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Guiding-center picture of magnetoresistance oscillations in rectangular superlattices

Rolf R. Gerhardts and Stephan D. M. Zwerschke
Max-Planck-Institut fu¨r Festkörperforschung, Heisenbergstrasse 1, D-70569 Stuttgart, Germany
~Received 8 March 2001; revised manuscript received 1 June 2001; published 31 August 2001!

We calculate the magnetoresistivities of a two-dimensional electron gas subjected to a lateral superlattice
~LSL! of rectangular symmetry within the guiding-center picture, which approximates the classical electron
motion as a rapid cyclotron motion around a slowly drifting guiding center. We explicitly evaluate the velocity
autocorrelation function along the trajectories of the guiding centers, which are equipotentials of a magnetic-
field-dependent effective LSL potential. The existence of closed equipotentials may lead to a suppression of the
commensurability oscillations, if the mean free path and the LSL modulation potential are large enough. We
present numerical and analytical results for this suppression, which allow, in contrast to previous quantum
arguments, a classical explanation of similar suppression effects observed experimentally on square-symmetric
LSL’s. Furthermore, for rectangular LSL’s of lower symmetry they lead us to predict a strongly anisotropic
resistance tensor, with high- and low-resistance directions that can be interchanged by tuning the externally
applied magnetic field.

DOI: 10.1103/PhysRevB.64.115322 PACS number~s!: 73.43.2f, 73.50.Jt
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I. INTRODUCTION

Pronounced commensurability oscillations of the mag
toresistance of a two-dimensional electron gas~2D EG! sub-
jected to a perpendicular magnetic field and a lateral su
lattice, now also known as Weiss oscillations~WO!, were
first observed on systems with a periodic modulation in o
direction ~1D!.1–3 Subsequent work on systems with a 2
lateral superlattice~LSL! showed that the modulation in th
second direction tends to suppress the commensurab
oscillations.4–8 The WO observed on samples with a 1D LS
and their suppression in samples with a 2D LSL were fi
explained by quantum mechanics. A 1D modulation bro
ens the Landau levels into bands of oscillatory width, w
finite group velocity. This leads, in addition to the scatterin
induced magnetoconductivity~the so-called ‘‘scattering con
ductivity’’ !, to a ‘‘band conductivity’’ that vanishes if the
Landau bands become flat.2,3,9 A modulation in the second
lateral direction splits these Landau bands into narrow s
bands with small group velocities, and, as a function of
magnetic flux per unit cell of the 2D LSL, a self-simila
energy spectrum~‘‘Hofstadter’s butterfly’’! results.10,11 It has
been argued that this subband splitting leads to a suppres
of the band conductivity, if the modulation-induced width
the Landau bands is sufficiently large and collision broad
ing effects are sufficiently weak.6,11 Experiments on sample
with a weak 2D modulation and not too high mobility sho
indeed commensurability oscillations very similar to tho
observed in 1D LSL’s, which are suppressed~and changed in
character! with increasing modulation strength an
mobility.7,8

Soon after their discovery, Beenakker12 explained the
most prominent of the WO in an electrostatically defined
LSL classically as resulting from an oscillatoryE3B drift of
the guiding centers~GC’s! of cyclotron orbits, where the GC
velocity plays the role of the group velocity in the quantu
treatment.13 The GC picture can be justified for weak mod
lations and intermediate strengths of the applied magn
field.14,15 It has been used to calculate the resistivity for d
0163-1829/2001/64~11!/115322~11!/$20.00 64 1153
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ferent analytical forms of electrostatic, magnetostatic, a
mixed modulations defining 1D or 2D LSL’s.16 A clear clas-
sical picture for the suppression of the WO in 2D LSL’s ha
however, not been developed for nearly a decade, altho
direct numerical evaluations of the diffusion tensor on t
basis of classical ballistic models indicated such
suppression.7,17

Recently Grantet al.18 emphasized that the GCs mov
along the equipotential lines of an effective potential, det
mined by an average of the modulation fields over unp
turbed cyclotron orbits.17 They argued that, in a 2D LSL o
square symmetry, these equipotentials are closed and
therefore the GC velocity averages to zero, resulting in
suppression of the WO. They confirmed this conjecture
ballistic model calculation. Recent experiments demonst
also, that an asymmetric 2D modulation leads to much str
ger commensurability oscillations than a square-symme
modulation does.19 While Grant et al.18 employed the GC
picture to make the suppression of WO in 2D LSL plausib
they did not really use it as the basis of their calculatio
Moreover, they considered a strong modulation, so that t
results are not directly comparable with previous predictio
for weak modulation.16 A consistent evaluation of the GC
approach, which is known to yield a very simple and intu
tive picture of the WO in 1D LSL’s, is so far not available fo
the case of 2D LSL’s. The aim of the present work is to
this gap.

In Sec. II we discuss the GC approach and its limitatio
Based on a numerical evaluation of the diffusion tensor,
present in Sec. III simple analytical results for the condu
tivities of square and rectangular LSL’s defined by harmo
electric and magnetic modulation fields. These results
pend only on one~square LSL! or two ~rectangular LSL!
parameters, which are determined by the~seven! modulation
model parameters, the mean free path, and the average
netic field. Illustrative examples are given, including
strongly anisotropic case in which the applied magnetic fi
can interchange the directions of high and low resistan
Mathematical details are given in two appendices.
©2001 The American Physical Society22-1
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II. THE GUIDING-CENTER PICTURE

A. Heuristic definition

We consider a 2D EG in thex-y plane subjected to a
strong homogeneous, perpendicular magnetic fieldB0
5(0,0,B0) and a LSL defined by weak electric and magne
modulation fields. The classical magnetoconductivity of t
system can be calculated14 from the motion of electrons a
the Fermi energyEF5(m/2)vF

2 . Within the GC picture, this
is assumed to be the superposition

r ~ t !5rGC~ t !1r cyc~ t ! ~2.1!

of a rapid cyclotron motionr cyc(t)5R(sina,2cosa) around
a slowly moving guiding centerrGC(t), where a(t)5v0t
1a0 describes a uniform circular motion with cyclotron fr
quencyv05eB0 /(mc) and radiusR5vF /v0. This is obvi-
ously correct in the absence of modulation fields, where
position of the GCrGC(t) is a constant of motion, and in th
presence of a homogeneous in-plane electric fieldE'B0,
where the GC moves with the constant drift velocityṙGC

5c(E3B0)/B0
2. For a perturbation by a position-depende

in-plane electric fieldE5“V(r )/e or perpendicular mag
netic fieldBm5„0,0,Bm(r )…, the GC picture is only approxi
mately valid, and several definitions of a ‘‘guiding cente
are possible, which become equivalent in the limit of sm
perturbations.

