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Interaction potential between dynamic dipoles: Polarized excitons in strong magnetic fields
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The interaction potential of a two-dimensional system of excitons with spatially separated electron-hole
layers is considered in the strong magnetic field limit. The excitons are assumed to have free dynamics in the
x-y plane, while being constrained or “polarized” in ttedirection. The model simulates semiconductor
double layer systems under strong magnetic field normal to the layersreBitial interaction between
excitons exhibits interesting features, arising from the coupling of the center-of-mass and internal degrees of
freedom of the exciton in the magnetic field. This coupling induces a dynamical dipole moment proportional to
the center-of-mass magnetic moment of the exciton. We show the explicit dependence of the interexciton
potential matrix elements, and discuss the underlying physics. The unusual features of the interaction potential
would be reflected in the collective response and nonequilibrium properties of such system.
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[. INTRODUCTION Butov et al1° have reported photoluminescence experiments
in AlAs/GaAs heterojunctions, and their results suggest the
The availability of new materials and interfaces in semi-appearance of a Bose condensate in at least the high mag-
conductors has allowed the exploration of novel electronimetic field regime. Konet al. have also reported interesting
systems with fascinating physical behavior. Of particular rel-spectroscopic data suggesting an infrared-active state in the
evance to the model studied in this paper are the structurdaAs/Al,Ga, _,Sb system with unusual properties, reminis-
achieved by clever use of multilayer geometries, yieldingcent also of those of a condens&télthough the carriers in
double quantum wells, and heterojunction interfaces of typehese latter systems are not introduced opticédly in the
Il. In those systems, either by the application of externalexperiments abovethe close proximity of carrierscross
electric fields or by the intrinsic structure potentials, it i5|ayers, while remaining at re|ati\/e|y low densities, may y|e|d
possible to achieve separation of electrons and holes intgycitonlike bound states of electrons and holes.
distinct parallel layers, while controlling the in-plane carrier  pepending on the details of each system, one can identify

densities. suitable conditions under which the electron-hole layers

This situation, of spatially separated electron and holg,q 14 he well described as a collection of polarized exciton-
layers has attracted the attention of several groups, both i

fike dipoles? These conditions require the in-plane separa-
theory and experiment. The early proposals of Kogan and P “ au np P

Tavger} as well as Lozovik and Yudsdhand Shevchenkd, on of charge carriers to be much larger than that across the

| X : layers(so that the electron-electron or hole-hole distances in
were focused on the possible correlations in such :systemsach lane are larger than those between electron and hole
due to the electron-hole interactions across the layers. MorE plane ar ger. L

lanes. This in turn yields a system of excitonipoles

recently, other authors have theoretically explored differenP ) , !
features of these systems, from possible vorticasd dark predominantly polarized along the normal to the interface.

excitonic states due to hidden symmetfies, the various We_presen_t here a study _of the interactions between the re-
nontrivial thermodynamic phases of these syste@s the sultlng exciton states_, ta_kmg into accpunt both the presence
experimental side, there has been substantial activity as weff an intense magnetic field, and the internal structure of the
The experiments of Fukuzawa and co-workers gave tantaliZ£lectron-hole pair. The presence of the magnetic field intro-
ing evidence for the anticipated Bose condensation of “spaduces adynamicalcoupling between the center of mass of
tially indirect” excitons in double quantum wells under the exciton and its relative coordinate, so that the exciton-
strong electric field$.Although later work has shown that exciton scattering is a much more complicated event than
the interpretation of those results was not relidhiiyen the  that occurring between point charges. We discuss here these
characteristics of the samples used, the concepts of achievirigteractions, the potential characteristics and different scat-
Bose condensation of excitons in quantum wells is soundiering events possible.
experimentally feasible, and currently being pursued in new We should mention that perhaps the closest analog of
geometries and systems. these polarized interacting excitons is that provided by polar
Controlled electron-hole separation in different layers/molecules, such as CO or HF. A large number of theoretical
planes has also been achieved using heterojunctions of ty@ad experimental studies of the scattering events between
I, such as those formed between InAs and AlBbGaSh.  such molecules exists in the literatdfeAlthough such sys-
In these structures, the band alignments are such that ele@ms have permanent dipole moments and live in three di-
trons and holes are spatially separated in equilibrium, as thmensions, the most different aspect to the excitons here is the
bottom of the conduction band on one side of the heterojuncrontrivial coupling of their internal degrees of freedom with
tion lies lower than the top of the valence band on the otherthe center-of-mass magnetic momentum. This feature adds a
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very interesting and subtle complication to the excitonic sysindirect excitons co-exist initially with the short-lived direct-
tems studied here. excitons created during optical pumpifigThese physical

