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Guiding-center picture of magnetoresistance oscillations in rectangular superlattices
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We calculate the magnetoresistivities of a two-dimensional electron gas subjected to a lateral superlattice
(LSL) of rectangular symmetry within the guiding-center picture, which approximates the classical electron
motion as a rapid cyclotron motion around a slowly drifting guiding center. We explicitly evaluate the velocity
autocorrelation function along the trajectories of the guiding centers, which are equipotentials of a magnetic-
field-dependent effective LSL potential. The existence of closed equipotentials may lead to a suppression of the
commensurability oscillations, if the mean free path and the LSL modulation potential are large enough. We
present numerical and analytical results for this suppression, which allow, in contrast to previous quantum
arguments, a classical explanation of similar suppression effects observed experimentally on square-symmetric
LSL's. Furthermore, for rectangular LSL's of lower symmetry they lead us to predict a strongly anisotropic
resistance tensor, with high- and low-resistance directions that can be interchanged by tuning the externally
applied magnetic field.
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I. INTRODUCTION ferent analytical forms of electrostatic, magnetostatic, and
mixed modulations defining 1D or 2D LSI)$ A clear clas-
Pronounced commensurability oscillations of the magnesical picture for the suppression of the WO in 2D LSL’s has,
toresistance of a two-dimensional electron 28 EG) sub-  however, not been developed for nearly a decade, although
jected to a perpendicular magnetic field and a lateral supedirect numerical evaluations of the diffusion tensor on the
lattice, now also known as Weiss oscillatioQ8/O), were  basis of classical ballistic models indicated such a
first observed on systems with a periodic modulation in onesuppressiof:*’
direction (1D).1~3 Subsequent work on systems with a 2D  Recently Grantet al!® emphasized that the GCs move
lateral superlatticéLSL) showed that the modulation in the along the equipotential lines of an effective potential, deter-
second direction tends to suppress the commensurabilitmined by an average of the modulation fields over unper-
oscillations?~8 The WO observed on samples with a 1D LSL turbed cyclotron orbit’ They argued that, in a 2D LSL of
and their suppression in samples with a 2D LSL were firssquare symmetry, these equipotentials are closed and that
explained by quantum mechanics. A 1D modulation broadtherefore the GC velocity averages to zero, resulting in a
ens the Landau levels into bands of oscillatory width, withsuppression of the WO. They confirmed this conjecture by
finite group velocity. This leads, in addition to the scattering-ballistic model calculation. Recent experiments demonstrate
induced magnetoconductivifghe so-called “scattering con- also, that an asymmetric 2D modulation leads to much stron-
ductivity”), to a “band conductivity” that vanishes if the ger commensurability oscillations than a square-symmetric
Landau bands become ffat® A modulation in the second modulation does? While Grantet al'® employed the GC
lateral direction splits these Landau bands into narrow subpicture to make the suppression of WO in 2D LSL plausible,
bands with small group velocities, and, as a function of thethey did not really use it as the basis of their calculation.
magnetic flux per unit cell of the 2D LSL, a self-similar Moreover, they considered a strong modulation, so that their
energy spectrunt‘Hofstadter’s butterfly”) results!®'*It has  results are not directly comparable with previous predictions
been argued that this subband splitting leads to a suppressifor weak modulatiort® A consistent evaluation of the GC
of the band conductivity, if the modulation-induced width of approach, which is known to yield a very simple and intui-
the Landau bands is sufficiently large and collision broadentive picture of the WO in 1D LSL's, is so far not available for
ing effects are sufficiently wedk!! Experiments on samples the case of 2D LSL's. The aim of the present work is to fill
with a weak 2D modulation and not too high mobility show this gap.
indeed commensurability oscillations very similar to those In Sec. Il we discuss the GC approach and its limitations.
observed in 1D LSL’s, which are suppressadd changed in Based on a numerical evaluation of the diffusion tensor, we
character with increasing modulation strength and present in Sec. lll simple analytical results for the conduc-
mobility.”® tivities of square and rectangular LSL's defined by harmonic
Soon after their discovery, Beenakkerexplained the electric and magnetic modulation fields. These results de-
most prominent of the WO in an electrostatically defined 1Dpend only on ongsquare LSl or two (rectangular LSL
LSL classically as resulting from an oscillatdgy< B drift of parameters, which are determined by teeven modulation
the guiding centeréGC’s) of cyclotron orbits, where the GC model parameters, the mean free path, and the average mag-
velocity plays the role of the group velocity in the quantumnetic field. lllustrative examples are given, including a
treatment-® The GC picture can be justified for weak modu- strongly anisotropic case in which the applied magnetic field
lations and intermediate strengths of the applied magnetican interchange the directions of high and low resistance.
field 1*1°1t has been used to calculate the resistivity for dif- Mathematical details are given in two appendices.
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[l. THE GUIDING-CENTER PICTURE where g=(n,K,,n,K,). The averages over the cyclotron
motion can be performed for each Fourier component

separately® The result of this approximation is the equation
We consider a 2D EG in th&-y plane subjected to a of motion for the GC,

strong homogeneous, perpendicular magnetic fi@gl

=(0,0B,) and a LSL defined by weak electric and magnetic -

modulation fields. The classical magnetoconductivity of this fec=Vec™ — M, X VVer(rco), 2.9
system can be calculatédfrom the motion of electrons at ) ) g el

the Fermi energfEr = (m/2)v2 . Within the GC picture, this Where the6i1;fect|ve potentisle(r) =2q.08"" Vg, is deter-
is assumed to be the superposition mined by

A. Heuristic definition

r(t)=rac(t) +reydt) 2.0 VET=V,Jo(qR) + %qul(qR), (2.6

of a rapid cyclotron motiomc,(t) =R(sina, —cosa) around ity Bessel functionsl, andJ,. According to Eq.(2.5), the
a slowly moving guiding centergc(t), where a(t)=wol G moves along the equipotential lines of the effective po-
+ a describes a uniform circular motion with cyclotron fre- tential Voq(r o0). Note that, in Eq(2.5), we have identified

