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Multisublevel magnetoquantum conductance in single and coupled double quantum wires
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We study the ballistic and diffusive magnetoquantum transport using a typical quantum point contact ge-
ometry for single and tunnel-coupled double wires that are gl um) in one perpendicular direction with
densely populated sublevels and extremely confined in the other perpendicelagrowth direction. A
general analytic solution to the Boltzmann equation is presented for multisublevel elastic scattering at low
temperatures. The solution is employed to study interesting magnetic-field dependent behavior of the conduc-
tance such as a large enhancement and quantum oscillations of the conductance for various structures and field
orientations. These phenomena originate from the following field-induced properties: magnetic confinement,
displacement of the initial- and final-state wave functions for scattering, variation of the Fermi velocities, mass
enhancement, depopulation of the sublevels and anticroésinipuble quantum wirgsThe magnetoconduc-
tance is strikingly different in long diffusivéor rough, dirty wires from the quantized conductance in short
ballistic (or clean wires. Numerical results obtained for the rectangular confinement potentials in the growth
direction are satisfactorily interpreted in terms of the analytic solutions based on harmonic confinement po-
tentials. Some of the predicted features of the field-dependent diffusive and quantized conductances are con-
sistent with recent data from GaAs/8a _,As double quantum wires.

DOI: 10.1103/PhysRevB.64.115320 PACS nuni®er73.40.Gk, 72.20.My, 72.20.Fr, 73.40.Kp
I. INTRODUCTION steps were observed as a function of a perpendicular mag-
netic field?>

Much attention has recently been focused on the low tem- Recently, the effect of interlayer tunneling has been stud-
perature ballistic quantum transport through a single narrovied in a tunnel-coupled double channel structure illustrated in
constricted channelor wire), the so-called quantum point Fig. 1(c).*~’In this structure, the two GaAs conducting chan-
contact!® and also tunnel-coupled double wifks. The nels are separated by a thin,Sla,_,As barrier which al-
guantum ballistic conductance of these wires exhibits manyows the electrons to tunnel between the two GaAs channels.
interesting properties These wires are very thin in one di- The channel constriction in the direction is achieved in
rection and widgle.g.,<1 um) in the other direction per- both channels independently through top and bottom split
pendicular to the wire, producing dense sublevels. In thigates, which allow probing both the 2D-2D, 2D-1D, and
paper, we show that the diffusive conductance of these strudD-1D regimes by adjusting the gate biadslectron tun-
tures exhibits many interesting field-dependent propertieqjeling deforms the electronic structure in the channel direc-
strikingly different from those of the ballistic conductance. tion dramatically in the presence of a magnetic fiBloh the

A single-channel quantum point contact is schematicallyx direction due to the anticrossing effect as illustrated in Fig.
shown in Fig. 1a). This channel consists of an electron gas,1(d).8~*° Here the thick solid curves represent the lower and
for example, in a thin highly conducting GaAs layer upper branches of the tunnel-split ground-state doublet sepa-
(~100 A) confined between AGa _,As layers in the rated by the anticrossing gap in thdirection for the ground
growth (z) direction. The current flows in thg direction  channel sublevai=0. Basically, these branches are made of
through a narrow quasi-one-dimensiofaD) wire region  two ground-state parabolas from each well which are dis-
which is formed by further constricting the current in the placed bydk«B in k space relative to each other, with the
perpendiculafx) direction by applying a negative bias in the degeneracy lifted at the intersecting point and the curves near
split metallic gate on top of the &Ba _,As layer as shown this point deformed by the anticrossing gap as showhe
in Fig. 1(a). In this structure, only the ground sublevel is humps in Fig. 1d), develop at a sufficiently higB.® The gap
occupied in thez direction. However, the confinement in the passes through the chemical potentialBasncreases. The
x direction is much less severe, producing many closelythin curves are replicas of these curves: each pair represents
separated subleve(to be defined as channel subleyeBor  a higher channel sublevel=1,2, .. .. Arecent calculation
a channel width of the order of am, the energy separation predicted® for this coupled double-wire structure, that the
for the low-lying sublevels is a small fraction of an meV. The ballistic conductance shows a V-shaped quantum staircase
energy dispersion curves of these sublevels are illustrated iand decreases in steps 0é??h as a function of the field,
Fig. 4b). As is well known, the conductance decreases irreaches a minimum and then increases and saturates at high
quantum steps of &/h in the ballistic regime as the bias fields in agreement with the observed dta.
becomes more negative, due to the depopulation of the chan- When the ballistic conductance does not show clear quan-
nel sublevels. Similar monotonic quantized conductanceized behavior due to thermal or level broadening, it is not
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drain contact an overcomplete set of equations and are not linearly inde-
pendent when the number of the Fermi points is finite. A

formalism is developed for a general solution which is ob-

tained by eliminating a redundant equation. The effect of
weak localization and many-body effects are ignored in this
paper.

The organization of this paper is as follows. In Sec. II, we
present a formalism to calculate the conductance of multi-
sublevel magnetotransport of electrons in quantum wire sys-
tems using the Boltzmann equation in the presence of impu-
rity or interface-roughness scattering. Formal expressions are
given for the impurity and interface-roughness scattering ma-
trix in Sec. 11l for single and tunnel-coupled double quantum
wires in a magnetic field, assuming a parabolic channel con-
finement which is employed throughout the paper. The scat-
tering matrix elements are calculated for a single QW when
the magnetic field is applied in the two perpendicular direc-
tions to the wire, further assuming a parabolic confinement

FIG. 1. () A schematic diagram of a single quantum wire. The in the growth direction in Sec. IV. An explicit expression is
narrow channel is formed by applying a negative bias on the togjiven for the scattering matrix elements for double quantum
split metallic gate, not showitb) Parallel energy-dispersion curves jires in a magnetic field for a genemtonfinement in Sec.
of the channel sublevels of a single quantum wire. The levels beyy The field dependence of the diffusive conductance is
long to the ground sublevel from theconfinement.(c) Double oy 5iuated numerically in Sec. VI using rectanguapnfine-
quantum wires. Electrons tunnel between the wires through the,onts and is compared with that of the ballistic conductance
Al Ga;_(As barrier in thez direCtic.m' (d) The energy-dispersion _for various single-well and double-well structures. The nu-
curves of twnnel-coupled symmetric double QW's. Th.e tunne".Sp“tmerical results are interpreted in terms of the analytic results
ground doublet for the grounchE&0) channel sublevel is shown in based on the harmonconfinement. Comparison is made

thick curves for upper and lower branches. The thin cufiredud- ith available data. The paper is summarized in Sec. VII
ing the higher-energy levels represented by the vertical) does mth di\éclussions ’ paper Is su 1zed 1 ’

replicas of these curves shifted uniformly by, in the harmonic
channel confinement model and belong to the ground doublet. The

horizontal black dots represent the Fermi points. The current flows Il. MULTISUBLEVEL MAGNETOTRANSPORT
in the y direction. A magnetic field is in the x direction for the
double wires and is either in theor z direction for the single wire.

