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Electron-phonon dynamics in an ensemble of nearly isolated nanoparticles
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We investigate the electron population dynamics in an ensemble of nearly isolated insulating nanoparticles,
each nanoparticle modeled as an electronic two-level system coupled to a single vibrational mode. We find that
at short times the ensemble-averaged excited-state population oscillates but has a decaying envelope. At long
times, the oscillations become purely sinusoidal about a “plateau” population, with a frequency determined by
the electron-phonon interaction strength and with an envelope that decays algebraitalty. a¥e use this
theory to predict electron-phonon dynamics in an ensemble,65YEW®" nanoparticles.
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[. INTRODUCTION brational density of state€DOS) expected for these small
crystals.

Nanocrystals exist in a size regime which lies between Experiments such as the one by Yaegal?® present an
that of atomic and bulk matter, thus making them ideal forexciting opportunity to study the crossover of phonon dy-
the study of extreme quantum effects in condensed matteramics from bulk to nanoscale systems. However, the fol-
systems. In particular, the vibrational properties of nanopartowing question immediately arises: Given the large apparent
ticles are strikingly different than their bulk counterparts: A modification of the DOS by finite-size effects, is it still cor-
spherical nanoparticle of diametdrcannot support internal rect to expect exponential relaxation and to use perturbation
vibrations at frequencies less than about2d, wherey isa  theory (Fermi's golden rule in this cageo relate the relax-
characteristic bulk sound velocity. Any property of the nano-ation rate to the phonon DOS? After all, the energy in a
particle that depends on the vibrational spectrum, such as ifianoparticle that is completely isolated from its surroundlngs
thermodynamic properties or electron-phonon dynamics, WHyyouId have to be exchanged between the electron and vibra-

be very different at low energies than in bulk crystals. Thistional degrees of freedom in a Rabi-like manner, and no re-
will be especially true for nanoparticles—for example, in laxation would be observed. Indeed, an isolated nanoparticle

powder form—only weakly coupled to their surroundings. may be regarded as a phonon analog of a two-level atom in

One way to probe the vibrational spectrum of a nanopargyﬁz\r{;?gsswmm is known to exhibit oscillatory population

ticle is to optically excite an electron-hole pair and study the It should be possible to detect oscillatory population dy-

|ntraba:)nd ?'ffﬁro”'c energry]/ rela>_<at|(_)n prior tg _rad'at';’enamics experimentally using the techniques of Ref. 3, but
recombination:” However, the excitonic states, being only \ynat \would be the effect of the unavoidaldistribution of

weakly localized, will suffer significant quantum- anonarticle sizes and corresponding vibrational-mode fre-
confinement effects in the nanoparticle, making comparisoguencies? In the limit where each nanoparticle has a two-
with bulk relaxation rather indirect. An alternative probe of |gyg| system interacting with only the lowest-frequency vi-
the vibrational spectrum is prOVided by well-localized eleC'brationa| mode, called the Lamb mode’ each nanopartide
tronic impurity states in a doped nanocrystaThe impurity  would exhibit vacuum Rabi oscillatiorisHowever, the Rabi
states can be used to probe both energy relaxation by phonefequency, which is a function of the electron-phonon inter-
emissiorl and phonon-induced dephasihgn these cases, action strength and the energy mismatch between the two-
the difference between the nanocrystal and bulk behavior ikvel system and Lamb mode, would vary from nanopatrticle
almost entirely a consequence of their differing vibrationalto nanopatrticle.
modes. The purpose of this paper is to investigate the electron-
In a recent experiment, Yaret al® measured the phonon phonon dynamics of an ensemble of nearly isolated nanopar-
emission rate in Eu-doped,®; nanoparticles between two ticles. We find that at short times the ensemble-averaged
electronic states separated by 3 chin energy. The experi- excited-state population oscillates in a fashion that depends
ment was performed on a powder of nanoparticles, preparesh the detailed size distribution of the nanopatrticles, but that
by gas-phase condensation, with a mean diameter of 13 nmat long times the oscillations become purely sinusoidal about
Regarding the nanoparticles as isotropic elastic spidtes, a “plateau” population fraction, with the frequency of the
lowest internal vibrational modé fivefold degenerate tor- oscillation determined by the electron-phonon interaction
sional mod¢ has a frequency of about 11 crh The strength alone and with an envelope that decays algebraically
excited-state population was found to decay exponentiallast™ Y2 In the infinite-time limit, the excited-state popula-
with a lifetime of 27 us, more than two orders of magnitude tion approaches the constant, finite plateau valdécourse,
longer than that between the same levels in the lallout the small damping of the Lamb mode, produced by the weak
220 ng. Although there is no quantitative theory available but nonzero interaction of a nanoparticle with its environ-
yet to explain their results, the inhibited phonon emission isment, will eventually cause the electrons to relax
consistent with a large suppression of the low-frequency viirreversibly)
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In the next section we derive a general expression for the The wave function can be written as a superposition of the
average excited-state population in an ensemble of nanopawo electronic states, together with all possible populations
ticles at zero temperature and study its short-time and longsf the single vibrational mode,
time behavior. The rotating-wave approximatidR\WA) we
use there limits the application of our results to situations _ ~i(e,+nwg)t
where the detuning energiéthe energy mismatch between W(t))_; Can(tle” " an), @
the two-level system and Lamb mqgdare not much larger
than the electron-phonon interaction strength. In Sec. Il wavhere
apply this theory to an ensemble of,®;:EW** nanopar-
ticles similar to that of Yanget al® and give quantitative — i tynat