_ . _ . . . e . 1 - . ’
quencywo=eBy/(mc) and radiusR=vg/wo. This is 0bvi- e G with the average valdever one cyclotron cycleof
ously correct in the absence of modulation fields, where th‘?M(t) as defined in Eq(2.2), and that we have taken into
position of the GO g(t) is a constant of motion, and in the account only terms in lowest order af,,q/ wo<1.
presence of a homogeneous in-plane electric fieldB,,
where the GC moves with the constant drift veIociQyC
=c(EX BO)/BS. For a perturbation by a position-dependent
in-plane electric fieldE=VV(r)/e or perpendicular mag-
netic fieldB,,= (0,0B,(r)), the GC picture is only approxi-
mately valid, and several definitions of a “guiding center”

are possible, which become equivalent in the limit of small®FF *~ i
perturbations. sufficiently small modulationgroughly | ®med =0.2w0) the

A reasonable candidate is the center of the circle of cur@verage ofy(t) and of its approximation fowme—0 are
vature at the pointr(t). Taking the energy conservation practically identical. More_over, these averages agree with the
(m/2)v2+V(r)=E into account and writing the velocity as 2Verage of the exact trajectoryt) over the cyclotron mo-

F=v=0(r)(coSesing,0) With o(r)=ve[1—V(r)/Ex]*2 tion, which we have calculated as
this center is given by 1 T (1)

rH= T (O-T_()J7_ @

where o(T.)=¢(t) =, and ¢(t) defines the direction of

B. Examples and limitations

We have, for a large number of examples, integrated
Newton’s equation numerically to obtain the exact trajecto-
riesr(t) andry(t) as defined in Eq(2.2), and also with the
approximationw,.q/ wo— 0. We found that in all cases with

dt'r(t’), 2.7
rv=r+eXv/(wy+ omeg, (2.2

where the velocity at timet, r(t)=u (r(t))(cose(t),sine(t),0). This
Opog= Ot [6,X (VIV)]- Vo (r) rather cornplicfated definition of the time ave_ragg seems nec-
essary, since in the 2D LSL the velocity vectgt) is not an
with ., (r)=eBy(r)/(mc). exactly periodic function of time, in contrast to the case of
To lowest order in the modulation strength one may nedrifting orbits in a 1D LSL*®
glect the modulation effeab .4 in the denominator of Eq. As a typical example we show in Fig. 1, for two different
(2.2. Then Newton’s equation mv=—e[E+ (v/c) quulatlon strgngths Qf a square—symmetrlc glectrlcql modu—
X (Bo+B,,)] yields the time derivativéé lation, rosettelike orbits together withy(t) (in the limit
wmog— 0) andr(t) defined by Eqs(2.2) and(2.7), respec-
_ E, oy - E, . ti_vely. For weak _modulz_:ttion, both definitions yield trajecto-
Xm= CB—0 —vxw—o, Ym=— CB—0 —vyw—o. (2.3 ries close to equipotentials, as expected from(Bdp). How-

ever, ry(t) exhibits rapid fluctuations around its

In the spirit of the GC picture we may average Ej3) over equipotential, with an amplitude that increases with the
the rapid cyclotron motion, i.e., we approximate o, re- modulation strength. Using the cyclotron motion as a refer-

| D= (D)1 (1 |nth rquments of r?(ljc ence, we see from Fig. 1 that the velocity of the GC motion
placer (t) =rec(t) CVC(.) € arguments ok andwp, increases(essentially linearly with increasing modulation
and take the average with respectte wyt over one period.

We assume thaf(r) andwq,(r) are periodic, with vanishing strength.

. ; . If the modulation has only a rectangular instead of a
average values, on the same rectangular lattice with Iattlcgquare symmetry, the GC's may follow either clogttal-
constantsa,=2m/K, anda,=27/K,, y

ized or open (drifting) equipotentials. A typical example

with an electrostatically defined LSL is shown in Fig. 2.

V(r)= 2 quiq-r, wn(r)= E wqeiq-r, (2.4) We want to mention that there are situations in which the
q#0 q#0 GC picture works, but Eq(2.5 does not. This is, e.g., the
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The failure of Eq.(2.5 near the “flat-band conditions” is
not very important for the calculation of the conductivity,
since there the GC drift is slow anyway and thus contributes
little to the conductivity. There are, however, natural limita-
tions of the GC picture. Of course, if taveragé magnetic
field By becomes too strong, the classical approach fails and
Landau quantization effects must be taken into accou If
is zero or very small, “channeled orbits” occur similar to the
case of a 1D LSI*? In contrast to the 1D case, in 2D LSL
one also observes chaotic orB#t8!if the modulation is suf-
ficiently strong andB, is sufficiently smallw o= wq- In the
s regime of chaotic orbitgi.e., for the model of Fig. 1 with

05 Lo o S T ey £~0.05 forgR=7) the GC picture is not useful, since it
-0.5 0.0 0.5 1.0 15 does not simplify the description of the electron motion.
x/a In the following we will consider the decomposition of

FIG. 1. Parts of rosette-like orbi@bout 39 cyclotron cycles, Ed.(2.1) for the electron motion in a LSL and calculate the
same initial conditiorls in the electric modulation potential GC motion from Eq.(2.5). This is a good approximation if
V(x,y) =eEg[ cosgx+cosqy], with q=27/a and qR=2, for & the modulation fields defining the LSL are sufficiently weak
=0.05 (left) and e =0.15(right). Thick solid lines show the corre- and if the average magnetic fie, is sufficiently strong.
spondingr (t) as defined by Eq2.7), thin dotted lines the equipo- Ve want to emphasize that the GC picture yields reasonable
tentials of V(x,y). The correspondingy(t), Eq. (2.2) with o,  '€SUlts for the magnetoconductivity even in situations in
=0, are shifted downwards by one lattice period. which Eq.(2.1) with rg(t) calculated from Eq(2.5 does

not yield a reasonable approximation for an individual tra-
case if due to the Bessel functions in K8.6) the effective  jectoryr(t) with the same initial conditions.
potential vanishes for finite modulation, and therefore the
first-order approximatiofEq. (2.5)] fails. For the square- C. Conductivity from the GC motion

symmetric harmonic electric modulation considered in Fig. To calculate the magnetoconductivity of a 2D EG in a

tl" ttus Thhappebns LOGO(qE)t:O.tg%egmc flat-band and'; LSL within the relaxation time approximation, we use Ein-
ion”). Then, besides orbits wi -S Moving around poten-gqi s relation o, =D, ,e2m/(7#2) and the Chambers
tial maxima [r=(ma,na)] and minima[r=(2m+1,2n ® H

