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Electron-phonon dynamics in an ensemble of nearly isolated nanoparticles

Daniel T. Simon and Michael R. Geller
Department of Physics and Astronomy, University of Georgia, Athens, Georgia 30602-2451

~Received 18 January 2001; published 24 August 2001!

We investigate the electron population dynamics in an ensemble of nearly isolated insulating nanoparticles,
each nanoparticle modeled as an electronic two-level system coupled to a single vibrational mode. We find that
at short times the ensemble-averaged excited-state population oscillates but has a decaying envelope. At long
times, the oscillations become purely sinusoidal about a ‘‘plateau’’ population, with a frequency determined by
the electron-phonon interaction strength and with an envelope that decays algebraically ast21/2. We use this
theory to predict electron-phonon dynamics in an ensemble of Y2O3 :Eu31 nanoparticles.
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I. INTRODUCTION

Nanocrystals exist in a size regime which lies betwe
that of atomic and bulk matter, thus making them ideal
the study of extreme quantum effects in condensed ma
systems. In particular, the vibrational properties of nanop
ticles are strikingly different than their bulk counterparts:
spherical nanoparticle of diameterd cannot support interna
vibrations at frequencies less than about 2pv/d, wherev is a
characteristic bulk sound velocity. Any property of the nan
particle that depends on the vibrational spectrum, such a
thermodynamic properties or electron-phonon dynamics,
be very different at low energies than in bulk crystals. T
will be especially true for nanoparticles—for example,
powder form—only weakly coupled to their surroundings

One way to probe the vibrational spectrum of a nanop
ticle is to optically excite an electron-hole pair and study
intraband electronic energy relaxation prior to radiat
recombination.1,2 However, the excitonic states, being on
weakly localized, will suffer significant quantum
confinement effects in the nanoparticle, making compari
with bulk relaxation rather indirect. An alternative probe
the vibrational spectrum is provided by well-localized ele
tronic impurity states in a doped nanocrystal.3,4 The impurity
states can be used to probe both energy relaxation by ph
emission3 and phonon-induced dephasing.4 In these cases
the difference between the nanocrystal and bulk behavio
almost entirely a consequence of their differing vibration
modes.

In a recent experiment, Yanget al.3 measured the phono
emission rate in Eu-doped Y2O3 nanoparticles between tw
electronic states separated by 3 cm21 in energy. The experi-
ment was performed on a powder of nanoparticles, prepa
by gas-phase condensation, with a mean diameter of 13
Regarding the nanoparticles as isotropic elastic spheres,5 the
lowest internal vibrational mode~a fivefold degenerate tor
sional mode! has a frequency of about 11 cm21. The
excited-state population was found to decay exponenti
with a lifetime of 27 ms, more than two orders of magnitud
longer than that between the same levels in the bulk~about
220 ns!. Although there is no quantitative theory availab
yet to explain their results, the inhibited phonon emission
consistent with a large suppression of the low-frequency
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brational density of states~DOS! expected for these sma
crystals.

Experiments such as the one by Yanget al.3 present an
exciting opportunity to study the crossover of phonon d
namics from bulk to nanoscale systems. However, the
lowing question immediately arises: Given the large appar
modification of the DOS by finite-size effects, is it still co
rect to expect exponential relaxation and to use perturba
theory ~Fermi’s golden rule in this case! to relate the relax-
ation rate to the phonon DOS? After all, the energy in
nanoparticle that is completely isolated from its surroundin
would have to be exchanged between the electron and vi
tional degrees of freedom in a Rabi-like manner, and no
laxation would be observed. Indeed, an isolated nanopar
may be regarded as a phonon analog of a two-level atom
a cavity, which is known to exhibit oscillatory populatio
dynamics.6

It should be possible to detect oscillatory population d
namics experimentally using the techniques of Ref. 3,
what would be the effect of the unavoidabledistribution of
nanoparticle sizes and corresponding vibrational-mode
quencies? In the limit where each nanoparticle has a t
level system interacting with only the lowest-frequency
brational mode, called the Lamb mode, each nanopart
would exhibit vacuum Rabi oscillations.7 However, the Rabi
frequency, which is a function of the electron-phonon int
action strength and the energy mismatch between the t
level system and Lamb mode, would vary from nanoparti
to nanoparticle.