> > ; : |an)y=—(a")"c}|0). ©)
predictions for the average excited-state population as a n!
function of the mean nanoparticle size and standard devia- o ] )
tion. Section IV contains our conclusions and a discussion of N€ coefficientsC ,(t) satisfy the coupled equations,

uestions for future investigation. . i
A J 2C1n(t) +igyntLe wordare, (1)

H i —Ae)t _
Il. ENSEMBLE-AVERAGED POPULATION DYNAMICS +igyne(wom29tc, 1 (1)=0 (4

To begin, we consider a single doped nanoparticle. wend
assume this nanoparticle to be an isotropic elastic sphere T ilen—Ae
with a single localized electronic two-level system embedded ICan(t) +igyn+1e 1?07 29Cy 54 (1)
within. We_limit our investigation to small d_etunipg energies, +ig \/ﬁei(w0+Ae)tcl‘nil(t) -0, (5)
thus allowing for the use of the RWA, which discards non-
energy-conserving terms in the Hamiltonfaim addition, we ~ whereAe=e,— €, is the electronic energy-level separation.
will neglect the fivefold degeneracy of the lowest vibrational ~ In the RWA, which is valid near resonanefined by the
mode that would be present in a perfectly sphericalcondition wo=A¢€), these coupled differential equations re-
nanoparticle and will assume a single nondegenerate Lamigluce to
mode. We shall return to this point below in Sec. IV. ) :

Dissipation terms in the Hamiltonian are neglected as FC1n(t) +igyn €"Cypy_1()=0 (6)
well. By dissipation terms we mean interactions of the nano,q
particle with its surroundings that allow vibrational energy to
be carried away irreversibly. For weak dissipation, these 0,Con(t) +ig \/me—ivtcl‘nﬂ(t):o' (7)
terms would cause an exponential decay of the population at
large times, causing the “plateau” population to fall expo- Where
nentially to zero. This effect would be negligible at small .
times and therefore would have no impact on the short-time v=wo—Ae (8)
calculations given below. For large dissipation, the exponenis the detuning frequency.
tial decay would be noticeable at all times and would there- These equations can be solved by Laplace transformation
fore render our results invalid. using the boundary conditio€,,(0)= 8,28,0. The ampli-

We assume that there is only one vibrational mode availtude for the upper state is
able for the electronic system to couple to—the next vibra-

tional mode being so high in energy as to make the effect of B Q v [ i
its coupling negligible. Therefore, as stated, our doped nano- Can(t) = no| CO§ 5t | +igsin —-t]|e ™ (9)
particle system consists of a two-level atom coupled to single
vibrational mode. The Hamiltonian, in units whete=1, is ~ Where
iven b
e Q=\o7+ag’ (10
: . plays the role of the Rabi frequency in this probl&m.
H=2 e.clc,+woa’a+ D guachica(a+al), (1) The probability that the electron is in state irrespective
“ aa! of the number of phonons present, is

wherea=1,2. The first term irH is the Hamiltonian for a

noninteracting two-level system with energigsand e, and Na(t)E; |Cean(D)I%. (11)

fermionic creation and annihilation operatcﬂsandca. The

second term is the Hamiltonian for a vibrational mode withThenN,(t)=|C,q(t)|? is given by

frequencyw, and phonon creation and annihilation operators

a' anda. The third term is the ordinary first-order interaction (QZ— vz) Q
N,(t)=1— smz(?t)

between the two-level system and the vibrational mggde: 02 (12)

is the electron-phonon interaction energy, With=g9,,=0,
and the other terms equal to zero. and
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Nq(t)=21—Ny(t). (13 TABLE |. Plateau poplation values fdﬁz(t) ast—oo, Here
) Q.. 29 is the resonant Rabi frequency.
The dependence ®,(t) andN,(t) on » will be suppressed

for simplicity. )
. L. . . VIdires
In an ensemble of such nanoparticles, a variation in diam- 0.0 1.0 20
eter yields a similar variation in detuning frequeneyWe
assume this to be a Gaussian distribution. To obtain values 0.1 0.50 0.74 0.90
for the mean detuning and standard deviation in detuning, /s 0.5 0.54 0.73 0.89
o, we assume each nanoparticle to be an isotropic elastic 1.0 0.62 0.73 0.87

continuum with stress-free boundary conditions. Then, as

shown by Lamb, the lowest vibrational frequency is . . .
is theresonantRabi frequency. It will turn out that the con-

27, stantN, () is simply the value oN,(t) in thet—oo limit.
q (14 values of this plateau population are given in Table I.