A reasonable candidate is the center of the circle of c
vature at the pointr (t). Taking the energy conservatio
(m/2)v21V(r )5EF into account and writing the velocity a
ṙ5v5v(r )(cosw,sinw,0) with v(r )5vF@12V(r )/EF#1/2,
this center is given by16

r M5r1ez3v/~v01vmod!, ~2.2!

where

vmod5vm1@ez3~v/v !#•“v~r !

with vm(r )5eBm(r )/(mc).
To lowest order in the modulation strength one may

glect the modulation effectvmod in the denominator of Eq
~2.2!. Then Newton’s equation mv̇52e@E1(v/c)
3(B01Bm)# yields the time derivatives16

ẋM5c
Ey

B0
2vx

vm

v0
, ẏM52c

Ex

B0
2vy

vm

v0
. ~2.3!

In the spirit of the GC picture we may average Eq.~2.3! over
the rapid cyclotron motion, i.e., we approximatev' ṙ cyc, re-
placer (t)5rGC(t)1r cyc(t) in the arguments ofE and vm ,
and take the average with respect toa5v0t over one period.
We assume thatV(r ) andvm(r ) are periodic, with vanishing
average values, on the same rectangular lattice with la
constantsax52p/Kx anday52p/Ky ,

V~r !5(
qÞ0

Vqe
iq•r, vm~r !5(

qÞ0
vqe

iq•r, ~2.4!
11532
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where q5(nxKx ,nyKy). The averages over the cyclotro
motion can be performed for each Fourier compon
separately.16 The result of this approximation is the equatio
of motion for the GC,

ṙGC5vGC52
1

mv0
ez3“Veff~rGC!, ~2.5!

where the effective potentialVeff(r )5(qÞ0e
iq•rVq

eff , is deter-
mined by16,18

Vq
eff5VqJ0~qR!1

mvF

q
vqJ1~qR!, ~2.6!

with Bessel functionsJ0 andJ1. According to Eq.~2.5!, the
GC moves along the equipotential lines of the effective p
tential Veff(rGC). Note that, in Eq.~2.5!, we have identified
the GC with the average value~over one cyclotron cycle! of
r M(t) as defined in Eq.~2.2!, and that we have taken int
account only terms in lowest order ofvmod/v0!1.

B. Examples and limitations

We have, for a large number of examples, integra
Newton’s equation numerically to obtain the exact trajec
ries r (t) andr M(t) as defined in Eq.~2.2!, and also with the
approximationvmod/v0→0. We found that in all cases with
sufficiently small modulations~roughly uvmodu&0.2v0) the
average ofr M(t) and of its approximation forvmod→0 are
practically identical. Moreover, these averages agree with
average of the exact trajectoryr (t) over the cyclotron mo-
tion, which we have calculated as

r̄ ~ t !5
1

T1~ t !2T2~ t !ET2(t)

T1(t)

dt8r ~ t8!, ~2.7!

wherew(T6)5w(t)6p, and w(t) defines the direction of
the velocity at timet, ṙ (t)5v„r (t)…„cosw(t),sinw(t),0…. This
rather complicated definition of the time average seems n
essary, since in the 2D LSL the velocity vectorṙ (t) is not an
exactly periodic function of time, in contrast to the case
drifting orbits in a 1D LSL.13

As a typical example we show in Fig. 1, for two differe
modulation strengths of a square-symmetric electrical mo
lation, rosettelike orbits together withr M(t) ~in the limit
vmod→0) and r̄ (t) defined by Eqs.~2.2! and ~2.7!, respec-
tively. For weak modulation, both definitions yield traject
ries close to equipotentials, as expected from Eq.~2.5!. How-
ever, r M(t) exhibits rapid fluctuations around it
equipotential, with an amplitude that increases with t
modulation strength. Using the cyclotron motion as a ref
ence, we see from Fig. 1 that the velocity of the GC mot
increases~essentially linearly! with increasing modulation
strength.

If the modulation has only a rectangular instead of
square symmetry, the GC’s may follow either closed~local-
ized! or open ~drifting! equipotentials. A typical example
with an electrostatically defined LSL is shown in Fig. 2.

We want to mention that there are situations in which
GC picture works, but Eq.~2.5! does not. This is, e.g., the
2-2
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case if due to the Bessel functions in Eq.~2.6! the effective
potential vanishes for finite modulation, and therefore
first-order approximation@Eq. ~2.5!# fails. For the square-
symmetric harmonic electric modulation considered in F
1, this happens forJ0(qR)50 ~‘‘electric flat-band condi-
tion’’ !. Then, besides orbits with GCs moving around pot
tial maxima @r5(ma,na)# and minima @r5(2m11,2n
11)a/2#, there are also orbits with GC’s moving aroun
saddle points atr5(2m,2n11)a/2 andr5(2m11,2n)a/2,
which are not described by Eq.~2.5!. The approximation, Eq
~2.5!, also becomes poorer with increasing modulat
strength. Thus, we see from the thick line on the right-ha
side in Fig. 1 that the GC deviates characteristically from
equipotential trajectory predicted by Eq.~2.5!.

FIG. 1. Parts of rosette-like orbits~about 39 cyclotron cycles
same initial conditions! in the electric modulation potentia
V(x,y)5«EF@cosqx1cosqy#, with q52p/a and qR52, for «
50.05 ~left! and«50.15 ~right!. Thick solid lines show the corre

spondingr̄ (t) as defined by Eq.~2.7!, thin dotted lines the equipo
tentials ofV(x,y). The correspondingr M(t), Eq. ~2.2! with vmod

50, are shifted downwards by one lattice period.

FIG. 2. Thirty-eight cyclotron cycles of a drifting~left! and of a
localized ~right! orbit in the electric modulation potentialV(x,y)
50.1EF@cosqx10.25 cosqy# ~equipotentials indicated by thin dot
ted lines!, with q52p/a andqR52. Thick solid lines: GC trajec-
tories as defined by Eq.~2.7!. The rapidly fluctuating trajectories
of r M(t), Eq. ~2.2! with vmod50, are shifted downwards by
one period.
11532
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The failure of Eq.~2.5! near the ‘‘flat-band conditions’’ is
not very important for the calculation of the conductivit
since there the GC drift is slow anyway and thus contribu
little to the conductivity. There are, however, natural limit
tions of the GC picture. Of course, if the~average! magnetic
field B0 becomes too strong, the classical approach fails
Landau quantization effects must be taken into account. IfB0
is zero or very small, ‘‘channeled orbits’’ occur similar to th
case of a 1D LSL.13 In contrast to the 1D case, in 2D LS
one also observes chaotic orbits20,21 if the modulation is suf-
ficiently strong andB0 is sufficiently small,vmod*v0. In the
regime of chaotic orbits~i.e., for the model of Fig. 1 with
«;0.05 for qR*7) the GC picture is not useful, since
does not simplify the description of the electron motion.

