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Multisublevel magnetoquantum conductance in single and coupled double quantum wires
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We study the ballistic and diffusive magnetoquantum transport using a typical quantum point contact ge-
ometry for single and tunnel-coupled double wires that are wide~&1 mm! in one perpendicular direction with
densely populated sublevels and extremely confined in the other perpendicular~i.e., growth! direction. A
general analytic solution to the Boltzmann equation is presented for multisublevel elastic scattering at low
temperatures. The solution is employed to study interesting magnetic-field dependent behavior of the conduc-
tance such as a large enhancement and quantum oscillations of the conductance for various structures and field
orientations. These phenomena originate from the following field-induced properties: magnetic confinement,
displacement of the initial- and final-state wave functions for scattering, variation of the Fermi velocities, mass
enhancement, depopulation of the sublevels and anticrossing~in double quantum wires!. The magnetoconduc-
tance is strikingly different in long diffusive~or rough, dirty! wires from the quantized conductance in short
ballistic ~or clean! wires. Numerical results obtained for the rectangular confinement potentials in the growth
direction are satisfactorily interpreted in terms of the analytic solutions based on harmonic confinement po-
tentials. Some of the predicted features of the field-dependent diffusive and quantized conductances are con-
sistent with recent data from GaAs/AlxGa12xAs double quantum wires.

DOI: 10.1103/PhysRevB.64.115320 PACS number~s!: 73.40.Gk, 72.20.My, 72.20.Fr, 73.40.Kp
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I. INTRODUCTION

Much attention has recently been focused on the low te
perature ballistic quantum transport through a single nar
constricted channel~or wire!, the so-called quantum poin
contact,1–3 and also tunnel-coupled double wires.4–7 The
quantum ballistic conductance of these wires exhibits m
interesting properties.1 These wires are very thin in one d
rection and wide~e.g.,&1 mm) in the other direction per
pendicular to the wire, producing dense sublevels. In
paper, we show that the diffusive conductance of these st
tures exhibits many interesting field-dependent propert
strikingly different from those of the ballistic conductance

A single-channel quantum point contact is schematica
shown in Fig. 1~a!. This channel consists of an electron ga
for example, in a thin highly conducting GaAs layer
(;100 Å) confined between AlxGa12xAs layers in the
growth ~z! direction. The current flows in they direction
through a narrow quasi-one-dimensional~1D! wire region
which is formed by further constricting the current in th
perpendicular~x! direction by applying a negative bias in th
split metallic gate on top of the AlxGa12xAs layer as shown
in Fig. 1~a!. In this structure, only the ground sublevel
occupied in thez direction. However, the confinement in th
x direction is much less severe, producing many clos
separated sublevels~to be defined as channel sublevels!. For
a channel width of the order of amm, the energy separatio
for the low-lying sublevels is a small fraction of an meV. Th
energy dispersion curves of these sublevels are illustrate
Fig. 1~b!. As is well known, the conductance decreases
quantum steps of 2e2/h in the ballistic regime as the bia
becomes more negative, due to the depopulation of the c
nel sublevels. Similar monotonic quantized conducta
0163-1829/2001/64~11!/115320~13!/$20.00 64 1153
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steps were observed as a function of a perpendicular m
netic field.2,3

Recently, the effect of interlayer tunneling has been st
ied in a tunnel-coupled double channel structure illustrated
Fig. 1~c!.4–7 In this structure, the two GaAs conducting cha
nels are separated by a thin AlxGa12xAs barrier which al-
lows the electrons to tunnel between the two GaAs chann
The channel constriction in thex direction is achieved in
both channels independently through top and bottom s
gates, which allow probing both the 2D-2D, 2D-1D, an
1D-1D regimes by adjusting the gate biases.4 Electron tun-
neling deforms the electronic structure in the channel dir
tion dramatically in the presence of a magnetic fieldB in the
x direction due to the anticrossing effect as illustrated in F
1~d!.8–10 Here the thick solid curves represent the lower a
upper branches of the tunnel-split ground-state doublet s
rated by the anticrossing gap in thez direction for the ground
channel subleveln50. Basically, these branches are made
two ground-state parabolas from each well which are d
placed bydk}B in k space relative to each other, with th
degeneracy lifted at the intersecting point and the curves n
this point deformed by the anticrossing gap as shown.9 The
humps in Fig. 1~d!, develop at a sufficiently highB.9 The gap
passes through the chemical potential asB increases. The
thin curves are replicas of these curves: each pair repres
a higher channel subleveln51,2, . . . . Arecent calculation
predicted,5 for this coupled double-wire structure, that th
ballistic conductance shows a V-shaped quantum stairc
and decreases in steps of 2e2/h as a function of the field,
reaches a minimum and then increases and saturates at
fields in agreement with the observed data.4

When the ballistic conductance does not show clear qu
tized behavior due to thermal or level broadening, it is n
©2001 The American Physical Society20-1
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possible to determine if the electronic motion is ballistic
diffusive at zero magnetic field. Therefore it is interesting
calculate the field dependence of the conductance in the
limits. We find that, apart from the quantum steps, these
regimes show strikingly differentB-dependent behavior o
the conductance due to the magnetic confinement and
placement of the initial- and final-state wave functions
scattering, variation of the Fermi velocity, field-induced ma
enhancement, depopulation of the sublevels and the fi
induced anticrossing~in double quantum wires!. The case of
double-quantum wires is especially interesting, because
diffusive conductance is enhanced gigantically when
chemical potential lies in the anticrossing gap at a mode
B in the extreme quantum limit. In this limit, only the groun
channel sublevel and the ground tunnel-split doublet are
cupied due to extreme confinements in bothx and z
directions.11–13 In wide double quantum wells~QW’s! with
densely populated channel sublevels, however, we find o
a moderate enhancement of the conductance.

The Boltzmann equation involves elastic scatter
among the Fermi points. The number of the Fermi poi
decreases monotonically as a function ofB in single QW’s,
but in double QW’s increases after a minimum and satura
at high fields. Each of the states at the Fermi points gener
a rate equation. We show that these coupled equations

FIG. 1. ~a! A schematic diagram of a single quantum wire. T
narrow channel is formed by applying a negative bias on the
split metallic gate, not shown.~b! Parallel energy-dispersion curve
of the channel sublevels of a single quantum wire. The levels
long to the ground sublevel from thez confinement.~c! Double
quantum wires. Electrons tunnel between the wires through
Al xGa12xAs barrier in thez direction. ~d! The energy-dispersion
curves of tunnel-coupled symmetric double QW’s. The tunnel-s
ground doublet for the ground (n50) channel sublevel is shown i
thick curves for upper and lower branches. The thin curves~includ-
ing the higher-energy levels represented by the vertical dots! are
replicas of these curves shifted uniformly by\vx in the harmonic
channel confinement model and belong to the ground doublet.
horizontal black dots represent the Fermi points. The current fl
in the y direction. A magnetic fieldB is in the x direction for the
double wires and is either in thex or z direction for the single wire.
11532
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an overcomplete set of equations and are not linearly in
pendent when the number of the Fermi points is finite.
formalism is developed for a general solution which is o
tained by eliminating a redundant equation. The effect
weak localization and many-body effects are ignored in t
paper.