In fact, we will show that unlike more compact composite considerations can be suitably represented by constraining
objects, or in the polar-molecule analog, the scattering eventhe motion of electrons and holes to regians<0, andd
here carstronglyaffect theinternal state of the participating <z, , respectively. This approximation neglects small wave
excitons. In fact, as the in-plane dipole moment of the excifunction penetration in realistic systems, but given typical
ton is proportional to its center-of-mass magnetic momenparameters, the penetration is sniall.
tum, the scattering will in general re-orient the dipole in a  Although electron and hole cannot overlap in this simpli-
well-defined way which depends on the momenta of the parfied model of the interface, they still interact via their Cou-
ticipating excitons. The event may also cause transitions ttomb attraction, and are able to form a system of spatially
excited internal states of the exciton, just as in the polarseparated but boundf weakly) excitons. As mentioned
molecule analog, although those may be suppressed here bgove, this picture of nearly isolated and well-formed exci-
the strong magnetic field. This article studies the details ofons should be an appropriate description whenever the in-
such momentum exchanges and effective interactions, anerparticle distance in the plane is much lar¢ew density
provides explicit expressions for the lowest matrix elementsthan the electron-hole separation across the interface.
Apart from describing an unusual and interesting situation, The wave function for each electron-hole pair in the sys-
these interactions would play a vital role in a description oftem may then be written as
the collective modes of this interacting boson gas.

It is also interesting to note the similarity of these exciton W(re,Ze;Th,2n) =W (re,rp) 6(ze) 8(zp—d), (1)
d!poles with t_hpse believed to exist in the quan_tum Ha.II € here r, and r, are two-dimensional vectorsn the x-y
gime at half-filling of Landau level. The composite fermions

there develop a dipole moment proportional to the momenplane for the electron and hole, respectively. This factoriza-

tum, in a similar way to the excitons we describe. AIthoughtIOn makes the problem effectively two-dimensiordD).

the underlying physics is quite different, the scatterin eventAIIOWing for motion in thez direction does not alter quali-
ying pnysics 1S gt T renng € %atively the two-dimensionality, but would require the inclu-
of the effective quasi-particles are possibly quite sintitar.

Perhaps some of the intuition developed in our study of eX_s|on of a form factor to account for the finite extension of the

citons would be of some use in better understanding com va_/avefunction in that direction. This change would only af-
) . . ) 9 PO3&ct the results in a guantitative way, and can be introduced
ite fermions in that regime.

o . traightforwardly, as done before in similar situations.
In what follows, the specifics of the model are described® A, . .

in Sec. I, including a d%scription of the role of magnetic Th? magnetic field is applied perpendicular to the layers,
field in coupling the various degrees of freedom. Section 11H=Hz, and it is assumed to be sufficiently strong that the
describes then the potential matrix elements for the twol€lation
exciton scattering events. Section IV illustrates the resulting
scattering potential by considering a few special events. Sec-
tion V closes the work with discussion and conclusions.  pods, wherea, ,=%2x/m, e? are the effective Bohr radii

for the electron and holen,, are the effective masses at

Il. MODEL H=0, « is the average background dielectric constarig
the charge quantum, andy=+7%c/eH is the magnetic
length. As discussed first by Gorkov and DzyaloshinSkii,