In this paper, we consider two systems consisting of either
single or tunnel-coupled double quantum wires schemati-
cally illustrated in Fig. 1. The Boltzmann equation for the

possible to determine if the electronic motion is ballistic or tot ¢ of elect | direction is ai
diffusive at zero magnetic field. Therefore it is interesting tomagne otransport of electrons along thelirection is given

calculate the field dependence of the conductance in the t

limits. We find that, apart from the quantum steps, these two o

regimes show strikingly differenB-dependent behavior of | v+ o > IV, j14(g) — ;) 8(E—&;)=0. (1)

the conductance due to the magnetic confinement and dis- h 4

placement of the initial- and final-state wave functions for .

scattering, variation of the Fermi velocity, field-induced masg1€re® J={n,mk} represents a set of quantum numbers,

enhancement, depopulation of the sublevels and the field¥here n.m(=0,1,...) are thechannel-sublevel quantum

induced anticrossingn double quantum wirdsThe case of number and the sublevel index associated with the quantiza-

double-quantum wires is especially interesting, because tH#n in thex andzdlrec_tllons, respectively; is the energy of

diffusive conductance is enhanced gigantically when thdh€ electron and;=#4""d&; /dkis the group velocity along

chemical potential lies in the anticrossing gap at a moderatt’® wire. We do not assumg—k) =£(k).™ Herek is the

Bin the extreme quantum limit. In this limit, only the ground Wave number along the direction. In general,e(—k)

channel sublevel and the ground tunnel-split doublet are ocZ €(K) for asymmetric double quantum wipes in FigdL

cupied due to extreme confinements in bothand z The quantityg; describes the component of the nonequilib-

directions**~*%In wide double quantum well&QW's) with ~ rium distribution function f;="f(&)+g;[—fo(&;)]eE,

densely populated channel sublevels, however, we find onlyhere the second term represents the linear deviation from

a moderate enhancement of the conductance. the equilibrium distribution functiorfiy(¢;). HereE is the dc
The Boltzmann equation involves elastic scatteringfield andf(€) is the first derivative of the Fermi function. In

among the Fermi points. The number of the Fermi pointsour numerical application, only the ground subleret 0 is

decreases monotonically as a functionBoin single QW’s,  occupied for single quantum wires. For double quantum

but in double QW's increases after a minimum and saturatewires, the tunnel-split ground doublet=0,1 are occupied.

at high fields. Each of the states at the Fermi points generatés Eq. (1), V;/ ; is the scattering matrix in the Born approxi-

a rate equation. We show that these coupled equations formation. The Born approximation is valid in the present situ-
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ation where the channel sublevels are densely separateaind introducing the column vectors
However, in the extremely narrow double-quantum-well

channel where the channel sublevel spacing is much larger 01 S1
than the anticrossing gap, higher order corrections to the g, S,
Born approximation can be significant when the Fermi level og=| . and s= , (7)
lies inside the gap®™® The effect of the magnetic field is :
contained in the eigenvalue§, wave functions, and the One SN
chemical potential as will become clear later. ) ) ] ]
The conductance equals we can cast Eg4) into a linear matrix equation
0e? . ug=-s. (8)
Gyy(B)= e > vig; fo d&s(&—E[—To(O)] Unfortunately, the coupled equatiofaf orderNg) in Eq. (8)
y ! cannot be solved by simply invertirg= —u~'s, becauseu
262 [+ Nr does not have an invergee., deti=0). This claim is easily
= EL de[—fo(&)] Zl SHpe (20 demonstrated by showing that the sum of all the rowsi of
Y ’ vanishes for each column. Namely the rows are not linearly
whereL, is the length of quantum wires asj=v,/|v,|= ?ndependent. To ayoid this problem, we discgrd the last row
+1. Thek summation accompanying thsummation in Eq. 1" Ed- (8) and obtain theNg—1 coupled equations:
(2) is replaced by I(, /h) f(1/|v;]|)d&;, yielding the second _
equality. The well-known carLc:a'IIati(J)n of the current operator UG+gn Un.=—S ©)

vj and the one-dimensional density of states fact@riflls  HereU is a (Ne—1)X (Ne— 1) submatrix obtained by dis-

responsible for the sigsy=v;/|v;| in the final expression in carding the last row and the last columnwyfUy_ is the last
Eq. (2). Here, v represents each intersecting point of theCol mn vector ofu without the last element gnﬁ G are
energy parametef with the dispersion curve described by umn v withou ’ '

the quantum numbens,m. These points become the Fermi OPtained froms, g by truncating the last elements,_ and
points with{ng,mg ,kg} at zero temperature. The set of the Un,.. respectively:
qguantum numbergn,m,k} at the energy will still be called

the “Fermi points” for convenience hereafter. The quantities UiNg S;
s, and g, are uniquely determined for each The total u s
number of the “Fermi pointsN¢ is a large even number and Uy = 2 Ne s 2
a function ofB. At zero temperature, E@2) yields F : ’ '
SV
2e2 N UNp—1Ng Ng—1
GYY(B): h_l_y Zl S,0,, (3) and (10)
where the signs,= =1 are paired at the Fermi points on the 01
same dispersion curve. The ballistic quantized conductance s
(~3yy(B) =2e’Ng/h is obtained by setting the mean-free path G= 2
at each Fermi point equal to the maximum vadyg, =L, in :
Eq. (3). ONg-1
Equation(1) can be rewritten after carrying out ttkein-
tegration as Further introducing a new column vector
Ng 91
Sv+ e uv,v’(gv’_gv)zoa (4) gé 1
v=t G'= . =G—0On.| . | (11
whereu is anNg X Ng symmetric scattering matrix with the , '
off-diagonal elements given by INg-1 1
we obtain from Eq(9)
I-y |VV’V|2 ,
uw,zuv,’fﬁm for v#v'. (5 Eerz_s, (12)

yielding G'=—-U"1S.
The solutionG’ in Eqg. (12) does not include the as-yet
undetermined parameteyy, . However, this does not pose

u,,=— E u, (6) any problem because the conductance in(&gturns out to
’ viEy be independent of this undetermined parameter as will be

By defining the diagonal elements faras
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shown in the following. ReplacinG by G’ through the re- ) (x—x")2
lationship in Eq.(11) and usings; +s,+ - - - +sy_=0 for a ((Sbi(r) 8bi:(r()))a= 8 i dbiexg — Tz
general electronic structure which is a continuous function of X
k, we find ENE s,9,=S'G’ for the last term in Eq(2) and (y—y')?
v=1 y—y
therefore xXexpg ———5—| (18)
Ay

2 w . .
ny(B)= _ ﬁ_ﬁj+ dg[_fé(g)]sTU*ls_ (13) and using EC]S(5) and (14), we find
yJ0 -

In Eq. (13), S' is the transpose d. The final expression on U, = ‘/;Ay ex;{ _ 1(k—k’)2A2}
the right-hand side of E¢13) does not include any unknown " %2[v;v,/| 4 Y
parameter. N N
Xf dX(ﬁ:r(X)qﬁn(X)f dx’ b (X") 7 (X')
Il. SCATTERING MATRIX —o —oo
The square of the scattering matrix is defined as a con- (X' —x)2
figuration average over the distribution of the scattering xexpl — | 2 |Vidbi & (2) Emdz0) %,
centers, i.e., A !
, . (19
Vi 2= G VDT avs (14

wheredb; is the average layer fluctuation, ang andA, are
the correlation lengths in theandy directions. The approxi-
mation in Eq.(18) is valid for wide wells. For narrow wells,
the layer fluctuationsb;(r;) should be treated as steplike

whereV/(r) is the scattering potential from impurities or the
interface roughness.