Da th I hits with GO . g formule?®*®for the diffusion tensob ,,,,, which contains the
<a d)dalle :pl)’ointirgtirériszon irl)lasl 2W::1n dr— (;r?f\l”gg):/rgun velocity autocorrelation integral along a trajectory, averaged
which are not described by E(®.5). The approximation, Eq. ©ver all initial conditions r(0)=ro, 1(0)=v(ro)
(2.5, also becomes poorer with increasing modulation(COS¢o.Singo). With the decomposition of Eq2.1) this
strength. Thus, we see from the thick line on the right-hand/1€lds three types of terms. One term, which contains only

side in Fig. 1 that the GC deviates characteristically from thd!® cyclotron velocity and must be averaged over the initial
equipotential trajectory predicted by E@.5). value «y, yields the Drude conductivity tensor. The mixed
terms, containing both the cyclotron and the GC velocity,

vanish upon averaging over,. Finally, the term containing
only the GC drift contribution is given by

yla

D= fo dte” "R VA0, (29

where the average has to be taken over all possible initial
positionsrs(0) of GC trajectories in a unit cell of the pe-
riodic potential.

With the dimensionless coordinatés-K,x and n=Ky
and the effective potential

205 00 05 1.0 15 W(E 7)= % ol (mé+ “”)V?rf\qux k) Venas 29

x/a

FIG. 2. Thirty-eight cyclotron cycles of a driftindeft) and ofa  where V,, is an energy characteristic fofeu(r), €.9. its
localized (right) orbit in the electric modulation potentia(x,y) maximum, Eq.(2.5) reads
=0.1E¢[ cosgx+0.25 coqyy] (equipotentials indicated by thin dot-

ted lineg, with q=2=/a andgR=2. Thick solid lines: GC trajec- d¢ ow dny ow

tories as defined by Ed2.7). The rapidly fluctuating trajectories dt %’ dat _Q(g_g’ (2.10
of ry(t), Eq. (2.2 with wn,=0, are shifted downwards by

one period. with
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Vcha
y mC!)O ’

Q=K,K (2.11
Given the analytical form of the effective potentia(¢, 7),
we can use Eq€2.10 to calculate the diffusion tens@2.8)

as an integral over the equipotentialsve(fé, ) (see Appen-
dix A). The results then depend only on the param@terin
the following section we will demonstrate this with a few
explicit examples.

Ill. RESULTS AND EXAMPLES

PHYSICAL REVIEW &4 115322

and the diagonal elements agree with those of the corre-
sponding 1D modulations, E¢3.1).

This weak-modulation limi€) 7<<1, in which the magne-
toconductivity is independent of the nature of the GC trajec-
tories, has been discussed in Ref. 16. However, with increas-
ing modulation strengthand larger relaxation time, i.e.,
larger mean free pattthe nature of the GC trajectories will
become important. Fdi 7>1 the time integral will be pro-
portional to the average velocity along the trajectory. For
closed trajectories, this average will vanish, whereas for open
equipotentials, which may exist either in tleor in they
direction, the average may be finite. Thus we expect that, in

To keep the notation simple, we will in the following hg |imit (07—, closed equipotentials will not contribute to

consider only superlattices with a rectangular symmetry,
1D and square-symmetric LSL as limiting cases.

A. One-dimensional modulation

If the periodic potential depends only on one coordinate,

say w(&), Eq. (2.10 yields v,= &/K,=0, &(t)=¢&(0), and

vy=wW'(£(0))/K,, independent of time. Thus we can imme-

diately evaluate E¢(2.8) to obtainD5c= D3, = DS =0 and

Kchha 2 , 2
Moy (W' ()17
(3.1
For simple harmonic modulations, €.¥4= &g =k 0Vk and
wq= 8 (+k,0)@=K With w_x=wg in Eq. (2.4), one obtains
from Eq. (2.6) Veg(r) = VocosKx+a), with Vo=2|VE{ o).

With V.= Vo andw’ (€) = — sin(¢+a), Eq.(3.1) reproduces
the known formul&®

GC_
Dyy -

Q27 (= dé ) B
K_ijﬂ[w (©F=r

1 €M Q%7
o= —,
yy ’7Th2 2K2

where the WO result from the oscillatory behavior of

(3.2

Kg Vi
Er
Here a complex ratiawy /Vi allows us to describe a phase
shift between electric and magnetic modulation.

3(KR)+ 22 3. (KR
o(KR)+ e 1(KR)

Q

(3.3

B. Weak 2D modulation,  7<<1

For a 2D superlattice potential one obtains a similar

simple result, if the modulation amplituder the relaxation
time 7) is sufficiently small, so thafl7<1. Then we may
approximatev ,(t)~v ,(0) in Eq.(2.8), so that the integral
becomes trivial, with the result

ac_ TuTy 0%r
KWK (2m)?

f :ng f :Td wow, (3.4

with o,=1, oy=—1, wy=dw/d§, wy=Jw/dn and the no-
tation u=y (or x) if w=x (ory). The factor (27)? is the
area of the dimensionless unit cell.

If the periodic potential is additivew(&,z)=w®)(¢)

+w)(7), the off-diagonal elements vanishg,=D$c=0,

Withhe diffusion tensor, whereas the contribution of open ones

will be similar to the case of 1D modulation.

C. Square-symmetric harmonic modulation

We now consider the 2D version of the simple harmonic
modulation discussed in Sec. Il A, i.e., assume in )
Vq=(8g,(=k.0F Fg,02)) Vk and ©q=(8g,(+k.0)

+ 8q,(0-k)) @k With w_x=wy . Then the effective poten-
tial has the form

V(1) =Vo[cOg KX+ a)+cogKy+a)], (3.5

with an (irrelevanj phase shifiz, and all equipotentials are
closed lines around either a maximum or a minimum, except
those forVeq(r)=0, which are straight lines. We find that
the angular velocity of the GC drift along the equipotentials
is given only by the parametd® defined in Eq.(3.3), and
geometrical factors. As a consequence, the suppression of the
GC contribution to the conductivity can be expressed by a
function ® () 7), and instead of Eq.3.2) we obtain

e’m Q%7
20_ 20" 27 T 00,

O'XX—O'
W nh? 2K2

(3.6

and ofy=0;,=0. The actual calculation ofb(Q7) is
sketched in Appendix A. The numerical results are plotted as
diamonds in Fig. 3, together with some analytical approxi-
mations, which are obtained from the asymptotic behavior of
the correct result for small and large values(bf (see Ap-
pendix B. Apparently the three-parameter interpolation for-

mula

O5(Q7)=[1+0.2507)2)/[1+0.75Q7)%+0.076 A 7)*]
(3.7

provides a very good fit to the correct numerical result for all
values of() 7. Note that®d(Q27)—1 for Q7—0, as we ex-
pect for the weak-modulation limit. We want to emphasize
that for the square-symmetric harmonic cosine modulation
the suppression of the GC-induced contribution to the con-
ductivity is described by the single parameter, which,
according to Eq(3.3), itself depends on modulation strength
and period, and on the cyclotron radiBs-v g/ w,.