The system of interest can be characterized as a gas obndition(2) allows one to apply perturbation theory in this
electric dipoles, which are free to move on thg plane and rather complex problem. Motion of a 2D neutral electron-
are effectively polarized either by the application of an elec-hole pair in a transverse magnetic figtd=(0,0H) is de-
tric field in the z direction, or by the built-in heterojunction scribed by a Hamiltonian, which for nondegenerate and iso-
potentials of a type Il system, as described in the introductropic bands in the effective mass approximation reads
tion. For concreteness and simplicity, we shall consider a

ry<ae,ap 2

A. Exciton wave functions

model where the electron and hole layers are separated bya 1 , e \? , e \?
set distanced, and assume that theaxis dynamics is T 2m, —1hVet EAe + 2m, —1hVh— EAh
strongly confined. Consequently, the effective layer width of )

each of the layers is assumed to be so narrow that the carriers € 3)
have only two-dimensional dynamics. This assumption, rein- Klre—ry|”

forced by the electron-hole interaction, implies that the wave ) ) )
function spread for both electrons and holes inzlrection ~ Here, k=(«1+ «,)/2 is the average background dielectric

is negligible, and that the other “transverse” states are s@onstant across the heterostructure. Sikge «, in typical

high in energy as to be inaccessible for typical situations. W&ystems, possible image charge effects are small and ne-
assume further that there is no electron tunneling into th&lected here. _ _ _

hole layer and vice versa. This is in fact the situation for type The dynamics of thesingle excitonsystem is character-

Il heterojunctions due to the built-in potentials, and also forized by a conserved quantity associated with the operator for
indirect excitons in double quantum well systems undemagnetic momentum of the center of mass: —iA Vg
strongelectric fields. (In the latter, however, the long-lived — (e/c)A(r).t° Here,
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R= (Mgl o+ Myrp)/M (4) the average radius vector between electron and hole is or-
thogonal toP, for all n anm, and it vanishes foP=0. This
peculiar dependence of the dipole moment on the magnetic

(5) momentum can be intuitively understood as the result of the

is the center of mass coordinate, while

F=fe™Th Lorentz force tending to separate the charges in each pair.
is the relative coordinate of the electron-hokelf) pair, M Notice that the in-plane polarization reduces their Coulomb
=m+my, andA(r)=3HXr is the symmetric gauge. interaction, and makes the exciton more susceptible to ion-

The wave functionsl',,», describing the state of an e-h ization by system imperfectiort§.This P dependence will
pair in the fieldH can be written as? have also important consequences for the scattering matrix
i . elements, as we will see later: evenaasticre-orientation
_ b © of P results in a realignment of the dipole moment, which in
\Ifnmp(re,rh)—exp{ﬁ Pt 20|—|><r 'R] turns changes the interaction with other dipoles. Neverthe-

| less, notice that because this system has spatially separated
X expl = yP- r)CD (r=rp), (6) eleqtron-hole layers, thwotal dipole moment vector of the
2h exciton has a constant component alongzhgis, and this is

wherey=(m,—mg)/M, Pis the “center-of-mass” or “mag- the dominant component in most cases.

netic momentum?” of the exciton associated with the operator
p B. Interexciton residual potential

As already mentioned, the charge separation imposed by
the layered geometry produces an effective polarization,
nearly perpendicular to the interface for snfalvalues, and
resulting in a nonzero dipole moment for all the excitons
described here. This fact gives rise to an overall repulsive
interaction between all excitons in the system. It will be this

N

r

re=—-2XP, (7)

;*I

and the wave functiod,,, is identical to the wave function
of a charges in a fieldH,’

nl V2 —img “residual potential” that provides for a collective response,
D, (r)= ' as we describe in the next section.
2M= Y+ mhte| T To the lowest order in a multipole expansion, the residual
interaction potential between two excitons located a&nd
[m]| 2 2 ' . . . .
% P L|m| ox P ®) x', respectively, can be written as the interaction between
My r2 4rﬁ two dipoles,
Wher_eLnm are Laguerre polynomials, a_mj=|r|. The wave- p-p' 3[p- (x=x) [P’ - (x=x)]
functions ¥ ,,p(re,r,) describe then, in the limit of high V= 3 S . (12
magnetic field, the dynamics of magnetoexcitons with dis- K|x=x'| K|x=x'|

