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Resonant quantum transport in semiconductor nanostructures
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We develop a theory of the conductance of a multichannel double barrier system in the case of decoupled
channels. In the frame of the Landauertiiker formalism we find two basic contributions to the conductance:
first, a resonant one described by a Fano profile with a complex asymmetry parameter and second a nonco-
herent background which can be assumed as a constant in the case of small overlap of the conductance peaks.
We establish a method to reconstruct Simatrix from the experimental conductance data.
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I. INTRODUCTION wheree=2(E—E,)/I". The first factor represents the reso-
nant part of the transmission where the real numbgrand
In the recent years the study of line shapes in resonarit give position and width of the resonance. The second fac-

transport through semiconductor nanostructures has attractegy 3., represents the nonresonant parf For each matrix
considerable attention. Of particular interest are asymmetri 9

ic ~
resonances and antiresonances. In Fano theory both “r%ement ofS it is seen from Eq(1) that the resonant part

shapes result from a coherent interaction of the resonandd'dergoes a phase changemivhen the energy passes the
with a given backgroun&? To meet this condition usually a "€sonance. In general, this produces a change between con-

scenario is considered in which two transmission channel§tructive and destructive superposition of the resonant and
interfere: First, a resonant channel which is provided by dhe nonresonant part and an asymmetric line is obtained. In
quasibound level, second, a background channel which ithe standard approach the mat8y, is chosen so tha(E)
provided by a continuum of propagating states. In manys ynitary forall energie$:*>~*It follows that,, has to be

studies the continuum of states is associated with a proPagaé‘unitary matrix(see Appendix I Then a line shap@(E)
ing mode in an electron Wave_guiaélfhe resonant channel o f(€) Too=|(By) 142, results with the Fano function
can be established by a quasibound state in the binding po- "bg' \*/> " bg 912"

tential of a donor impurity,by theI'-X-I" channel in GaAs/ 9
AlAs/GaAs single-barrier structurgésor by a resonantly f(e)= (e+ay) )
coupled cavity’ An interesting variation of the latter case is e’+1 "’

the integration of the cavity in an Aharonov-Bohm rihg. ) o _
similar pattern as in Refs. 3—7 is followed in Ref. 8 analyz-Where the asymmetry parametgris real. Conflicting with

ing magnetotransport across a quantum well. On the experfhe experiment the Fano function yields a zero in the con-
mental side a first study of Fano profiles in transport wagluctance ae=—q; .
reported very recently in conductance measurements on a Our starting point is a noninteracting model for one-
single-electron transist8rThe measured resonances showdimensional transport through a quantum dot. The advantage
typical features of asymmetric and antiresonant Fano proef this model is that in difference to the approachés™“it is
files. However, there remain serious open questions: First, iRossible to derive explicit expressions for Benatrix in Eq.
agreement with the standard explanation for Fano resonancéd starting from the Schidinger equation. In contrast to the
there is a resonant part of the transmission which is welbituation in Refs. 37 there is only orieonservegichannel
understood as a single-electron addition but no cohererger contact for a given energy so that the usual picture to
background channel can be identified. Second, since the@xplain asymmetric lines which invokes coupling between
are minima in the conductance but no zeros an incohereriwo different channels does not apply. Nevertheless, we ob-
contribution to the conductance had to be assumed. As d&in Fano profiles in our model. To explain this, we first
alternative explanation a complex asymmetry parameter wagemonstrate in Sec. Il that to each conductance peak a reso-
proposed. Such a complex asymmetry parameter of the Faritant channel can be associated which provides the resonant
distribution has been reported in a number of opticalpart of the conductance. The other channels yield a nonco-
experiments®!! The aim of this paper is to derive an ana- herent contribution which for narrow resonances can be ap-
lytical theory of transport resonances to discuss possible orProximated as a constant.
gins of the noncoherent contribution and of the complex In Sec. Ill we analyze the conductance contribution of the
asymmetry parameter. resonant channel and obtain Fano profiles with a complex
We use theS-matrix description of coherent transport in asymmetry parameter. The coherent background component
which a Fano resonance is obtained from a pole of $he §Qg of the Smatrix which is necessary for an asymmetric line
matrix in the complex energy plane of the standardshapdEg.(1)]is the natural consequence of the existence of
form>12-14 other poles of the S-matrix in the complex energy plane
~ ~ which are different from the resonant pole. As illustrated in
FE)=i S(Eo)_sog+~ (1) Ref. 17 these poles contribute in virtuaecond orderpro-
e+i 9’ cesses to the transport. The imaginary part of the asymmetry
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T ture andV(z) is a double barrier potential separating a quan-
tum dot from the rest of the system. As usual we take) as
constant in the contact¥,(z<—d)=V; for the source and