As an instructive example, we plot in Fig.(a},
under the assumptionwgr>1, the GC contribution
Apxx/po~(wor)2Acryy/ao for the electric modulation
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FIG. 3. Suppression of conductivity in 2D superlattice with
square symmetry; numerical resdi({)7) (open diamonds qua-
dratic approximation with cutoff energy,,=0.228 (long-dasheyl
one-parameter interpolation with=0.304(dasheg and the three-
parameter interpolation of E¢3.7) (solid line).

FIG. 5. Comparision of resistivities calculated for electric
modulationV(x,y) = 0.0 [ cosqx+cosqy] within the GC picture
(solid lines and from numerical solution of the linearized Boltz-
V(X,y)=0.0Z¢[ cosgx+cosqy] and several values of the mann equatioridotted line$, for two values of the mean free path.
mean free pathh=vg7 (0= 1lpg=e’nyr/m). Away from
the flat-band conditions, given here by the zeros of the On the other hand, if we compare this modulation correc-
Bessel functiondo, {27 becomes large with large mean free tjon calculated for the square symmetric case with that ob-
path, a”dAPxx/POQ(Q? e (Q7)/(qR)” approaches the (ained for the corresponding 1D modulation, we find with
limiting curve 3.29/QR)“, which is also indicated in Fig. j,creasing mean free path an increasingly strong suppression
4(a). We see that, as compared with the Drude resistagce of the WO. This becomes evident from Figh# where we
?f thf hfhmoger.‘etous system, the m.‘;ﬁ“.'a“on'".‘d“ce‘j Cortehiave dividedApyy /po by (d))?, since with this normaliza-
ion to the resistance increases with increasing mean fre, . :
path an_d finally saturates. Slince tr?e shape of the ;;esl,istivitg?en ;3Sp%gsgieosrrlI;[)fbtehceorrgiiss'li:l/ciit?/pr?]g?(?nqgmgélcgrw:s F;It?:)nger
e el Lo e o o a0\ . the i INcreasing mean free path and increasing modulation
modulation strength leads to a set of curves similar to tha’?tr?l_ngtﬂ' hat the GC i ield bl |
shown in Fig. 4a) for the variation of ¢\)2. With increas- com?):reoﬂ tFigttSialculglt(i:g;rseg;ieg giaé(cégg aemrje(zu%s, we
ing modulation strength the curves will saturate and ap-". e . i . :
proach the same limiting curve, indicated as thick daSh}V;/]':;r:e,:g:astig?]ta#,idgr:)lfgﬁ.gﬁlé;ﬂoargot:?,vggesa&'jgg k?yog-u-
dotted line in Fig. 4. rier expansion of the distribution function with respect to the

0.8 periodic position variablegz andy and the anglep in veloc-
ity space, similar to the procedure described in Ref. 15 for a
1D LSL. To obtain the curve fog\ =1000 with sufficient
accuracy, about 40000 Fourier coefficients had to be in-
cluded, and the calculation, through use of an optimized par-
allel code, took abadu6é h on a CRAY¥YT3E supercomputer
with 128 nodes. The comparison shows that the GC approach
with approximation(3.7), which requires only negligible nu-
merics, yields surprisingly good results for weak modula-
tions. The agreement will become poorer for stronger modu-
lation and for much smalleg\. Then, with decreasing,,
the maxima of thé\ p,, oscillations in the GC approach will
still extrapolate to zero, whereas the correct calculation
yields damped oscillations around a nearly constant, finite
Ap, value. But this difference occurs also for 1D LSL's and

; 5
FIG. 4. (a) GC drift contribution to the conductivity versus mag- 'S Well understood: _
netic field in units 14R for electric modulation V(x,y) We conclude that the GC approach yields reasonable re-

= 0.0 [ cosgx+cosqy] and several values of the mean free path Sults for not too strong modulatiortand not too smalbx

betweeng\ =50 (lower dash-dottedand 1000(upper solid ling. valueg, and we will use it as a versatile approach to discuss
(b) Same resistance data divided )2, compared with result for ~ interesting situations of lower symmetry. Pure magnetic
the one-dimensional modulatiovi(x) =0.02E¢ cosgx (thick line) modulations lead to similar results as pure electric modula-
which is independent of\. tions, of course with modifications due to the differences

