried out on a Cray T3E900. We chose time as

To study the effects of inhomogeneity and system size omur unit of measure since it is the fairest way to compare
the performance of the different mixing methods, we chosalifferent methods where the amount of calculation and time
to study one small GaAs surface system and three largdor each SCF cycle is different. The convergence per SCF
GaAs/InAs systems of increasing inhomogenéggnall dis-  cycle can also be obtained from the graphs as each signifies
placements from the ideal positions of the bulk, an interfacene SCF step.
and a surfaceas well as an Al surface as representative of a Figure 2a) shows the convergence for the small surface
metal. We simulated the semiconductor Gaith InAs for ~ system containing six layers of GaAs in thELO) direction
an interfacg as it represents a relatively simple system thatwith six layers of vacuunil2 atoms total with fouk-points
illustrates the advantages of our method and also has tecm the irreducible Brillouin zone The system is sufficiently
nological importance. All of the systems are extended in thesmall that Fig. 2a) shows good convergence for all methods
(110 direction[(100) for Al], each layer having two atoms even though the system is highly inhomogeneous. At this
(one atom for Al. For the surface and interface calculations,system sizeg(q,q’) is a well-conditioned matrix and thus
we used the ideal bulk atomic positions. Since there are nposes no problem for any of the different methods. Figure
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2(b) shows the convergence for a system of 40 layers o2(d) clearly shows the problems of convergence for the PK
GaAs in the(110 direction with the atoms displaced ran- and Broyden schemes in dealing with large and inhomoge-
domly from their ideal positions, at most 0.028 Bof®0  neous systems. The instability of the Broyden method can in
atoms total with & pointg. Figure Zb) shows little differ-  part be attributed to the overemphasis of gradient informa-
ence between the PTF and PK methods. With these smailon. The PTF method still converges rapidly for these types
displacements from the ideal positions the Thomas-Fermi dief systems. Figure (8) shows the results for a 20 layer Al
electric function for the homogeneous electron gas, which isurface using Gaussian smearing at the Fermi-level, showing
used in the Kerker mixing, is still a close approximation tothis method also works well for inhomogeneous metal sys-
the true dielectric function. The Broyden method shows verytems with partial occupancies.

poor convergence for this system. Figuré)2shows the In conclusion, we have presented the Pulay-Thomas-
same data for an interface system of 20 layers of GaAs anBermi method for potentialor chargeé mixing for the self-

20 layers of InAs, both in thél10) direction(80 atoms total consistent solution of the Kohn-Sham equations. This
with 4 k-pointg. This system can be considered to be moremethod addresses the slow convergence and charge sloshing
inhomogeneous than Fig(l® and we now start to see the that occurs for large and inhomogeneous systems. The di-
advantages of the PTF scheme over the PK scheme. The PEectric functione(q,q’) at smallq is calculated implicitly
scheme converges about 15% faster. The dielectric functioas V[}**! is obtained by solving the self-consistent Thomas-
approximation used in the Kerker scheme is becoming leseermi-von Weizseker equation with the charge density as
valid. The Broyden method again shows the worst perforthe variable. A large surface calculation of GaAs shows the
mance. The time per SCF cycle in FigbPcompared to Fig. method to be superior to current methods. The benefit of the
2(c) is roughly twice due to the decreased symmetry resultmethod increases as inhomogeneity and system size in-
ing in morek-points in the irreducible Brillouin zone. Figure creases.

2(d) shows the same information for a system of 20 layers of

GaAs and 20 layers of vacuurtd0 atoms total with 4 This work was supported by the DOE Office of Science,
k-pointg For this large, extremely inhomogeneous systemOffice of Laboratory Policy and Infrastructure Management
we see significant differences between the PK and the PTEnder Contract No. DE-AC03-76SF00098. This research
schemes with the PK scheme converging very slowly. Theused resources of the National Energy Research Scientific
dielectric function approximation used in the Kerker schemeComputing Center, which was supported by the DOE Office
is highly inaccurate for large surface calculations. Compareof Energy Research. Calculations in this paper were per-
ing to the smaller surface calculatipfig. 2(a)] and the other formed using PARATE® with test calculations done using
large, but more homogeneous systdfigs. 2b), 2(c)], Fig. PETOT?
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