In the following we will consider the decomposition o
Eq. ~2.1! for the electron motion in a LSL and calculate th
GC motion from Eq.~2.5!. This is a good approximation i
the modulation fields defining the LSL are sufficiently we
and if the average magnetic fieldB0 is sufficiently strong.
We want to emphasize that the GC picture yields reason
results for the magnetoconductivity even in situations
which Eq. ~2.1! with rGC(t) calculated from Eq.~2.5! does
not yield a reasonable approximation for an individual t
jectory r (t) with the same initial conditions.

C. Conductivity from the GC motion

To calculate the magnetoconductivity of a 2D EG in
LSL within the relaxation time approximation, we use Ei
stein’s relation smn5Dmne2m/(p\2) and the Chambers
formula22,16 for the diffusion tensorDmn , which contains the
velocity autocorrelation integral along a trajectory, averag
over all initial conditions r (0)5r0 , ṙ (0)5v(r0)
3(cosw0,sinw0). With the decomposition of Eq.~2.1! this
yields three types of terms. One term, which contains o
the cyclotron velocity and must be averaged over the ini
value a0, yields the Drude conductivity tensor. The mixe
terms, containing both the cyclotron and the GC veloc
vanish upon averaging overa0. Finally, the term containing
only the GC drift contribution is given by

Dmn
GC5E

0

`

dte2t/t^vm
GC~ t !vn

GC~0!& init , ~2.8!

where the average has to be taken over all possible in
positionsrGC(0) of GC trajectories in a unit cell of the pe
riodic potential.

With the dimensionless coordinatesj5Kxx andh5Kyy
and the effective potential

w~j,h!5(
m,n

ei (mj1nh)V(mKx ,nKy)
eff /Vcha, ~2.9!

where Vcha is an energy characteristic forVeff(r ), e.g. its
maximum, Eq.~2.5! reads

dj

dt
5V

]w

]h
,

dh

dt
52V

]w

]j
, ~2.10!

with
2-3
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V5KxKy

Vcha

mv0
. ~2.11!

Given the analytical form of the effective potentialw(j,h),
we can use Eqs.~2.10! to calculate the diffusion tensor~2.8!
as an integral over the equipotentials ofw(j,h) ~see Appen-
dix A!. The results then depend only on the parameterVt. In
the following section we will demonstrate this with a fe
explicit examples.

III. RESULTS AND EXAMPLES

To keep the notation simple, we will in the followin
consider only superlattices with a rectangular symmetry, w
1D and square-symmetric LSL as limiting cases.

A. One-dimensional modulation

If the periodic potential depends only on one coordina
say w(j), Eq. ~2.10! yields vx5 j̇/Kx50, j(t)5j(0), and
vy5w8„j(0)…/Ky , independent of time. Thus we can imm
diately evaluate Eq.~2.8! to obtainDxx

GC5Dxy
GC5Dyx

GC50 and

Dyy
GC5

V2t

Ky
2 E

2p

p dj

2p
@w8~j!#2[tFKxVcha

mv0
G2

^@w8~j!#2&j .

~3.1!

For simple harmonic modulations, e.g.,Vq5dq,(6K,0)VK and
vq5dq,(6K,0)v6K with v2K5vK* in Eq. ~2.4!, one obtains

from Eq. ~2.6! Veff(r )5Ṽ0cos(Kx1a), with Ṽ052uV(K,0)
eff u.

With Vcha5Ṽ0 andw8(j)52sin(j1a), Eq.~3.1! reproduces
the known formula16

Dsyy
1D5

e2m

p\2

V2t

2K2
, ~3.2!

where the WO result from the oscillatory behavior of

V5
K2vF

2

v0
UVK

EF
J0~KR!1

2vK

KvF
J1~KR!U. ~3.3!

Here a complex ratiovK /VK allows us to describe a phas
shift between electric and magnetic modulation.

B. Weak 2D modulation, Vt™1

For a 2D superlattice potential one obtains a sim
simple result, if the modulation amplitude~or the relaxation
time t) is sufficiently small, so thatVt!1. Then we may
approximatevm(t)'vm(0) in Eq.~2.8!, so that thet integral
becomes trivial, with the result

Dmn
GC5

smsn

KmKn

V2t

~2p!2E2p

p

djE
2p

p

dhwm̄wn̄ ~3.4!

with sx51, sy521, wx5]w/]j, wy5]w/]h and the no-
tation m̄5y ~or x) if m5x ~or y). The factor (2p)2 is the
area of the dimensionless unit cell.

If the periodic potential is additive,w(j,h)5w(1)(j)
1w(2)(h), the off-diagonal elements vanish,Dxy

GC5Dyx
GC50,
11532
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r

and the diagonal elements agree with those of the co
sponding 1D modulations, Eq.~3.1!.

This weak-modulation limitVt!1, in which the magne-
toconductivity is independent of the nature of the GC traj
tories, has been discussed in Ref. 16. However, with incre
ing modulation strength~and larger relaxation time, i.e.
larger mean free path! the nature of the GC trajectories wi
become important. ForVt@1 the time integral will be pro-
portional to the average velocity along the trajectory. F
closed trajectories, this average will vanish, whereas for o
equipotentials, which may exist either in thex or in the y
direction, the average may be finite. Thus we expect tha
the limit Vt→`, closed equipotentials will not contribute t
the diffusion tensor, whereas the contribution of open o
will be similar to the case of 1D modulation.