> V(z>d)=V, for the drain. The potential differenc¥gp

1d 0d 1d =V,—V, results from an externally applied drain-source

voltage. For the sake of simplicity the contacts are supposed

to be identical.
Due to the separable form of the potential, the wave func-

\ tions at the total energlg can be written as

Source
Drain

W(r)=2, a,(E)¢(e’,2)D(r,), (4)
\é 14

i with e’=E—E] and the general expansion coefficieats

-d d “  The functions®,(r,) and energie€’ are the solutions to
the eigenvalue problem

FIG. 1. (a) Schematic illustration of the system geomettly)
z-dependent part of the potential. [ 52

——A~+VL<FL>—E“]<1>V<&>=0. (5)
parameter results from the following consideration: We ob- 2m* 8

tain Eq.(1) for the Smatrix by a linearization of th& matrix We assume thali(|r1|—>oc)—>oo so that theCD,,(ﬂ) can be

around the conductance maximum. Our description of the hosen as a discrete orthonormal function system. The func-
resonances therefore is correct in the center of the resg- Y ’

nances, i.e., foe<1. This is sufficient since if there is an I(Ieomns #(e.2) are the solutions to the one-dimensional prob-
overlap of the experimental resonances as in Bef single

pole approximation of the matrix as in E¢l) cannot be 72 o2

expected to be valid outside the center of the resonances. [_ —*—2+V(Z)—e] (e, z)=0. (6)
Therefore, in contrast to the standard approach which re- 2m* dz

quires unitarity ofS in the whole energy rangeven where  BecauseV(z) is constant in the contacts we can write gen-
Eq. (1) cannot be expected to hold any mpoerr lineariza-  erally
tion yields unitarity of theS matrix only in linear order ot.

Then,NSOg does not have to be a unitary matrix and we gain 1 " _
one more free parameter for the line shape. We demonstrate ~ #(€",z<—d)= \/?{%(—d)exdlkly(ZJf d)]
that this parameter consists of the imaginary part of the &
asymmetry parameter which has to be introduced in(Bq. + 2 —d)ex —iky,(z+d)]} (D)
From numerical calculation we conclude that a complex
asymmetry parameter is a general finding even for extremelgnd
narrow and strongly isolated resonances.
In Sec. IV we discuss our results on the background of the 1 . )
experiments in Ref. 9. Since the contacts in the experiments ~ #(€",z>d)= \/?{'ﬂ'f(+d)exli—lkzv(z—d)]
are two-dimensional there is the possibility of channel inter- ™
action which is not considered in our model. Nevertheless, + g2+ d)exik,,(z—d) ]}, (8)
we expect that the basic structure of our results carries over ,
to the experimental geometry. It is then demonstrated thawith general expansion coeﬁicierﬂéﬁ""“‘(td) and
within certain limits it is possible to reconstruct from the

experimental data the off-diagonal part of tBematrix as 2m* ,
given in Eq.(1) up to a natural global phase. ksv=\ Zz ("= Vy) 9
Il. THE MODEL with s=1,2. Since we are interested in transport we only

consider in Eq.4) the radiating part of the spectrum with

We consider an effectively one-dimensional system as dereal wave vectors so thate’—V,,>0, where V,,
picted in Fig. 1. The electronic wave functions are the solu—=max(V,,V,) ande” is the kinetic energy of the motion in
tions to the Schrdinger equation the z direction. For a fixed energl and fixed channel quan-
tum numberv there are only two independent solutions of
Eq. (6). Therefore the four coefficients "+ d) cannot be
independent. In fact, defining the one-dimensional scattering
area ze[—d,d] with the zero-dimensional surface
where the Z-independent lateral confinement potential =+d and using theS matrix of the one-dimensional prob_

VL(rl) produces the one-dimensional character of the strudem Eq.(6) we obtain the condition

%2 - N
—WA+V(Z)+VL(rL)—E W(r)=0, 3

115318-2



RESONANT QUANTUM TRANSPORT IN SEMICONDUCT®.. .. PHYSICAL REVIEW B 64 115318

¥2'(2)=S(e",z,—d)y(—d) +S(€”,z,d)¢)(d) (10)

for |z|=d, i.e., outside the scattering area. Evaluation of Eq. 08
(10) at z= =d leads to the following X 2-matrix equation:

Yo(—d)| [S(e’,—d,—d) S(e"—d,d)|[¥(~d)
. = in . 5 0.4 I 404
$o(+d) S(e”,d,—d) S(e”,d,d) /| ¢\(+d) o vl
1) 5 = 3
+
In view of the constraint1l) only the two ingoing compo- & “
nents can be chosen independently. Takjrff—d)=1 and > 02 i vsf 02
#(d)=0 yields the scattering state &
r O ex —iky,(z-+d)] . 4] on | &l

1
pW(e”,2)= —=1{ +exfiky,(z+d)], z<—d,
tWexdik,,(z—d)],  z>d.