The organization of this paper is as follows. In Sec. II, w
present a formalism to calculate the conductance of mu
sublevel magnetotransport of electrons in quantum wire s
tems using the Boltzmann equation in the presence of im
rity or interface-roughness scattering. Formal expressions
given for the impurity and interface-roughness scattering m
trix in Sec. III for single and tunnel-coupled double quantu
wires in a magnetic field, assuming a parabolic channel c
finement which is employed throughout the paper. The s
tering matrix elements are calculated for a single QW wh
the magnetic field is applied in the two perpendicular dire
tions to the wire, further assuming a parabolic confinem
in the growth direction in Sec. IV. An explicit expression
given for the scattering matrix elements for double quant
wires in a magnetic field for a generalz confinement in Sec.
V. The field dependence of the diffusive conductance
evaluated numerically in Sec. VI using rectangularz confine-
ments and is compared with that of the ballistic conducta
for various single-well and double-well structures. The n
merical results are interpreted in terms of the analytic res
based on the harmonicz confinement. Comparison is mad
with available data. The paper is summarized in Sec.
with discussions.

II. MULTISUBLEVEL MAGNETOTRANSPORT

In this paper, we consider two systems consisting of eit
single or tunnel-coupled double quantum wires schem
cally illustrated in Fig. 1. The Boltzmann equation for th
magnetotransport of electrons along they direction is given
by14

v j1
2p

\ (
j

uVj 8, j u2~gj 82gj !d~Ej2E j 8!50. ~1!

Here j 5$n,m,k% represents a set of quantum numbe
where n,m(50,1, . . . ) are thechannel-sublevel quantum
number and the sublevel index associated with the quan
tion in thex andz directions, respectively,Ej is the energy of
the electron andv j5\21dEj /dk is the group velocity along
the wire. We do not assumeE(2k)5E(k).15 Here k is the
wave number along they direction. In general,e(2k)
Þe(k) for asymmetric double quantum wipes in Fig. 1~d!.
The quantitygj describes the component of the nonequil
rium distribution function f j5 f 0(Ej )1gj@2 f 08(Ej )#eE,
where the second term represents the linear deviation f
the equilibrium distribution functionf 0(Ej ). HereE is the dc
field andf 08(E) is the first derivative of the Fermi function. In
our numerical application, only the ground sublevelm50 is
occupied for single quantum wires. For double quant
wires, the tunnel-split ground doubletm50,1 are occupied.
In Eq. ~1!, Vj 8, j is the scattering matrix in the Born approx
mation. The Born approximation is valid in the present si
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MULTISUBLEVEL MAGNETOQUANTUM . . . PHYSICAL REVIEW B 64 115320
ation where the channel sublevels are densely separ
However, in the extremely narrow double-quantum-w
channel where the channel sublevel spacing is much la
than the anticrossing gap, higher order corrections to
Born approximation can be significant when the Fermi le
lies inside the gap.12,13 The effect of the magnetic field i
contained in the eigenvaluesEj , wave functions, and the
chemical potential as will become clear later.

The conductance equals

Gyy~B!5
2e2

Ly
2 (

j
v jgjE

0

1`

dEd~Ej2E!@2 f 08~E!#

5
2e2

hLy
E

0

1`

dE @2 f 08~E!# (
n51

NF

sngn , ~2!

whereLy is the length of quantum wires andsn5vn /uvnu5
61. Thek summation accompanying thej summation in Eq.
~2! is replaced by (Ly /h)*(1/uv j u)dEj , yielding the second
equality. The well-known cancellation of the current opera
v j and the one-dimensional density of states factor 1/uv j u is
responsible for the signsj5v j /uv j u in the final expression in
Eq. ~2!. Here, n represents each intersecting point of t
energy parameterE with the dispersion curve described b
the quantum numbersn,m. These points become the Ferm
points with $nF ,mF ,kF% at zero temperature. The set of th
quantum numbers$n,m,k% at the energyE will still be called
the ‘‘Fermi points’’ for convenience hereafter. The quantiti
sn and gn are uniquely determined for eachE. The total
number of the ‘‘Fermi points’’NF is a large even number an
a function ofB. At zero temperature, Eq.~2! yields

Gyy~B!5
2e2

hLy
(
n51

NF

sngn , ~3!

where the signssn561 are paired at the Fermi points on th
same dispersion curve. The ballistic quantized conducta1

G̃yy(B)52e2NF /h is obtained by setting the mean-free pa
at each Fermi point equal to the maximum valuesngn5Ly in
Eq. ~3!.

Equation~1! can be rewritten after carrying out thek in-
tegration as

sn1 (
n851

NF

un,n8~gn82gn!50, ~4!

whereu is anNF3NF symmetric scattering matrix with th
off-diagonal elements given by

un,n85un8,n5
Ly

\2

uVn8nu2

uvn8vnu
for nÞn8. ~5!

By defining the diagonal elements foru as

un,n52 (
n8Þn

un,n8 , ~6!
11532
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and introducing the column vectors

g5F g1

g2

A

gNF

G and s5F s1

s2

A

sNF

G , ~7!

we can cast Eq.~4! into a linear matrix equation

ug52s. ~8!

Unfortunately, the coupled equations~of orderNF) in Eq. ~8!
cannot be solved by simply invertingg52u21s, becauseu
does not have an inverse~i.e., detu50). This claim is easily
demonstrated by showing that the sum of all the rows ou
vanishes for each column. Namely the rows are not linea
independent. To avoid this problem, we discard the last r
in Eq. ~8! and obtain theNF21 coupled equations:

UG1gNF
UNF

52S. ~9!

HereU is a (NF21)3(NF21) submatrix obtained by dis
carding the last row and the last column ofu, UNF

is the last

column vector ofu without the last element, andS, G are
obtained froms, g by truncating the last elementssNF

and

gNF
, respectively:

UNF
5F u1,NF

u2, NF

A

uNF21,NF

G , S5F s1

s2

A

sNF21

G ,

and ~10!

G5F g1

s2

A

gNF21

G .

Further introducing a new column vector

G85F g18

g28

A

gNF218
G5G2gNFF 1

1

A

1

G , ~11!

we obtain from Eq.~9!

UG852S, ~12!

yielding G852U21S.
The solutionG8 in Eq. ~12! does not include the as-ye

undetermined parametergNF
. However, this does not pos

any problem because the conductance in Eq.~2! turns out to
be independent of this undetermined parameter as will
0-3
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S. K. LYO AND DANHONG HUAN PHYSICAL REVIEW B 64 115320
shown in the following. ReplacingG by G8 through the re-
lationship in Eq.~11! and usings11s21•••1sNF

50 for a
general electronic structure which is a continuous function
k, we find (n51

NF sngn5S†G8 for the last term in Eq.~2! and
therefore

Gyy~B!52
2e2

hLy
E

0

1`

dE @2 f 08~E!#S†U21S. ~13!

In Eq. ~13!, S† is the transpose ofS. The final expression on
the right-hand side of Eq.~13! does not include any unknow
parameter.

III. SCATTERING MATRIX

The square of the scattering matrix is defined as a c
figuration average over the distribution of the scatter
centers, i.e.,

uVj 8, j u25^^u^ j 8uV~r !u j &u2&&av, ~14!

whereV(r ) is the scattering potential from impurities or th
interface roughness.

