
PHYSICAL REVIEW B, VOLUME 64, 115318
Resonant quantum transport in semiconductor nanostructures

E. R. Racec* and Ulrich Wulf
Technische Universita¨t Cottbus, Fakulta¨t 1, Postfach 101344, D-03013 Cottbus, Germany
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We develop a theory of the conductance of a multichannel double barrier system in the case of decoupled
channels. In the frame of the Landauer-Bu¨ttiker formalism we find two basic contributions to the conductance:
first, a resonant one described by a Fano profile with a complex asymmetry parameter and second a nonco-
herent background which can be assumed as a constant in the case of small overlap of the conductance peaks.
We establish a method to reconstruct theS matrix from the experimental conductance data.
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I. INTRODUCTION

In the recent years the study of line shapes in reson
transport through semiconductor nanostructures has attra
considerable attention. Of particular interest are asymme
resonances and antiresonances. In Fano theory both
shapes result from a coherent interaction of the resona
with a given background.1,2 To meet this condition usually a
scenario is considered in which two transmission chann
interfere: First, a resonant channel which is provided b
quasibound level, second, a background channel whic
provided by a continuum of propagating states. In ma
studies the continuum of states is associated with a propa
ing mode in an electron wave guide.3 The resonant channe
can be established by a quasibound state in the binding
tential of a donor impurity,4 by theG-X-G channel in GaAs/
AlAs/GaAs single-barrier structures5 or by a resonantly
coupled cavity.6 An interesting variation of the latter case
the integration of the cavity in an Aharonov-Bohm ring.7 A
similar pattern as in Refs. 3–7 is followed in Ref. 8 analy
ing magnetotransport across a quantum well. On the exp
mental side a first study of Fano profiles in transport w
reported very recently in conductance measurements o
single-electron transistor.9 The measured resonances sh
typical features of asymmetric and antiresonant Fano p
files. However, there remain serious open questions: Firs
agreement with the standard explanation for Fano resona
there is a resonant part of the transmission which is w
understood as a single-electron addition but no cohe
background channel can be identified. Second, since t
are minima in the conductance but no zeros an incohe
contribution to the conductance had to be assumed. As
alternative explanation a complex asymmetry parameter
proposed. Such a complex asymmetry parameter of the F
distribution has been reported in a number of opti
experiments.10,11 The aim of this paper is to derive an an
lytical theory of transport resonances to discuss possible
gins of the noncoherent contribution and of the comp
asymmetry parameter.

We use theS-matrix description of coherent transport
which a Fano resonance is obtained from a pole of thS
matrix in the complex energy plane of the standa
form2,12–14

S̃~E!5 i
S̃~E0!2S̃bg

e1 i
1S̃bg, ~1!
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wheree52(E2E0)/G. The first factor represents the res
nant part of the transmission where the real numbersE0 and
G give position and width of the resonance. The second f
tor, S̃bg, represents the nonresonant part.15,16For each matrix
element ofS̃ it is seen from Eq.~1! that the resonant par
undergoes a phase change ofp when the energy passes th
resonance. In general, this produces a change between
structive and destructive superposition of the resonant
the nonresonant part and an asymmetric line is obtained
the standard approach the matrixS̃bg is chosen so thatS̃(E)
is unitary forall energies.2,12–14It follows that S̃bg has to be
a unitary matrix~see Appendix D!. Then a line shapeT(E)
5Tbgf (e),Tbg5u(S̃bg)12u2, results with the Fano function

f ~e!5
~e1qr !

2

e211
, ~2!

where the asymmetry parameterqr is real. Conflicting with
the experiment the Fano function yields a zero in the c
ductance ate52qr .

Our starting point is a noninteracting model for on
dimensional transport through a quantum dot. The advan
of this model is that in difference to the approaches2,12–14it is
possible to derive explicit expressions for theSmatrix in Eq.
~1! starting from the Schro¨dinger equation. In contrast to th
situation in Refs. 3–7 there is only one~conserved! channel
per contact for a given energy so that the usual picture
explain asymmetric lines which invokes coupling betwe
two different channels does not apply. Nevertheless, we
tain Fano profiles in our model. To explain this, we fir
demonstrate in Sec. II that to each conductance peak a r
nant channel can be associated which provides the reso
part of the conductance. The other channels yield a non
herent contribution which for narrow resonances can be
proximated as a constant.