The purpose of this paper is to investigate the electr
phonon dynamics of an ensemble of nearly isolated nano
ticles. We find that at short times the ensemble-avera
excited-state population oscillates in a fashion that depe
on the detailed size distribution of the nanoparticles, but t
at long times the oscillations become purely sinusoidal ab
a ‘‘plateau’’ population fraction, with the frequency of th
oscillation determined by the electron-phonon interact
strength alone and with an envelope that decays algebraic
as t21/2. In the infinite-time limit, the excited-state popula
tion approaches the constant, finite plateau value.~Of course,
the small damping of the Lamb mode, produced by the w
but nonzero interaction of a nanoparticle with its enviro
ment, will eventually cause the electrons to rel
irreversibly.!
©2001 The American Physical Society12-1
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In the next section we derive a general expression for
average excited-state population in an ensemble of nano
ticles at zero temperature and study its short-time and lo
time behavior. The rotating-wave approximation~RWA! we
use there limits the application of our results to situatio
where the detuning energies~the energy mismatch betwee
the two-level system and Lamb mode! are not much larger
than the electron-phonon interaction strength. In Sec. III
apply this theory to an ensemble of Y2O3:Eu31 nanopar-
ticles similar to that of Yanget al.3 and give quantitative
predictions for the average excited-state population a
function of the mean nanoparticle size and standard de
tion. Section IV contains our conclusions and a discussion
questions for future investigation.

II. ENSEMBLE-AVERAGED POPULATION DYNAMICS

To begin, we consider a single doped nanoparticle.
assume this nanoparticle to be an isotropic elastic sp
with a single localized electronic two-level system embedd
within. We limit our investigation to small detuning energie
thus allowing for the use of the RWA, which discards no
energy-conserving terms in the Hamiltonian.6 In addition, we
will neglect the fivefold degeneracy of the lowest vibration
mode that would be present in a perfectly spheri
nanoparticle5 and will assume a single nondegenerate La
mode. We shall return to this point below in Sec. IV.

Dissipation terms in the Hamiltonian are neglected
well. By dissipation terms we mean interactions of the na
particle with its surroundings that allow vibrational energy
be carried away irreversibly. For weak dissipation, the
terms would cause an exponential decay of the populatio
large times, causing the ‘‘plateau’’ population to fall exp
nentially to zero. This effect would be negligible at sm
times and therefore would have no impact on the short-t
calculations given below. For large dissipation, the expon
tial decay would be noticeable at all times and would the
fore render our results invalid.

We assume that there is only one vibrational mode av
able for the electronic system to couple to—the next vib
tional mode being so high in energy as to make the effec
its coupling negligible. Therefore, as stated, our doped na
particle system consists of a two-level atom coupled to sin
vibrational mode. The Hamiltonian, in units where\51, is
given by

H5(
a

eaca
†ca1v0a†a1(

aa8
gaa8ca

†ca8~a1a†!, ~1!

wherea51,2. The first term inH is the Hamiltonian for a
noninteracting two-level system with energiese1 ande2 and
fermionic creation and annihilation operatorsca

† andca . The
second term is the Hamiltonian for a vibrational mode w
frequencyv0 and phonon creation and annihilation operat
a† anda. The third term is the ordinary first-order interactio
between the two-level system and the vibrational mode.gaa8
is the electron-phonon interaction energy, withg125g215g,
and the other terms equal to zero.
11541
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The wave function can be written as a superposition of
two electronic states, together with all possible populatio
of the single vibrational mode,

uc~ t !&5(
an

Can~ t !e2 i (ea1nv0)tuan&, ~2!

where

uan&[
1

An!
~a†!nca

† u0&. ~3!

The coefficientsCan(t) satisfy the coupled equations,

] tC1n~ t !1 igAn11 e2 i (v01De)tC2,n11~ t !

1 igAnei (v02De)tC2,n21~ t !50 ~4!

and

] tC2n~ t !1 igAn11 e2 i (v02De)tC1,n11~ t !

1 igAnei (v01De)tC1,n21~ t !50, ~5!

whereDe[e22e1 is the electronic energy-level separatio
In the RWA, which is valid near resonance~defined by the

condition v05De), these coupled differential equations r
duce to

] tC1n~ t !1 igAn eintC2,n21~ t !50 ~6!

and

] tC2n~ t !1 igAn11 e2 intC1,n11~ t !50, ~7!

where

n[v02De ~8!

is the detuning frequency.
These equations can be solved by Laplace transforma

using the boundary conditionCan(0)5da2dn0. The ampli-
tude for the upper state is

C2n~ t !5dn0FcosS V

2
t D1 i

n

V
sinS V

2
t D Ge2 int/2, ~9!

where

V[An214g2 ~10!

plays the role of the Rabi frequency in this problem.6

The probability that the electron is in statea, irrespective
of the number of phonons present, is

Na~ t ![(
n

uCan~ t !u2. ~11!

ThenN2(t)5uC20(t)u2 is given by

N2~ t !512S V22n2

V2 D sin2S V

2
t D ~12!

and
2-2
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N1~ t !512N2~ t !. ~13!

The dependence ofN1(t) andN2(t) on n will be suppressed
for simplicity.