A. Impurity scattering

For impurities with very short interaction range, the
scattering potential takes the form

V~r !5U0V0(
i

d~r2r i !, ~15!

where r i is the position vector of impurities. In Eq.~15!,
V(r ) has the strengthU0 inside a small local volumeV0 and
vanishes outside. The impurities are further assumed to
distributed over two sheets atz5z1 andz5z2 and uniformly
within the xy plane. Inserting Eq.~15! into Eq. ~14! and
using Eq.~5!, we find

uj 8, j5
nIV0

2U0
2

\2uv jv j 8u
E

2`

1`

dxufn8~x!fn~x!u2

3 (
i 51,2

ci ujm8k8~zi !jmk~zi !u2, ~16!

wherenI is the impurity density,ci is the fractional distribu-
tion with c11c251, fn(x) andjmk(z) are thex andz com-
ponent of the electron wave functions in quantum wires.

B. Interface-roughness scattering

For interface roughness, the scattering potential is12,16

V~r !5(
i

Vidbi~r i!d~z2zi !, ~17!

whereVi is the conduction band offset at thei th interface at
z5zi , dbi(r i) is the layer fluctuation, andr i is the position
vector within the xy plane. Introducing the correlatio
lengths according to
11532
f
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^^dbi~r i!dbi 8~r i8!&&av5d i ,i 8dbi
2expF2

~x2x8!2

Lx
2 G

3expF2
~y2y8!2

Ly
2 G , ~18!

and using Eqs.~5! and ~14!, we find

uj 8, j5
ApLy

\2uv jv j 8u
expF2

1

4
~k2k8!2Ly

2G
3E

2`

1`

dxfn8
* ~x!fn~x!E

2`

1`

dx8fn8~x8!fn* ~x8!

3expS 2
~x82x!2

Lx
2 D(

i
uVidbijm8k8~zi !jmk~zi !u2,

~19!

wheredbi is the average layer fluctuation, andLx andLy are
the correlation lengths in thex andy directions. The approxi-
mation in Eq.~18! is valid for wide wells. For narrow wells
the layer fluctuationdbi(r i) should be treated as steplik
potentials. The result in Eq.~19! reduces to Eq.~16! in the
limit Lx ,Ly→0 and pLxLyVi

2dbi
25nIV0

2V0
2ci . For this

reason, we consider only the interface-roughness scatte
for numerical applications hereafter.

The matrix elementuj 8, j in Eqs. ~16! and ~19! diverges
when the chemical potential lies at the bottom of the ba
~i.e.,v j50). This divergence~associated with the divergenc
of the density of states! is avoided by introducing a level
broadening parametergn at the bottom of the band fornth
Fermi point, which yields

1

vn
5H ~mn* /gn!1/2 if 1/vn.~mn* /gn!1/2,

1/vn if 1/vn<~mn* /gn!1/2,
~20!

wheremn* 5\2(d2En /dk2)21 is the effective mass.

C. Parabolic channel confinement

In this paper, we assume a parabolic potential for
channel confinement with the Hamiltonian given by

Hx52
\2

2mW

]2

]x2
1

1

2
mWvx

2x2. ~21!

The wave function is given by

fn~x!5~Ap2nn! l x!
21/2 exp~2x2/2l x

2!Hn~x/l x!,
~22!

where Hn(x) is the nth-order Hermite polynomial
and l x5A\/mWvx. The eigenvalues are given b
E n

x5(n11/2)\vx with n50,1,2, . . . .
The x8 integration in Eq.~19! can be carried out by

employing Eq.~22!. We find17
0-4
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uj 8, j5
ApaxLy

\2uv jv j 8u
A nn8

2 expF2
1

4
~k2k8!2Ly

2G (
p50

n,

2pp!Cn,pCn8,p~12ax
2!(n1n8)/22p(

i
uVidbijm8k8~zi !jmk~zi !u2

3E
2`

1`

dxHn8~x!Hn~x!Hn1n822pS ax
2lx

2x

A12ax
2D exp@2$11~12ax

2lx
2!lx

2%x2#, ~23!

where lx5l x /Lx , ax51/A11lx
2, A nn85(2n1n8n!n8!p)21/2, n,5min(n,n8), and Cn,p5p!/n!(n2p)! is the binomial

expansion coefficient. We can perform the integration in Eq.~23! using the fact that\vx is usually very small. For example
for \vx50.1 meV andmW50.067~in units of the free electron massm0), we estimatel x51.0663103Å@Lx . In this limit
we havelx@1,ax!1 and find17

uj 8, j5
LxLy

\2l xuv jv j 8u
A nn8

2 expF2
1

4
~k2k8!2Ly

2G(
i

uVidbijm8k8~zi !jmk~zi !u2(
p50

n,

p!Cn,pCn8,p

3exp„2ax
2@~n1n8!/22p#…2n1n821/2G~p1 1

2 !G~n2p1 1
2 !G~n82p1 1

2 !, ~24!
-

-

-

eases

d

-
ipa-
be-

nce

at
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whereG(x) is the gamma function.

IV. SINGLE QUANTUM WIRE

We assume that the magnetic fieldB5(Bx ,0,Bz) is per-
pendicular to the wire with the vector potential given byA
5(0,Ay ,0) andAy52Bxz1Bzx. The Hamiltonian is given
by

H52
\2

2

]

]zF 1

m* ~z!

]

]zG1USQW~z!1Hx

1
\2

2m* ~z!
S k1

eAy

\ D 2

, ~25!

whereHx is defined in Eq.~21!, the last term is the kinetic
energy along the wire, andUSQW(z) is the single-quantum
well potential which is zero inside the well andV0 outside.
The well width is Lz and m* (z) is the electron effective
mass which equalsmW andmB inside the well and the bar
riers, respectively. The Zeeman energy is neglected.

A. Bix

When B is in the x direction ~i.e., B5Bx), we find H
5Hx1Hz with

Hz52
\2

2

]

]zF 1

m* ~z!

]

]zG1USQW~z!1
\2

2m* ~z!
S k2

z

l c
2D 2

.

~26!

Defining Hzjmk(z)5E mk
z jmk(z) and employing m* (z)

5mW ,USQW(z)5mWvz
2z2/2 for the quantum-well confine

ment, the quantized electron energy is given by

Ej5S n1
1

2D\vx1S m1
1

2D\Vz1
\2k2

2m**
, ~27!
11532
where n,m50,1,2,•••, m** 5mW /@12(vc /Vz)
2#, vc

5eB/mW , andVz5Avc
21vz

2. The wave functionjmk(z) is
given by

jmk~z!5~Ap2mm! l cz!
21/2 exp@2~z2Dzk!

2/2l cz
2 #

3Hm@~z2Dzk!/l cz#, ~28!

where l cz5A\/mWVz and Dzk5kl c
2(vc /Vz)

2 with l c

5A\/eB. We note from Eq.~27! that the electron effective
massm** becomes heavier for transport in they direction
and the sublevel separation\Vz increases withB. Heavier
mass increases the density-of-states and therefore decr
NF .

The scattering matrixuj 8, j is given by the expression in
Eq. ~24! which contains the factorjm8k8(zi)jmk(zi). How-
ever, according to Eq.~28!, the centers of these initial- an
final-state wave functions are shifted byDzk8
5k8l c

2(vc /Vz)
2 and Dzk5kl c

2(vc /Vz)
2, respectively.