ersion relatiort® .
P Here x andx’ are the center of mass coordinates for each

Enm(P)=EnmT Enm(P), (99  Particle in three dimensions. The dipole momemiare gen-
erated by the nonzero expectation value of the relative coor-

dinate. Correspondinglyp=e(r+zd), wherer is the in-

1 plane relative coordinate, artlis the z-axis separation. As

Enm=toy| N+ ) |m|—ym+1), (10)  this expression depends on both the relative and the center-
of-mass coordinate& andx’) it needs to be evaluated for

where the cyclotron frequency,=eH/uc is defined in ~€ach exciton state wave functi¢see next section

with

terms of the reduced mass of the excifonand Notice that this dipolar approximation should be valid as
long as the exciton separation is larger than any of the char-
e? acteristic size-length scales of the excitons themselves,
Enm(P):<®nm_K|r+r | >, (11

Ix=x'|>[(r)|,d,a,,, (13
where the wave function® ,,, are centered at the origin
Equation(9) is the energy of th&V, ., state to first order in  where(r) is the in-plane exciton mean radius-(p), a,
the Coulomb interaction, and is a good approximation as=#2«/ue? is the exciton’s Bohr radius, ardlis the z- aX|s
long as Eq.(2) holds. The states constructed in this fashione-h separation. For closer inter-exciton separations, one
can be viewed as an exciton that has center-of-mass motishould in principle include higher multipoles in the interac-
P in thex-y plane, and with “internal structure” given by the tion between excitons, accounting for the constituent elec-
state®,(r —rp), with origin shifted torp. trons and holes. The dipolar approximation would break
It is important to emphasize that the functiohg,,in (6)  down as the in-plane carrier density increases, violating the
are centered atp, given by Eq.(7), so that the actual in- condition (13). Correspondingly, this condition would re-
plane separation between electron and hokg js=rp, pro-  quire|x—x’|=a,~100 A in typical materials/systems. The
portional to its magnetic momentum. Notice moreover thatin-plane densities would need to sat|sfy|<1/77a
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~10% cm 2, quite a reasonable requdsfiven the typical
experimental densities of 10to 10t* cm=2)."~

We should also mention that the spatial separation of car-
riers in this system naturally introduces a characteristic
length scale which is different in other exciton systems. As
the layer separation endows the objects with a finite dipole
moment, they have interactionsell before their internal
structure plays a rolé.e., at longer ranges than their typical
size). This is not the case in excitons where the electron and
hole coexist in the same spatial region. For example, FIG. 1. A sketch of a scattering event between exciton dipoles.
Keldysh and Kozlov have discussed the importance that st&ne of the exciton particles makes the transit{@,a’'}—{P,a},
tistics plays in the true nature of collective excitations inwhile the other one chang¢k,b}—{K’,b’}. Notice thatin-plane
exciton systems where carriers coexist in the same région,dipole moments are perpendicular to each momentum, and they
and explain why this produces behavior which is substanchange upon scatterin@s indicated by blank and shaded arrpws
tially different to that of a weakly interacting Bose gas. De- D_ashed Iine_ indicates the momentum exchange due to the interex-
tailed consideration of the relevant parameters in the case &fton potential.
our spatially separated system, and the possible role of sta-, , , ,
tistics, should be carried out as collective modes in thes¥/ith Aq=P—P’, andfq’=K —K", as one expects for trans-

systems are exploréa.We leave those considerations to fu- Iatipnal invariant systems. The Igbels for incoming and out-
ture work. going momenta and other exciton quantum numbers are

shown in Fig. 1, wherg represents the in-plane momentum

transfer due to the scattering event between excitons. In this

notation, the scattering process is fully described by the
As discussed earlier, the main motivation for consideringchange of the remaining internal state labels;~a, andb

this problem is to model the dielectric response function for—b’, as indicated in the figure.