The integrall (t) can be evaluated at large times by ana-
wherev, is the bulk transverse sound velocity adds the lytically continuing v into the complex plane and expanding

wo(d)~

nanoparticle diameter. The mean detuning is then around the saddle point at=0. This leads to the asymptotic
B o result
v=wo(d)—Ack, (15
—. . . . . (D)~ e 102 2T (40 et ) 29
whered is the mean particle diameter. Using these relation- (t)~e 02 e ; (22
ships, we assume a distribution in detuning frequency given res
by and, hence,
~(v=1)?0? 2
e _ _ 1e "7 coqtQ et 7l4)
P()="—. 16 )=o)+ /2 ts).
\/;0- 2( ) 2( ) 2 U/Qres m ( )

The ensemble-averaged population of electronic tates (23

then given by Note that at long times the population oscillates at the

resonantRabi frequency, independent of the mean detuning

Wa(t)EJ dv P(v)N,(t). (17) v. This occurs because the higher-frequency components
- tend to average out faster. However, the amplitude of the
asymptotic oscillations decreases with

The behavior oﬁz(t) at short times is sinusoidal with a . . L= .
decaying envelope dependent on the specifics of the particle Toillustrate the short-time behavior big(t) as a function

size distribution. We will give examples of the short-time Of ¥ and o, we present several plots showimg(t) as a
dynamics below. function of tQ . In choosing values fow and o, we at-
The long-time behavior oR,(t) can be obtained analyti- tempted to cover the entire range of these parameters which
cally by an asymptotic expansion. We begin by writing Eq.could be reasonably addressed in the RWA.
(17) as In Fig. 1, we study the resonant case where0. By
choosing three values af we are able to directly observe
fes the effects that it has on the envelope function. Asn-
Rel(t), (18

2\/;0' 1

N 1T

Ny()=1- f (19  os " H ' iy
M ” ' I T

dv———— ‘ ‘ |
2 ma) = Qr2e5+1/2 I 'R L
is a constant independent of time and 04 | | ” ’ ' ’ ’ ' ’ ’ ’ ’
=22 | ’
|(t)5fwmdvueit\/nfes+ﬂ’ 20 0.2 J
20 a0 60 8 : ‘

2 2
res+V 0

0 0 100 120 40 160 180 200

where ©

‘res

N (t)=Ny(c)+

—

Q=29 (21 FIG. 1. Electronic population in stat&) for v=0.0.
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1 T T T T . . specifically the electron dynamics between two crystal-field
split °D; levels separated bje=3 cm 1, such as in the
o8t | ls - - experiment by Yangt al2 To make quantitative predictions

\ TN TGNT ne s ne ) for such nanoparticles, the only parameters that need to be

06 H 4 specified are the mean detuning frequeﬁcand the standard
deviation in detuningg. We also need the electron-phonon

04 _ interaction strengtly. Our treatment requires that be not
o o1 | | much greater thaf) .
oz L — g;g::?.g | In the case of ¥O3.:Eu3+ nanoparticles, we can estimate
= the electron-phonon interaction strength by using the experi-
. . | | . . mentally observed bulk phonon emission r%tt_e/e obtain a _
% 10 20 30 40 50 60 70 value forgmicron, the electron-phonon interaction strength in
o micron-size particles, and then scale this value toggdr
_ the nanoparticles. The scaling is achieved by assumingythat
FIG. 2. Electronic population in staf@) for v=0es. varies with energy and system volume as it does in a bulk
) . crystal. In principle, this method is only correct between two
creases, the envelope function decays faster and the time é\});tems with continuous vibrational spectra. However, using
which asymptotic behavior becomes observable decreases. {ijig technique should provide a reasonable estimaig iaf
this case ofv=0, changings has little effect on the fre- the nanoparticle.
quency at whichN,(t) oscillates. In the micron-scale crystal, Fermi’s golden rule states that