In an ensemble of such nanoparticles, a variation in dia
eter yields a similar variation in detuning frequencyn. We
assume this to be a Gaussian distribution. To obtain va
for the mean detuningn̄ and standard deviation in detunin
s, we assume each nanoparticle to be an isotropic ela
continuum with stress-free boundary conditions. Then,
shown by Lamb,5 the lowest vibrational frequency is

v0~d!'
2pv t

d
, ~14!

wherev t is the bulk transverse sound velocity andd is the
nanoparticle diameter. The mean detuning is then

n̄5v0~ d̄!2De, ~15!

whered̄ is the mean particle diameter. Using these relati
ships, we assume a distribution in detuning frequency gi
by

P~n![
e2(n2 n̄)2/s2

Aps
. ~16!

The ensemble-averaged population of electronic stateua& is
then given by

N̄a~ t ![E
2`

`

dn P~n!Na~ t !. ~17!

The behavior ofN̄2(t) at short times is sinusoidal with
decaying envelope dependent on the specifics of the par
size distribution. We will give examples of the short-tim
dynamics below.

The long-time behavior ofN̄2(t) can be obtained analyti
cally by an asymptotic expansion. We begin by writing E
~17! as

N̄2~ t !5N̄2~`!1
V res

2

2Aps
ReI ~ t !, ~18!

where

N̄2~`![12
V res

2

2Aps
E

2`

`

dn
e2(n2 n̄)2/s2

V res
2 1n2

~19!

is a constant independent of time and

I ~ t ![E
2`

`

dn
e2(n2 n̄)2/s2

V res
2 1n2

eitAVres
2

1n2
, ~20!

where

V res[2g ~21!
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is the resonantRabi frequency. It will turn out that the con
stantN̄2(`) is simply the value ofN̄2(t) in the t→` limit.
Values of this plateau population are given in Table I.

The integralI (t) can be evaluated at large times by an
lytically continuingn into the complex plane and expandin
around the saddle point atn50. This leads to the asymptoti
result

I ~ t !'e2 n̄2/s2A 2p

tV res
3

ei (tVres1p/4), ~22!

and, hence,

N̄2~ t !'N̄2~`!1A1

2

e2 n̄2/s2

s/V res

cos~ tV res1p/4!

AtV res

~ t→`!.

~23!

Note that at long times the population oscillates at
resonantRabi frequency, independent of the mean detun
n̄. This occurs because the higher-frequency compon
tend to average out faster. However, the amplitude of
asymptotic oscillations decreases withn̄.

To illustrate the short-time behavior ofN̄2(t) as a function
of n̄ and s, we present several plots showingN̄2(t) as a
function of tV res. In choosing values forn̄ and s, we at-
tempted to cover the entire range of these parameters w
could be reasonably addressed in the RWA.

In Fig. 1, we study the resonant case wheren̄50. By
choosing three values ofs we are able to directly observ
the effects that it has on the envelope function. Ass in-

TABLE I. Plateau poplation values forN̄2(t) as t→`. Here
V res52g is the resonant Rabi frequency.

n̄/V res

0.0 1.0 2.0

0.1 0.50 0.74 0.90
s/V res 0.5 0.54 0.73 0.89

1.0 0.62 0.73 0.87

FIG. 1. Electronic population in stateu2& for n̄50.0.
2-3
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creases, the envelope function decays faster and the tim
which asymptotic behavior becomes observable decrease
this case ofn̄50, changings has little effect on the fre-
quency at whichN̄2(t) oscillates.

Figure 2, wheren̄5V res, illustrates the effects of an in
termediate value ofn̄. The short-time envelope function de
cays faster and the plateau population is increased. As in
1, increasings increases the rate at which the short-tim
envelope function decreases, but here it can be seen to l
the frequency of oscillation inN̄2(t). Unlike Fig. 1, Fig. 2
clearly shows how increasings up toV res increases the am
plitude of oscillations at large times@see Eq.~23!#.

The last plot, Fig. 3, illustrates the limits of the RWA. Th
effects of increasingn̄ are now taken to the extreme: th
short-time envelope functions decay very rapidly, mak
asymptotic behavior apparent at early times, and the pla
population approaches unity. Alterings has similar effects as
in Figs. 1 and 2, only more pronounced.@N̄2(t) for s/V res
50.1 levels off to its plateau population shortly pasttV res
550.#

III. POPULATION DYNAMICS IN Y 2O3 :Eu3¿

NANOPARTICLES

Here we use the results of Sec. II to address future exp
ments. We examine the case of Y2O3:Eu31 nanoparticles,

FIG. 2. Electronic population in stateu2& for n̄5V res.

FIG. 3. Electronic population in stateu2& for n̄/V res52.0.
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specifically the electron dynamics between two crystal-fi
split 5D1 levels separated byDe53 cm21, such as in the
experiment by Yanget al.3 To make quantitative prediction
for such nanoparticles, the only parameters that need to
specified are the mean detuning frequencyn̄ and the standard
deviation in detuning,s. We also need the electron-phono
interaction strengthg. Our treatment requires thatn̄ be not
much greater thanV res.