In Sec. III we analyze the conductance contribution of t
resonant channel and obtain Fano profiles with a comp
asymmetry parameter. The coherent background compo
S̃bg of theSmatrix which is necessary for an asymmetric lin
shape@Eq. ~1!# is the natural consequence of the existence
other poles of the S-matrix in the complex energy pla
which are different from the resonant pole. As illustrated
Ref. 17 these poles contribute in virtual~second order! pro-
cesses to the transport. The imaginary part of the asymm
©2001 The American Physical Society18-1
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parameter results from the following consideration: We o
tain Eq.~1! for theSmatrix by a linearization of theSmatrix
around the conductance maximum. Our description of
resonances therefore is correct in the center of the r
nances, i.e., fore<1. This is sufficient since if there is a
overlap of the experimental resonances as in Ref. 9 a single
pole approximation of the matrix as in Eq.~1! cannot be
expected to be valid outside the center of the resonan
Therefore, in contrast to the standard approach which
quires unitarity ofS̃ in the whole energy range@even where
Eq. ~1! cannot be expected to hold any more# our lineariza-
tion yields unitarity of theSmatrix only in linear order ofe.
Then,S̃bg does not have to be a unitary matrix and we g
one more free parameter for the line shape. We demons
that this parameter consists of the imaginary part of
asymmetry parameter which has to be introduced in Eq.~2!.
From numerical calculation we conclude that a comp
asymmetry parameter is a general finding even for extrem
narrow and strongly isolated resonances.

In Sec. IV we discuss our results on the background of
experiments in Ref. 9. Since the contacts in the experim
are two-dimensional there is the possibility of channel int
action which is not considered in our model. Neverthele
we expect that the basic structure of our results carries o
to the experimental geometry. It is then demonstrated
within certain limits it is possible to reconstruct from th
experimental data the off-diagonal part of theS matrix as
given in Eq.~1! up to a natural global phase.

II. THE MODEL

We consider an effectively one-dimensional system as
picted in Fig. 1. The electronic wave functions are the so
tions to the Schro¨dinger equation

H 2
\2

2m*
D1V~z!1V'~rW'!2EJ C~rW !50, ~3!

where the z-independent lateral confinement potent
V'(rW') produces the one-dimensional character of the st

FIG. 1. ~a! Schematic illustration of the system geometry;~b!
z-dependent part of the potential.
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ture andV(z) is a double barrier potential separating a qua
tum dot from the rest of the system. As usual we takeV(z) as
constant in the contacts,V(z,2d)5V1 for the source and
V(z.d)5V2 for the drain. The potential differenceVSD
5V12V2 results from an externally applied drain-sour
voltage. For the sake of simplicity the contacts are suppo
to be identical.

Due to the separable form of the potential, the wave fu
tions at the total energyE can be written as

C~rW !5(
n

an~E!c~en,z!Fn~rW'!, ~4!

with en5E2E'
n and the general expansion coefficientsan .

The functionsFn(rW') and energiesE'
n are the solutions to

the eigenvalue problem

H 2
\2

2m*
D rW'

1V'~rW'!2E'
n J Fn~rW'!50. ~5!

We assume thatV'(urW'u→`)→` so that theFn(rW') can be
chosen as a discrete orthonormal function system. The fu
tions c(e,z) are the solutions to the one-dimensional pro
lem

H 2
\2

2m*
d2

dz21V~z!2eJ c~e,z!50. ~6!

BecauseV(z) is constant in the contacts we can write ge
erally

c~en,z,2d!5
1

A2p
$cn

in~2d!exp@ ik1n~z1d!#

1cn
out~2d!exp@2 ik1n~z1d!#% ~7!

and

c~en,z.d!5
1

A2p
$cn

in~1d!exp@2 ik2n~z2d!#

1cn
out~1d!exp@ ik2n~z2d!#%, ~8!

with general expansion coefficientscn
in/out(6d) and

ksn5A2m*

\2 ~en2Vs! ~9!

with s51,2. Since we are interested in transport we o
consider in Eq.~4! the radiating part of the spectrum wit
real wave vectors so thaten2Vm.0, where Vm
5max(V1 ,V2) anden is the kinetic energy of the motion in
thez direction. For a fixed energyE and fixed channel quan
tum numbern there are only two independent solutions
Eq. ~6!. Therefore the four coefficientscn

in/out(6d) cannot be
independent. In fact, defining the one-dimensional scatte
area zP@2d,d# with the zero-dimensional surfacez
56d and using theS matrix of the one-dimensional prob
lem Eq.~6! we obtain the condition
8-2
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cn
out~z!5S~en,z,2d!cn

in~2d!1S~en,z,d!cn
in~d! ~10!

for uzu>d, i.e., outside the scattering area. Evaluation of E
~10! at z56d leads to the following 232-matrix equation:

S cn
out~2d!

cn
out~1d!

D 5S S~en,2d,2d! S~en,2d,d!

S~en,d,2d! S~en,d,d!
D S cn

in~2d!

cn
in~1d!

D .

~11!

In view of the constraint~11! only the two ingoing compo-
nents can be chosen independently. Takingcn

in(2d)51 and
cn

in(d)50 yields the scattering state

c (1)~en,z!5
1

A2p H r n
(1) exp@2 ik1n~z1d!#

1exp@ ik1n~z1d!#, z,2d,

tn
(1) exp@ ik2n~z2d!#, z.d.

~12!