C. Square-symmetric harmonic modulation

We now consider the 2D version of the simple harmo
modulation discussed in Sec. III A, i.e., assume in Eq.~2.4!
Vq5(dq,(6K,0)1dq,(0,6K))VK and vq5(dq,(6K,0)

1dq,(0,6K))v6K with v2K5vK* . Then the effective poten
tial has the form

Veff~r !5Ṽ0@cos~Kx1a!1cos~Ky1a!#, ~3.5!

with an ~irrelevant! phase shifta, and all equipotentials are
closed lines around either a maximum or a minimum, exc
those forVeff(r )50, which are straight lines. We find tha
the angular velocity of the GC drift along the equipotentia
is given only by the parameterV defined in Eq.~3.3!, and
geometrical factors. As a consequence, the suppression o
GC contribution to the conductivity can be expressed b
function F(Vt), and instead of Eq.~3.2! we obtain

sxx
2D5syy

2D5
e2m

p\2

V2t

2K2
F~Vt!, ~3.6!

and sxy
2D5syx

2D50. The actual calculation ofF(Vt) is
sketched in Appendix A. The numerical results are plotted
diamonds in Fig. 3, together with some analytical appro
mations, which are obtained from the asymptotic behavio
the correct result for small and large values ofVt ~see Ap-
pendix B!. Apparently the three-parameter interpolation fo
mula

F3~Vt!5@110.25~Vt!2#/@110.75~Vt!210.076~Vt!4#
~3.7!

provides a very good fit to the correct numerical result for
values ofVt. Note thatF(Vt)→1 for Vt→0, as we ex-
pect for the weak-modulation limit. We want to emphasi
that for the square-symmetric harmonic cosine modulat
the suppression of the GC-induced contribution to the c
ductivity is described by the single parameterVt, which,
according to Eq.~3.3!, itself depends on modulation streng
and period, and on the cyclotron radiusR5vF /v0.

As an instructive example, we plot in Fig. 4~a!,
under the assumptionv0t@1, the GC contribution
Drxx /r0'(v0t)2Dsyy /s0 for the electric modulation
2-4
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V(x,y)50.02EF@cosqx1cosqy# and several values of th
mean free pathl5vFt (s051/r05e2nelt/m). Away from
the flat-band conditions, given here by the zeros of
Bessel functionJ0 , Vt becomes large with large mean fre
path, andDrxx /r0'(Vt)2F(Vt)/(qR)2 approaches the
limiting curve 3.29/(qR)2, which is also indicated in Fig
4~a!. We see that, as compared with the Drude resistancr0
of the homogeneous system, the modulation-induced cor
tion to the resistance increases with increasing mean
path and finally saturates. Since the shape of the resist
curves in Fig. 4 depends only on the parameterVt andV is
proportional to the modulation strength, variation of t
modulation strength leads to a set of curves similar to t
shown in Fig. 4~a! for the variation of (ql)2. With increas-
ing modulation strength the curves will saturate and
proach the same limiting curve, indicated as thick da
dotted line in Fig. 4~a!.

FIG. 3. Suppression of conductivity in 2D superlattice w
square symmetry; numerical resultF(Vt) ~open diamonds!, qua-
dratic approximation with cutoff energyequ50.228 ~long-dashed!,
one-parameter interpolation witha50.304~dashed!, and the three-
parameter interpolation of Eq.~3.7! ~solid line!.

FIG. 4. ~a! GC drift contribution to the conductivity versus mag
netic field in units 1/qR for electric modulation V(x,y)
50.02EF@cosqx1cosqy# and several values of the mean free pa
betweenql550 ~lower dash-dotted! and 1000~upper solid line!.
~b! Same resistance data divided by (ql)2, compared with result for
the one-dimensional modulationV(x)50.02EF cosqx ~thick line!
which is independent ofql.
11532
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On the other hand, if we compare this modulation corr
tion calculated for the square symmetric case with that
tained for the corresponding 1D modulation, we find w
increasing mean free path an increasingly strong suppres
of the WO. This becomes evident from Fig. 4~b!, where we
have dividedDrxx /r0 by (ql)2, since with this normaliza-
tion the 1D result becomes independent ofql. In this plot
the suppression of the resistivity maxima becomes stron
with increasing mean free path and increasing modula
strength.

To show that the GC picture yields reasonable results,
compare in Fig. 5 calculations based on Eqs.~3.6! and~3.7!
with results obtained numerically from the linearized Bolt
mann equation. The Boltzmann equation was solved by F
rier expansion of the distribution function with respect to t
periodic position variablesx andy and the anglew in veloc-
ity space, similar to the procedure described in Ref. 15 fo
1D LSL. To obtain the curve forql51000 with sufficient
accuracy, about 40 000 Fourier coefficients had to be
cluded, and the calculation, through use of an optimized p
allel code, took about 6 h on a CRAY-T3E supercomputer
with 128 nodes. The comparison shows that the GC appro
with approximation~3.7!, which requires only negligible nu
merics, yields surprisingly good results for weak modu
tions. The agreement will become poorer for stronger mo
lation and for much smallerql. Then, with decreasingB0,
the maxima of theDrxx oscillations in the GC approach wil
still extrapolate to zero, whereas the correct calculat
yields damped oscillations around a nearly constant, fin
Drxx value. But this difference occurs also for 1D LSL’s an
is well understood.15

We conclude that the GC approach yields reasonable
sults for not too strong modulations~and not too smallql
values!, and we will use it as a versatile approach to discu
interesting situations of lower symmetry. Pure magne
modulations lead to similar results as pure electric modu
tions, of course with modifications due to the differenc

FIG. 5. Comparision of resistivities calculated for electr
modulationV(x,y)50.02EF@cosqx1cosqy# within the GC picture
~solid lines! and from numerical solution of the linearized Boltz
mann equation~dotted lines!, for two values of the mean free path
2-5



n
e
ti

-

-

it-
w
S
re
ng
ha
ns

n
a

e
a

ur
c

be

w

s

te
e

th

a

e
s

an

on-
o-

s
a-

rals
we
.

y

or

i-

ROLF R. GERHARDTS AND STEPHAN D. M. ZWERSCHKE PHYSICAL REVIEW B64 115322
between the Bessel functionsJ1 and J0, notably a phase
shift. Interesting new situations occur for mixed electric a
magnetic modulations, which can be achieved experim
tally, e.g., by bringing a rectangular pattern of ferromagne
islands on the surface of the sample.23 Superpositions of har
monic electric and magnetic modulations, eventually with
phase shift, can easily be evaluated using Eq.~3.7!, provided
the effective potential according to Eq.~2.6! has square sym
metry.

D. Harmonic LSL with rectangular symmetry

A LSL with exact square symmetry is an idealized lim
ing case and hard to realize experimentally. Therefore,
now consider the more general case of a rectangular L
which allows us to interpolate between 1D and squa
symmetric 2D modulations, and to approach both limiti
cases. To keep the discussion simple, we restrict it to
monic electric and magnetic modulations in both directio
so that the effective potential is of the form

Veff~r !5Ṽxcos~Kxx1ax!1Ṽycos~Kyy1ay!, ~3.8!

where the ratios of amplitudes and phases may depend o
amplitudes and relative phases between the electric and m
netic modulations in thex and in they direction, and, in
contrast to Eq.~3.5!, on the average magnetic fieldB0.