Figure 2, wherev= (), illustrates the effects of an in- for an electron-phonon interaction of the form given in Eq.
’ - (1), the phonon emission rate is

termediate value of. The short-time envelope function de-
cays faster and the plateau population is increased. As in Fig. o
1, increasingo increases the rate at which the short-time T l=—0g?T'(Ae)V, (24)
envelope function decreases, but here it can be seen to lower h

the frequency of oscillation iMN(t). Unlike Fig. 1, Fig. 2 \yhereV is the crystal volume and e is the electronic level
clearly shows how increasing up to (). increases the am- spacing.I'(e), the phonon DOSper volumg as a function
plitude of oscillations at large timgsee Eq(23)]. of phonon energy, is defined by

The last plot, Fig. 3, illustrates the limits of the RWA. The
effects of increasingy are now taken to the extreme: the 1
short-time envelope functions decay very rapidly, making Ile)=y ; de—twy), (25
asymptotic behavior apparent at early times, and the plateau
population approaches unity. Alteringhas similar effects as  wherew, are the phonon frequencies and, in a bulk crystal at
in Figs. 1 and 2, only more pronouncdd,(t) for a/Q,s low energies,
=0.1 levels off to its plateau population shortly pa&k,.s

=50 I'e) 3¢€? 26)
€)— —(————,
3+ 2m°h%3
I1l. POPULATION DYNAMICS IN Y ,03:Eu
NANOPARTICLES where
Here we use the results of Sec. Il to address future experi- 13
ments. We examine the case of0%:EW®" nanoparticles, - } i
v=|3 2 (27)
3% 3
1 T T T T T T T
0.5 ] is a branch-averaged sound velocity.
| | The lifetime in the micron-sized crystal was observed to
09 /\ /\ N A A A be =220 ns® and in Y,0; the sound velocities are
N AN T Jv__v_v__\/__\_/. ________ approximately’
0.85 ,' - _1
I ] v,=6.7X10° cm s %, (28)
08 - =
6/Q, =01
- o =05 | 1 v=4.3x10° cms %, (29
075 |- == of.=10 |
and
0.7 1 | | | 1 1 |
0 5 10 15 20 25 30 35 40 _
Q,, v=4.7<10° cms %, (30
FIG. 3. Electronic population in state) for v/ &= 2.0. g is then given by
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,n,hZ;%/Z

_ /27'_1
9= Ae 3V’

The mean diameter of these nanoparticles was aboutg
leading t0Qmicron=2.04xX 10 ® cm™ 1.

In a bulk crystal(with deformation-potential couplingg
varies as &/V)*? so we scalgicon iN € andV to get a
value for g,an0: the electron-phonon interaction strength in
the nanoparticle:

31)

10 cm t\ %13 nm 32
Onans— 3 om L 5 um Omicron (32
=2.8x10"2 cm L. (33

Then the resonant Rabi frequency, as defined in(Zg), is
about
Q,e=5.6x10 2 cm L. (39)

In the experiment of Yangt al, the mean particle diam-

was 5 nnt By Egs. (14) and (15), these values yield
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will have to address a number of additional issues.

First, the vibrational modes of a nanoparticle will be
broadened due to intrinsic mechanisms and from interaction
with the environment. For example, anharmonicity will
broaden the Lamb mode at finite temperatlies will me-
chanical coupling to a substrate or to a cluster of other
nanoparticles® This broadening will cause the envelope of
the population oscillations to decay exponentially at long
times. For weak damping, however, we do not expect any
qualitative changes in the short-time dynamics.

Second, nanoparticles will generally have large detuning
frequencies, making the inclusion of higher-frequency modes
necessary and making the RWA invalid. One way to include
these effects would be to do exact-diagonalization studies in
models with a truncated Hilbert space—for example, having
bounded phonon occupation numbers for one or more
modes.

Finally, it will be necessary to understand the effects of
vibrational-mode degeneracy, which has been neglected here.
The presence of degeneracy means that the Lamb mode has a

._vectorlike internal degree of freedom, the components of the

Fector describing the phonon amplitude in each branch. Al-
though there has been work done in the quantum optics lit-

=710 esando =440 . This detuning is large enough that erature on the multimode generalizations of our Hamiltonian
higher-energy vibrational modes can no longer be ignored) that work has focused on the two-photon resonance case
making our single-mode treatment inapplicable. FurtherwhereAezng}lJZ One way to approach the degenerate
more, these values are too far off resonance to be reliablyase nonperturbatively would be to assuiedegenerate

addressed by the RWA.
To observe the behavior predicted in Sec. Il for

modes in the limit of largeN. By analogy with other quan-
tum systems with internal degrees of freedom, like particles

Y,03:EW" nanoparticles, the mean diameter should beyjith N spin components, it is reasonable to expect that quan-
about 46 nm and the standard deviation in diameter no morg,m effects will be diminished in the large-limit. In a

than about 3 nnjsee Eqs(14) and(15)].

IV. DISCUSSION

We have shown that the unavoidable size dispersion in

nanoparticle this would suggest a suppression of the Rabi
oscillations.
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