This state corresponds to a particle incident from the sou
contact. Comparison with Eq.~11! yields tn

(1)5S(en,d,2d)
and r n

(1)5S(en,2d,2d). Taking cn
in(2d)50 and cn

in(d)
51 leads to

c (2)~en,z!5
1

A2p H tn
(2) exp@2 ik1n~z1d!#, z,2d,

r n
(2) exp@ ik2n~z2d!#

1exp@2 ik2n~z2d!#, z.d
~13!

describing an incident wave coming from the drain conta
Here,r n

(2)5S(en,d,d) and tn
(2)5S(en,2d,d).

To calculate the current in the Landauer-Bu¨ttiker
formalism,18 the electrons can be thought of as two Fer
gasses: First, the electrons coming from the source con
They occupy the single-particle scattering statesc (1)(e,z)
according to the Fermi-Dirac distribution functionf FD(E
2m1), wherem1 is the chemical potential of the source co
tact. Second, the electrons coming from the drain con
with single-particle statesc (2)(e,z) and with the chemica
potentialm2 of the drain contact. Summing up for all single
particle states the occupation factor times the expecta
value of the current operator we obtain

I z5
2e

h E dE@ f FD~E2m1!2 f FD~E2m2!#

3(
n

Q~en2Vm!T~en!, ~14!

with I z5*drW' jWz(rW). Further, T(e)5u@S̃(e)#12u2

5u@S̃(e)#21u2, whereS̃5kn
1/2Skn

21/2 is the current transmis
sion matrix for thenth channel and (kn)s,s85ds,s8ksn . The
Q function serves to remove the channels with exponenti
decaying wave functions in the contacts.

In the linear response regime (VSD→0,V15V2[0) and
for low temperatures (T→0) we obtain19 from Eq. ~14!

G5
2e2

h (
n

`

T~EF2E'
n !. ~15!
11531
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It is seen that the conductance is the superposition of cu
T(EF2E'

n ) in which the n dependence only results in a
energy shift byE'

n . T(e) is determined solely by the one
dimensional scattering problem Eq.~6!. Its general features
are well known20 and illustrated in Fig. 2: For smalle the
transmission is generally small and may have some isola
peaks ate i . For e;Vmax, whereVmax is the maximum of
V(z), the transmission increases strongly to approach u
for larger energies. Generally, to each resonance a pair in
(n,i ) can be assigned, wheren is the channel index andi the
number of the maximum in the curveT(e). As will be
shown in the next section, each factorT(EF2E'

n ) results
from acoherentsuperposition of contributions of resonanc
with the same channel indexn but with different indicesi. In
the result we will obtain Fano resonances inT. In each curve
T(EF2E'

n ) the absolute square has been taken. There
the sum in Eq.~15! represents an incoherent superposition
contributions stemming from different classes of resonanc
Each class is characterized by the channel indexn.

In the experimentsG and thereforeT is probed at different
energies by varying the voltage of an additional plunger ga
In the case of lateral tunneling this additional gate is a
gate9,21and in the case of vertical tunneling it is a side gate22

As described in Appendix A we use the following idealiz
tion for the total potential in presence of a varying gate vo
age: The external potential created by the charges at the
is screened out completely in the metallic contacts (uzu.d)
so that the total potential andEF remain unchanged. In the
scattering area (uzu,d) the total potential can be idealize
for small variations of the gate voltage as a varying poten
offset Vg so thatV(z)→V(z)1Vg ~see Fig. 2!. In Appendix

FIG. 2. Left side: Variation of the total potential of our doubl
barrier test structure. The range of the source- and the drain co
is given byz,2d and z.d, respectively. The potential steps o
heightVg ~which is negative! at uzu5d (d516 nm) result from the
voltage applied to the plunger gate. In dotted lines the wave fu
tions uc (1)u2 at the resonant energiese i

Vg , i 51, . . . ,6which are the
positions of the transmission maxima calculated for the poten
V(z)1Vg . Right side: TransmissionT(e) as a function of energy
for the potentialV(z)1Vg .
8-3
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A it is shown that in a small domain of gate voltages,Vg
5dV1V0, around a conductance maximum atVg5V0 we
can write

G~Vg!.
2e2

h (
n

TV0~EF2E'
n 2dV!. ~16!

Here TV0(e) is the energy dependent transmission of
structure calculated with the potentialV(z)1V0 andG(Vg)
is the conductance atVg . In Fig. 3 it is shown that the
relation~16! provides a good approximation for the condu
tance peak if the resonance is not too broad.