Since the signs ofk8 and k are opposite for the back
scattering processes responsible for the momentum diss
tion, these magnetic displacements reduce the overlap
tween the initial and final states exponentially and enha
the conductance. For the back scatteringk852k, for ex-
ample, the product becomesjm8k8(zi)jmk(zi)} exp„
2F(B)… where F(B)5(zi /l cz)

21(Dzk /l cz)
2. The func-

tion F(B) varies significantly as a function ofB as can be
seen from the following numerical estimate. ForB510 T
~with l c581.1 Å), m* 50.067, andk50.02 Å21, for ex-
ample, and\vz.DE515.4 meV~sample 1 in Table I!, we
find \Vz523.2 meV,Dzk573.1 Å, l cz570 Å, andF(B)
5(zi /70)211.09. ForB50, on the other hand,l cz586 Å
and F(0)5(zi /86)2, yielding a large valueF(B)2F(0)
52.64 forzi5150 Å at the interface in sample 1. Note th
the limiting behavior of the conductance is given appro
mately byGyy(B)} exp@2F(B)# whereF(B)}B2 in the low-
field limit (vc!vz) and F(B)}B in the high-field limit
(vc@vz). This point will be further illustrated in the nu
merical results in Sec. VI A.
0-5
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B. Biz

WhenB lies in thez direction ~i.e., B5Bz), it is conve-
nient to write the Hamiltonian asH5H̃x1H̃z , where

H̃x52
\2

2mW

]2

]x2
1

1

2
mWVx

2~x1Dxk!
21

\2k2

2m**
, ~29!

TABLE I. Single-quantum-well wires with well depth of 28
meV, width Lz , ground-second level separationDE, and the uni-
form channel sublevel separation\vx .

Sample no. Lz ~Å! DE ~meV! \vx ~meV!

1 300 15.4 0.02

2 210 29.0 0.02

3 210 29.0 0.2

4 210 29.0 2
-
t

ce
n

io

11532
H̃z52
\2

2

]

]zF 1

m* ~z!

]

]zG1USQW~z!, ~30!

where Vx5Avc
21vx

2, Dxk5kl c
2(vc /Vx)

2, and m**
5mW /@12(vc /Vx)

2#. The electron wave functions are ob

tained fromH̃xfnk(x)5E nk
x fnk(x) andH̃zjm(z)5E m

z jm(z)
with E nk

x 5(n11/2)\Vx1\2k2/2m** . Again, the electron
effective mass in they direction and the sublevel separatio
increase withB. For m* (z)5mW ,USQW(z)5mWvz

2z2/2, the
quantized electron energy is

Ej5S n1
1

2D\Vx1S m1
1

2D\vz1
\2k2

2m**
, ~31!

with n,m50,1,2, . . . . Theeigenfunctions are given by
h

Ffnk~x!

jm~z!
G5F ~Ap2nn! l cx!

21/2exp@2~x1Dxk!
2/2l cx

2 #Hn@~x1Dxk!/l cx#

~Ap2mm! l z!
21/2exp@2z2/2l z

2#Hm~z/l z!
G , ~32!

where l cx5A\/mWVx and l z5A\/mWvz. The center of the wave functionfnk(x) is shifted by -Dxk , yielding a field-
induced reduction in the overlap of the initial and final scattering states similar to theBix case. When the correlation lengt
Lx is very short, namely forLx!l cx , the scattering matrix in Eq.~19! can be calculated analytically using Eq.~32!, yielding17

uj 8, j5
LxLy

\2uv jv j 8ul cx

expF2
1

4
~k2k8!2Ly

2G(
i

uVidbijm8~zi !jm~zi !u2

3E
0

1`

dq cos~qDxk82k /l cx!expS 2
1

2
q2DLnS q2

2 DLn8S q2

2 D , ~33!
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whereLn(x) is the nth-order Laguerre polynomial. We as
sume that the interface roughness exists only on one of
two interfaces in GaAs/AlxGa12xAs single QW’s~i.e., db1
[db,db250). The B dependence of the conductan
is very different from theBix case, as will be shown later i
Sec. VI.

V. TUNNEL-COUPLED DOUBLE QUANTUM WIRES

For double quantum wires, a most interesting situat
occurs whenB is in thex direction~i.e.,B5Bx). In this case,
the Hamiltonian is the sum ofH5HDQW

z 1Hx , whereHx

was defined in Eq.~21! and

HDQW
z 52

\2

2

]

]zF 1

m* ~z!

]

]zG1UDQW~z!

1
\2

2m* ~z!
S k2

z

l c
2D 2

, ~34!
he

n

where UDQW(z) is the double QW potential which is zer
inside two wells with widthsLz1 and Lz2 and V0 in the
center barrier~with thicknessLB) as well as in the two oute
barriers for GaAs/AlxGa12xAs double QW’s. An intuitive
understanding of the role ofB in Eq. ~34! is gained by using
a tight-binding picture where thez-wave functions are local-
ized in each well separated by an effective distancedeff .
Heredeff is roughly the distance between the maxima of t
wave functions of the two wells. In the absence of tunnel
~in thez direction!, the energy dispersion consists of two se
of an infinite number of parallel parabolas for each we
separated by the energy\vx . The net effect of the magneti
field in the last term of Eq.~34! is to shift the two sets of the
energy-dispersion parabolas relative to each other bydk
5deff /l c

2 along the wire direction ink space, producing
points of intersection between these two sets of the para
las. In particular, for each pair of the parabolas with the sa
quantum numbern out of these two sets, an anticrossing g
opens when tunneling is switched on as shown in Fig.
0-6
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These gaps pass through the chemical potential success
as B is increased,5,9 producing interesting transport prope
ties.

The wave functions are given byHxfn(x)5(n
1 1

2 )\vxfn(x) andHDQW
z jmk(z)5E mk

z jmk(z), wherefn(x)
is defined in Eq.~22! and jmk(z) is calculated numerically
using Eq.~34!. A parabolic potential is no longer appropria
for the double-quantum-well electron confinement in thez
direction. Only the two lowest tunnel-split doublet stat
with m50,1 are occupied for the small well widthsLz1 and
Lz2 considered here. The quantized electron energy is

Ej5S n1
1

2D\vx1Emk , ~35!

where n,m50,1,2, . . . . The eigenvalues in Eq.~35! are
shown in Fig. 1. The two thick curves therein correspond
Emk with m50 ~lower curve! andm51 ~upper curve!. The
scattering matrixuj 8, j is given by Eq.~23! in general and by
Eq. ~24! in the limit of l x@Lx . The interface roughness i
assumed to exist only at the two interfacesi 51,2 between
the GaAs wells and the AlxGa12xAs barriers in the growth
sequence of GaAs/AlxGa12xAs double QW’s with db1
5db25db. As will be shown in Sec. VI, the anticrossin
effect introduces strikingly different phenomena to the m
netotransport absent in single-wire structures.