(a)
06 qA=1000
~~~~~~~~~~~~ =400
04 ——- qi=200
---- gA=100

Ap, /P,
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between the Bessel functionl and Jy, notably a phase
shift. Interesting new situations occur for mixed electric and
magnetic modulations, which can be achieved experimen-
tally, e.g., by bringing a rectangular pattern of ferromagnetic
islands on the surface of the sampi&Superpositions of har-
monic electric and magnetic modulations, eventually with a
phase shift, can easily be evaluated using Bc), provided

the effective potential according to E@.6) has square sym-
metry.

D. Harmonic LSL with rectangular symmetry

~ ALSL with exact square symmetry is an idealized limit- 00,0 20 2.0 6.0 8.0

ing case and hard to realize experimentally. Therefore, we ot

now consider the more general case of a rectangular LSL,

which allows us to interpolate between 1D and square- FIG.6. Numerical result foﬂbyy(QZ,K)N(diamondMor several
symmetric 2D modulations, and to approach both limitingvalues of the anisotropy parameterV,/V,. The solid lines are
cases. To keep the discussion simple, we restrict it to hafor the approximationd(? , Eq. (3.13.

monic electric and magnetic modulations in both directions,
so that the effective potential is of the form The contributions tAA o, on the other hand, come from

both closed and open equipotentials. The latter lead to an
Vei(1)=V,cod K x+ a,) + Vycog K,y + @), (3.9 increase with increasing, similar to the 1D case.

The off-diagonal componentdo,,=Ao,,=0 can be
where the ratios of amplitudes and phases may depend on tBaown to vanish from symmetry reasons. The analytical con-
amplitudes and relative phases between the electric and magiderations of Appendix A show that the diagonal compo-
netic modulations in thex and in they direction, and, in  nents can be written as
contrast to Eq(3.5), on the average magnetic fieR},.

Besides its simplicity, this model is important for the em 02
physical reason that higher modulation harmonics decrease Cuu=" 5777
exponentially with the distance of the 2D EG from the sur- mh® 2K},

face if the modulation is produced by some type of surface . ~ .
structuring. Thus, if this distance is large enough, it will be With @ =K,K,V,/(ma,), so that thesuppressioneffect of

sufficient to consider only the basic cosine modulation.  the 2D modulation now is described by two parameters,
and x. We have numerically calculated the functions

1. Numerical and analytical results ®,,.(Q27,«), which of course satisfy the consistency rela-
. _ - o tions ®,,(Q7,1)=d,(Q7,1)=P(Q7). Since it is rather
For a given modulation, the rati, /V, in Eq.(3.8) may  time-consuming to calculate the successive fourfold integrals
change magnitude and sign as a functioBgfThis can lead  with sufficient acccuracy for each specific example anew, we
to interesting switching effects, which we will discuss below. tried to fit the®,,(Q7,«) by simple analytic expressions.
For the calculation of the conductivity componefdpen-  we found that the numerical results i, (Qr,«) are very
dix A), we assume, however, always<&=V,/V,<1, well (with an error of less than 1%) approximated by
which may eventually require an interchangingxandy in k’®(Q 1), so that a good approximation is

the final results. Then, withl .=V, in Egs.(2.9) and(2.11), 5 5
and with a suitable choice of the origin, the dimensionless Dy 7,6)~ kP (Q7)~Kk"P3()7), (3.1

potential(2.9) becomes with ®5(Q7) defined by Eq.(3.7). Numerical results for
®,.(Q7,k) are shown as diamonds in Fig. 6. Apparently, for
k<1 they approach a finite limit fof)7—occ. This limit
For k=0 we have the 1D modulation in thedirection, and ~ ®y(*,«) is easily calculated numerically and well approxi-
the equipotentials are straight lines in $heirection. Forx mated by

=1 we have the square-symmetric case where all equipoten-

tials are closed lines. These cases have been considered ®,(x)=1-1.6453%+0.645°2 (3.12
above. For B<k<1, there exist closed equipotentials with
w(&,n) =€ around maxima in the energy intervat-k<e
<1+ «, closed equipotentials around minima in the interva
—(1+k)<e<—(1—«), and open equipotentials in the
direction for — (1— k)<e<1- k. We can show that, in the
limit of large mean free pathr(~), the GC contribution ()7, )= () + [1- (][ @, (27)°]
Aoy, comes only from closed orbits, and shows a suppres- 7’ 1+(a,+ BN+ y ()
sion similar to that obtained in the square-symmetric case. (3.13

®,,(Q71,k), (3.10

w(&,7)=cosé+kcosy, O0<k<l. (3.9

(see Appendix B Incorporating this into an interpolation
|f0rmula that reduces fok=1 to the previous fif(3.7), we
obtained
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3.0 +u,cosK,y+ay)]. For each value of the average magnetic
field, we can calculate from thesevenmodel parameters
25 the two parameters of the effective potenti@.6) that are
relevant for the conductivity, namely, the absolute values of
20t the complex numbers,Jo(K,R) + u,J1 (K, R)expla,),
(=% ~
;; 1571 SV:{[SVJO(KVR)+1U“v‘]l(KvR)Cosa1/]2
<]

+[w,d1(K, R)sina, ]2}12 (3.19

for v=x,y. The phases of these complex numbers can be
compensated by a suitable shift of the coordinate system and
have no effect on the conductivity. In the following we use
these two parameters in the form,,=maxe,.e,] and «
=min[e,,e,J/maxe,,,]. Taking the characteristic energy in
FIG. 7. GC contribution to the resistivities for the electric modu- E0- (211 asVena=&maEr, We obtain() = o€ malAR)/2.

lation V(x,y)/Er=0.04cosgx) + « cos@y)] and gh =400 . For To characterize the system pompletely, we have to specify
x=1 (thick line) Ap,x=Ap,,. For k<1, the result forAp,, lies the mean free path =vg7, which we write in the dimen-

below, that forA p,, above this thick line, and both are indicated by Sionless formg\, so thatwy7=X\/R. Finally we obtain for

the same line style. the GC drift contribution to the conductivity tensor
2
with a,=0.25sif(7«/2), B,=0.5%/[1—®,(x)], and vy, AU#M: q R 2(1)~~(£ R
=0.076 sif(w«/2). This approximation is indicated by the o 4KfL(q emad” Pjiz| 5 A AREmax k|
lines in Fig. 6 and will in the following be used instead of (3.1
D, (Q7,k).

with x=y andy=x if &ya—¢,, and withx=x andy=y if
2. Two examples Emax=gx. Since in the regime of commensurability oscilla-
tions wgr>1, the GC correction to the resistivity tensor is

First we consider in Fig 7 a purely electrostatic B on o —
modulation on a square latticea,=a,=27/q, V(X,y) Apﬁ#/po_(“’_oT) Aoyl with x=y andy=x.
~ S a very interesting example we consider a purely elec-