We can assign to each peak in the curveG(Vg) the reso-
nance index (n0 ,i 0) by equating

e i 0

V05EF2E
'

n0 , ~17!

whereVg5V0 is the location of the conductance maximu
and e i 0

V0 is the energy of thei 0th maximum of the curve

TV0(e). If the conductance peak is narrow the resonan
with nÞn0 provide a slowly varying noncoherent conducti
ity underground

GNC5
2e2

h (
nÞn0

TV0~EF2E'
n 2dV!. ~18!

in which the absolute squares of the transmission coeffici
are added without phase information. The resonant cha
produces a coherent contribution

GC5
2e2

h
TV0~EF2E

'

n02dV!, ~19!

which is a coherent superposition of resonances with ind
(n0 ,i ). In the case of a narrow conductance peak the re
nances with (n0 ,iÞ i 0) constitute a background conductivit

FIG. 3. The conductance as a function of the gate potentiaVg

around the maximumi 54 in Fig. 2; complete calculation~solid
line! and approximative values~dotted line! given by Eqs.~15! and
~16!, respectively. At the maximum the coherent part of the cond
tance is GC(V0)52e2/h and the noncoherent partGNC (V0)
.0.08e2/h
11531
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as well. However, this background adds coherently to thS
matrix as in Eq.~1! leading to Fano profiles. This is in con
trast to the noncoherent conductivity background from E
~18!. We find that in our single-channel coherent transp
model a coherent and a noncoherent background condu
ity to a transport resonance may coexist.

III. COHERENT CONTRIBUTION
TO THE CONDUCTANCE

In the following we are interested in the analysis of na
row transport-resonances. They occur in the resonant parGc
of the conductance as given by Eq.~19!. For illustrative pur-
poses and to check our analytical theory we considerT(e)
for the double barrier system of Fig. 2 with an applie
source-drain voltageVSD, as depicted in Fig. 4 forVSD
5220 meV. In the structure of Fig. 4 the barriers are hi
enough so that the lowest three quasibound resonances~1–3!
and the above lying Fowler-Nordheim-type resonance 4
narrow and have a little interaction. However, the appro
mation technique described below gives a very good desc
tion of the higher Fabry-Perot-type resonances~5 and 6! in
the classically allowed transport regime as well. These re
nances have a sizable larger overlap.

A. R matrix representation of the S matrix

Our theoretical development starts with anR matrix rep-
resentation of theS matrix which is particularly well suited
to the description of narrow resonances. As shown in R
19 the wave functions for the one dimensional problem
Eq. ~6! can be written as

-
FIG. 4. Middle: Assumed potential in a schematic plot~solid

line!, wave functionsuC (1)u2 at the transmission maxima~dotted
line!. Right: Transmission vs energy from exact calculation~solid
line! and approximation in Eq.~39! ~dashed line!. Left: Position of
the poles of theS matrix in the complex energy plane determine
after Eqs.~35! and ~36!.
8-4
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c~e,z!5R~e,z,d!cS~e,d!1R~e,z,2d!cS~e,2d!,
~20!

where

cS~e,6d!56
1

m*

dc

dz U
z56d

, ~21!

and R(e,z,z8) is the R matrix. For the points on the 0d
surface of the scattering area (z56d) we therefore obtain
the condition

S c~2d!

c~1d!
D 5S R~e,2d,2d! R~e,d,2d!

R~e,2d,d! R~e,d,d!
D S cS~2d!

cS~1d!
D .

~22!

Using the continuity of the wave functionsc5c in1cout and
their derivatives atz56d as well as the defining relation
~11! and~22! we find that theS and theR matrix are related
through

S̃5k1/2Sk21/25122@11 i V#21. ~23!

Here, for each energye5en we find (k)ss85ksndss8 and the
matrix V of rank two is defined as

V5k1/2Rk1/25(
l 51

`
vl

en2e l

, ~24!

with

~vl !ss85
\2

2m*
ksn

1/2ks8n
1/2x l@~21!sd#x l@~21!s8d#. ~25!

The real Wigner-Eisenbud functionsx l in Eq. ~25! are the
solutions to the 1D Schro¨dinger equation

H 2
\2

2m*
d2

dz21V~z!2e l J x l~z!50, ~26!

with the boundary conditions@dx l /dz#(z56d)50. From
Eq. ~23! the unitarity of theS̃ matrix

S̃S̃†5S̃†S̃51, ~27!

is obtained immediately for all real values ofen. Due to the
special form of the potential the current is conserved in e
channeln.

B. Pole analysis

The starting point for our pole analysis is the followin
exact reformulation of Eq. ~23! in each interval
(el21 ,el11),l>1 ~see Appendix B!

S̃~e!5
Zl~e!

e2el2 Ēl~e!
, ~28!

with

Ēl~e!52 i Tr@vl~11 i Vl!21#, ~29!
11531
h

and the regular matrix

Vl~e!5 (
n51
nÞl

`
vn

e2en
. ~30!

The matrixZl can be written as

Zl~e!5
e2el

Dl~e!
@212det@V#1 i ~V2V2!#, ~31!

where

Dl~e!5det@11 i Vl#, ~32!

(V2)115(V)22, (V2)225(V)11, and (V2)125(V2)21
52(V)12.

The matrix Zl and the functionĒl are related to each
other through the unitarity requirement for theS matrix
which gives

ZlZl
†5Zl

†Zl5ue2el2 Ēl~e!u2. ~33!

The representation of theS matrix in Eq. ~28! has the
advantage that it directly yields the equation

e02 iG/22el2 Ēl~e02 iG/2!50. ~34!

to determine the positionsē05e02 iG/2 of the poles in the
complex plane. We are interested in narrow resonances
which G is a small quantity. We therefore require as the ba
assumption for our theory the validity of the linearization
Ēl and implicitly Zl in a domain of the complex energ
plane that includes the poleē0 and the part of the real axi
which contains the transmission peak associated with
resonance.