VI. NUMERICAL RESULTS AND DISCUSSIONS

In our numerical calculations, we study the conductan
ratio Gyy(B)/Gyy(0) in the diffusive limit ~relevant to long
wires! as a function of magnetic fieldB in both single and
tunnel-coupled double quantum wires in the presence
interface-roughness scattering. The quantized conduct
G̃yy(B) is also displayed for short quantum wires not on
for comparison but also for showing the number of the po
lated sublevels at eachB. For single quantum wires, a un
form magnetic field is applied either in thex or z direction,
perpendicular to the wires. For double quantum wires,
magnetic field lies always in thex direction. The effects of
the well width, channel sublevel separation, electron den
center barrier thickness, and the temperature
Gyy(B)/Gyy(0) and G̃yy(B) are investigated. The param
eters employed for all the samples in our calculation
listed in Tables I and II. For these samples, we useV0
5280 meV, mW50.067, and mB50.073. The level-
broadening parameters are chosen to begn50.16 meV for

TABLE II. Double-quantum-well wires with well depth of 280
meV, widthsLz1 ,Lz2, center-barrier widthLB , ground-doublet tun-
nel splittingDSAS at B50, and the uniform channel sublevel sep
ration \vx .

Sample no. Lz1 /Lz2 ~Å! LB ~Å! DSAS ~meV! \vx ~meV!

5 80/80 50 1.6 0.02

6 80/80 50 1.6 0.2

7 80/80 40 3.3 0.02
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all single-quantum-wire samples andgn50.1DSAS for sym-
metric double-quantum-wire samples whereDSAS is the
splitting between the symmetric and antisymmetric state
B50. The other roughness-related parameters areLx5Ly
530 Å anddb55 Å. The single and double QW’s are a
sumed to be rectangular wells in thez direction. For single
quantum wires, the energy separation between the first
second sublevels atB50 are denoted asDE in Table I. In the
following applications, only the ground sublevel and t
ground tunnel-split doublet are populated for single a
double wires, respectively.

A. Single quantum wells

We display in Fig. 2 the diffusive conductance rat
Gyy(B)/Gyy(0) ~thick solid curve, left axis! and the quan-
tized conductanceG̃yy(B) ~thin dashed curve, right axis! at
T50 K as a function ofBix for sample 1 with a linear
densityn1D523107 cm21. For this sample, the well width
is large with a small level separation\vz;DE515.4 meV
~see Table I!. All the occupied channel sublevels belong
the m50 ground sublevel. A total of 85 channel subleve
are occupied atB50 with 170 Fermi points.

Since G̃yy(B) is proportional to the total number of th
Fermi pointsNF and therefore the number of the occupi
sublevels, the quantized conductanceG̃yy(B) decreases in
steps of 2e2/h with increasingB owing to the fact that the
effective massm** and thus the density of states~DOS!
increases withB as seen from Eq.~27!.2 In contrast, the
diffusive conductanceGyy(B)/Gyy(0) increases exponen
tially in Fig. 2 as exp(c1B

2)'11c1B
2 in the low-B region and

as exp(c2B)'11c2B in the high-B region, wherec1 and c2
are constants. The physical origin of this behavior was d
cussed in Sec. IV A. The high-B limit vc>vz is reached at
B58.9 T. The enhancement ofGyy(B)/Gyy(0) is much
smaller in Fig. 3 because of larger\vz ~or smallerLz). Os-

FIG. 2. Gyy(B)/Gyy(0) ~thick solid curve! and G̃yy(B) ~thin
dashed curve! for sample 1 withn1D523107 cm21 at T50 K as
a function ofB in the x direction. Here,Gyy(0)549.0e2/h for Ly

50.1 mm. The inset displays the low-B behavior of
Gyy(B)/Gyy(0) for 0<B<3 T.
0-7
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FIG. 3. Gyy(B)/Gyy(0) ~thick solid curve! and G̃yy(B) ~thin dashed curve! for ~a! sample 2 and~b! sample 3 withn1D52
3107 cm21 at T50 K as a function ofB in thex direction. Here,Gyy(0)516.8e2/h in ~a! andGyy(0)515.3e2/h in ~b! for Ly50.1 mm.
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cillations seen in the inset of the figure come from the s
cessive depopulation of the sublevels asB increases. This
oscillating feature is much more pronounced in samples w
largevx as shown in Fig. 3~b! and will be examined in more
detail below. Note also that the diffusive conductance can
grow indefinitely. It reaches the maximum at the ballis
quantized conductance value and follows theB-dependent
behavior ofG̃yy(B) thereafter.

Figure 3 presents the conductance ratioGyy(B)/Gyy(0)
~thick curves, left axis! and the quantized conductanc
G̃yy(B) ~thin curves, right axis! at T50 K as a function of
Bix for samples 2@in 3~a!# and 3 @in 3~b!# with n1D52
3107 cm21. A total of 86 channel sublevels are occupied
B50 in sample 2 with\vx50.02 meV. Sample 3 has muc
larger\vx50.2 meV and contains only 40 occupied chann
sublevels, producing a lowerG̃yy(B) than sample 2. The
plateaus inG̃yy(B) and the intervals between the abru
jumps inGyy(B)/Gyy(0) coincide and indicate the interme
diate stages between two successive depopulations an
much wider for sample 3 than for sample 2. The reduction
the plateau widths and the oscillation intervals f
Gyy(B)/Gyy(0) with increasingB reflects the increased den
sity of states}Am** in each channel sublevel. The effectiv
massm** 5mW /@12(vc /Vz)

2# was introduced in Eq.~27!.
The conductanceGyy(B)/Gyy(0) in Fig. 3~a! decreases
monotonically between the successive nearly discontinu
jumps. This behavior is explained in terms of a simple p
ture where the conductance is proportional to the sum
vk

2rktk5uvkutk on the Fermi surface with the DOS given b
rk51/vk . The transport relaxation timetk is the inverse of
the weighted sum of the DOS over the Fermi points. T
Fermi velocity uvku decreases steadily as the Fermi po
moves toward the bottom of the sublevel with increasingB,
raising rk and thereby decreasingtk and the conductance
The Fermi point near the bottom of the nearly empty t
sublevel withvk.0 makes a negligible contribution to th
current but contributes significantly to reducingtk through
its large DOS. Namely, the electrons at other Fermi po
are rapidly scattered into this Fermi point because of its la
11532
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DOS rk51/vk . The role of the damping parametergn is to
avoid the divergence ofrk at vk50 and maketk and the
conductance nonvanishing at the bottom of the band
before depopulation. When the top sublevel is depopula
the DOS decreases abruptly, yielding a nearly discontinu
jump in tk and the conductance, leading to the sawtoothl
oscillating feature. The height of the jump scales as 1/NF

since the depopulation effect will be more significant wh
there are smaller number of sublevels, yielding larger ju
heights for sample 3 compared to that of sample 2. Note
the vertical axes of these two curves have different sca
Apart from the oscillations, the average diffusive condu
tance increases quadratically inB as discussed for Fig. 2
through theB dependence of the scattering matrixuj 8, j . The
effect of the latter is reflected in the slow increase
Gyy(B)/Gyy(0) in Fig. 3~b! between the slow decrease an
the subsequent jump.