A. Impurity scattering potentials. The result in Eq19) reduces to Eq(16) in the
For impurities with very short interaction range, the limit A,,Ay—0 and mA,A,V?5b?=nQ3Vic;. For this
scattering potential takes the form reason, we consider only the interface-roughness scattering
for numerical applications hereafter.
V(r):UOQOZ S(r—r,), (15) The matrix element;, ; in Egs. (16) and (19) diverges
I

when the chemical potential lies at the bottom of the band
(i.e.,v;=0). This divergenc¢associated with the divergence
of the density of stateds avoided by introducing a level-
broadening parametey, at the bottom of the band farth
bIgermi point, which yields

wherer; is the position vector of impurities. In Eq15),
V(r) has the strengtb inside a small local volum€, and
vanishes outside. The impurities are further assumed to
distributed over two sheets a& z; andz=z, and uniformly

wit.hin the xy plane. Inserting Eq(15) into Eq. (14) and 1 (m:/%/)ll2 if 1/vy>(mt/%)1/2,
using Eq.(5), we find — = _ (20)
v, |1, it 1/v,<(m*/vy,)Y
nQgUG [+= * _ 22042 2y-1: :
Ujr :m dxX| b (X) pr(X)|? wherem) =#°(d“€,/dk?) " is the effective mass.
jvjrty ==

C. Parabolic channel confinement

2
Xi;m il &mic (z0) Emiz0) |, (16) In this paper, we assume a parabolic potential for the

) ) ) o ) o channel confinement with the Hamiltonian given by
wheren, is the impurity densityg; is the fractional distribu-

tion with c;+c,=1, ¢,(x) andé,(2) are thex andz com- B2 2 1
ponent of the electron wave functions in quantum wires. Hy=—5——+ —mWw)Z(XZ. (21
2my gx?> 2
B. Interface-roughness scattering The wave function is given by

For interface roughness, the scattering potentfal'fs |
$a(X)= (2" /,) "2 exp =32/ QHA(XI /),

V()= Viab(r)d(z-7) 17 22

where H,(x) is the nth-order Hermite polynomial

whereV; is the conduction band offset at thi interface at and |,=+#A/myw,. The eigenvalues are given by
z=1z;, obi(r)) is the layer fluctuation, and is the position Er=(n+12)hw, withn=0,1,2 .. ..

vector within the xy plane. Introducing the correlation The x' integration in Eqg.(19) can be carried out by

lengths according to employing Eq.(22). We find’
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nN<

1 ’
U= ex;{— Z(k—k'mi}go 2D Co,Cur (1= @) V2P V8D (2) il )

. ']_ﬁ2|vjvjr|
a>2()\)2<X
i-a?
where \y=/ /Ay, ay=1\1+\2, Apn=(2"""nin"t7)"Y2 n_=min(n,n’), and Cnp=p!/ni(n—p)! is the binomial

expansion coefficient. We can perform the integration in (8) using the fact that w, is usually very small. For example,
for Aw,=0.1 meV andm,,=0.067(in units of the free electron mass,), we estimate’,=1.066x 10°A> A . In this limit

+ oo
X f, dXHy (X)H () H - 2p (23

)exp{—{1+(1—a§>\§)x§}x2],

we haven,>1,a,<1 and find’

A,
uj!’jzz—
h2/\lvjug]

Xexp(— a2[(n+n")2—p2" " Y20 (p+ HT(n—p+ HI(n'—p+ 1),

wherel'(x) is the gamma function.

IV. SINGLE QUANTUM WIRE

We assume that the magnetic fidta= (B, ,0,B,) is per-
pendicular to the wire with the vector potential given Ay
=(0A,,0) andA = —B,z+B,x. The Hamiltonian is given

- 2ol 1 9 U
H—_7E WE + SQMZ)+HX
#? eA,\?
( +—A/) , (25)
2m*(2) h

whereH, is defined in Eq(21), the last term is the kinetic
energy along the wire, andsow(2) is the single-quantum-
well potential which is zero inside the well ang, outside.
The well width isL, and m*(z) is the electron effective
mass which equals,, and mg inside the well and the bar-
riers, respectively. The Zeeman energy is neglected.

A. B|x

When B is in the x direction (i.e., B=B,), we find ®
— M+ M, with

Hz= 2 90z

B N PRVl P
m* (z) 92 sowi2) 2m* (2) 72
(26)

Defining H,&m(2) =Eqém(z) and  employing m* (z)
=mW,USQV\(z)=mWw§22/2 for the quantum-well confine-
ment, the quantized electron energy is given by

72k>
AQ,+ ——,
2m**

1
n+§ ﬁwx-l-

(27)

L
mT2

5j:

N<

1
AL ex;:[—Z(k—k')ZAi}Ei |vi5bi§mfkr<zi>§mk<zi>|2§0 P!CnpChp

(24)

where nm=0,1,2; -, m** =my/[1-(w./Q,)?%], .
=eB/my,, andQ,= \/wc2+ wzz_ The wave functiorg,,(z) is
given by

Em2)=(m2™ml /) "M exid — (z— A7) %2/ 2]

S Hm[(Z_AZk)//cz]u (28)

where /.,= JhImyQ, and Az,=k/?(w./Q,)? with /
=h/eB. We note from Eq(27) that the electron effective
massm** becomes heavier for transport in tigedirection

and the sublevel separatidif), increases wittB. Heavier

mass increases the density-of-states and therefore decreases
Ng.

The scattering matrixi;, ; is given by the expression in
Eq. (24) which contains the factog,/(z)é&m(z). How-
ever, according to Eq28), the centers of these initial- and
final-state wave functions are shifted byAz.
=k'/A(wc/Q)? and Azy=k/?(w./Q,)? respectively.
Since the signs ok’ and k are opposite for the back-
scattering processes responsible for the momentum dissipa-
tion, these magnetic displacements reduce the overlap be-
tween the initial and final states exponentially and enhance
the conductance. For the back scatterkdg= —k, for ex-
ample, the product becomesé,, (z)é&m(zi) o expl
—F(B)) where F(B)=(z// )%+ (Az// )% The func-
tion F(B) varies significantly as a function @& as can be
seen from the following numerical estimate. FB=10 T
(with /,=81.1 A), m*=0.067, andk=0.02 A1, for ex-
ample, andi w,~A&=15.4 meV(sample 1 in Table)| we
find #Q,=23.2 meV,Az=73.1 A, /.,=70 A, andF(B)
=(z/70)>+1.09. ForB=0, on the other hand;.,=86 A
and F(0)=(z/86)?, yielding a large valueF(B)—F(0)
=2.64 forz;=150 A at the interface in sample 1. Note that
the limiting behavior of the conductance is given approxi-
mately byG,(B) > exd 2F(B)] whereF (B)«B? in the low-
field limit (w.<w,) and F(B)xB in the high-field limit
(we>w,). This point will be further illustrated in the nu-
merical results in Sec. VIA.
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TABLE |. Single-quantum-well wires with well depth of 280 22 4