a 2D Bose gas of dipole-like polarizable bosons in a strong In these expressions, the functiorsq), x.(q), and

magnetic field. In this context, the dielectric function in the x»(q), are Fourier transforms of the dipolar interaction de-

self-consistent field mean-field approximation can be writterpendence on the center-of-mass coordinates, and are explic-

ago1d ity written in Appendix A. The in-plane “dipole moment”

matrix elements are given formally by,

IIl. INTERACTION MATRIX ELEMENTS

ea/a’ﬁﬁr(w)z5,1/5/5ﬁa—Va/B;a5,HBB,(w), (14)

. o o 2e d
wherell g4/ is the polarization matrixe is the frequency of Pora=7——Myn,
the perturbing potential, and the inter-exciton interaction po- ly 99
tential matrix elements in the excitonic wave function baSivahereﬁq= P—P’ as above, and the nonlocal “overlap” ma-

(19

are given by trix elements are given by
_ * ’ ’ . .
va,ﬁ;aﬁ,_f Y, (D) (D V(L) Mala:Mn,m,P,YnmP:el(V/Z)q-rprJ SRR, (1)
X (I "
Yo (U)pp (I'")dI'dl’ (19 XD, (r—u)d?r, (20)

Here,I" andI™’ refer to the exciton degrees of freedom, with
I'={r,R,z.,z,}, or {re,ry,z¢,zn}, and thea and B indices
denote thgnmP} set of excitonic quantum labels. Using the
states described above, we have for the first term of the p
tential (12),

with similar expressions fopgg: and Mgg . In the last
equation, we have used=rp—rp/, and the gradient in
Eq. (19 refers to theexplicit g dependence shown in
QEq. (20), different fromu. In the following sections, we de-
scribe typical features of the overlap and dipole matrices,

, M o @andpgq: -

VO apr =[Para P+ €202M 1 Mg 1(A) 8(A— 1), P

16

(18 A. Dipole matrix elements

while for the second term, .
In order to better understand the nature of the residual

v®  _r(g-p. ) ) interaction matrices, we evaluate some of the lowest ele-
a'iap = [0 Para)(A- Pggr) X2(Q) ments. In what follows, and for notational convenience, we
—(PuraPag ) X2(A)18(q—a'). (170 usea={nmP}={aP}, with a standing for the indices of the

) ) ) ®,,, states, so that one can write for example,
The 6 functions in these equations ensure overall magnetic

momentum conservation in the scattering between two exci- p_, =p..p ap=Para(P—P',P+P")=paa(q,P"), (21

tons, i.e.,
where the explicit dependence on the sum and difference of

P'+K=P+K’, (19 participating momenta is indicated. The last equality uses the
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overall conservation of magnetic momentum provided by thevhere
6 functions in Eqs(16) and (17).

The simplest dipole moment matrix elemeffor a ~ o Y 5 rﬁq2
={00}=a’) can be written agsee Appendix B Moood 0.P")=exp 1 70 Topr+sq= (¥ +1)—5— ],

(25
e
Poor’ 00p= poo,odqyp')zz(rzpfmq and

2

L2 N (YA Topr 4 paa— (1 YD) a2r2/8 , e )
+iyrpq)etr i erreaae” BTYIATHE, - (22) V00,00;00,009, P 'K):Z{[Q'(rZP’+ﬁq+|'yraq)][Q'(rZK—hq

where the in-plane momentum exchanrgend theincoming

. . . H 2
magnetic momentun®’ are used to specify the dipole and —iyrg@) Ixa(a) = (rapr s
nonlocal overlap matrix elements. +iyrdq)-(r —iyradx2(q)}
From this expression, thénoninteractiny long-wave- YA (Nak—g =1 YTHA X2(G);-
length limit q=0 yields, (26)
r2 Notice that these expressions contain a contribution from the

Poood d=0,P’)= grzp,:TH[ix P']=erp. (23)  constantz component of the dipole momerdd, as well as
from the in-plane components.