In the case of Y2O3:Eu31 nanoparticles, we can estima
the electron-phonon interaction strength by using the exp
mentally observed bulk phonon emission rate.3 We obtain a
value forgmicron, the electron-phonon interaction strength
micron-size particles, and then scale this value to getg for
the nanoparticles. The scaling is achieved by assuming thg
varies with energy and system volume as it does in a b
crystal. In principle, this method is only correct between tw
systems with continuous vibrational spectra. However, us
this technique should provide a reasonable estimate ofg in
the nanoparticle.

In the micron-scale crystal, Fermi’s golden rule states t
for an electron-phonon interaction of the form given in E
~1!, the phonon emission rate is

t215
2p

h
g2G~De!V, ~24!

whereV is the crystal volume andDe is the electronic level
spacing.G(e), the phonon DOS~per volume! as a function
of phonon energye, is defined by

G~e![
1

V (
n

d~e2\vn!, ~25!

wherevn are the phonon frequencies and, in a bulk crysta
low energies,

G~e!5
3e2

2p2\3v̄3
, ~26!

where

v̄[S 1

3 (
l

1

vl
3D 21/3

~27!

is a branch-averaged sound velocity.
The lifetime in the micron-sized crystal was observed

be t5220 ns,3 and in Y2O3 the sound velocities are
approximately,8

v l56.73105 cm s21, ~28!

v t54.33105 cm s21, ~29!

and

v̄54.73105 cm s21. ~30!

g is then given by
2-4
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g5
p\2v̄3/2

De
A2t21

3V
. ~31!

The mean diameter of these nanoparticles was about 5mm,
leading togmicron52.0431026 cm21.

In a bulk crystal~with deformation-potential coupling!, g
varies as (e/V)1/2, so we scalegmicron in e and V to get a
value for gnano, the electron-phonon interaction strength
the nanoparticle:

gnano5S 10 cm21

3 cm21 D 1/2S 13 nm

5 mmD 23/2

gmicron ~32!

52.831022 cm21. ~33!

Then the resonant Rabi frequency, as defined in Eq.~21!, is
about

V res55.631022 cm21. ~34!

In the experiment of Yanget al., the mean particle diam
eter was 13 nm and the standard deviation in particle
was 5 nm.3 By Eqs. ~14! and ~15!, these values yieldn̄
571V res ands544V res. This detuning is large enough tha
higher-energy vibrational modes can no longer be ignor
making our single-mode treatment inapplicable. Furth
more, these values are too far off resonance to be relia
addressed by the RWA.

To observe the behavior predicted in Sec. II f
Y2O3 :Eu31 nanoparticles, the mean diameter should
about 46 nm and the standard deviation in diameter no m
than about 3 nm@see Eqs.~14! and ~15!#.

IV. DISCUSSION

We have shown that the unavoidable size dispersion
collection of nanoparticles can effect the ensemble-avera
electronic population dynamics considerably, affecting ev
the oscillation frequency at long times. However, our ana
sis has been restricted to near-resonant conditions in an
alized single-mode nanocrystal. A comprehensive theory
electron-phonon dynamics in nearly isolated nanopartic
ts
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will have to address a number of additional issues.
First, the vibrational modes of a nanoparticle will b

broadened due to intrinsic mechanisms and from interac
with the environment. For example, anharmonicity w
broaden the Lamb mode at finite temperature,9 as will me-
chanical coupling to a substrate or to a cluster of ot
nanoparticles.10 This broadening will cause the envelope
the population oscillations to decay exponentially at lo
times. For weak damping, however, we do not expect a
qualitative changes in the short-time dynamics.

Second, nanoparticles will generally have large detun
frequencies, making the inclusion of higher-frequency mo
necessary and making the RWA invalid. One way to inclu
these effects would be to do exact-diagonalization studie
models with a truncated Hilbert space—for example, hav
bounded phonon occupation numbers for one or m
modes.

Finally, it will be necessary to understand the effects
vibrational-mode degeneracy, which has been neglected h
The presence of degeneracy means that the Lamb mode
vectorlike internal degree of freedom, the components of
vector describing the phonon amplitude in each branch.
though there has been work done in the quantum optics
erature on the multimode generalizations of our Hamilton
~1!, that work has focused on the two-photon resonance c
where De52v0.11,12 One way to approach the degenera
case nonperturbatively would be to assumeN degenerate
modes in the limit of largeN. By analogy with other quan-
tum systems with internal degrees of freedom, like partic
with N spin components, it is reasonable to expect that qu
tum effects will be diminished in the large-N limit. In a
nanoparticle this would suggest a suppression of the R
oscillations.
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