Besides its simplicity, this model is important for th
physical reason that higher modulation harmonics decre
exponentially with the distance of the 2D EG from the s
face if the modulation is produced by some type of surfa
structuring. Thus, if this distance is large enough, it will
sufficient to consider only the basic cosine modulation.

1. Numerical and analytical results

For a given modulation, the ratioṼy /Ṽx in Eq. ~3.8! may
change magnitude and sign as a function ofB0. This can lead
to interesting switching effects, which we will discuss belo
For the calculation of the conductivity components~Appen-
dix A!, we assume, however, always 0<k5Ṽy /Ṽx<1,
which may eventually require an interchanging ofx andy in
the final results. Then, withVcha5Ṽx in Eqs.~2.9! and~2.11!,
and with a suitable choice of the origin, the dimensionle
potential~2.9! becomes

w~j,h!5cosj1k cosh, 0<k<1. ~3.9!

For k50 we have the 1D modulation in thex direction, and
the equipotentials are straight lines in they direction. Fork
51 we have the square-symmetric case where all equipo
tials are closed lines. These cases have been consid
above. For 0,k,1, there exist closed equipotentials wi
w(j,h)5e around maxima in the energy interval 12k,e
<11k, closed equipotentials around minima in the interv
2(11k)<e,2(12k), and open equipotentials in they
direction for2(12k)<e<12k. We can show that, in the
limit of large mean free path (t→`), the GC contribution
Dsxx comes only from closed orbits, and shows a suppr
sion similar to that obtained in the square-symmetric ca
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The contributions toDsyy , on the other hand, come from
both closed and open equipotentials. The latter lead to
increase with increasingt, similar to the 1D case.

The off-diagonal componentsDsxy5Dsyx50 can be
shown to vanish from symmetry reasons. The analytical c
siderations of Appendix A show that the diagonal comp
nents can be written as

Dsmm5
e2m

p\2

V2t

2Km
2

Fmm~Vt,k!, ~3.10!

with V5KxKyṼx /(mv0), so that the~suppression! effect of
the 2D modulation now is described by two parameters,Vt
and k. We have numerically calculated the function
Fmm(Vt,k), which of course satisfy the consistency rel
tions Fxx(Vt,1)[Fyy(Vt,1)[F(Vt). Since it is rather
time-consuming to calculate the successive fourfold integ
with sufficient acccuracy for each specific example anew,
tried to fit theFmm(Vt,k) by simple analytic expressions
We found that the numerical results forFxx(Vt,k) are very
well ~with an error of less than 1%) approximated b
k2F(Vt), so that a good approximation is

Fxx~Vt,k!'k2F~Vt!'k2F3~Vt!, ~3.11!

with F3(Vt) defined by Eq.~3.7!. Numerical results for
Fyy(Vt,k) are shown as diamonds in Fig. 6. Apparently, f
k,1 they approach a finite limit forVt→`. This limit
Fyy(`,k) is easily calculated numerically and well approx
mated by

F2~k!5121.645k3/210.645k5/2 ~3.12!

~see Appendix B!. Incorporating this into an interpolation
formula that reduces fork51 to the previous fit~3.7!, we
obtained

Fyy
(3)~Vt,k!5F2~k!1

@12F2~k!#@11ak ~Vt!2#

11~ak1bk!~Vt!21gk~Vt!4
,

~3.13!

FIG. 6. Numerical result forFyy(Vt,k) ~diamonds! for several

values of the anisotropy parameterk5Ṽy /Ṽx . The solid lines are
for the approximationFyy

(3) , Eq. ~3.13!.
2-6
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with ak50.25 sin2(pk/2), bk50.5k2/@12F2(k)#, and gk
50.076 sin2(pk/2). This approximation is indicated by th
lines in Fig. 6 and will in the following be used instead
Fyy(Vt,k).

2. Two examples

First we consider in Fig. 7 a purely electrostatic
modulation on a square lattice,ax5ay52p/q, V(x,y)
5Vxcos(qx)1Vycos(qy), so that Ṽm5VmuJ0(qR)u and the
ratio k5Ṽy/Ṽx5Vy /Vx is independent of B0, and
V5q2VxuJ0(qR)u/(mv0).

For k,1, there exist open equipotentials only in they
direction. With decreasingk their number increases, an
Drxx increases towards the results for the 1D modulat
(k50). SimultaneouslyDryy}k2 decreases and vanishes
the 1D limit. The degree of anisotropy increases with b
the modulation amplitude and the mean free path, since
Vt@1, Dryy /r0'3.29k2/(qR)2 saturates, whileDrxx /r0
;(Vt)2F2(k)/(qR)2 increases without limit.

The anisotropy parameterk is only a constant indepen
dent ofB0 if we have either a pure electric or a pure ma
netic modulation on a square lattice, i.e., with the same
riod in the x and y directions. In all other situations, th
Bessel functions in Eq.~2.6! lead to aB0-dependentk. In
such cases we use the following convention to express
relevant parametersV andk in terms of the original param
eters specifying the modulation.

We measure energies in units ofEF5mvF
2/2 and the av-

erage magnetic field in dimensionless units 1/(qR), where
R5vF /v0 is the cyclotron radius andq5AKxKy. Then, for
a suitable choice of the coordinate system, the modula
may depend on the following seven parameters:~1! the ratio
of the lattice constantsay /ax5Kx /Ky , ~2! the amplitudes
«n5Vn /EF of the electric cosine potentialV(x,y)
5EF@«xcos(Kxx)1«ycos(Kyy)#, ~3! the amplitudes mn

52vn /(KnvF), and ~4! the relative phasesan of the effec-
tive magnetic modulation potentialEF@mxcos(Kxx1ax)

FIG. 7. GC contribution to the resistivities for the electric mod
lation V(x,y)/EF50.02@cos(qx) 1k cos(qy)] and ql5400 . For
k51 ~thick line! Drxx5Dryy . For k,1, the result forDryy lies
below, that forDrxx above this thick line, and both are indicated b
the same line style.
11532
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1mycos(Kyy1ay)#. For each value of the average magne
field, we can calculate from thesesevenmodel parameters
the two parameters of the effective potential~2.6! that are
relevant for the conductivity, namely, the absolute values
the complex numbers«nJ0(KnR)1mnJ1(KnR)exp(ian),

«̃n5$@«nJ0~KnR!1mnJ1~KnR!cosan#2

1@mnJ1~KnR!sinan#2%1/2 ~3.14!

for n5x,y. The phases of these complex numbers can
compensated by a suitable shift of the coordinate system
have no effect on the conductivity. In the following we u
these two parameters in the form«max5max@«̃x ,«̃y# and k

5min@«̃x ,«̃y#/max@«̃x ,«̃y#. Taking the characteristic energy i
Eq. ~2.11! asVcha5«maxEF , we obtainV5v0«max(qR)2/2.