meV, width L,, ground-second level separatid€, and the uni- H,o=— — — i i +Usow(2) (30)
i z 2 9z| m*(7) 0z SQWASS
form channel sublevel separatidnw, . m*(z)
Sample no. L, (A) AE (meV) fo, (MeV)

where Q.= w2+ w2, Ax=k/}(wc/Q)? and m**

! 300 154 0.02 =my/[1— (w./Q,)?]. The electron wave functions are ob-
2 210 29.0 0.02 tained fromH,dn(X) = Epdnk(X) andHzém(z) = E5ém(2)
3 210 290 02 with £3.=(n+1/2)h Q,+7%2k?2m** . Again, the electron
effective mass in thg direction and the sublevel separation
4 210 29.0 2 increase wittB. For m* (z) = my,,Usow(2) = Myw>2?/2, the
quantized electron energy is
B. B|z
WhenB lies in thez direction (i.e., B=B,), it is conve- 1 1 212
nient to write the Hamiltonian a& = H,+ H,, where &= n+ S ]AQ+ | M+ Sl fiw,+ , (3D
2 2 m**
ﬁZ (92 21,2
= k"1 ) 5
M= 2my gx2 + 2mWQx(X+AXk) + omFr (29) with n,m=0,1,2 .. .. Theeigenfunctions are given by
|
br)] (2"t )™ Vel — (x+ Axi) 212/ EIH [ (X+ Axi)/ /5]

: (32

ém(2) (Nw2™mi /)~ Yeexd — 2212/ 21H (2! /)

where /.= VA/myQ, and /,= Jh/myw,. The center of the wave functiog,,(Xx) is shifted by Ax,, yielding a field-
induced reduction in the overlap of the initial and final scattering states similar #|thease. When the correlation length
A is very short, namely foh ,< /', the scattering matrix in Eq419) can be calculated analytically using Eg2), yielding'’

_ AXAY 1 IN2A 2 2
uj,’j_h2|UjUjr|/CXeXF{_Z(k_k )AS EI [Vi6bi€m (2) Em(Z)]
+ oo 1 q2 q2
on quOf{qAXk'—k//cx)eXF{—qu)Ln(j)Ln'(?), (33

whereL,(x) is the nth-order Laguerre polynomial. We as- where Upqy(2) is the double QW potential which is zero
sume that the interface roughness exists only on one of thiaside two wells with widthsL,; and L,, and V, in the
two interfaces in GaAs/AlGa _,As single QW's(i.e., 5b;  center barriefwith thickness_g) as well as in the two outer
=6b,0b,=0). The B dependence of the conductance parriers for GaAs/AlGa _,As double QW’s. An intuitive
is very different from theB|x case, as will be shown later in understanding of the role & in Eq. (34) is gained by using
Sec. VL. a tight-binding picture where thewave functions are local-
ized in each well separated by an effective distadgg.
V. TUNNEL-COUPLED DOUBLE QUANTUM WIRES Heredg is roughly the distance between the maxima of the

For double quantum wires, a most interesting situationvave functions of the two wells. In the absence of tunneling
occurs wherB is in thex direction(i.e.,B=B,). In this case,  (in thezdirection, the energy dispersion consists of two sets

the Hamiltonian is the sum of(="Hboy+Hy, Where™H, of an infinite number of parallel parabolas for each well,
was defined in Eq(21) and separated by the enerdyw, . The net effect of the magnetic

field in the last term of E¢(34) is to shift the two sets of the

, K2 9 1 4 energy-dispersion parabolas relative to each othersky
bW "3 57| (o) 2 +Upow(2) =des//? along the wire direction irk space, producing
points of intersection between these two sets of the parabo-
52 2 \2 las. In particular, for each pair of the parabolas with the same
. ( - —2) , (34 quantum numben out of these two sets, an anticrossing gap
2m*(z) 7¢ opens when tunneling is switched on as shown in Fig. 1.
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TABLE Il. Double-quantum-well wires with well depth of 280 20— 771 T T 1 T T 71 18
meV, widthsL ,; ,L,», center-barrier width. g, ground-doublet tun- T=0K
nel splittingAgas at B=0, and the uniform channel sublevel sepa- | 777 e L,=300A -
ration i w, . e T fiw, = 0.02 meV 160
[+
e =2x10"em’ <
Sample no. Ly /Ly, (A) Lg(A) Agas(meV) fiw, (MmeV) 2 6 108 n”’ x 10" cm
c I 3
5 80/80 50 16 0.02 8 o -
g 3
6 80/80 50 1.6 0.2 S 14 2
'g 1.02+ 8
7 80/80 40 3.3 0.02 8 P
12 |100 : g
) . ) Sample 1 g
These gaps pass through the chemical potential successive Bl x
as B is increased;” producing interesting transport proper- o > . é : ; '
ties. Magnetic Field (T)
The wave functions are given byH,é,(X)=(n 9
+3)hwyda(X) andHpowémd2) = Emiémid2), where gn(x) FIG. 2. G,,(B)/Gy,(0) (thick solid curve and G,,(B) (thin

is defined in Eq(22) and §,(2) is calculated numerically dashed curvefor sample 1 withn;p=2x10’ cm ! atT=0 K as
using Eq.(34). A parabolic potential is no longer appropriate a function ofB in the x direction. Here G,,(0)=49.0e%h for L,
for the double-quantum-well electron confinement in the =0.1 mm. The inset displays the Ilo®- behavior of

direction. Only the two lowest tunnel-split doublet statesG,,(B)/G,,(0) for 0<B<3 T.
with m=0,1 are occupied for the small well widths,; and

L, considered here. The quantized electron energy is all single-quantum-wire samples and=0.1Ag,s for sym-
1 metric double-quantum-wire samples whefg,s is the
&=|n+ > fwgt Emks (35) splitting between the symmetric and antisymmetric states at

B=0. The other roughness-related parameters/gre A,

where n,m=0,1,2 . ... The eigenvalues in Eq(35) are =30 A andsb=>5 A. The single and double QW's are as-
shown in Fig. 1. The two thick curves therein correspond toSUmed to be rectangular wells in taalirection. For single
Eme With m=0 (lower curve andm=1 (upper curvgé The  guantum wires, the energy separation b_etween the first and
scattering matrix;, ; is given by Eq.(23) in general and by secon.d sublev_els @tzO are denoted a&¢& in Table I. In the

Eq. (24) in the limit of /,> A, . The interface roughness is following appllcau_ons, only the ground sublevel_ and the
assumed to exist only at the two interfades1,2 between 9round tunnel-split doublet are populated for single and
the GaAs wells and the AGa, _,As barriers in the growth ~double wires, respectively.

sequence of GaAs/iBGa _,As double QW'’'s with sb;

= 6b,=6b. As will be shown in Sec. VI, the anticrossing A. Single quantum wells

effect introduces strikingly different phenomena to the mag- We display in Fig. 2 the diffusive conductance ratio
netotransport absent in single-wire structures. G,,(B)/Gy,(0) (thick solid curve, left axisand the quan-

tized conductancéyy(B) (thin dashed curve, right axist
T=0 K as a function ofB|x for sample 1 with a linear
In our numerical calculations, we study the conductancelensityn;p=2x10" cm™*. For this sample, the well width
ratio G,y(B)/G,,(0) in the diffusive limit(relevant to long is large with a small level separatidiw,~A£=15.4 meV
wires) as a function of magnetic fielB in both single and (see Table )L All the occupied channel sublevels belong to
tunnel-coupled double quantum wires in the presence othe m=0 ground sublevel. A total of 85 channel sublevels
interface-roughness scattering. The quantized conductanége occupied aB=0 with 170 Fermi points.