=V,cos@¥+Vicos@y), so thatV,=V,|Jo(qR)| and the qratic modulation, but now on an rectangular superlattice
ratio «x=V,/V,=V,/V, is independent of By, and  with equal modulation amplitudes= e, but different peri-
Q=0?V,|Jo(qR)|/(Mawp). ods in both directionsa, /a,= 2. The interesting aspect of

For k<1, there exist open equipotentials only in the this model is that now the effective potential changes its
direction. With decreasing their number increases, and symmetry as a function of the magnetic field strength, since
Apyy increases towards the results for the 1D modulationhe arguments of the Bessel functions in E2i6) are differ-
(k=0). SimultaneouslyA p,,= x* decreases and vanishes in ent. If one of the Bessel functions vanishes, i.e., if the flat-
the 1D limit. The degree of anisotropy increases with bothhand condition for this direction is satisfied, the effective
the modulation amplitude and the mean free path, since, fofotential shows a purely 1D modulation in the other direc-
Qr>1, Apyy/po~3.2%?/(qR)? saturates, whileAp,./po  tion. When the effective modulation potential in thelirec-
~(Q7)?®,(x)/(qR)? increases without limit. tion is larger than that in thg direction, there exist open

The anisotropy parameter is only a constant indepen- equipotentials in the/ but not in thex direction, and vice
dent of B, if we have either a pure electric or a pure mag-versa. Typical results for the resistivity corrections are shown
netic modulation on a square lattice, i.e., with the same pein Fig. 8. For a relatively small mean free path as in Fig.
riod in the x and y directions. In all other situations, the 8(a), the oscillations of the resistivity Componemlm
Bessel functions in Eq(2.6) lead to aBy-dependentc. In |ook similar to the results one would expect for the corre-
such cases we use the following convention to express théponding 1D modulations. At relatively low magnetic fields,
relevant parametel@ and « in terms of the original param- there occurs, however, a kind of beating effect, manifested in
eters specifying the modulation. a nonmonotonous decrease of the oscillation amplitude of

We measure energies in units Bf =mv2/2 and the av- Ap, (solid line) with decreasing magnetic fiell,. The rea-
erage magnetic field in dimensionless unitsqB), where  son for this nonmonotonous, dependence of the maxima is
R=vg/wq is the cyclotron radius ang= yK,K,. Then, for  easily understood. The maxima occur nearly in the middle
a suitable choice of the coordinate system, the modulatiobetween adjacent flat-band conditiodg(K,R)=0. If for
may depend on the following seven parameté€tsthe ratio  theseB, values the effective modulation in tlyedirection is
of the lattice constanta,/a,=K,/K,, (2) the amplitudes largel[i.e., if no zero ofJo(KR) is closd, the GC motion is
e,=V,/Ex of the electric cosine potentialV(x,y) essentially two-dimensional, and the maximum X, is
=Eg[e cosKx)+ecosKyy)], (3) the amplitudes u,  suppressed below the corresponding one of a 1D modulation
=2w,/(K,vg), and(4) the relative phasea, of the effec- in thexdirection. If, however, the maximum &p,, appears
tive magnetic modulation potentiaEg[ ucosKx+ay)  near a zero ofy(K,R), the modulation in the direction is
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tial, with a velocity essentially proportional to the strength of
this potential, leads to an interesting dependence of the WO
amplitudes on these model parameters. In contrast to a 1D
LSL, which has only extended straight-line equipotentials, a
2D LSL also has closed equipotentials around the extrema of
the effective potential. The difference between closed and
extended equipotentials becomes important in the limit of a
large mean free path, since the magnetoresistance is sensitive
to the mean velocity of the GC motion between two succes-
sive scattering events. If the scattering time is sufficiently
large, the GC velocity along closed equipotentials averages
to zero, and then these equipotentials do not contribute to the
TR ' ' magnetoresistance, whereas the contribution of extended
equipotentials becomes very large. This leads to strongly an-
FIG. 8. GC contribution to the resistivities for modulation isotropic resistivities, if the effective potential has rectangu-
V(x,y)/EF=0.07 cosK,X)+cosK,y)], with KX/Ky:ﬁ, versus lar but not square symmetry, and to very interesting
magnetic field in units of YR, with q= VKK; (a) for g =80, (b) magnetic-field-dependent switching effects if the symmetry
for gn=800. The “flat-band” conditions Jo(K\R)=0 and  of the effective potential changes as a function of the average
Jo(K,R)=0 are indicated by filled and open triangles, respectively.magnetic field.

For the 2D EG with a weak square-symmetric modulation
small, and thel p,, maximum assumes a large value close towe find with increasing mean free path an increasing sup-
that of the corresponding 1D modulationxrdirection. This  pression of the WO amplitudes below those obtained for the
explains why theAp,, maximum near ¢R) *=0.071 is  corresponding 1D modulation. This result provides a classi-
higher than those near 0.091 and 0.116. cal explanation of the suppression of the band conductivity

These anisotropy effects are drastically enhanced for gbserved in early experiments on holographically modulated
larger mean free patfsee Fig. 8)]. If, for example, at a high-mobility sample4, which previously had been ex-
givenB, value the effective modulation potential in the the  plained with quantum arguments based on the subband split-
direction is smaller than that in thedirection, the contribu-  ting of the Hofstadter energy spectrit For a fixed mean
tion to Apy, (*xAa,,) results only from guiding centers free path, ourbasically analyticalresult reduces in the limit
moving along closed equipotentials, akd,,/p, is bounded  of very weak modulations to the predictions of Ref. 16, with-
by 3.29(éy/EX)2/(q R)2<3.29/(qR)? (cf. Fig. 4. There ex- out noticeable suppression of the WO. For realistic values of
ist, however, open equipotentials in taalirection that lead modulation strength and mean free path, our present results
to an increase of\p,,>=(g\)2 with increasing mean free Yield, however, a strong suppression. We want to point out
path. The result is a very effective switching as a function ofthat our present classical explanation of the WO suppression
the magnetic field3, between regions with largap,, and and the previous quantum one are not contradictory. Both
very small Ap,, and regions with smallApy, and large need_a sufficient_ly strong modulation a_md large mean free