L L 1 L
0 02 04 08 08 1
T

12

This state corresponds to a particle incident from the source FIG. 2. Left side: Variation of the total potential of our double-
contact. Comparison with Eq11) yields tsll)z S(e”,d,—d) barrier test structure. The range of the source- and the drain contact
and rM=5(e”,—d,—d). Taking y"(—d)=0 and ¢""(d) is given byz<—d andz>d, respectively. The potential steps of
heightV, (which is negativgat|z|=d (d=16 nm) result from the

=1 leads to ! _
voltage applied to the plunger gate. In dotted lines the wave func-
tSJZ) exd —ik, (z+d)], z<-d, tions|yY)|? at the resonant energiegg, i=1,...,6which are the
@) 1 ) . positions of the transmission maxima calculated for the potential
P(€”2)= e ry” exflika,(z—d)] V(2)+V,. Right side: Transmissiofi(e) as a function of energy
+exf —iky,(z—d)], 7>d for the potentiaM(z) + V.
(13

o o ) _ It is seen that the conductance is the superposition of curves
describing an incident wave coming from the drain contactT(g_—EY) in which the v dependence only results in an
(2)_ v (2) _ v o_ . . .
Here,r;”’=S(e”,d,d) andt;”=S(e", —d,d). . energy shift byE} . T(e) is determined solely by the one-
To calculate the curent in the Landauerter gimensional scattering problem E). Its general features
formalism,” the electrons can be thought of as two FerMigre el knowR? and illustrated in Fig. 2: For small the
gasses: First, the e_Iectrons coming from the sour)ce contadfansmission is generally small and may have some isolated
They occupy the single-particle scattering staié8)(e,2) peaks ate;. FOr e~Vp.,, whereV ., is the maximum of
according to the Fermi-Dirac distribution functioito(E  \/(7), the transmission increases strongly to approach unity
— 1), wherep, is the chemical potential of the source con- for |arger energies. Generally, to each resonance a pair index
tact. Second, the electrons coming from the drain contagt, iy can be assigned, whereis the channel index arihe
with single-particle states/?)(e,z) and with the chemical ,mper of the maximum in the curvE(e). As will be
potentialu, of the drain contact. Summing up for all single- shown in the next section, each fact(Er—E") results

ftom acoherentsuperposition of contributions of resonances

with the same channel indexbut with different indices. In

2 the result we will obtain Fano resonancedlinn each curve

=—f dE[frp(E— 1) — fro(E—12)] T(Eg—EY) the absolute square has been taken. Therefore
h the sum in Eq(15) represents an incoherent superposition of

contributions stemming from different classes of resonances.

value of the current operator we obtain

2

X2 O(e"=Vy)T(e"), (14 Each class is characterized by the channel index
v In the experiment§ and thereford is probed at different
with |z:fdﬂ fz(F)- Further, T(e)= |[~S( E)]12|2 energies by varying the voltage of an additional plunger gate.

~ ~ 12 - . In the case of lateral tunneling this additional gate is a top
— 2 __ 1,12 1/2
=[[S(e)]21l", whereS=k, Sk, ™ is the current transmis- gaté"?*and in the case of vertical tunneling it is a side dfate.

sion matrix for thevth channel andk,)s s =dssks,. The — Aq gescribed in Appendix A we use the following idealiza-
O function serves to remove the channels with exponentially;on for the total potential in presence of a varying gate volt-

decaying wave functions in the contacts. age: The external potential created by the charges at the gate
In the linear response regimd/¢p—0,V1=V>=0) and  is'screened out completely in the metallic conta¢zs>d)
for low temperatures—0) we obtair® from Eq. (14) so that the total potential arfi remain unchanged. In the
o2 * scattering area|¢|<d) the total potential can be idealized
G= o 2 T(E—E"). (15) for small variations of the gate voltage as a varying potgntlal
” offsetVy so thatV(z) —V(z2) +V, (see Fig. 2 In Appendix
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O 1
-0.554 -0.552 -0.548

v, [eV]

FIG. 3. The conductance as a function of the gate potewtjal
around the maximum=4 in Fig. 2; complete calculatiosolid
line) and approximative valugglotted ling given by Eqs(15) and

(16), respectively. At the maximum the coherent part of the conduc-

tance is G¢(Vo)=2€%/h and the noncoherent pa®yc (Vo)
=0.08e?/h

A it is shown that in a small domain of gate voltag&g,
=6V+V,, around a conductance maximum\4f=V, we
can write

2

2e
G(Vg)= = 2 TVo(ER—E! —6V). (16)
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FIG. 4. Middle: Assumed potential in a schematic plsolid
line), wave functiong W 1|2 at the transmission maximalotted
line). Right: Transmission vs energy from exact calculatisalid
line) and approximation in Eq:39) (dashed ling Left: Position of
the poles of theS matrix in the complex energy plane determined
after Eqgs.(35) and(36).

as well. However, this background adds coherently toShe
matrix as in Eq(1) leading to Fano profiles. This is in con-
trast to the noncoherent conductivity background from Eq.