G,,(B) is also displayed for short quantum wires not only ~ Since G,y(B) is proportional to the total number of the
for comparison but also for showing the number of the popufermi pointsNg and therefore the number of the occupied

lated sublevels at eadB. For single quantum wires, a uni- sublevels, the quantized conductar®g,(B) decreases in
form magnetic field is applied either in theor z direction,  steps of 22/h with increasingB owing to the fact that the
perpendicular to the wires. For double quantum wires, theffective massm** and thus the density of statéBOS)
magnetic field lies always in the direction. The effects of increases withB as seen from Eq(27)_2 In contrast, the
the well width, channel sublevel separation, electron denSit}ﬁjiﬁ’usive conductances y(B)/ny(O) increases exponen-
center barrier thickness, and the temperature ORially in Fig. 2 as exp§;B?)~1+c;B% in the lows region and
Gyy(B)/Gyy(0) and Gyy(B) are invest_igated. The param- as exp¢,B)~1+c,B in thg high+_3 _region,_wherecl_ andc, _
eters employed for all the samples in our calculation areare constants. The physical origin of this behavior was dis-
listed in Tables | and Il. For these samples, we d¥g cussed in Sec. IV A. The higB-limit .=, is reached at
=280 meV, my=0.067, and mz=0.073. The level- B=8.9 T. The enhancement d&,,(B)/G,,(0) is much
broadening parameters are chosen toyhe0.16 meV for  smaller in Fig. 3 because of largkw, (or smallerL,). Os-

VI. NUMERICAL RESULTS AND DISCUSSIONS
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FIG. 3. G,,(B)/G,,(0) (thick solid curvg and éyy(B) (thin dashed curvyefor (a) sample 2 and(b) sample 3 withn,;p=2
x10" cm ' atT=0 K as a function oB in the x direction. HereG,,(0)=16.8%/h in (a) andG,,(0)=15.3%*h in (b) for L,=0.1 mm.

cillations seen in the inset of the figure come from the sucDOS p,=1/v,. The role of the damping parametgy is to
cessive depopulation of the sublevels Bisncreases. This avoid the divergence o, at v,=0 and maker, and the
oscillating feature is much more pronounced in samples witltonductance nonvanishing at the bottom of the band just
large w, as shown in Fig. @) and will be examined in more pefore depopulation. When the top sublevel is depopulated,
detail below. Note also that the diffusive conductance cannothe DOS decreases abruptly, yielding a nearly discontinuous
grow .indefinitely. It reaches the maximum at the ballisticj-ump in 7, and the conductance, leading to the sawtoothlike
quantized conductance value and follows Belependent  qgcillating feature. The height of the jump scales asq1/
behavior ofG,,(B) thereafter. since the depopulation effect will be more significant when
Figure 3 presents the conductance radig,(B)/Gy,(0)  there are smaller number of sublevels, yielding larger jump
(thick curves, left axis and the quantized conductance heights for sample 3 compared to that of sample 2. Note that
G,,(B) (thin curves, right axisat T=0 K as a function of the vertical axes of these two curves have different scales.
B|Tx for samples 2in 3(a)] and 3[in 3(b)] with n;p=2  Apart from the oscillations, the average diffusive conduc-
X 10" cm . Atotal of 86 channel sublevels are occupied attance increases quadratically Bias discussed for Fig. 2
B=0 in sample 2 with: w,=0.02 meV. Sample 3 has much through theB dependence of the scattering matsix ; . The
largersiw,=0.2 meV and contains only 40 occupied channeleffect of the latter is reflected in the slow increase of
sublevels, producing a lowes,,(B) than sample 2. The G,(B)/G,y(0) in Fig. 3b) between the slow decrease and
plateaus inG,,(B) and the intervals between the abruptthe subsequent jump.
jumps inG,,(B)/G,,(0) coincide and indicate the interme-  Figure 4 displays the conductance ra6g,(B)/Gy(0)
diate stages between two successive depopulations and dfgick curves, left axis and the quantized conductance
much wider for sample 3 than for sample 2. The reduction ofoy(B) (thin curves, right axisas a function ofB||z at T
the plateau widths and the oscillation intervals for=0 K for sample JFig. 4a)] and sample 4Fig. 4(b)] with
Gy(B)/Gyy(0) with increasingB reflects the increased den- low electron densitiesi;p=1X 10° cm ! (dashed curves
sity of states<m** in each channel sublevel. The effective and 2x 10°cm™?! (solid curves. Sample 4 has much larger
massm** =my, /[ 1— (w./Q,)?] was introduced in Eq27). hwy,=2 meV compared td w,=0.2 meV of sample 3, al-
The conductanceG,(B)/G,,(0) in Fig. Ja decreases lowing a relatively smaller number of the channel sublevels
monotonically between the successive nearly discontinuou® be populated. The oscillating sawtoothlike features in
jumps. This behavior is explained in terms of a simple pic-G,(B)/G,,(0) are associated with the sublevel depopula-
ture where the conductance is proportional to the sum ofion as in Fig. 3 and are much more pronounced for sample
vﬁpkrk= |vi| 7« on the Fermi surface with the DOS given by 4. In contrast to thdlIx case in Fig. 3, however, the average
p=1l . The transport relaxation timg, is the inverse of G,,(B)/G,(0) in Fig. 4 (without the superimposed oscilla-
the weighted sum of the DOS over the Fermi points. Thdions) decreases wit except for the initial steep rise near
Fermi velocity |v,| decreases steadily as the Fermi pointB=0. The origin of this drastically different behavior from
moves toward the bottom of the sublevel with increadiyg the highB behavior in Figs. 2 and 3 lies in the fact that the
raising p, and thereby decreasing, and the conductance. magnetic field in the direction shrinks the channel orbit size
The Fermi point near the bottom of the nearly empty top/¢x and increases the masg™ in Eq. (29), thereby increas-
sublevel withv,=0 makes a negligible contribution to the ing uj, joem** 2|/« according to Eq(33) and decreasing
current but contributes significantly to reducing through ~ G,,(B)/G,,(0). Thesame behavior is not obtained &,
its large DOS. Namely, the electrons at other Fermi pointdor the Blix case because,> w, . At low fields, namely in
are rapidly scattered into this Fermi point because of its largéhe limit w.< w, , dominant scattering occurs from=n’. In
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FIG. 4. Gy(B)/G,,(0) (thick curves andG,,(B) (thin curves for (a) sample 3 andb) sample 4 withn;,=1x10° cm™* (dashed
curves and 2x 10° cm? (solid curves at T=0 K as a function o8 in the z direction. Hereny(0)=9.982/h (dashed curjeand 15.8%/h
(solid curve in (a) and ny(0)=4.2e2/h (dashed curveand 15.@%/h (solid curvé in (b) for Ly=10 um.