Apyy, as is seen in Fig.(8). path (|.e.,_weak disorderfor the explanation of an effective

If one mixes electric and magnetic modulations with dif- suppression.
ferent phase shifts in both directions, one may achieve such Qualitatively our result is also in agreement with the re-

016 F (a) qh=80 e
//

Switching effects also on a square |attige(,: Ky_ cent prediCtion of the SUppreSSion of WO by Granal.,18
which applies to the case of intermediate mean free path and
IV. SUMMARY strong 2D modulation. From our investigation of trajectories

we expect, however, that for this strong modulation the re-

We have evaluated the modulation correction to the maggime of small and intermediate values of the average mag-
netoresistivity tensor of 2D EG’s in LSLs of rectangular netic field is dominated by chaotic motion, so that the GC
symmetry within the GC picture. We have emphasized thapicture cannot be expected to yield quantitatively correct re-
this classical approach can be useful only within a restrictedults.
regime of sufficiently weak modulations and sufficiently  Finally we want to comment on the fact that the Cham-
strong(averagg magnetic fields, where the electron motion bers formula(2.8) contains a scattering time, that describes
may be approximated as a rapid cyclotron motion aroundsotropic impurity scattering, whereas calculations for the 2D
slowly drifting GC’s. Within this regime, in which a 2D EG EG with a 1D LSL based on Boltzmann’s equation have
with a 1D LSL exhibits regular commensurability oscilla- revealed that predominantly small-angle impurity scattering
tions (WO), we have investigated the effects of the modelhas to be considered for a quantitative understanding of the
parametergmodulation strengths, anisotropy, phase shifts WO amplitudes. We did not try to go beyond the simple
and the mean free path on the amplitudes of the WO. Forelaxation time approximation in the GC picture, sirideon
harmonic electro- and magnetostatic modulations we havthe level of Boltzmann’s equation, where we know how to
obtained essentially analytical results. describe anisotropic scattering, we cannot separate the GC

The fact that the GC's move approximately along thefrom the cyclotron motion, andi) small-angle scattering of
equipotentials of a magnetic-field-dependent effective potenan electron between locally nearby trajectories may include
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large changes of the corresponding GC’s, and we do not -

want to introduce unjustified assumptions on scattering be- J’ dte ""w,(¢(t); €)=

tween GC's. In view of the general limitations of the GC 0

picture, we rather want to consider the relaxation tires a (A4)

phenomenological parameter, which may be chosen to fit ex-

periments qualitatively. We think, however, thashould be ~ whereX=1/(r(}) and

considered as the total scattering time, which in the case of

strongly anisotropic impurity scattering is much shorter than o1 .

the transport or momentum relaxation_time. - Wi(ﬂf’o,(Pl;f): ;j dgoje(go)wﬂup;e)eixfwod“’ Tele")

Note added in proofRecently A.D. Mirliu, E. Tsitsishvili, ®0

and P. Wifle [Phys. Rev. B63, 245310(2001)] discussed (A5)

the effect of GC driffbased on Eq(2.5] and diffusion on

the magnetoresistance and presented estimates for severalTg evaluate the average over initial values in E48), we

limiting cases, including the chaotic and the low-magneticirst integrate along the equipotentials with fixed eneegy

field regime, where E¢(2.5) fails. Their Eq.(28) describes a  and then ovee. It turns out that the Jacobian of the trans-

saturation behavior similar to that shown in Flga)4[up toa formation from po|ar Coordinate$(¢) to the energy_ang|e

factor 3.29(2)’]. coordinates é,¢) is just given by Eq.(A3), dppde

=dedo J.(¢). If the effective potentialv(&, ) is an even

ACKNOWLEDGMENTS function of both arguments, we havev, (¢+ ;€)=

—w,(¢;€) and J(¢+7)=T(¢), and all integrals over
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APPENDIX A: CORRELATION INTEGRALS ALONG
EQUIPOTENTIALS | 2XW(go.pox mie)
XW;((PO!E)

To study the effect of closed equipotentials, we assume (A6)

that the effective potentiaw(&,7n) has either isolated
maxima or isolated minima, or both. For instance, the mode| . : :
; . ' . o with the upper sign and, = eg,,, b = €yax fOr equipoten-
(3.9 has, for arbitrary integemn andn, isolated maxima at .. . Sup max o
(£.7)=2m(mn) and isolated minima at &n)=(2m tials around a maximum and the lower sign and= €,,

; . - b_ = ¢;y; for those around a minimum.
J_r,l('?r;r 3)07;233 nd all equipotentialsv(¢, 7)=e for |¢[>1 Open equipotentials of a periodic potential with rectangu-

. . . lar symmetr finition, conn n int on ndar
We assume that closed equipotentials around a maximu gr symmetry, by definition, connect one point on a boundary

(minimum), which we take as the origin, exist in the ener the unit cell with the equivalent point on the opposite
. ' am, ay boundary. Since equipotential lines cannot cross each other,
interval €ma,=€> €5p (€min<€<€) . In terms of polar coor-

di open equipotentials can exist either in thelirection or in
Inates, the y direction, but not in both. Let us assume that in the

energy intervak,< e< e5,, 0pen equipotentials in thedi-

rection exist. We may describe them in polar coordinates

the equipotential with energy is described by the equation €hoosing the origin in a maximum, so that we can use the
p=pp), which maps ¢ onto the solution p of formalism developed above. Let the equipotential with en-

w(p cose,psing)=e for fixed e and ¢. Along the equipo- €9y € hit the upper boundary of the unit cell aj=m

1+e X0

E=pcose, mn=psing, —wT<e=m, (A1)

tential with energye the equation$2.10 reduce to =pledsing, for mlA< ¢ <m/2. Assuming that(¢,7) is
even with respect to both arguments, we can show that the
deldt==0/T.(¢), (A2)  GC motion in the negativg direction with initial conditions

_ . - T Spos7t @, yields the same contribution to the dif-
where the uppeflower) sign stands for orbits around a maxi- fusion tensor as those moving in the positjvdirection with

mum (minimum), and initial conditions — ¢ < ¢y=<¢,, and we consider here only
the latter.
pe®) For the time integration, we divide the infinite time inter-
T ¢) - | (A3)

- COSeW,+sinepw val into an initial one of duratiomE=Q*1fi;dgoje(<p) and

o
We can use EqA2) to substitute in Eq(2.8) the integration ~ Subsequent intervals of duratiome:Q_lf‘fipsdsojs(@):
variablet by ¢. Writing the initial position on an equipoten- which is the time a GC needs to traverse a unit cell on the