After a first order expansion ofĒl(e02 iG/2) arounde0
one obtains from Eq.~34!

e05el1E1~e0!2
G

2

dE2

de U
e5e0

, ~35!

as well as

G52E2~e0!S 12
dE1

de U
e5e0

D 21

, ~36!

where E1(e)5Re@ Ēl(e)# and E2(e)52Im@ Ēl(e)#. Equa-
tion ~35! with Eq. ~36! inserted is a nonlinear equation wit
a unique root fore0. In Fig. 5~b! it is demonstrated that the
resonance energies of the lowest levels are very well re
sented by our linear approximation.

In principle, if Dl(e)50 the S̃ matrix can have other
poles than the ones described in Eq.~34!. However, since
Dl(e) depends only through the regular and slowly varyi
functionVl on the energy the complex energy of the poles
expected to have a large imaginary part.

To obtain the line shape of the resonance we emplo
formal expansion of theS matrix as given in Eq.~28! in a
Laurent series around the pole. Here Eq.~28! ensures that the
8-5
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S matrix is an analytic function which is required for th
existence of the Laurent series. After the linearization ofĒl

andZl we obtain~see Appendix C!

S̃~e!. i
S̃~e0!2S̃bg

e1 i
1S̃bg, ~37!

with

S̃bg5
iG/2

e02el2 Ēl~e0!

dZl

de U
e5e0

, ~38!

wheree52(e2e0)/G. Equation~37! has the general form o
Eq. ~1!, where we can provide an explicit expression forS̃bg.
From Eq.~37! a line shape

T~e!5u@S̃~e!#12u25Tbg

@e1Re~q!#21@ Im~q!#2

e211
~39!

is deduced whereTbg5u(S̃bg)12u2 is the background transmis
sion. The right-hand side of Eq.~39! is a Fano distribution
with a complex asymmetry parameterq given by

q5 i @S̃~e0!#12~S̃bg!12
21 . ~40!

The numerical calculations in Fig. 6 confirm that a comp
asymmetry parameter is the general finding. This seem
hold for narrow peaks as well as for broad and overlapp
peaks.

On the background of our systematic pole analysis
want to discuss a common practice in which an ansatz for
S matrix of the form of Eq.~37! with generalS̃bg and S̃(e0)
is made.12–14To restrict this ansatz to physically meaningf
cases the unitarity ofS̃ is generally required forall real en-
ergies. In Appendix D it is shown that in this case the asy
metry parameterqr is real and thatS̃bg has only one real free
parameter which can be chosen to beqr . In our opinion, this
requirement is an overconstraint since the objective is a g

FIG. 5. ~a! Transmission as a function ofVSD and the kinetic
energye. ~b! Energy of maximum transmission vsVSD: Complete
calculation ~solid lines!, result from Eqs.~35! and ~36! ~dashed
lines!, and values obtained if the derivatives occurring in Eqs.~35!
and~36! are neglected~dotted line!. The three lines coincide for the
lowest three resonances.
11531
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description of the main part of the transmission peak up
energies of aboute'1. Our pole analysis provides a system
atic description of the line shape in this energy range. T
resulting expression~37! preserves the unitarity of the sca
tering matrix only in linear ordere ~see Appendix D!:

S̃S̃†5S̃†S̃.11~d21!
e2

e211
. ~41!

The background matrixS̃bg is then characterized by thre
parameters. They can be chosen as the real and the imag
part of the complex asymmetry parameterq given by Eqs.
~38! and ~40! and the imaginary part of the complex asym
metry parameterqR describing the line shape of the res
nance in reflection. As shown in Fig. 7 the matrix eleme
of d21 are small in comparison with 1. We expect that o

FIG. 6. The argument of the complex asymmetry parameterq vs
applied bias. Even for the narrow transmission peaks correspon
to the quasibound states the imaginary part ofq is big and thus
important for the description of the line shape.

FIG. 7. The deviation from the unitarity of theS̃-matrix given

by the approximative expression~37!: d̂1121 ~solid line!, d̂2221

~dashed line!, andud̂12u ~dotted line! as a function of applied bias.
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approximation is valid as long as the second term on
right hand side of Eq.~41! is small compared to 1. Then th
deviation of S̃ from unitarity is small. This way, for each
maximum we can estimate the range of validity for our a
proximation through the requirement (d21) i j e

2/(e211)
!1,i , j 51,2.

C. Coherent conductance

Inserting Eq.~39! in ~19! we obtain the coherent contr
bution to the conductance in the vicinity of the resonance
a Fano function with the complex asymmetry parameteq
defined by Eq.~40!,

GC5GC
bg @ ẽ1Re~q!#21@ Im~q!#2

ẽ211
. ~42!