this casey;: ; decreases rapidly with increasifigdue to the ~ quantum limit(where only the ground channel sublevel
B-induced relative displacementx,, _, of the initial and =0 is occupied that higher-order corrections to the Born
final wave functions, thereby increasin@,,(B)/Gy,(0) scattering can be significant for long-range scattering poten-
steeply as shown in Fig. 4. Eventually the shrinking orbittials when the chemical potential is inside the é%lpl.o such
size increases the scattering matrix, resulting in the initiaForrections are necessary for the present multiple-sublevel
maximum inG,,(B)/G,,(0). For thehigh-density sample 3 Scattering.

in Fig. 4a) (thick solid curve, this initial steep rise of the We show in Fig. 5 the conductance rag,(B)/G,(0)
conductance and the jump due to the first sublevel depopu-

lation coincide. For sample 4 in Fig(®), o, is too large, ST T T T T T T T ]
yielding only a small initial displacementx,, _,, producing 3 [ T=0K T 7]
no significant initial rise 0fG,,(B)/G,,(0). Thesmall oscil- ,§ 20 e Mo =002meV. 7
lations which follow the initial peak for sample 3 are due to 3 N o .
the oscillating overlaps in the high-order Laguerre polynomi- § 160 S -
als in Eq.(33) or the Hermite polynomials in Eq32) and 2 _n Ty — ]
Eg. (19. The oscillations are more visible for the low- § gof ™ e -
density sample 3thick dashed curJye For the high-density § P 1x10" cm™ 465
sample(thick solid curve, n becomes too large and the os- & 4 2x 10" em™
cillations smear out. These oscillations are absent for sampllg ...
4 in Fig. 4b) due to the fact that large, yields smaller § 3
numbern of occupied sublevels and that low-ordey La- 8 ,
guerre or Hermite polynomials oscillate less. S
g 1 =T N A N e szzae
B. Double quantum wells § ol ot T

While the energy dispersion curves consist of a set of 0 2 4 6 8 10

parallel parabolas in single QW'’s, they are given by a set of Magnetic Field (T)

parallel anticrossing curves; introduced in Eq.(35) for
double QW’s, wherg ={n,m,k} with m=0,1. These curves
are shown in Fig. () for the case where the magnetic field
is in thex direction. The thick curves represent the ground-
state doublet fom=0. The doublet consists of the upper
(m=1) and the Iowerr(n_= 0) branche;{thic_k solid curves curve and 32.8%h (thick dashed curvefor L,=1 wm. Both
separated by the partial gap. The thin curvéer n  panches are occupied for solid and dashed curves, while only the
=12,...) are theeplicas of the thick curves. The gap as- |ower branch is occupied for the dash-dotted curvé8at0. The
sociated with eacm moves up and passes successivelyarrow indicates the dips ne@®=2.7 T where the bottom of the

through the chemical potential with increasigg As willbe  jower branch becomes flat just before the hump develops as shown
shown in the following, the diffusive and quantized conduc-in the inset. The latter presertlsy, in units of meV as a function of

tances show very differer-dependent behavior from that k (in 0.17A~%) atB=2.7 T. The horizontal dashed line indicates
of the single QW'’s. It was found earlier for the extreme the Fermi level nested at the sublevet 61.

FIG. 5. G,(B)/G,,(0) (thick curveg andéyy(B) (thin curves
in unit of 2e?/h for sample 5 witt;,=1x10" cm™?! (dash-dotted
curves, 2x10" cm ! (solid curve$ and 3<10" cm™! (dashed
curveg at T=0 K as a function ofB in the x direction. Here,
Gyy(0)=17.7e% h (thick dash-dotted curye28.4e°/h (thick solid

115320-9
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(lower thick curves and the quantized conductané@y(B) fusive conductance shown by the thick dash-dotted curve for
(upper thin curvesat T=0 K as a function oB for sample  the lowest density decreases initially in contrast to the other
5 for several different electron densitiesi;p=1  two curves. This behavior occurs when only the lower
x10" cm ! (dash-dotted curves 2x 10" cm ! (solid  branchis occupied &=0 as will be studied in more detail
curves, and 3x 107 cm ! (dashed curve)séyy(B) exhibits  1aterin thi_s section. Note tha'_[ the peak enhancement is larger
a V shape as a function d&. This B dependence was ex- for the th|CI§ dash_ed curvéwith a larger electron density _
plained earlier in detdiland can be understood with the fol- than the thick solid curve because the chemical potential
lowing simple argument. This argument is also useful foreNters the gaps at highBrwhere the separation of the initial
understanding thB dependence of the diffusive conductance@nd final scattering states is more complete in the former
to be presented below. B=0, eachm=0,1 pair of the CcaSe. The minimum o6,(B)/G,,(0) in the range 4.5B
doublet consists of two parallel parabolas and generates four 6-27 arises when the chemical potential passes through the
Fermi points except for a few largetop sublevels near the @St few humps in the lower branches with a large DOS,
chemical potential, assuming a high density of electrons. A&/hich increases the scattering rate. At higtwhere all the

B increases, the upper and lower branches of each sulrieveld@Ps are above the chemical potential, the two wells behave
deform from a pair of parallel parabolas into the anticrossing?S independent single wells. Therefdgg,(B)/Gy,(0) in-
structure with a gap shown in Fig. 1 by thick curves, for creases gradually as a functionBfas discussed in Figs. 2
example, fom=0. At high fields the gaps sweep through the and 3.

chemical potential successively starting from lameFor We also notice thaB,,(B)/G,,(0) has adip aB=2.7T
each pair, the number of the Fermi points decreases frorih Fig. 5 indicated by an arrow. The position of the dip is
four to two when the chemical potential is in the gap andinsensitive to the electron density of the samples. This dip is
increases back to four when the gap moves above the chendssociated with the flat bottoms of the lower branch of the
cal potential. Therefore, the minimufd,,(B) is obtained dispersion curves of the subleveisee the insgtwhich pin
when the chemical potential lies in the middle of the anti-the Fermi level to the divergence in the DOS. The latter

crossing gaps of the majority of the channel sublevels. Th&ields rapid scattering of the electrons and thus a small con-
minimum oféyy(B) shifts to a higheB for a higher-density ductance. These flat bottoms are the consequence of the bal-

sample. anced competition between tieinduced rise of the cross-

It is interesting to note that the maximum &, (B)/ Ing po'rg arising from the increasing displacemesk
G..(0) is alianed with the mini & (B in Fi ‘ (=desi//c) between the two parabolas and the downward

yy(0) is aligned with the minimum yy(B) in |g._5 or repulsion from the upper level. These flat bottoms eventually
each density. This behavior is readily understood if we f'rStdeveIop into humps at higher field©ther rugged structures
consider an extremely narrow channel whére, is very

. arise from the sublevel depopulation effect.
large and assume that only the groune=0) doublet is The effect of the thermal broadening is shown in Fig. 6.