To characterize the system completely, we have to spe
the mean free pathl5vFt, which we write in the dimen-
sionless formql, so thatv0t5l/R. Finally we obtain for
the GC drift contribution to the conductivity tensor

Dsmm

s0
5

q2

4Km
2 ~qR«max!

2Fm̃m̃S 1

2
q2lR«max,k D ,

~3.15!

with x̃5y and ỹ5x if «max5«̃y , and with x̃5x and ỹ5y if
«max5«̃x . Since in the regime of commensurability oscill
tions v0t@1, the GC correction to the resistivity tensor
Drmm /r05(v0t)2Dsm̄m̄ /s0, with x̄5y and ȳ5x.

As a very interesting example we consider a purely el
trostatic modulation, but now on an rectangular superlat
with equal modulation amplitudes«x5«y but different peri-
ods in both directions,ay /ax5A2. The interesting aspect o
this model is that now the effective potential changes
symmetry as a function of the magnetic field strength, sin
the arguments of the Bessel functions in Eq.~2.6! are differ-
ent. If one of the Bessel functions vanishes, i.e., if the fl
band condition for this direction is satisfied, the effecti
potential shows a purely 1D modulation in the other dire
tion. When the effective modulation potential in thex direc-
tion is larger than that in they direction, there exist open
equipotentials in they but not in thex direction, and vice
versa. Typical results for the resistivity corrections are sho
in Fig. 8. For a relatively small mean free path as in F
8~a!, the oscillations of the resistivity componentsDrmm
look similar to the results one would expect for the cor
sponding 1D modulations. At relatively low magnetic field
there occurs, however, a kind of beating effect, manifeste
a nonmonotonous decrease of the oscillation amplitude
Drxx ~solid line! with decreasing magnetic fieldB0. The rea-
son for this nonmonotonousB0 dependence of the maxima
easily understood. The maxima occur nearly in the mid
between adjacent flat-band conditionsJ0(KxR)50. If for
theseB0 values the effective modulation in they direction is
large@i.e., if no zero ofJ0(KyR) is close#, the GC motion is
essentially two-dimensional, and the maximum ofDrxx is
suppressed below the corresponding one of a 1D modula
in thex direction. If, however, the maximum ofDrxx appears
near a zero ofJ0(KyR), the modulation in they direction is
2-7
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small, and theDrxx maximum assumes a large value close
that of the corresponding 1D modulation inx direction. This
explains why theDrxx maximum near (qR)2150.071 is
higher than those near 0.091 and 0.116.

These anisotropy effects are drastically enhanced fo
larger mean free path@see Fig. 8~b!#. If, for example, at a
givenB0 value the effective modulation potential in the they
direction is smaller than that in thex direction, the contribu-
tion to Dryy (}Dsxx) results only from guiding center
moving along closed equipotentials, andDryy /r0 is bounded
by 3.29(«̃y / «̃x)

2/(qR)2!3.29/(qR)2 ~cf. Fig. 4!. There ex-
ist, however, open equipotentials in they direction that lead
to an increase ofDrxx}(ql)2 with increasing mean free
path. The result is a very effective switching as a function
the magnetic fieldB0 between regions with largeDrxx and
very small Dryy and regions with smallDrxx and large
Dryy , as is seen in Fig. 8~b!.

If one mixes electric and magnetic modulations with d
ferent phase shifts in both directions, one may achieve s
switching effects also on a square lattice,Kx5Ky .

IV. SUMMARY

We have evaluated the modulation correction to the m
netoresistivity tensor of 2D EG’s in LSL’s of rectangul
symmetry within the GC picture. We have emphasized t
this classical approach can be useful only within a restric
regime of sufficiently weak modulations and sufficien
strong~average! magnetic fields, where the electron motio
may be approximated as a rapid cyclotron motion arou
slowly drifting GC’s. Within this regime, in which a 2D EG
with a 1D LSL exhibits regular commensurability oscill
tions ~WO!, we have investigated the effects of the mod
parameters~modulation strengths, anisotropy, phase shi!
and the mean free path on the amplitudes of the WO.
harmonic electro- and magnetostatic modulations we h
obtained essentially analytical results.

The fact that the GC’s move approximately along t
equipotentials of a magnetic-field-dependent effective po

FIG. 8. GC contribution to the resistivities for modulatio
V(x,y)/EF50.02@cos(Kxx)1cos(Kyy)#, with Kx /Ky5A2, versus
magnetic field in units of 1/qR, with q5AKxKy; ~a! for ql580, ~b!
for ql5800. The ‘‘flat-band’’ conditions J0(KxR)50 and
J0(KyR)50 are indicated by filled and open triangles, respective
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tial, with a velocity essentially proportional to the strength
this potential, leads to an interesting dependence of the
amplitudes on these model parameters. In contrast to a
LSL, which has only extended straight-line equipotentials
2D LSL also has closed equipotentials around the extrem
the effective potential. The difference between closed a
extended equipotentials becomes important in the limit o
large mean free path, since the magnetoresistance is sen
to the mean velocity of the GC motion between two succ
sive scattering events. If the scattering time is sufficien
large, the GC velocity along closed equipotentials avera
to zero, and then these equipotentials do not contribute to
magnetoresistance, whereas the contribution of exten
equipotentials becomes very large. This leads to strongly
isotropic resistivities, if the effective potential has rectang
lar but not square symmetry, and to very interesti
magnetic-field-dependent switching effects if the symme
of the effective potential changes as a function of the aver
magnetic field.

For the 2D EG with a weak square-symmetric modulat
we find with increasing mean free path an increasing s
pression of the WO amplitudes below those obtained for
corresponding 1D modulation. This result provides a clas
cal explanation of the suppression of the band conducti
observed in early experiments on holographically modula
high-mobility samples,4 which previously had been ex
plained with quantum arguments based on the subband s
ting of the Hofstadter energy spectrum.6,11 For a fixed mean
free path, our~basically analytical! result reduces in the limit
of very weak modulations to the predictions of Ref. 16, wit
out noticeable suppression of the WO. For realistic values
modulation strength and mean free path, our present res
yield, however, a strong suppression. We want to point
that our present classical explanation of the WO suppres
and the previous quantum one are not contradictory. B
need a sufficiently strong modulation and large mean f
path ~i.e., weak disorder! for the explanation of an effective
suppression.