Here ẽ52(Vg2V0)/G is a function of the plunger gate po
tential Vg , the resonance positionV0 and the resonanc
width G. The background coherent contribution is related
the background transmission through

GC
bg5

2e2

h
Tbg. ~43!

The behavior of the systems analyzed in this paper@Eq.
~42!# shows that an asymmetric line shape arises in gen
when there is a coherent superposition of contributions to
S matrix coming from different poles. This does not nece
sarily involve the coupling between two different channels
in the usual scenario to explain Fano resonances.

IV. DISCUSSION

After having evaluated the resonant part we obtain for
total conductance

G5GNC
bg 1GC

bg@ ẽ1Re~q!#21@ Im~q!#2

ẽ211
. ~44!

Here we assumed a small overlap of the conductance p
so that the contribution of the nonresonant channels can
approximated by a constant

GNC
bg 5

2e2

h (
nÞn0

`

TV0~EF2E'
n !. ~45!

In our theory all parameters in Eq.~44! can be calculated
microscopically.

Now we solve the inverse problem to extract the transm
sion through the resonant channeln0 from the experimenta
conductance data. Here we face the basic problem tha
parametersq, GC

bg, V0, andG needed to apply Eq.~39! can-
not be gained from a fit in a unique way. To see this
rewrite Eq.~44! in an equivalent form10

G5Gof1G0

@ ẽ1qF#2

ẽ211
. ~46!

This is a sum of a Fano line with a real asymmetry param
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qF5@ uqu2211A~ uqu221!214~Req!2#/2 Req, ~47!

and a constant offset

Gof5GNC
bg 1GC

bg2G0 , ~48!

where

G05GC
bgReq

qF
. ~49!

The parameterqF is obtained as a solution of a second ord
equation where we choose the value which leads to a p
tive G0. The other choice for the sign inqF yields an equiva-
lent description. According to Eq.~46! a fit of the conduc-
tance line shape near a resonance can fix only the
parametersGof , G0 , qF , V0, andG which are not enough
for a unique separation of the coherent from the noncohe
part of the conductance. In order to define a bijective m
ping of the set of the five fitting parameters onto the mic
scopic parameter setGNC

bg , GC
bg, Re(q), Im(q), V0, andG,

we need a supplemental variable which we calla. We ob-
serve that the equivalence of the two conductance exp
sions ~44! and ~46! allows the variation of the backgroun
components of the conductance only inside a small dom
From Eqs.~47! and~49! it follows thatGC

bg>G0. Taking into
account thatGNC

bg is per construction positive it immediatel
results from Eq.~48! that GC

bg<G01Gof . Thus we can de-
fine the parametera as

GC
bg5G01aGof ~50!

wherea varies between zero and one. The complex asy
metry parameter and the noncoherent background com
nent of the conductance can be expressed as a functiona
as well:

Re~q!5qF

G0

G01aGof
, ~51!

Im~q!5
Gof

G01aGof
Aa21~11qF

2 !a
G0

Gof
, ~52!

and

GNC
bg 5~12a!Gof . ~53!

Using the valuesV0 andG from fitting and the expression
~50!–~52! it is very easy to construct the off-diagonal part
the S matrix associated with the resonant channeln0 up to a
global phase factor. This missing phase factor is expec
because the absolute square has been taken in Eq.~39!.

Using the expression~44! we have performed an analys
of the experimental conductance data in the Fano reg
published by Go¨res et al.9 We include a possible constan
component due to incoherent transport (Ginc in Ref. 9! in an
effective noncoherent conductance background. In the
perimental system the potential in the plane of the tw
dimensional electron gas is not known in detail. The tw
major reasons are, first, the complexity of the geometry
the top gate electrodes. Second, experimentally the pote
8-7
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changes in an unpredictable way if the sample is heated
then cooled down again.9 These changes are attributed
unknown metastabilities of electrons in the donor lay
within the AlGaAs. Without sufficient knowledge of the ele
tron potential it is clear that it is impossible to calculate t
conductance exactly. Instead, we assume the correctnes
simple ansatz for the potential. We then focus on the ques
what can be learned from the experimental peaks about
pole structure of theS matrix which describes the resonan
theoretically. As an ansatz for the potential we choose
effectively one-dimensional model presented in Sec. II@see
Eq. ~3!#. One reason for picking this model is that we c
carry out an analytical analysis of the pole structure of thS
matrix which is independent of the particular shape ofV(z)

andV(rW') ~see Sec. III!. Second, we adopt the discussion
Sec. II of Ref. 23 to argue that our model is suitable for
representation of the relevant part of the experimental st
ture: As shown in Fig. 3 of this reference, the scatter
states are formed in the contacts which are widening into
reservoir. With the reservoir we associate the semi-infin
two-dimensional electron gases on the source and on
drain side of the quantum dot presented in Fig. 1 of Ref
The reservoirs have a low resistivity. With the conta
shown in Fig. 3 of Ref. 23 we associate the constrictions
the experimental samples between two split gates denote
I in Fig. 1 of Ref. 9. In our model the contacts have to
identified with the regions denoted with ‘‘1d’’ in Fig. 1 o
this paper which lie between the reservoirs~source and
drain! and the barrier. In our simple model we neglect int
actions between the one-dimensional channels in the
tacts. In reality this scattering is expected to have a sign
cant impact. It is, however, plausible to assume in this fi
study that the conductance will have the same form and o
the microscopic definitions of the parameters are modified
the new interaction. As a consequence it is to be expe
that under inclusion of channel scattering the asymmetry
rameterqF can vary in a wider range from zero for the sym
metrical dip of an antiresonance to infinity for a Bre
Wigner profile. In the case of decoupled channels we o
find large values ofqF which correspond to maxima in th
conductance.