This represents what one could call the “proper” dipole mo- ~ From these equations, and considering ghe0 limit of
ment of the exciton in statem=00, and with magnetic mo- the potentiasee Appendix A we may write
mentumP’, since the expectation value of the relative coor- ,
dinate isrp, . In fact, it is possible to showsee Appendix B V00,00,00,060—0.P",K)
thatall the diagonal dipole matrix elements in the limgit-0 2
yield p,a(q=0,P)=erp, since in fact alkb ,,, states have the =
same dipole momentin this high field limib, as we dis- 2\mdx
cussed following Eq(11). We emphasize that large momen-
tum values correspond to larger exciton size and lower bind
ing energy, as the exciton is increasingly polariZ2®ne
expects that such high-states would be easily affected
(even disintegratedby perturbations in the system, such as
impurities and surface inhomogeneities.

It is interesting to note the role thag=(my—mg)/M

e

{[1-67%2(314)]rp -rg+d?. (27

This result is expressed in terms of the proper dipole moment
of each exciton, proportional to,, andry, as intuitively
expected by Lerner and LozoviRlt is clear that the sign of
the first term in the interactiof27) depends on the relative
orientations ofP’ andK, and the resulting dipole moments.
The total interaction between excitons will be mdless

: I~ ; ; repulsive for antiparalle{paralle) P’ andK, as the contri-
plays in Eq.(22), providing an imaginary partor phase bution to thez-axis moment is modulated by the in-plane

proportional tog to the dipole matrix element. Notice further tF Il and moderat . t val
that for any+y values, a nonvanishing momentum exchangecomponen - ~or small and moderate magnetic moment val-

g depresses exponentially the dipole matrix element, with yes, typical of thg exqtons n th'? system at low tempera-
characteristic length=ry . Since nonvanishingy corre- wres, the rgpulswe |nter2act|on IS .howlever only weakly
sponds to the momentum/energy transfer from one exciton tfiodulated, sincel=rop=ri,P, but it is still dependent on
the other, high momentum transfer processes will appear tH1€ relative orientation of the proper dipoles.

be strongly suppressed by this potential. Let us discuss these

features in the next section. IV. SCATTERING EVENTS

As we have mentioned, the potential matrix elements
above allow the description of the collective excitations of
The simplest elements of the potential are those diagondhe weakly repulsive gas of polarized excitons, in a manner
in the {a,a’} indices. For two excitons with incoming mo- similar to that treated in Refs. 19 and 21. Moreover, these
mentaP’ andK which exchange momentum) the potential ~ potential expressions can also be used in a quantitative de-
matrix element is given by, scription of the kinematics of scattering events, as those
needed in a treatment of the distribution function via the
e? Boltzmann equation to evaluate drégor the evaluation of
VOO,OO;OO,Oéqu,:K):(¢(Q){Z(r2P’+hq+i'yrlz-iQ)'(rZK—ﬁq the Bose condensate properties in this dipole-interacting
systen?® As an illustration of their use, we describe in this
section how the potential matrix elements calculated above
can provide rates and cross sections for different interexciton
scattering events. For simplicity, we deal here with “elastic”
, collisions, when there is no change of the internal state under
+V00,00;00,069,P",K) scattering. More complex events are in principle also al-
5 3 lowed, although “inelastic” processes are suppressed by the
XMoo od —a,P" )Mqood 0, K) (24)  strong field.

B. Potential matrix elements

—iyr3q)+e?d?
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If one considers scattering events in which the internalvhereM gy’ is the effective excitonic mass of stg@0}, in-
state of the excitons is left unchanged, one is then faced witbluding the electron-hole interaction, fdn|,|n’|<#%/r .1
a purely kinematically elasticcollision. The description of The presence of thé function in Eq.(30) indicates that the
this elastic collision, like any problem of two bodies, is sim- scattering event is kinematically elastic.
plified by changing to a system of coordinates in which the

center of mass of the two particles is at rest. The scattering V. CONCLUSIONS
angle in the center of mass reference frame is denoteg| by
and it is related to the angleg and 6, giving the scattering We have presented explicit expressions for the residual

angles of the two particles in tHaboratory system of coor-  interaction between polarized excitons in strong magnetic
dinates. In the case in which the second particle was at re$elds. This potential would have important consequences on
before the collision, for example, one can white the description of individual scattering events, as discussed,
and the collective excitations of the system. Unfortunately, it
is not clear how one would perform experiments to directly
measure the many different scattering processes possible. Al-
) ) though we are hopeful that some experiments might be de-
wherem,, m, are the masses of the scattering objects. In 0Ugjgne in the future to analyze these processes, we believe
case, the masses of the two “particle@xcitons are the  pat the more direct probe would be study of the various
same (n,=m;=M;", which depends on the internal state ¢o|jective modes in this interesting and unusual system.