Qualitatively our result is also in agreement with the r
cent prediction of the suppression of WO by Grantet al.,18

which applies to the case of intermediate mean free path
strong 2D modulation. From our investigation of trajectori
we expect, however, that for this strong modulation the
gime of small and intermediate values of the average m
netic field is dominated by chaotic motion, so that the G
picture cannot be expected to yield quantitatively correct
sults.

Finally we want to comment on the fact that the Cha
bers formula~2.8! contains a scattering time, that describ
isotropic impurity scattering, whereas calculations for the
EG with a 1D LSL based on Boltzmann’s equation ha
revealed that predominantly small-angle impurity scatter
has to be considered for a quantitative understanding of
WO amplitudes. We did not try to go beyond the simp
relaxation time approximation in the GC picture, since~i! on
the level of Boltzmann’s equation, where we know how
describe anisotropic scattering, we cannot separate the
from the cyclotron motion, and~ii ! small-angle scattering o
an electron between locally nearby trajectories may inclu

.

2-8
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large changes of the corresponding GC’s, and we do
want to introduce unjustified assumptions on scattering
tween GC’s. In view of the general limitations of the G
picture, we rather want to consider the relaxation timet as a
phenomenological parameter, which may be chosen to fit
periments qualitatively. We think, however, thatt should be
considered as the total scattering time, which in the cas
strongly anisotropic impurity scattering is much shorter th
the transport or momentum relaxation time.

Note added in proof:Recently A.D. Mirliu, E. Tsitsishvili,
and P. Wo¨lfle @Phys. Rev. B63, 245310~2001!# discussed
the effect of GC drift@based on Eq.~2.5!# and diffusion on
the magnetoresistance and presented estimates for se
limiting cases, including the chaotic and the low-magne
field regime, where Eq.~2.5! fails. Their Eq.~28! describes a
saturation behavior similar to that shown in Fig. 4~a! @up to a
factor 3.29/~2p!2#.
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APPENDIX A: CORRELATION INTEGRALS ALONG
EQUIPOTENTIALS

To study the effect of closed equipotentials, we assu
that the effective potentialw(j,h) has either isolated
maxima or isolated minima, or both. For instance, the mo
~3.9! has, for arbitrary integersm andn, isolated maxima at
(j,h)52p(m,n) and isolated minima at (j,h)5(2m
11,2n11)p, and all equipotentialsw(j,h)5e for ueu.1
2k are closed.

We assume that closed equipotentials around a maxim
~minimum!, which we take as the origin, exist in the ener
interval emax>e.esup (emin<e,einf). In terms of polar coor-
dinates,

j5r cosw, h5r sinw, 2p,w<p, ~A1!

the equipotential with energye is described by the equatio
r5re(w), which maps w onto the solution r of
w(r cosw,r sinw)5e for fixed e and w. Along the equipo-
tential with energye the equations~2.10! reduce to

dw/dt56V/Je~w!, ~A2!

where the upper~lower! sign stands for orbits around a max
mum ~minimum!, and

Je~w!5U re~w!

coswwj1sinwwh
U. ~A3!

We can use Eq.~A2! to substitute in Eq.~2.8! the integration
variablet by w. Writing the initial position on an equipoten
tial as r (0)5re(w0)(cosw0,sinw0), we get t5
6*w0

w dw8Je(w8)/V. With 2ue5*2p
p dwJe(w) one obtains
11532
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`

dte2t/twm„w~ t !;e…5
tXWm

7~w0 ,w062p;e!

12e22Xue
,

~A4!

whereX51/(tV) and

Wm
6~w0 ,w1 ;e!57E

w0

w1
dwJe~w!wm~w;e!e6X*w0

w dw8Je(w8).

~A5!

To evaluate the average over initial values in Eq.~2.8!, we
first integrate along the equipotentials with fixed energye
and then overe. It turns out that the Jacobian of the tran
formation from polar coordinates (r,w) to the energy-angle
coordinates (e,w) is just given by Eq. ~A3!, drrdw
5dedwJe(w). If the effective potentialw(j,h) is an even
function of both arguments, we havewm(w1p;e)5
2wm(w;e) and Je(w1p)5Je(w), and all integrals over
intervals of length 2p can be reduced to integrals over inte
vals of lengthp, and we obtain

Dmn
cl,65

smsn

KmKn

V2t

~2p!2Ea6

b6

deE
0

p

dw0 Je~w0!

3wn̄~w0 ;e!
2XWm̄

7
~w0 ,w06p;e!

11e2Xue
~A6!

with the upper sign anda15esup, b15emax for equipoten-
tials around a maximum and the lower sign anda25emin ,
b25e inf for those around a minimum.

Open equipotentials of a periodic potential with rectang
lar symmetry, by definition, connect one point on a bound
of the unit cell with the equivalent point on the oppos
boundary. Since equipotential lines cannot cross each o
open equipotentials can exist either in thex direction or in
the y direction, but not in both. Let us assume that in t
energy intervale inf<e<esup open equipotentials in they di-
rection exist. We may describe them in polar coordina
choosing the origin in a maximum, so that we can use
formalism developed above. Let the equipotential with e
ergy e hit the upper boundary of the unit cell ath5p
5re(we)sinwe for p/4<we,p/2. Assuming thatw(j,h) is
even with respect to both arguments, we can show that
GC motion in the negativey direction with initial conditions
p2we<w0<p1we yields the same contribution to the di
fusion tensor as those moving in the positivey direction with
initial conditions2we<w0<we , and we consider here onl
the latter.

For the time integration, we divide the infinite time inte
val into an initial one of durationte5V21*w0

wedwJe(w) and

subsequent intervals of durationTe5V21*
2we

we dwJe(w),

which is the time a GC needs to traverse a unit cell on
equipotential of energye. Using the definition~A5!, we ob-
tain for the contribution of open orbits to the diffusion tens
2-9
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Dmn
open5

smsn

KmKn

2XV2t

~2p!2 Ee inf

esup
deE

2we

we
dw0Je~w0!wn̄~w0 ;e!

3H Wm̄
2

~w0 ,we ;e!1
e2te /tWm̄

2
~2we ,we ;e!

12e2Te /t J .

~A7!

To this we have to add the contribution of closed orbits
cording to Eq.~A6!, Dmn

GC5Dmn
open1Dmn

cl,11Dmn
cl,2 . The result

can be written in the form of Eq.~3.10!.