occupiedl.l In this _casg,f_Byy(B) is minimum when the The parameters for Fig.(& are the same as those from

chemical potential lies inside the gap with two Fermi pointssample 5 studied in Fig. 5. THE=0 K quantum steps in

as explained above. Also, the conductance becomes vey (B) (upper thin curves and sharp structures in
i i Yy

large due to the fact that back scattering is suppressed b%yy(B)/ny(O) (lower thick curves in Fig. 5 are signifi-

tween the two initial K(.i) and fir_1a| ki=—ki, say, in a sym- cantly rounded aT=0.3 K as shown in Fig. @). The effect
metric structurg Eerml points in the !ower brancim(=0). of the thermal broadening is more clearly seen in Fidp) 6
For these two points, the wave funCt'of}ﬁki(Z) andgmkf(z) for sample 6 with much larget v, and a smaller density
are localized in the opposite wells, yielding very small scat, ,=2x10° cm L. In this case, the bottom region of the
tering matrixuj, ; and a large conductan¢eFor a wide ypper branch is occupied in spite of the low density because
channel with many sublevel®g>1) populated at high den- 7 4, is large requiring the occupation of fewer channel sub-
Sity, hOWeVer, there are some sublevels for which the Fermbvels_ For |argd’thz 0.2 meV7 it was necessary to restrict
level is outside their gaps, although the majority of the subpyr calculation to small densities in order to avoid large
levels have the Fermi level inside their gaps at Gg(B) Fermi wave numbers, which require long computational
minimum. The wave functions of the Fermi points outsidetimes. The sublevel depopulation effect is clearly seen at 0 K
the gap have significant amplitudes in both wells, yieldingfrom the dash-dotted curves for both the diffusive and quan-
large scattering matrices and reducing the enhancethenttized conductances. In particular, the sawtooth-like behavior
Therefore, only a moderate enhancement is obtained for thef the diffusive conductance is similar to that in Figs. 3 and
diffusive conductance as shown in Fig. 5. This figure indi-4 of the single QW’s.

cates that the effective back scattering is weakest, when the We found in Figs. 5 and (@) that the diffusive conduc-
number of the Fermi points is minimum, yielding maximum tance decreases with initially when only the lower branch
G,(B)/Gyy(0). TheaboveB-induced separation of the ini- is populated, in contrast to the case where both branches are
tial and final scattering states and the concomitant weakeningccupied. This effect is seen in Fig. 7 in samplessélid

of the scattering rate is still significant for the Fermi pointscurves and 7(dashed curvgsThese samples have the same
above the gaps of the sublevels at IBaand is responsible density but sample 7 has smaller center-barrier width, yield-
for the initial rise of the diffusive conductance at high den-ing a much larger 3.3 meV gap compared with the 1.6 meV
sities (thick solid and dashed curvedVe note that the dif- gap of sample 5. As a result, only the lower branch is occu-
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FIG. 6. G,,(B)/G,,(0) (thick curves andG,(B) (thin curves in unit of 2e%/h for (a) sample 5 withn;p=1x10" cm* (dash-dot

curves, 2X 10

cm’f (solid curvey, and 3x10° cm™ ! (dashed curvésat T=0.3 K and(b) for sample 6 withn;p,=2x10° cm t atT

=0 K (dash-dotted curvg¢s0.3 K (dashed curves and 3.0 K(solid curveg as a function ofB in the x direction. Here,G,,(0)
=17.8%/h (thick dash-dotted curye28.2?/h (thick solid curve, and 32.8°/h (thick dashed curvein (a) and G,,(0)=2.9°/h (thick
dash-dotted curye 3.0e%/h (thick dashed curye and 2.@%/h (thick solid curvé in (b) for Ly=1 um.

pied in sample 7 while both branches are populated irslow decrease arises from the fact that bottom region of the
sample 5. The basic features of the solid curves are similar tlower branch becomes flatter initially with increasifgy

those in Fig. 5 and have already been explained. On the othgielding a large DOS and requiring less channel sublevels to
hand, the quantized conductangee., the number of the accommodate the electrons. This effect is also partially re-

Fermi pointg of sample 7(thin dashed curyedrops very

sponsible for the reduction of the Fermi points in Fig. 5 for

SlOle Inltla”y with B. |n this case, the argument presenteanmFﬂe 5 and in F|g Kth"’] solid CUrVQ. The increasing

for the V-shaped quantized conductance for the high-densityensities of states at the Fermi points in the lower branches
case(where the number of the Fermi points changes fromysq increase the scattering rates, lowering the diffusive con-
four to two and back to four wittB) does not apply. The = qcrance initially as shown by the thick dashed curve. In

240 ————F——F———T——T—T

Sample 5
---------- Sample 7
< B || x

180

T=0K

Conductance Ratio, Quantized Conductance

T fio =0.02meV T
20 |- X _

- n,=2x10"cm" ]
1.5

Magnetic Field (T)

FIG. 7. G}
in unit of 2e“/

4(B)/G,(0) (thick curve andG,(B) (thin curves
h for samples Fsolid curve$ and 7(dashed curves
with n;p=2x10" cm ! at T=0 K as a function ofB in the x

contrast, this mechanism has little effect on the Bwdiffu-

sive conductance for the high-density sample 5 in Fig. 7
because the curvatures of both upper and lower branches are
negligibly affected at the Fermi points lying far above the
gap. As discussed earlier, tlieinduced localization of the
eigen functions of the initialk;) and final k;= —k;) states

into the opposite wells weakens the back scattering eventu-
ally as discussed earlier, maximizing the conductance around
B=23.3 T for the thick solid curve anB=4.8 T for the thick
dashed curve. Note however that the maximum and mini-
mum of the conductances are shifted to higBdor sample

7 (dashed curveselative to those of sample(Solid curves.
These shifts arise from the fact that the quanBtgnters Eq.
(34) approximately as a product.4B. B is then scaled as
1/d¢ which is larger for sample 7. An alternate explanation
is that a largeB is required to form a fully developed anti-
crossing humpsee Fig. 1 because of the stronger repulsion
(or tunneling between the upper and lower branches in
sample 7. This effect also explains the fact that the channel
sublevels are initially depopulated faster in sample 5 than in
sample 7 as seen from the more rapid initial decay of the
quantized conductance of sample 5 due to more rapid dia-

direction. Here, ny(0)=33.992/h (thick dashed curye and
28.4%/h (thick solid curve for Ly=1 wum. Sample Ysample ¥
has a large 50 Asmall 40 A center-barrier width, a small 1.6 meV
(large 3.3 meVY gap and has both branch@mly the lower branch
populated aB=0.
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magnetic rise of the sublevels.