Here TVO(G) is the energy dependent transmission of the(l8) We find that in our single-channel coherent transport

structure calculated with the potent¥(z) +V, and G(V)
is the conductance af,. In Fig. 3 it is shown that the

relation(16) provides a good approximation for the conduc-

tance peak if the resonance is not too broad.

We can assign to each peak in the cuég/,) the reso-
nance index ¢g,io) by equating
E"°

i (17

Vo
€ "=E—
io F

model a coherent and a noncoherent background conductiv-
ity to a transport resonance may coexist.

IIl. COHERENT CONTRIBUTION
TO THE CONDUCTANCE

In the following we are interested in the analysis of nar-
row transport-resonances. They occur in the resonantRart
of the conductance as given by Ed9). For illustrative pur-

whereV, =V is the location of the conductance maximum poses and to check our analytical theory we conside)

and ei\go is the energy of théyth maximum of the curve
TVO(E).
with v# v provide a slowly varying noncoherent conductiv-
ity underground

2
— D TVo(Eg—E!-6V).

v# g

(18)

If the conductance peak is narrow the resonances

for the double barrier system of Fig. 2 with an applied
source-drain voltage/gp, as depicted in Fig. 4 foWgp

220 meV. In the structure of Fig. 4 the barriers are high
enough so that the lowest three quasibound resondhe&s

and the above lying Fowler-Nordheim-type resonance 4 are
narrow and have a little interaction. However, the approxi-
mation technique described below gives a very good descrip-
tion of the higher Fabry-Perot-type resonant@sand 6 in

in which the absolute squares of the transmission coefficientdie classically allowed transport regime as well. These reso-
are added without phase information. The resonant chann&@nces have a sizable larger overlap.

produces a coherent contribution

2

G =2iTVo(E —E!°-6V) (19
C h F 1 '

A. R matrix representation of the S matrix

Our theoretical development starts with Rmmatrix rep-
resentation of th& matrix which is particularly well suited

which is a coherent superposition of resonances with indicet® the description of narrow resonances. As shown in Refs.
(vo,1). In the case of a narrow conductance peak the resat9 the wave functions for the one dimensional problem in

nances with ¢g,i #ip) constitute a background conductivity

Eq. (6) can be written as

115318-4
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¥(€,2)=R(e,z,d)y%(e,d) +R(e,z,—d) y3(e,— d),
(20)

where

1 dy
S(e. +d)=+— ——
Mezd==— | (21

z==*d

and R(e,z,z") is the R matrix. For the points on the 0d

surface of the scattering area={ =d) we therefore obtain
the condition
Pp(—d) (R(e,—d,—d)

$3(—d)
y(+d)) | R(e,—d,d) '

YS(+d)
(22)

R(e,d,d)

R(e,d,—d))

Using the continuity of the wave functions= "+ ¢°“ and

their derivatives az=*+d as well as the defining relations

(11) and(22) we find that theS and theR matrix are related
through

S=k2sk Y2=1-2[1+iQ] ™. (23

Here, for each energy=€” we find (K)sy =Ks, 55 and the
matrix  of rank two is defined as

o

Q=kU2RK2= @i

=1 €"—¢

(29)

with
2
kY22l (- 1)%d]x[(—1)%d]. (29

Sv s’ v
*
m

(""I)ss’:2

The real Wigner-Eisenbud functiong in Eq. (25) are the
solutions to the 1D Schdinger equation
h?  d?

——=+V(2)— €| x(2)=0,

- 2m* dz (26)

with the boundary conditiongdy,/dz](z=*=d)=0. From
Eq. (23) the unitarity of theS matrix
S5T=85=1, (27

is obtained immediately for all real values &f. Due to the

special form of the potential the current is conserved in each

channely.

B. Pole analysis

PHYSICAL REVIEW B 64 115318

and the regular matrix

©

wn

Q=2 — (30
n#\
The matrixZ, can be written as
Zy(6)= — [~ 1-de{Q]+i(Q-Q" 31
A(e)_p}\(e)[ ef Q] +i( ), (3D
where
Dy(e)=def1+iQ,], (32

(27)11=(Q) 22,
== (D). B

The matrixZ, and the function, are related to each
other through the unitarity requirement for ti& matrix
which gives

(Q7)=(D)11, and Q7)1,=(Q7)n

2,Z]=2]Z,=|e—e,—&(e)|* (33
The representation of th8 matrix in Eq. (28) has the
advantage that it directly yields the equation
eo—il12— €, — & (e9—i'/2)=0. (34)
to determine the positionsy=e,—iT'/2 of the poles in the
complex plane. We are interested in narrow resonances for
which T is a small quantity. We therefore require as the basic
issumption for our theory the validity of the linearization of
&, and implicitly Z, in a domain of the complex energy
plane that includes the polg, and the part of the real axis
which contains the transmission peak associated with the
resonance. B
After a first order expansion of,(eg—iI'/2) arounde
one obtains from Eq.34)

I' d&,
€0= €\t E1(€g) — > de \ (39
E:EO
as well as
dé; -1
I'=28&(€p)| 1— e , (36)
E:EO

where &,(e)=Rd &, (€)] and &(€)=—Im[&,(e)]. Equa-
tion (35) with Eq. (36) inserted is a nonlinear equation with
a unique root forey. In Fig. 5b) it is demonstrated that the

The starting point for our pole analysis is the following resonance energies of the lowest levels are very well repre-

exact reformulation of Eg.(23) in each interval

(ex_1,€r+1),A=1 (see Appendix B

~ Z\(e)
-, 28
Se) p—— (28)
with
E(€)=—i T en(1+iQ,) 1], (29)

sented by our linear approximation.