tial  as r(0)=pl¢g)(COSey,Singy), we get t= equipotential of energy. Using the definition(A5), we ob-
ifiodgo’je((p')/ﬂ. With 26.= " _deJ.(¢) one obtains  tain for the contribution of open orbits to the diffusion tensor

115322-9



ROLF R. GERHARDTS AND STEPHAN D. M. ZWERSCHKE PHYSICAL REVIEW 84 115322

a0, 2XQ%T (esup ®e
open_ = #Tv . 1.0 1
KK (277-)2 fé_ dEJ', deoTel o)Wl @o; €) o @_(i), clean, numerical
MmNy inf Pe \\ ¢Z(K)=1—21.65K3/2+0.65K5/2
e ' 'WA(—¢.,0.€) 08T \\ T Aae/CW) ]
— € €
X{ W@, ¢e;€) + S AN
" 1-e '€ 06 | Y
(A7) el
04 | N
To this we have to add the contribution of closed orbits ac- \\\
cording to Eq.(A6), D$S=D%DS," +D%," . The result ozl N |
can be written in the form of Eq3.10. |
0.0 1 1 1 Il
APPENDIX B: ANALYTIC AND ASYMPTOTIC RESULTS 0.0 0.2 0.4 0.6 0.8 1.0
K
We present explicit results for the additive cosine model _ _ o _
(3.9 of the effective potential, with & x<1. The partial FIG. 9. Numerical result in the clean limit fab,(=, «) (dia-
derivatives are thew,= —sin§ andw, = — « sin7. monds versus anisotropy parameter=V, /V,, together with ana-

We consider first the symmetric cage=1, which, ac- lytic approximation(solid ling). Also shown is the fraction of the
cording to Eq.(2.6), can hold for all values of the magnetic Unit cell covered by open equipotentidtiashed
field only if the original modulation has square symmetry o e
with equal lattice constants,=a,=a=2m/K in both direc- ~modulation limit (or “dirty limit,” 7—0) we have®(0)
tions, so that = (27/a) 2V, /(Mawo). =1, as expected from Eg$3.1) and (3.4). For Q7—o,

Things become especially simple close to the maximum a (27) becomes small. We can eXPa”d EA@) for .Iarge.
the origin, wherew,~ — ¢ andw,~ — . Then the equipo- 7 and show that the term linear in{14 vanishes identi-

; : ; L : lly. The prefactor of the leading term can be calculated
tentials become circles with radgii.=4—2e independent of cafly. ! :
¢, and the JacobiatA3) reduces to7.=1. The angular numerically, and we Obta'@(QT)%&ZQ/(QT)Z for Q7
velocity de/dt=( becomes constant along the equipoten- - This can be used to obtalnzthe one-parameter interpo-
tials, and independent of. Thus, the GC motion in this |aion ®1({27)=3.29[3.29+(€27)"], which approximates
approximation is very similar to the simple cyclotron motion, ®(£27) well for large values of) 7 (see Fig. 3 An apparent

however, with the circular frequendy instead of the cyclo- ir;mprovement a.t sanT)1aIIQand dinft'errggdia(Eﬁer ;’S obtained with
tron frequencyw,. As a consequence, all integrals in Eq. he @pproximationbs({r) defined in Eq(3.7).

(A6) can easily be evaluated analytically, with the result We now turn. to the.gene.r al rectaqgular symmetry. For 0
< k<1 the equipotentials with energi¢g<1— « are open

202, W(Z—equ)z o1 (:lnothey direction and degenerate into straight lines fer
(2m)? 1+(Q7)?’ In the “dirty limit” Q7—0 the distinction between open

h is th b hich th drati . and closed equipotentials is not relevant, since we can ex-
where eqy Is the energy above which the quadratic approxl'pand the velocityw ,(t) into a Taylor series for smatl and

. : : cl+_ ~cl+ ch+_ _ nel+ X .
mation is valid, andDy;"=D and Dy;"=—Dy; perform the integral in Eq(2.8) term by term. Up to second

XX

=Q7Dy,. Thus, forQ7>1, the motion of the GC’s along qrder in Q)+ we obtain
closed equipotentials leads to a suppressi¢fd 7) ~2. For a

a

2

DS (eqn) =

suitable choice ok, (=2—/7=0.228) and a correspond- D, (Q7,k)=k[1—(Q71)22+ - -], (B2)
ing treatment onL';j, one obtains the result indicated in Fig.
3 by the long-dashed line. Dy (7, K)=1— kX Q722+ -, (B3)

Going beyond this simple quadratic approximation, we
obtain qualitatively similar results. All equipotentials with for all values ofx. _ _ .
energy >0 (<0) are closed lines around a maximum N the “clean limit,” open equipotentials dominate
(minimum). As || becomes small, the angular velocity var- Pyy(27,«) and introduce a characteristi¢x dependence
ies along the orbits and becomes very small near the saddfer k<1. Already the fraction of the unit cell covered by
points [ (¢,7)=(0,m) and equivalerif where the Jacobian Open equipotentialsAqpey/ (27)?=1—Af5l.d(27°), which
J.(¢) diverges. Only the equipotentials exactlyeat0 are is plotted versusc (as dashed linein Fig. 9, shows such a
open trajectoriegstraight line$, but they yield a vanishing dependence. To see that, we calculated the corresponding
contribution to the diffusion tensor. Exploiting the symmetry, areaAl. = 1" “def™ deJ.(¢) covered by closed equipo-
we can show thaﬁ)z"y+ andDZ'; of Eqgs.(A6) yield identical ~ tentials around a maximurequal to that around a mini-
contributions to the diagonal components of the diffusionmum), which allows the expansioAlX, =16y«k+O(x?).
tensor, whereas their contributions to the off-diagonal com- The contributions of closed equipotentials to babt,
ponents cancel. The result for the nonvanishing diagonaand®,, vanish in the clean limit. The contribution of open
components can be written as E@®.6). The numerically equipotentials tab, (o, «) is finite, while that tod,,(«, «)
calculated ®(Q)7) is plotted in Fig. 3. In the weak- vanishes, because the average value of the guiding-center
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velocity component(t) is finite, while that ofv,(t) is

zero. Sinced,,(Q1,«) behaves similar tab,,(7) in the

square-symmetric case, we extrapolated(Bq) to arbitrary
values of Q7 and found that Eq(3.11) provides an ex-
tremely good approximation.

Since, in the clean limitX=1/(Q7)—0, we can easily
evaluate Eq.(A5) along an open equipotential\V,
(— e pe;€)=—2m, we obtain asymptotically from Eq.
(A7) Dy (o, k)= [+ 5ded/(QT,) with

T.=2K(@)/(qQVk), q={4x/[(1+k)?— 2 }*,

where K(q) is the complete elliptic integraf. Expanding
this for k<1, we obtain the leading term®,(»,x)~1
—(31/6m) k2. Adding a suitable term to satisf,(«,1)

PHYSICAL REVIEW B 64 115322

=0, we obtained the approximatioh,(,x)~®,(x) as
defined by Eq(3.12. Apparently the plot in Fig. 9 reveals
slight deviations between exact and interpolated result only
for k=0.7.

Using Eq.(3.12 and the small) r expansion(B3), we
tried to approximateb,, ({7, «) by the one-parameter inter-
polation

<I>‘yly)<9w<>=%(w)+[1—<I>yy<oo,f<>]/[1+m<nr(>2],)
B4

with @, (¢, k) =D,(x) and B,.=0.5¢%/[1— d,(«)]. This
yields a very good approximation for<<0.5, but a rather
poor one fork=0.75, and we improved it with the definition
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