Figure 4 displays the conductance ratioGyy(B)/Gyy(0)
~thick curves, left axis! and the quantized conductanc
G̃yy(B) ~thin curves, right axis! as a function ofBiz at T
50 K for sample 3@Fig. 4~a!# and sample 4@Fig. 4~b!# with
low electron densitiesn1D513106 cm21 ~dashed curves!
and 23106cm21 ~solid curves!. Sample 4 has much large
\vx52 meV compared to\vx50.2 meV of sample 3, al-
lowing a relatively smaller number of the channel sublev
to be populated. The oscillating sawtoothlike features
Gyy(B)/Gyy(0) are associated with the sublevel depopu
tion as in Fig. 3 and are much more pronounced for sam
4. In contrast to theBix case in Fig. 3, however, the averag
Gyy(B)/Gyy(0) in Fig. 4 ~without the superimposed oscilla
tions! decreases withB except for the initial steep rise nea
B50. The origin of this drastically different behavior from
the high-B behavior in Figs. 2 and 3 lies in the fact that th
magnetic field in thez direction shrinks the channel orbit siz
l cx and increases the massm** in Eq. ~29!, thereby increas-
ing uj 8, j}m** 2/l cx according to Eq.~33! and decreasing
Gyy(B)/Gyy(0). Thesame behavior is not obtained forl cz
for the Bix case becausevz@vx . At low fields, namely in
the limit vc!vx , dominant scattering occurs fromn5n8. In
0-8
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FIG. 4. Gyy(B)/Gyy(0) ~thick curves! and G̃yy(B) ~thin curves! for ~a! sample 3 and~b! sample 4 withn1D513106 cm21 ~dashed
curves! and 23106 cm21 ~solid curves! at T50 K as a function ofB in thez direction. Here,Gyy(0)59.9e2/h ~dashed curve! and 15.5e2/h
~solid curve! in ~a! andGyy(0)54.2e2/h ~dashed curve! and 15.9e2/h ~solid curve! in ~b! for Ly510 mm.
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this case,uj 8, j decreases rapidly with increasingB due to the
B-induced relative displacementDxk82k of the initial and
final wave functions, thereby increasingGyy(B)/Gyy(0)
steeply as shown in Fig. 4. Eventually the shrinking or
size increases the scattering matrix, resulting in the ini
maximum inGyy(B)/Gyy(0). For thehigh-density sample 3
in Fig. 4~a! ~thick solid curve!, this initial steep rise of the
conductance and the jump due to the first sublevel depo
lation coincide. For sample 4 in Fig. 4~b!, vx is too large,
yielding only a small initial displacementDxk82k , producing
no significant initial rise ofGyy(B)/Gyy(0). Thesmall oscil-
lations which follow the initial peak for sample 3 are due
the oscillating overlaps in the high-order Laguerre polynom
als in Eq.~33! or the Hermite polynomials in Eq.~32! and
Eq. ~19!. The oscillations are more visible for the low
density sample 3~thick dashed curve!. For the high-density
sample~thick solid curve!, n becomes too large and the o
cillations smear out. These oscillations are absent for sam
4 in Fig. 4~b! due to the fact that largevx yields smaller
numbern of occupied sublevels and that low-order~n! La-
guerre or Hermite polynomials oscillate less.

B. Double quantum wells

While the energy dispersion curves consist of a set
parallel parabolas in single QW’s, they are given by a se
parallel anticrossing curvesEj introduced in Eq.~35! for
double QW’s, wherej 5$n,m,k% with m50,1. These curves
are shown in Fig. 1~d! for the case where the magnetic fie
is in thex direction. The thick curves represent the groun
state doublet forn50. The doublet consists of the upp
(m51) and the lower (m50) branches~thick solid curves!
separated by the partial gap. The thin curves~for n
51,2, . . . ) are thereplicas of the thick curves. The gap a
sociated with eachn moves up and passes successiv
through the chemical potential with increasingB.9 As will be
shown in the following, the diffusive and quantized condu
tances show very differentB-dependent behavior from tha
of the single QW’s. It was found earlier for the extrem
11532
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quantum limit ~where only the ground channel subleveln
50 is occupied! that higher-order corrections to the Bor
scattering can be significant for long-range scattering po
tials when the chemical potential is inside the gap.12 No such
corrections are necessary for the present multiple-subl
scattering.

We show in Fig. 5 the conductance ratioGyy(B)/Gyy(0)

FIG. 5. Gyy(B)/Gyy(0) ~thick curves! andG̃yy(B) ~thin curves!
in unit of 2e2/h for sample 5 withn1D513107 cm21 ~dash-dotted
curves!, 23107 cm21 ~solid curves! and 33107 cm21 ~dashed
curves! at T50 K as a function ofB in the x direction. Here,
Gyy(0)517.7e2/h ~thick dash-dotted curve!, 28.4e2/h ~thick solid
curve! and 32.5e2/h ~thick dashed curve! for Ly51 mm. Both
branches are occupied for solid and dashed curves, while only
lower branch is occupied for the dash-dotted curve atB50. The
arrow indicates the dips nearB52.7 T where the bottom of the
lower branch becomes flat just before the hump develops as sh
in the inset. The latter presentsEn0k in units of meV as a function of
k ~in 0.1pÅ21) at B52.7 T. The horizontal dashed line indicate
the Fermi level nested at the subleveln561.
0-9
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~lower thick curves! and the quantized conductanceG̃yy(B)
~upper thin curves! at T50 K as a function ofB for sample
5 for several different electron densitiesn1D51
3107 cm21 ~dash-dotted curves!, 23107 cm21 ~solid
curves!, and 33107 cm21 ~dashed curves!. G̃yy(B) exhibits
a V shape as a function ofB. This B dependence was ex
plained earlier in detail5 and can be understood with the fo
lowing simple argument. This argument is also useful
understanding theB dependence of the diffusive conductan
to be presented below. AtB50, eachm50,1 pair of the
doublet consists of two parallel parabolas and generates
Fermi points except for a few large-n top sublevels near the
chemical potential, assuming a high density of electrons.
B increases, the upper and lower branches of each sublen
deform from a pair of parallel parabolas into the anticross
structure with a gap shown in Fig. 1 by thick curves, f
example, forn50. At high fields the gaps sweep through t
chemical potential successively starting from largen. For
each pair, the number of the Fermi points decreases f
four to two when the chemical potential is in the gap a
increases back to four when the gap moves above the ch
cal potential. Therefore, the minimumG̃yy(B) is obtained
when the chemical potential lies in the middle of the an
crossing gaps of the majority of the channel sublevels. T
minimum of G̃yy(B) shifts to a higherB for a higher-density
sample.

It is interesting to note that the maximum ofGyy(B)/
Gyy(0) is aligned with the minimum ofG̃yy(B) in Fig. 5 for
each density. This behavior is readily understood if we fi
consider an extremely narrow channel where\vx is very
large and assume that only the ground (n50) doublet is
occupied.11 In this case,G̃yy(B) is minimum when the
chemical potential lies inside the gap with two Fermi poin
as explained above. Also, the conductance becomes
large due to the fact that back scattering is suppressed
tween the two initial (ki) and final (kf52ki , say, in a sym-
metric structure! Fermi points in the lower branch (m50).
For these two points, the wave functionsjmki

(z) andjmkf
(z)

are localized in the opposite wells, yielding very small sc
tering matrix uj 8, j and a large conductance.11 For a wide
channel with many sublevels (NF@1) populated at high den
sity, however, there are some sublevels for which the Fe
level is outside their gaps, although the majority of the s
levels have the Fermi level inside their gaps at theG̃yy(B)
minimum. The wave functions of the Fermi points outsi
the gap have significant amplitudes in both wells, yieldi
large scattering matrices and reducing the enhanceme11