In principle, if D,(€)=0 the S matrix can have other
poles than the ones described in Eg84). However, since
D, (€) depends only through the regular and slowly varying
functionQ, on the energy the complex energy of the poles is
expected to have a large imaginary part.

To obtain the line shape of the resonance we employ a
formal expansion of thé& matrix as given in Eq(28) in a
Laurent series around the pole. Here E2p) ensures that the
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FIG. 5. (a) Transmission as a function &f5y and the kinetic 0 ‘ : : : 0
. . . 0 02 04 0 02 04
energye. (b) Energy of maximum transmission ¥p: Complete Vg, V] Vg, V]
calculation (solid lineg, result from Egs.(35) and (36) (dashed
lines), and values obtained if the derivatives occurring in Eg§5) FIG. 6. The argument of the complex asymmetry paranugter
and(36) are neglecteddotted ling. The three lines coincide for the applied bias. Even for the narrow transmission peaks corresponding
lowest three resonances. to the quasibound states the imaginary partgd§ big and thus

important for the description of the line shape.
S matrix is an analytic function which is required for the

existence of the Laurent series. After the linearizatiorf,of ~ description of the main part of the transmission peak up to

andZ, we obtain(see Appendix € energies of abow~1. Our pole analysis provides a system-
atic description of the line shape in this energy range. The
~ _'é(eo)—'éog - resulting expressiol37) preserves the unitarity of the scat-
S(e)=i T+Sog' (37)  tering matrix only in linear ordee (see Appendix D
with o e2
SS'=8"8=1+(6-1)5—. (41)
~ irne2 dz, e+1
Sg=—= : (38)

eo—en—En(eg) de€ e=ep The background matri§,, is then characterized by three
parameters. They can be chosen as the real and the imaginary
part of the complex asymmetry parametggiven by EQs.

(38) and (40) and the imaginary part of the complex asym-
metry parameteqg describing the line shape of the reso-
nance in reflection. As shown in Fig. 7 the matrix elements

2 2
T(e)=|[§(e)]12|2=Tbg[e+Re(q)] +[Im(a)] (39) of 6—1 are small in comparison with 1. We expect that our

wheree=2(e— €,)/I". Equation(37) has the general form of

Eq. (1), where we can provide an explicit expression@gg.
From Eq.(37) a line shape

e’+1
; s 2 ; 2x10° [ I m i I I (4.)l—"'— 05
is deduced wher@,,=|(Syg) 12 * is the background transmis- 1 T ]
sion. The right-hand side of E¢39) is a Fano distribution —ox10® | | ———— 1o
with a complex asymmetry parametggiven by - ] (\
-6x10° | o 3 -05
a=i[S(€0) 1ASog12 - (40 S e
The numerical calculations in Fig. 6 confirm that a complex £_axi0* I ’ ‘-*~~—; 05

asymmetry parameter is the general finding. This seems t&

hold for narrow peaks as well as for broad and overlapping -6xto*
peaks. _ _ sx10° | ' '®) ] O
On the background of our systematic pole analysis we A e ]

want to discuss a common practice in which an ansatz for the 0 [z S =0
Smatrix of the form of Eq(37) with generalS,, and (o) . \ “““““ ]

H 2-14 : : . . -5x107 4 ]
is made'?~#To restrict this ansatz to physically meaningful e L
cases the unitarity o6 is generally required foall real en- VM T VM

ergies. In Appendix D it is shown that in this case the asym-

metry parameteq, is real and tha~80g has only one real free FIG. 7. The deviation from the unitarity of tH&matrix given

parameter which can be chosen todpe In our opinion, this by the approximative expressid87): d;;—1 (solid line), 5x—1
requirement is an overconstraint since the objective is a goo@ashed ling and|5,, (dotted ling as a function of applied bias.