Underlying our method we find for the first antiresonan
presented in Fig. 2~a! of Ref. 9 that the offset conductance
not only generated by the incoherent processes as it is
posed there. Rather, from Eq.~50! it follows that the coher-
ent contribution to the background conductance should h
a value between 0.131e2/h and 0.210e2/h while the non-
coherent background partGNC

bg varies from 0 to 0.210e2/h.
We conclude that the offset termGinc given by Göreset al.9

in Eq. ~3! in general represents a number of different co
ponents which can be coherent or noncoherent.

From the experimental conductance data we can also
tract the transmission curveT(e) as used in Eq.~15! in the
vicinity of a resonance and verify that the energy depende
is given by a Fano function with a complex asymmetry p
rameter. For the case analyzed in Fig. 8 the line shape
typical antiresonance (qF520.06). This demonstrates tha
the existence of many poles in theSmatrix leads to an asym
11531
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metry of the profile as we have shown in Sec. III and that
channel coupling increases the asymmetry.

V. SUMMARY

We have provided in this paper a systematic treatmen
the conductance through a quantum dot embedded in a q
tum wire. In our system the potential is decoupled in t
transport and in the lateral direction which means that
scattering channels are also decoupled. The Fano func
with a complex asymmetry parameter arises as the most
eral resonance line shape under the assumption that the b
ground can be considered constant over the width of
resonance. Our model provides microscopic expressions
the line shape parameters and predicts the coherent and
coherent contributions to the background conductance. A
this method allows the reconstruction of the off-diagonal p
in the scattering matrix from the experimental conductan
data and shows that other measurements are necessa
determine theS matrix in an unique way.

FIG. 8. ~a! Conductance as a function of the plunger gate p
tentialVg : experimental curve from Ref. 9~solid line! and theoret-
ical calculation~dashed line! using Eq.~46!. The parameters of the
theoretical curve areV05290.24 meV, G55.76 meV, qF

520.054,G050.131e2/h, andGof50.079e2/h. ~b! The transmis-
sion through the resonant channeln0 as a function of energy for a
few values ofa.
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APPENDIX A: MODEL FOR THE PLUNGER GATE

Following Eq.~26! the Wigner-Eisenbud functionsx l are
then unchanged and the Wigner-Eisenbud energies bec
e l→e l1Vg . We define for the linear response regimeV1
5V250 andk(en)5k1n5k2n . Then, according to Eq.~25!
the matricesvl are independent ofVg . We now consider a
small voltage domainVg5V01dV around the conductanc
maximum in which the sharp resonance extends. It then
lows from Eqs.~24! and ~25!

~VVg!ss8~en!5(
l 51

`
@vl~e!#ss8

en2e l2Vg

5
\2

2m*
k~en!(

l 51

`
x l@~21!sd#x l@~21!s8d#

en2e l2V02dV

'
\2

2m*
k~en2dV!

3(
l 51

`
x l@~21!sd#x l@~21!s8d#

~en2dV!2e l2V0

5~VV0!ss8~en2dV!, ~A1!

where VVg is the matrixV with allied potential shiftVg .
From Eq. ~A1! it can be gathered that as long as we c
approximate in the slowly varying functionk(en)'k(en

2dV) the gate-voltage dependence ofV can be absorbed in
a simple shift of the energy argument ofV at constant gate
voltage. From Eqs.~23! and ~A1! we obtain S̃Vg(en)
'S̃V0(en2dV) and therefore

TVg~EF2E'
n !'TV0~EF2E'

n 2dV!. ~A2!

APPENDIX B: S̃ MATRIX

In order to express theS̃ matrix given by Eq.~23! in terms
of Vl and vl for all energies in (el21 ,el11) we have to
invert the matrix

11 i V511 i Vl1
i vl

e2el

5@1~e2el!

1 i vl~11 i Vl!21#
11 i Vl

e2el
. ~B1!

It results immediately

det@11 i V#5
e2el2 Ēl~e!

e2el
Dl~e! ~B2!

with Ēl(e) andDl(e) defined in Eqs.~29! and~32!, respec-
tively. The scattering matrix becomes

S̃~e!5122
~11 i Vl!21~e2el!1 i vl

2/Dl~e!

e2el2 Ēl~e!
, ~B3!
11531
me
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where vl
2 is defined asV2. We identify the denominator

function of the above expression ofS̃ with Zl(e) used in Eq.
~28!.