Therefore, only a moderate enhancement is obtained for
diffusive conductance as shown in Fig. 5. This figure in
cates that the effective back scattering is weakest, when
number of the Fermi points is minimum, yielding maximu
Gyy(B)/Gyy(0). TheaboveB-induced separation of the ini
tial and final scattering states and the concomitant weake
of the scattering rate is still significant for the Fermi poin
above the gaps of the sublevels at lowB and is responsible
for the initial rise of the diffusive conductance at high de
sities ~thick solid and dashed curves!. We note that the dif-
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fusive conductance shown by the thick dash-dotted curve
the lowest density decreases initially in contrast to the ot
two curves. This behavior occurs when only the low
branch is occupied atB50 as will be studied in more deta
later in this section. Note that the peak enhancement is la
for the thick dashed curve~with a larger electron density!
than the thick solid curve because the chemical poten
enters the gaps at higherB where the separation of the initia
and final scattering states is more complete in the form
case. The minimum ofGyy(B)/Gyy(0) in the range 4.5,B
,6.5T arises when the chemical potential passes through
last few humps in the lower branches with a large DO
which increases the scattering rate. At highB where all the
gaps are above the chemical potential, the two wells beh
as independent single wells. ThereforeGyy(B)/Gyy(0) in-
creases gradually as a function ofB as discussed in Figs. 2
and 3.

We also notice thatGyy(B)/Gyy(0) has a dip atB52.7 T
in Fig. 5 indicated by an arrow. The position of the dip
insensitive to the electron density of the samples. This di
associated with the flat bottoms of the lower branch of
dispersion curves of the sublevels~see the inset! which pin
the Fermi level to the divergence in the DOS. The lat
yields rapid scattering of the electrons and thus a small c
ductance. These flat bottoms are the consequence of the
anced competition between theB-induced rise of the cross
ing point arising from the increasing displacementdk
(5deff /l c

2) between the two parabolas and the downwa
repulsion from the upper level. These flat bottoms eventu
develop into humps at higher fields.9 Other rugged structure
arise from the sublevel depopulation effect.

The effect of the thermal broadening is shown in Fig.
The parameters for Fig. 6~a! are the same as those fro
sample 5 studied in Fig. 5. TheT50 K quantum steps in
G̃yy(B) ~upper thin curves! and sharp structures in
Gyy(B)/Gyy(0) ~lower thick curves! in Fig. 5 are signifi-
cantly rounded atT50.3 K as shown in Fig. 6~a!. The effect
of the thermal broadening is more clearly seen in Fig. 6~b!
for sample 6 with much larger\vx and a smaller density
n1D523106 cm21. In this case, the bottom region of th
upper branch is occupied in spite of the low density beca
\vx is large requiring the occupation of fewer channel su
levels. For large\vx50.2 meV, it was necessary to restri
our calculation to small densities in order to avoid lar
Fermi wave numbers, which require long computation
times. The sublevel depopulation effect is clearly seen at
from the dash-dotted curves for both the diffusive and qu
tized conductances. In particular, the sawtooth-like beha
of the diffusive conductance is similar to that in Figs. 3 a
4 of the single QW’s.

We found in Figs. 5 and 6~a! that the diffusive conduc-
tance decreases withB initially when only the lower branch
is populated, in contrast to the case where both branches
occupied. This effect is seen in Fig. 7 in samples 5~solid
curves! and 7~dashed curves!. These samples have the sam
density but sample 7 has smaller center-barrier width, yie
ing a much larger 3.3 meV gap compared with the 1.6 m
gap of sample 5. As a result, only the lower branch is oc
0-10
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FIG. 6. Gyy(B)/Gyy(0) ~thick curves! and G̃yy(B) ~thin curves! in unit of 2e2/h for ~a! sample 5 withn1D513107 cm21 ~dash-dot
curves!, 23107 cm21 ~solid curves!, and 33107 cm21 ~dashed curves! at T50.3 K and~b! for sample 6 withn1D523106 cm21 at T
50 K ~dash-dotted curves!, 0.3 K ~dashed curves!, and 3.0 K ~solid curves! as a function ofB in the x direction. Here,Gyy(0)
517.8e2/h ~thick dash-dotted curve!, 28.2e2/h ~thick solid curve!, and 32.8e2/h ~thick dashed curve! in ~a! and Gyy(0)52.9e2/h ~thick
dash-dotted curve!, 3.0e2/h ~thick dashed curve!, and 2.9e2/h ~thick solid curve! in ~b! for Ly51 mm.
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pied in sample 7 while both branches are populated
sample 5. The basic features of the solid curves are simila
those in Fig. 5 and have already been explained. On the o
hand, the quantized conductance~i.e., the number of the
Fermi points! of sample 7~thin dashed curve! drops very
slowly initially with B. In this case, the argument present
for the V-shaped quantized conductance for the high-den
case~where the number of the Fermi points changes fr
four to two and back to four withB) does not apply. The

FIG. 7. Gyy(B)/Gyy(0) ~thick curves! andG̃yy(B) ~thin curves!
in unit of 2e2/h for samples 5~solid curves! and 7~dashed curves!
with n1D523107 cm21 at T50 K as a function ofB in the x
direction. Here, Gyy(0)533.9e2/h ~thick dashed curve! and
28.4e2/h ~thick solid curve! for Ly51 mm. Sample 5~sample 7!
has a large 50 Å~small 40 Å! center-barrier width, a small 1.6 meV
~large 3.3 meV! gap and has both branches~only the lower branch!
populated atB50.
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slow decrease arises from the fact that bottom region of
lower branch becomes flatter initially with increasingB,
yielding a large DOS and requiring less channel sublevel
accommodate the electrons. This effect is also partially
sponsible for the reduction of the Fermi points in Fig. 5 f
sample 5 and in Fig. 7~thin solid curve!. The increasing
densities of states at the Fermi points in the lower branc
also increase the scattering rates, lowering the diffusive c
ductance initially as shown by the thick dashed curve.
contrast, this mechanism has little effect on the low-B diffu-
sive conductance for the high-density sample 5 in Fig
because the curvatures of both upper and lower branche
negligibly affected at the Fermi points lying far above t
gap. As discussed earlier, theB-induced localization of the
eigen functions of the initial (ki) and final (kf52ki) states
into the opposite wells weakens the back scattering eve
ally as discussed earlier, maximizing the conductance aro
B53.3 T for the thick solid curve andB54.8 T for the thick
dashed curve. Note however that the maximum and m
mum of the conductances are shifted to higherB for sample
7 ~dashed curves! relative to those of sample 5~solid curves!.
These shifts arise from the fact that the quantityB enters Eq.
~34! approximately as a productdeffB. B is then scaled as
1/deff which is larger for sample 7. An alternate explanati
is that a largerB is required to form a fully developed ant
crossing hump~see Fig. 1! because of the stronger repulsio
~or tunneling! between the upper and lower branches
sample 7. This effect also explains the fact that the chan
sublevels are initially depopulated faster in sample 5 than
sample 7 as seen from the more rapid initial decay of
quantized conductance of sample 5 due to more rapid
magnetic rise of the sublevels.