T~ 105
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approximation is valid as long as the second term on the =[lq|?— 1+ V(|a|?*=1)?+4(Req)?]/2Req, (47)
right hand side of Eq(41) is small compared to 1. Then the Ge=Llal (lal (Req)™] b

deviation of S from unitarity is small. This way, for each and a constant offset

maximum we can estimate the range of validity for our ap- G.=GP. +GPI_ G 48
proximation through the requirements< 1);;e%/(e*+1) of TENC T EC 0 (48)
<1,i,j=1,2. where
C. Coherent conductance Go=G Req . (49
ar

Inserting Eq.(39) in (19) we obtain the coherent contri-
bution to the conductance in the vicinity of the resonance a3he parameteq is obtained as a solution of a second order
a Fano function with the complex asymmetry parameter equation where we choose the value which leads to a posi-
defined by Eq(40), tive Gy. The other choice for the sign o yields an equiva-

_ lent description. According to Ed46) a fit of the conduc-
_Gbg[e+RG(Q)]2+[|m(Q)]2 tance line shape near a resonance can fix only the real
- C e2+1 '

Ge (42

parameterssy;, G, qr, Vg, andI” which are not enough
for a unigue separation of the coherent from the noncoherent
HereE=2(Vg—V0)/F is a function of the plunger gate po- part of the conductance. In order to define a bijective map-
tential V, the resonance positio, and the resonance ping of the set of the five fitting parameters onto the micro-
width I". The background coherent contribution is related toscopic parameter SGRJ%, Gk(’:g, Re@), Im(q), Vo, andT’,

the background transmission through we need a supplemental variable which we callWe ob-
) serve that the equivalence of the two conductance expres-
Ghy— zi T 43) sions (44) and (46) allows the variation of the background
C~h by components of the conductance only inside a small domain:

From Eqgs(47) and(49) it follows thatG?;gz Gy. Taking into

The behavior of the systems analyzed in this pdBe[.  5ccount thaGPY. is per construction positive it immediately
(42)] shows that an asymmetric line shape arises in generz?lsults from Eq/(48) that G2< G+ G... Thus we can de-
when there is a coherent superposition of contributions to thtfa ' ¢ 0 Fof-

S matrix coming from different poles. This does not neces- ine the parameter as
_sarily involve the co_upling betv_veen two different channels as Ggg: Go+ aGy (50)
in the usual scenario to explain Fano resonances.
where a varies between zero and one. The complex asym-
IV. DISCUSSION metry parameter and the noncoherent background compo-

_ _ nent of the conductance can be expressed as a functian of
After having evaluated the resonant part we obtain for theys well:

total conductance

Go
e 2 2 REQ)=Cr ==, 51
G=Ght Ggg[e+ Re(q~)2] +[Im(a)1* 4 D=5 T aG, (51
e“+1
Here we assumed a small overlap of the conductance peaks Im(q)= i\/a2+(1+q'2:)a &, (52)
so that the contribution of the nonresonant channels can be Got+ G G
approximated by a constant and
282 ” bg _ /1 _
GE‘%:T ; TVo(Ep—E”). (45) Gne = (1= a)Gy. (53
14 VO

Using the values/, andI” from fitting and the expressions
In our theory all parameters in E¢44) can be calculated (50)—(52) it is very easy to construct the off-diagonal part of
microscopically. the S matrix associated with the resonant chanmglp to a
Now we solve the inverse problem to extract the transmisglobal phase factor. This missing phase factor is expected
sion through the resonant channglfrom the experimental because the absolute square has been taken ifBEq.
conductance data. Here we face the basic problem that the Using the expressio4) we have performed an analysis
parameters, Ggg, Vo, andI” needed to apply Eq39) can-  of the experimental conductance data in the Fano regime
not be gained from a fit in a unique way. To see this wepublished by Gees et al® We include a possible constant

rewrite Eq.(44) in an equivalent forr? component due to incoherent transpds, . in Ref. 9 in an
effective noncoherent conductance background. In the ex-
[e+qr]? perimental system the potential in the plane of the two-
G=Gort GO?- (46) dimensional electron gas is not known in detail. The two

major reasons are, first, the complexity of the geometry of
This is a sum of a Fano line with a real asymmetry parametethe top gate electrodes. Second, experimentally the potential
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changes in an unpredictable way if the sample is heated ania) 0.25 ‘ |
then cooled down agathThese changes are attributed to
unknown metastabilities of electrons in the donor layer

within the AlGaAs. Without sufficient knowledge of the elec- 0.2
tron potential it is clear that it is impossible to calculate the
conductance exactly. Instead, we assume the correctness of
simple ansatz for the potential. We then focus on the questior’e, 0-15
what can be learned from the experimental peaks about th¢®
pole structure of th& matrix which describes the resonance
theoretically. As an ansatz for the potential we choose the 01
effectively one-dimensional model presented in Sedsdle

Eqg. (3)]. One reason for picking this model is that we can

carry out an analytical analysis of the pole structure of$he 005 00 o5 ' o0 ‘ o5
matrix which is independent of the particular shape/¢z) V, [meV]

andV(r,) (see Sec. I)l. Second, we adopt the discussion in
Sec. Il of Ref. 23 to argue that our model is suitable for the b) o
representation of the relevant part of the experimental struc-

ture: As shown in Fig. 3 of this reference, the scattering 0.08 |- g;(()):g 7
states are formed in the contacts which are widening into the - a=04 1
reservoir. With the reservoir we associate the semi-infinite 0.0 |- “fg'z .
two-dimensional electron gases on the source and on tht® . o= 1
drain side of the quantum dot presented in Fig. 1 of Ref. 9. ™ 0.04 - i