In Fig. 8 we study the effect of the asymmetry of the
double QW’s atT=0 K using sample 5 withn;p=2
x10" cm™!, y,=0.16 meV, biasing the sample with dc
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'T o IK T T T T T T VII. CONCLUSIONS
200 A may ST - . . . . .
fiw, = 0.02 meV A We have investigated the quantized and diffusive magne-

7 - .
=2x10"cmj toquantum conductance for single and tunnel-coupled double

1D

150 - : 7 wires which are wide£1 um) in one perpendicular direc-
B O sl \v/ . tion with densely populated sublevels and extremely con-
100 L : \\\= /% i fined in the other perpendiculdr.e., growth direction. A
L s 48y ~ i S / L general analytic solution to the Boltzmann equation was pre-
24T s \\// ] sented for multisublevel elastic scattering at low tempera-
: B2 I o = 1 tures. The solution was employed to study interesting
18 4556 o000, 000 001 om0 001 ] magnetic-field dependent behavior of the conductance such

as the enhancement and the quantum oscillations of the con-
ductance for various structures and field orientations. These
phenomena originate from the followiririnduced proper-
ties, namely, magnetic confinement, displacement of the
initial- and final-state wave functions for scattering, variation
Magnetic Field (T) of the Fermi velocities, mass enhancement, depopulation of
~ the sublevels and the anticrossiiig double quantum wirgs
FIG. 8. G%/y(B)/ny(O) (thick curves andG%/y(B) (thincurves  The magnetoconductance was found to be strikingly differ-
in unit of 2e/h for sample 5 withn;p=2x10" cm ' atT=0 K  ent in long diffusive(or rough, dirty wires from the quan-
as a function ofB in the x direction. The sample is biased with a tized conductance in short ballistior clean wires. Numeri-
uniform dc fieldEq.=0 (solid curves, 0.1 kv/cm(dashed curves  ca| results obtained for the rectangular confinement
0.5 kviem (dash-double dotted curvesand 1 kv/icm(dash-dotted  potentials in the growth direction were satisfactorily inter-
curves. Here, G,,(0)=28.4%h (thick solid curve, 27.@%h  yrateq in terms of the analytic solutions based on harmonic
(thick dashed curje 26.4%h (thick dash-double dotted curye confinement potentials.
and 24.8%/h (thick dash-dotted curyefor Ly=1 um. For a single quantum wire the magnetic fi@dwas as-
sumed to be either in theor z direction. In either case, the
electric fieldsEq=0 (solid curveg, 0.1 kV/cm (dashed quantized conductance is a monotonically decreasing func-
curveg, 0.5 kV/cm (dash-double dotted curvesand 1 tion of B. When the magnetic field is in the direction,
kV/cm (dash-dotted curvgsA mismatch of about 1.3 meVis perpendicular to both the growth direction and the wire, we
introduced between the wells Hy;.=1 kV/cm. The thick  found, for the interface-roughness scattering, that the diffu-
solid curve in Fig. 8 folEy.=0 is the same as that in Fig. 5 sjve conductancé& increases as I6=B? at low B and as
and has a maximum &= 3.3 T. In this case, the structure is |n G«B at highB as shown in Fig. 2. However, the conduc-
symmetric and a full symmetric hump is developed. Thistance is superimposed with rapid quantum oscillations shown
hump disappears as shown in the right inset at the $8Bme in Fig. 3. The above low field behavior is due to the
when a severe energy mismatch is introduced through thg-induced relative displacement in thalirection of the ini-
bias E4.=1 kV/cm, suppressing the conductance maximumtial and final scattering states. On the other hand, the high-
as seen from the thick dash-dotted curve. The nearly flafield conductance enhancement arises from the magnetic
quantized conductance fd&,.=1 kV/cm (thin dash-dotted confinement of the initial and final wave functions away
curve is the consequence of the absence of the full anticross§rom the interfaces. The quantum oscillations in Fig. 3 are
ing gap where a sublevel can minimize its Fermi points fromdue to the channel-sublevel depopulation. In this case, the
four to two, thereby minimizing the quantized conductancechannel level separatiohw, is not affected byB. The de-
This effect also suppresses the peakgf(B)/G,,(0) due  population is through theB-induced mass enhancement.
to the increased gap. In this case, only the lower branch isjote that, by contrast, the quantized conductance decreases
occupied at B=0, yielding the initial decrease of with Bin this case. A very different behavior is obtained for
Gy,(B)/Gyy(0) of the dash-dotted curve in Fig. 8, similarly the diffusive conductance wheB is in the z direction as
to the behavior of the dashed curve in Fig. 7. At an intermeshown in Fig. 4. In this case, the conductance rises very
diate fieldE4.=0.5 kV/cm (thick dash-double dotted curve rapidly at lowB due to the relative displacement of the chan-
the B dependence of the diffusive conductance is similar tonel wave functions but the average conductance decreases at
the low-density(or strong-tunnelingcase in Figs. 5-7. Note high B due to the shrinking orbit size.
also that a small energy mismatch of 0.13 meV between the For coupled double QW’s, witB in the x direction, both
wells introduced by a small field&y=0.1 kV/cm (thick  the quantized and diffusive conductances show very different
dashed curvereduces the depth of thEy.=0 dip of the  behavior from single QW'’s. The quantized conductance has
diffusive conductance at 2.7 T and shifts it to 3.1 T. This isa V-shapedB dependence, showing a minimum. The diffu-
due to the fact that the fl& =0 horizontal broad align- sive conductance shows very differéBtdependences, de-
ment of the energy-dispersion curveshown in the inset of pending on whether both the upper and lower branches of the
Fig. 5 which coincides with the Fermi level &=2.7 Tis  tunnel-split ground doublet are occupiédeak-tunneling,
somewhat tilted and less flat as shown in the left inset of Fighigh-density limi} or only the lower branch is occupied
8 atB=3.1 T and occurs at a high&in this case. (strong tunneling, low-density limit In the former case, the
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conductance rises witB, suddenly drops to a dip, rises again conductance shows a similar behavior to the symmetric case
to a maximum, gradually decreases to a broad minimum andhere only the lower branch is occupied. This behavior of
steadily rises in the higtB limit as shown by the thick the diffusive conductance obtained for asymmetric wells as
dashed and solid curves in Fig. 5 for symmetric doublewell as for the low-density or large-gap samples is consistent
QW's. The highB limit corresponds to the single QW limit  with that observed recently for long double quantum wires.
where the electrons are localized in separate wells. The sugn the other hand, the V-shaped quantized conductance with
den drop of the conductance occurs when the Fermi level i minimum as shown in Figs. 5-8 is similar to that
coincident with one of the channel sublevels due to a ﬂabbservea‘G recent|y for short double quantum wires, Suggest_
bottom of the lower branch. The maximum of the diffusive ing that the transport may be ballistic for the samples. Bhe
conductance occurs due to tBeinduced separation of the dependence of the diffusive conductance obtained for smalll
initial and final back-scattering states into the opposite wells; . is similar to that observed recently fowo-dimensional

when the chemical lies inside the gaps of the majority of thejouble QW’s except for the superimposed quantum oscilla-
sublevels. The broad minimum arises from the large scattetions and the dif:'%*®'*The oscillations and the dip are the

ing rates aSSOCiated with the Iarge DOS at the IOWer gagnique Signatures of the discrete Sub'eve|8.

edges of the last few channel sublevels which pass through

the chemical potential. When only the lower branch is occu-

pied atB=0, however, the diffusive conductance decreases

initially with B as shown in Figs. 5 and 7. The behavior at ACKNOWLEDGMENTS
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