In Fig. 8 we study the effect of the asymmetry of th
double QW’s at T50 K using sample 5 withn1D52
3107 cm21, gn50.16 meV, biasing the sample with d
0-11
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electric fields Edc50 ~solid curves!, 0.1 kV/cm ~dashed
curves!, 0.5 kV/cm ~dash-double dotted curves!, and 1
kV/cm ~dash-dotted curves!. A mismatch of about 1.3 meV is
introduced between the wells byEdc51 kV/cm. The thick
solid curve in Fig. 8 forEdc50 is the same as that in Fig.
and has a maximum atB53.3 T. In this case, the structure
symmetric and a full symmetric hump is developed. T
hump disappears as shown in the right inset at the samB
when a severe energy mismatch is introduced through
bias Edc51 kV/cm, suppressing the conductance maxim
as seen from the thick dash-dotted curve. The nearly
quantized conductance forEdc51 kV/cm ~thin dash-dotted
curve! is the consequence of the absence of the full anticro
ing gap where a sublevel can minimize its Fermi points fr
four to two, thereby minimizing the quantized conductan
This effect also suppresses the peak ofGyy(B)/Gyy(0) due
to the increased gap. In this case, only the lower branc
occupied at B50, yielding the initial decrease o
Gyy(B)/Gyy(0) of the dash-dotted curve in Fig. 8, similar
to the behavior of the dashed curve in Fig. 7. At an interm
diate fieldEdc50.5 kV/cm ~thick dash-double dotted curve!,
the B dependence of the diffusive conductance is similar
the low-density~or strong-tunneling! case in Figs. 5–7. Note
also that a small energy mismatch of 0.13 meV between
wells introduced by a small fieldEdc50.1 kV/cm ~thick
dashed curve! reduces the depth of theEdc50 dip of the
diffusive conductance at 2.7 T and shifts it to 3.1 T. This
due to the fact that the flatEdc50 horizontal broad align-
ment of the energy-dispersion curves~shown in the inset of
Fig. 5! which coincides with the Fermi level atB52.7 T is
somewhat tilted and less flat as shown in the left inset of F
8 at B53.1 T and occurs at a higherB in this case.

FIG. 8. Gyy(B)/Gyy(0) ~thick curves! andG̃yy(B) ~thin curves!
in unit of 2e2/h for sample 5 withn1D523107 cm21 at T50 K
as a function ofB in the x direction. The sample is biased with
uniform dc fieldEdc50 ~solid curves!, 0.1 kV/cm~dashed curves!,
0.5 kV/cm ~dash-double dotted curves!, and 1 kV/cm~dash-dotted
curves!. Here, Gyy(0)528.4e2/h ~thick solid curve!, 27.7e2/h
~thick dashed curve!, 26.4e2/h ~thick dash-double dotted curve!,
and 24.5e2/h ~thick dash-dotted curve! for Ly51 mm.
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VII. CONCLUSIONS

We have investigated the quantized and diffusive mag
toquantum conductance for single and tunnel-coupled dou
wires which are wide (&1 mm) in one perpendicular direc
tion with densely populated sublevels and extremely c
fined in the other perpendicular~i.e., growth! direction. A
general analytic solution to the Boltzmann equation was p
sented for multisublevel elastic scattering at low tempe
tures. The solution was employed to study interest
magnetic-field dependent behavior of the conductance s
as the enhancement and the quantum oscillations of the
ductance for various structures and field orientations. Th
phenomena originate from the followingB-induced proper-
ties, namely, magnetic confinement, displacement of
initial- and final-state wave functions for scattering, variati
of the Fermi velocities, mass enhancement, depopulatio
the sublevels and the anticrossing~in double quantum wires!.
The magnetoconductance was found to be strikingly diff
ent in long diffusive~or rough, dirty! wires from the quan-
tized conductance in short ballistic~or clean! wires. Numeri-
cal results obtained for the rectangular confinem
potentials in the growth direction were satisfactorily inte
preted in terms of the analytic solutions based on harmo
confinement potentials.

For a single quantum wire the magnetic fieldB was as-
sumed to be either in thex or z direction. In either case, the
quantized conductance is a monotonically decreasing fu
tion of B. When the magnetic field is in thex direction,
perpendicular to both the growth direction and the wire,
found, for the interface-roughness scattering, that the di
sive conductanceG increases as lnG}B2 at low B and as
ln G}B at highB as shown in Fig. 2. However, the condu
tance is superimposed with rapid quantum oscillations sho
in Fig. 3. The above low field behavior is due to th
B-induced relative displacement in thez direction of the ini-
tial and final scattering states. On the other hand, the h
field conductance enhancement arises from the magn
confinement of the initial and final wave functions aw
from the interfaces. The quantum oscillations in Fig. 3 a
due to the channel-sublevel depopulation. In this case,
channel level separation\vx is not affected byB. The de-
population is through theB-induced mass enhancemen
Note that, by contrast, the quantized conductance decre
with B in this case. A very different behavior is obtained f
the diffusive conductance whenB is in the z direction as
shown in Fig. 4. In this case, the conductance rises v
rapidly at lowB due to the relative displacement of the cha
nel wave functions but the average conductance decreas
high B due to the shrinking orbit size.

For coupled double QW’s, withB in the x direction, both
the quantized and diffusive conductances show very differ
behavior from single QW’s. The quantized conductance
a V-shapedB dependence, showing a minimum. The diff
sive conductance shows very differentB dependences, de
pending on whether both the upper and lower branches of
tunnel-split ground doublet are occupied~weak-tunneling,
high-density limit! or only the lower branch is occupie
~strong tunneling, low-density limit!. In the former case, the
0-12
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conductance rises withB, suddenly drops to a dip, rises aga
to a maximum, gradually decreases to a broad minimum
steadily rises in the highB limit as shown by the thick
dashed and solid curves in Fig. 5 for symmetric dou
QW’s. The high-B limit corresponds to the single QW limi
where the electrons are localized in separate wells. The
den drop of the conductance occurs when the Fermi leve
coincident with one of the channel sublevels due to a
bottom of the lower branch. The maximum of the diffusi
conductance occurs due to theB-induced separation of th
initial and final back-scattering states into the opposite w
when the chemical lies inside the gaps of the majority of
sublevels. The broad minimum arises from the large sca
ing rates associated with the large DOS at the lower
edges of the last few channel sublevels which pass thro
the chemical potential. When only the lower branch is oc
pied atB50, however, the diffusive conductance decrea
initially with B as shown in Figs. 5 and 7. The behavior
higherB is the same as in the case where both branches
occupied atB50. The conductance shows rugged feature
low temperatures, reflecting the successive depopulatio
the sublevels and is rounded at higher temperatures as sh
in Fig. 6. The effect of the asymmetric wells was studied
Fig. 8 by applying a dc electric field. The asymmetry mak
the quantized conductance minimum shallow. The diffus
:
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conductance shows a similar behavior to the symmetric c
where only the lower branch is occupied. This behavior
the diffusive conductance obtained for asymmetric wells
well as for the low-density or large-gap samples is consis
with that observed recently for long double quantum wire4

On the other hand, the V-shaped quantized conductance
a minimum as shown in Figs. 5–8 is similar to th
observed4,6 recently for short double quantum wires, sugge
ing that the transport may be ballistic for the samples. ThB
dependence of the diffusive conductance obtained for sm
\vx is similar to that observed recently fortwo-dimensional
double QW’s except for the superimposed quantum osc
tions and the dip.8,10,18,19The oscillations and the dip are th
unique signatures of the discrete sublevels.
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