The reservoirs have a low resistivity. With the contacts
shown in Fig. 3 of Ref. 23 we associate the constrictions in

0.1

the experimental samples between two split gates denoted b 0.02 - .
I in Fig. 1 of Ref. 9. In our model the contacts have to be

identified with the regions denoted with “1d” in Fig. 1 of %00 : _55 : ~< ‘ -és
this paper which lie between the reservoisource and ¢ [meV]

drain) and the barrier. In our simple model we neglect inter-
actions between the one-dimensional channels in the con- FIG. 8. (a) Conductance as a function of the plunger gate po-
tacts. In reality this scattering is expected to have a signifitential V4 : experimental curve from Ref. @olid line) and theoret-
cant impact. It is, however, plausible to assume in this firsical calculation(dashed lingusing Eq.(46). The parameters of the
study that the conductance will have the same form and onljeoretical curve areVo=-—90.24 meV, I'=5.76 meV, qe
the microscopic definitions of the parameters are modified by- ~0-054,Go=0.13%%/h, andGy=0.07%%/h. (b) The transmis-
the new interaction. As a consequence it is to be expectegon through the resonant channglas a function of energy for a
that under inclusion of channel scattering the asymmetry pd€" values ofa.
rameterge can vary in a wider range from zero for the sym-
metrical dip of an antiresonance to infinity for a Breit- metry of the profile as we have shown in Sec. Ill and that the
Wigner profile. In the case of decoupled channels we onlychannel coupling increases the asymmetry.
find large values ofj which correspond to maxima in the
conductance.

Underlying our method we find for the first antiresonanpe V. SUMMARY
presented in Fig. (@) of Ref. 9 that the offset conductance is
not only generated by the incoherent processes as it is pro- We have provided in this paper a systematic treatment of
posed there. Rather, from E@O) it follows that the coher- the conductance through a quantum dot embedded in a quan-
ent contribution to the background conductance should havieam wire. In our system the potential is decoupled in the
a value between 0.13¢?/h and 0.210e?/h while the non-  transport and in the lateral direction which means that the
coherent background pa(Bﬁgc varies from 0 to 0.21@?/h. scattering channels are also decoupled. The Fano function
We conclude that the offset ter@,. given by Gaeset al®  with a complex asymmetry parameter arises as the most gen-
in Eq. (3) in general represents a number of different com-eral resonance line shape under the assumption that the back-
ponents which can be coherent or noncoherent. ground can be considered constant over the width of the

From the experimental conductance data we can also exesonance. Our model provides microscopic expressions for
tract the transmission curvE(e) as used in Eq(15) in the  the line shape parameters and predicts the coherent and non-
vicinity of a resonance and verify that the energy dependenceoherent contributions to the background conductance. Also
is given by a Fano function with a complex asymmetry pa-this method allows the reconstruction of the off-diagonal part
rameter. For the case analyzed in Fig. 8 the line shape isia the scattering matrix from the experimental conductance
typical antiresonancege= —0.06). This demonstrates that data and shows that other measurements are necessary to
the existence of many poles in tBenatrix leads to an asym- determine theS matrix in an unique way.
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APPENDIX A: MODEL FOR THE PLUNGER GATE

Following Eq.(26) the Wigner-Eisenbud functiong are

PHYSICAL REVIEW B 64 115318

where w, is defined as2™. We identify the denominator
function of the above expression 8fwith Z, (¢) used in Eq.

then unchanged and the Wigner-Eisenbud energies becoréd)-

€—€+Vy. We define for the linear response regindg
=V,=0 andk(e”)=kly= k,, . Then, according to Eq25)
the matricesw, are independent df,. We now consider a

small voltage domaiVy=V,+ 6V around the conductance

APPENDIX C: LAURENT EXPANSION OF S" AROUND
A POLE

maximum in which the. sharp resonance extends. It then fol- We associate each resonance with a single @gleeq

lows from Eqs.(24) and (25)

(Q 0) (€)= E [w(€)]ss

=1 €"—¢€—Vy

o xil(= D]y [(—1)%d]
( )El _Vo_a\/

hZ

- 2m*

€"— ¢
2

f
~——Kk(e"— V)
2m*

5 oxl(=1)%d]xl(—1)'d]
><I§l (e"=6V)—¢—
=(QV0) oy ("= 8V), (A1)

where QVs is the matrixQ with allied potential shiftVg.