APPENDIX C: LAURENT EXPANSION OF S̃ AROUND
A POLE

We associate each resonance with a single poleē05e0

2 iG/2 in the S̃(e) and perform formally a Laurent expan
sion of this matrix around the pole:

S̃~ ē !5
A21

ē2e01 iG/2
1A01(

j 51

`

A j~ ē2e01 iG/2! j .

~C1!

We have defined the resonance domain as a region in
complex energy plane in the vicinity ofē0 which includes at
least the interval (e02G/2,e01G/2) on the real axis and in
side which we can linearizeĒl andZl . Thus the derivatives
up to the second order for these two functions at the po
ē0 and e0 are very small and we can neglect them in t
expression of the expansion coefficients of the Laurent
ries. In the limits our approximation the coefficients have t
form

A21.
Zl~e0!2 iG/2~dZl /de!ue5e0

12dĒl /deue5e0

, ~C2!

A0.
dZl /deue5e0

12dĒl /deue5e0

, ~C3!

andA j.0,; j >1. According to Eqs.~35! and ~36!

12
dĒl

de
U

e5e0

5
e02el2 Ēl~e0!

iG/2
~C4!

andA0 becomes identically withS̃bg given by Eq.~38!. From
this it follows alsoA215 i @S̃(e0)2S̃bg#G/2.

APPENDIX D: UNITARITY OF THE S˜ MATRIX

From Eq.~37! we obtain for all energies:

S̃~e!S̃†~e!.S̃bgS̃bg
† e2

e211
1S̃~e0!S̃†~e0!

1

e211

2 i @S̃bgS̃
†~e0!2S̃~e0!S̃bg

† #
e

e211
, ~D1!

wheree52(e2e0)/G. Here

S̃~e0!S̃†~e0!51 ~D2!

is exactly fulfilled because the linearization is exact at
real energye0. Taking into account the definition~38! of S̃bg
we find the first step in
8-9
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@S̃bgS̃
†~e0!2S̃~e0!S̃bg

† #5
iG/2~d/de!~ZlZl

†!ue5e0

ue02el2 Ēl~e0!u2
50,

~D3!

and the second step is obtained differentiating the rela
~33! with respect to the energy. The condition~D3! is suffi-
cient for the unitarity ofS̃ in first order ine. Thus our lin-
earization ofZl and Ēl leads to a consistent theory.

In general the symmetrical complex matrixS̃bg can be
written in the form

S̃bg5S i

qR
@S̃~e0!#11

i

q
@S̃~e0!#12

i

q
@S̃~e0!#12

i

qR8
@S̃~e0!#22

D ~D4!

using the~complex! asymmetry parameters for transmissio
q defined in Eq.~40! and for reflection,qR and qR8 . In the

limit of our linear approximationS̃bg has to satisfy the Her-
mitian condition ~D3! and thus only three real paramete
can be chosen freely, for example, Im(1/qR), Re(1/q), and
Im(1/q):

S̃bg5
i

q
S̃~e0!2S t@S̃~e0!#11 0

0 2t* @S̃~e0!#22

D , ~D5!

with

t5ImS 1

qR
D2ImS 1

qD1
i

12T~e0!
ReS 1

qD ~D6!

and T(e0) is the transmission probability at the energye0.
As can be seen from Eq.~35! e0 is only an approximative
value of the resonance energy so thatT(e0),1 andt has no
singularity.

Using Eq.~D3! we obtain directly Eq.~41! from Eq.~D1!
if we identify the first term on the right-hand side of Eq.~D1!
with de2/(e211) in Eq. ~41!. Using Eq.~D5! we obtain for
the matrix elements ofd
ic

s

11531
n

,

d115@12T~e0!#U i

q
2tU2

1T~e0!U i

qU
2

, ~D7!

d225@12T~e0!#U i

q*
2tU2

1T~e0!U i

qU
2

, ~D8!

d1252tImS 1

qD @S̃~e0!#11@S̃~e0!#12* . ~D9!

If we artificially impose the unitarity condition onS̃bg
(d→1) there remains only one free variable which describ
the background matrix. This can be chosen as the real F
asymmetry parameter denoted withqr :

S̃bg5
i

qr
S̃~e0!2S t r@S̃~e0!#11 0

0 2t r* @S̃~e0!#22

D ,

~D10!

with

t r5
1

12T~e0! F6A12T~e0!S 11
1

qr
2D 1

i

qr
G .

~D11!

The real parameterqr should satisfy the inequalityT(e0)(1
11/qr

2)<1.
We can also remark here that assuming in Eq.~1! the

background contribution to theSmatrix as zero15 the relation
~D1! becomes

S̃~e!S̃†~e!5
1

e211
. ~D12!

The unitarity of the scattering matrix~27! restricts strongly
@e2/(e211)!1# the domain inside which the commo
Wigner-Breit profile yields a good description of the tran
mission even for extremely narrow and isolated peaks.
.
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