APPENDIX B: ANALYTIC AND ASYMPTOTIC RESULTS

We present explicit results for the additive cosine mo
~3.9! of the effective potential, with 0<k<1. The partial
derivatives are thenwj52sinj andwh52k sinh.

We consider first the symmetric casek51, which, ac-
cording to Eq.~2.6!, can hold for all values of the magnet
field only if the original modulation has square symme
with equal lattice constantsax5ay5a52p/K in both direc-
tions, so thatV5(2p/a)2Ṽx /(mv0).

Things become especially simple close to the maximum
the origin, wherewj'2j and wh'2h. Then the equipo-
tentials become circles with radiire5422e independent of
w, and the Jacobian~A3! reduces toJe51. The angular
velocity dw/dt5V becomes constant along the equipote
tials, and independent ofe. Thus, the GC motion in this
approximation is very similar to the simple cyclotron motio
however, with the circular frequencyV instead of the cyclo-
tron frequencyv0. As a consequence, all integrals in E
~A6! can easily be evaluated analytically, with the result

Dxx
cl,1~equ!5S a

2p D 2 V2t

~2p!2

p~22equ!
2

11~Vt!2
, ~B1!

whereequ is the energy above which the quadratic appro
mation is valid, and Dyy

cl,15Dxx
cl,1 , and Dyx

cl,152Dxy
cl,1

5VtDxx
1 . Thus, forVt@1, the motion of the GC’s along

closed equipotentials leads to a suppression}(Vt)22. For a
suitable choice ofequ (522Ap50.228) and a correspond
ing treatment ofDmn

cl,- , one obtains the result indicated in Fi
3 by the long-dashed line.

Going beyond this simple quadratic approximation,
obtain qualitatively similar results. All equipotentials wit
energy e.0 (,0) are closed lines around a maximu
~minimum!. As ueu becomes small, the angular velocity va
ies along the orbits and becomes very small near the sa
points @(j,h)5(0,p) and equivalent#, where the Jacobian
Je(w) diverges. Only the equipotentials exactly ate50 are
open trajectories~straight lines!, but they yield a vanishing
contribution to the diffusion tensor. Exploiting the symmet
we can show thatDmn

cl,1 andDmn
cl,- of Eqs.~A6! yield identical

contributions to the diagonal components of the diffus
tensor, whereas their contributions to the off-diagonal co
ponents cancel. The result for the nonvanishing diago
components can be written as Eq.~3.6!. The numerically
calculated F(Vt) is plotted in Fig. 3. In the weak
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modulation limit ~or ‘‘dirty limit,’’ Vt→0) we haveF(0)
51, as expected from Eqs.~3.1! and ~3.4!. For Vt→`,
F(Vt) becomes small. We can expand Eq.~A6! for large
Vt and show that the term linear in 1/Vt vanishes identi-
cally. The prefactor of the leading term can be calcula
numerically, and we obtainF(Vt)'3.29/(Vt)2 for Vt
→`. This can be used to obtain the one-parameter inter
lation F1(Vt)53.29/@3.291(Vt)2#, which approximates
F(Vt) well for large values ofVt ~see Fig. 3!. An apparent
improvement at small and intermediateVt is obtained with
the approximationF3(Vt) defined in Eq.~3.7!.

We now turn to the general rectangular symmetry. Fo
<k,1 the equipotentials with energiesueu<12k are open
~in the y direction! and degenerate into straight lines fork
50.

In the ‘‘dirty limit’’ Vt→0 the distinction between ope
and closed equipotentials is not relevant, since we can
pand the velocityvm(t) into a Taylor series for smallt and
perform the integral in Eq.~2.8! term by term. Up to second
order inVt we obtain

Fxx~Vt,k!5k2@12~Vt!2/21•••#, ~B2!

Fyy~Vt,k!512k2~Vt!2/21•••, ~B3!

for all values ofk.
In the ‘‘clean limit,’’ open equipotentials dominat

Fyy(Vt,k) and introduce a characteristicAk dependence
for k!1. Already the fraction of the unit cell covered b
open equipotentials,Aopen/(2p)2512Aclosed

max /(2p2), which
is plotted versusk ~as dashed line! in Fig. 9, shows such a
dependence. To see that, we calculated the correspon
areaAclosed

max 5*12k
11kde*2p

p dwJe(w) covered by closed equipo
tentials around a maximum~equal to that around a mini
mum!, which allows the expansionAclosed

max 516Ak1O(k3/2).
The contributions of closed equipotentials to bothFxx

andFyy vanish in the clean limit. The contribution of ope
equipotentials toFyy(`,k) is finite, while that toFxx(`,k)
vanishes, because the average value of the guiding-ce

FIG. 9. Numerical result in the clean limit forFyy(`,k) ~dia-

monds! versus anisotropy parameterk5Ṽy /Ṽx , together with ana-
lytic approximation~solid line!. Also shown is the fraction of the
unit cell covered by open equipotentials~dashed!.
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velocity componentvy(t) is finite, while that ofvx(t) is
zero. SinceFxx(Vt,k) behaves similar toFxx(Vt) in the
square-symmetric case, we extrapolated Eq.~B2! to arbitrary
values of Vt and found that Eq.~3.11! provides an ex-
tremely good approximation.

Since, in the clean limit,X51/(Vt)→0, we can easily
evaluate Eq. ~A5! along an open equipotential,Wx

2

(2we ,we ;e)522p, we obtain asymptotically from Eq
~A7! Fyy(`,k)5*k21

12kde4/(VTe) with

Te52K ~q!/~qVAk!, q5$4k/@~11k!22e2#%1/2,

where K (q) is the complete elliptic integral.24 Expanding
this for k!1, we obtain the leading termsFyy(`,k)'1
2(31/6p)k3/2. Adding a suitable term to satisfyFyy(`,1)
s.

f

tt

ci.

rf.

11532
50, we obtained the approximationFyy(`,k)'F2(k) as
defined by Eq.~3.12!. Apparently the plot in Fig. 9 reveal
slight deviations between exact and interpolated result o
for k*0.7.

Using Eq. ~3.12! and the small-Vt expansion~B3!, we
tried to approximateFyy(Vt,k) by the one-parameter inter
polation

Fyy
(1)~Vt,k!5Fyy~`,k!1@12Fyy~`,k!#/@11bk~Vt!2#,

~B4!

with Fyy(`,k)5F2(k) and bk50.5k2/@12F2(k)#. This
yields a very good approximation fork,0.5, but a rather
poor one fork*0.75, and we improved it with the definitio
~3.13!.
ys.
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