From Eq.(Al) it can be gathered that as long as we can

approximate in the slowly varying functiok(e”)~k(e”
— 6V) the gate-voltage dependence@fcan be absorbed in
a simple shift of the energy argument &f at constant gate
voltage. From Egs.(23) and (A1) we obtain SVs(e")
~SVo(e”— V) and therefore

TVo(Ep—E")~TVo(Eg—E’ - 8V). (A2)

APPENDIX B: § MATRIX

In order to express th® matrix given by Eq(23) in terms
of Q, and w, for all energies in &, _1,€,,1) we have to
invert the matrix

. . (FoN
1+iQ=1+iQ, +
€ €)
=[1(e—¢€\)
) ) 1+iQ,
+iw, (1+i9,) 71 — (B1)
It results immediately
€— —E €
def1+iQ]= *_6*( )Dx(e) (B2)
A

with &, (e) andD, (€) defined in Eqs(29) and(32), respec-
tively. The scattering matrix becomes

ge):1_2(1+iﬂ)\)_l(e—eg+iw;/1))\(e) |
e—€,—&\(e€)

(B3)

—iT'/2 in the §(e) and perform formally a Laurent expan-
sion of this matrix around the pole:

- — A_; S o
Se)==——"—+A¢+ 2, Aj(e—eo+il'/2)).
€— 60+|I‘/2 =1
(Cy
We have defined the resonance domain as a region in the

complex energy plane in the vicinity E{) which includes at
least the interval §;—1'/2,e4+1'/2) on the real axis and in-

side which we can lineariz andZ, . Thus the derivatives

up to the second order for these two functions at the points

€9 and €y are very small and we can neglect them in the
expression of the expansion coefficients of the Laurent se-
ries. In the limits our approximation the coefficients have the
form

Z)\(Go)_|F/2(dZ)\/dE)|

A= — =, (©
! 1-dé, /el .,
dz, /de|.-,
Ap= —————, (C3)
1-dé&, /de._,
andA;=0,Vj=1. According to Egs(35 and(36)
dé, o~ &x—Exl€o)
ge| ~ ir/2 €4
5760

andA, becomes identically witﬁsog given by Eq.(38). From
this it follows alsoA_;=i[S(€g) — Spgll'/2.

APPENDIX D: UNITARITY OF THE S~ MATRIX

From Eg.(37) we obtain for all energies:

2

S8/ (=SS

+S(€o)s (60)

—i[éog”sWeO)—aeo)’ézg]ezi - o
wheree=2(e—¢p)/T". Here
S(e0)S(eg)=1 (D2)

is exactly fulfilled because the linearization is exact at the

real energye,. Taking into account the definitiof88) of S,
we find the first step in
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2 il2

iT/2(d/de)(Z,2))] (e [
q

~€ =[1— i__
Sl =SS~ T o ° e T(Gm‘q '
A A
(D3)

and the second step is obtained differentiating the relation 522:[1_1-(60)]"__7.
q*

, (D7)

2
+T(€o)

2

; (D8)

[
(33) with respect to the energy. The conditidn3) is suffi- q
cient for the unitarity ofS in first order ine. Thus our lin-
earization ofZ, andé&, leads to a consistent theory.

In general the symmetrical complex matf‘ég,g can be
written in the form

1\ - -
512:27|m(a>[S(fo)]ufs(fo)]fz- (D9)

. : If we artificially impose the unitarity condition oﬁsbg
'_[g( o)1 '_[g( €0) 11 (6—1) there remains only one free variable which describes
ar q the background matrix. This can be chosen as the real Fano
tc,og: (D4) asymmetry parameter denoted wagh:
i~ i
q [S(e€o0) ]12 q,R[S(Eo)]zz B P m[S(€0) s 0
. s Sog:_s( €0)— )
using the(complex asymmetry parameters for transmission, ar 0 S e)]
q defined in Eq.(40) and for reflectiongg andqy. In the rieirolize

~ (D10
limit of our linear approximatior§,q has to satisfy the Her-
mitian condition(D3) and thus only three real parameters with
can be chosen freely, for example, Infdy, Re(14), and
Im(l/q): 1 \/ 1 i
- Tr:_— + l—T(e‘O) 1+—2 + —.
i M S(eo) s 0 1~ Te) o
= o (D11)
Sog= S €0)~ B , (D5)
*
0 — 7 [Se0)]22 The real parametay, should satisfy the inequality(eg) (1
with +1/g%)<1.

_ We can also remark here that assuming in Eg. the
m 1 1 P 1 (D6) background contribution to ti®matrix as zer® the relation
T ar g/ 1-T(e) \q (D1) becomes

and T(ep) is the transmission probability at the energy.
As can be seen from E@35) ¢, is only an approximative
value of the resonance energy so théty) <1 and7 has no
singularity.

Using Eq.(D3) we obtain directly Eq(41) from Eq.(D1)  The unitarity of the scattering matrig27) restricts strongly
if we identify the first term on the right-hand side of EB1)  [e?/(e*+1)<1] the domain inside which the common
with de?/(e®+1) in Eq.(41). Using Eq.(D5) we obtain for ~ Wigner-Breit profile yields a good description of the trans-
the matrix elements o mission even for extremely narrow and isolated peaks.

—Im

S(e)S(e)=

. D12
e’+1 (b12)
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