a={nm}), and we have simply, Since the density-fluctuation modes are now able to include

m,sin 6

tanf=————,
1™ m; +m,cosé

1
9225(77_9),

rather complex internal excitations, the resulting modes
1 1 - . .
6,==0, 6O,=—(7—0); may indeed be quite unusual and complicated. One would
2 2 use the potential derived here in an approach similar to the
. . 9,21 .
so that the particles diverge at right angles in the laborator§@se With no field?*" and results will be presented else-
frame. where. We trust that these expressions would also be useful

The scattering cross-section can be calculated using tH the description of other kinematic and thermodynamic
Born approximation, since the residual potentia2), may Properties of the system.
be considered a weak perturbation. Notice, furthermore, that
the residual potential depends only on the distance between ACKNOWLEDGMENTS
excitonsx—x', so that the scattering field is central. Now, in

the center of mass frame of reference, we can write This work was supported in part by CONACYT-

México grant No. 983064, and U.S. DOE No. DE-FG02—
Pew=n, Kem=-n, (28)  91ER45334,

wheren=(P’'—K)/2, is the relative magnetic momentum be-
tween excitons. Thus, the interaction potential matrix ele-
ment for this event, where the internal state is assumed to be Because of the spurious short-range divergence intro-
a={00} before and after the collision, can be written as  duced by théx—x’| 3 dependence on the dipolar potential,
o we use the physical cutoff parameter1 9provided by the finite
cm. _ = 2_ _ z-direction polarization of the excitod.”* Therefore, by in-
Vao,00;00.06% M) = 7 {4(A) A"~ [xa(A) = (@] (Tn+ 1 troducing the regularization factor as pet—x’| 3—|x
— ly—vy'12742 .
—x'|73(1— e~ =¥'I7%%) 'we preserve the long-range dipolar
interaction, while allowing for the short-range Coulomb-like

APPENDIX A: POTENTIAL FUNCTIONS

+iyrda)?—(q-ran+iyria®)?x.(q)}

Xe_(yzﬂ),aqz,4 (29) repulsion. Correspondingly, we may write, wii* x—x’,
wherefiq=P—P’'=K —K'. Other internal states are given by 1r 0 1

; . . . . . , iq-S —?1d?\ 42
a different detailed expression, but identical kinematis- pla)=—| et 5(l-e )d<S
pendix B). S

In the case under consideration, EG9) describes the q qd\/; 22
matrix element for a ‘transition(scattering eventfrom a = [_1+ e~ a%d%8| | 1<_>
state with momentumn to the state with momentum 2mK 4 8

n'=(P—K')2=n+#q, which we could then denote as
U, - Correspondingly, the scattering rate can be calculated

from the golden rule, *

L 4 I q2d2
T ) 0 E

dWs; = (27/#) Uy |*S(E— Ep), (300 wherel, is the Bessel function of imaginary argument. No-

where the final and initial energies of the exciton of interesttlce’ incidentally, that

are,

] : (A1)

E,—E,=(n"2—n%)2M§5°, (31) $(q-0)= 2kd\7’ (A2)
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and is therefore ill-defined fai=0. This function¢(q) ac-
counts for the first term in the interaction in Eq7) or (24).

PHYSICAL REVIEW B64 115302

The simplest/lowest off-diagonal elements are,

. . / 2.2 2
Similarly, the second dipolar term can be written as Yrig u
MOlP’,OlP:(l_ 8 a2z guxa Z| Moger o
10 oSS . 8ri
|<2>=—f eSS (1-e S")d’s (B4)
K S5
and
—s*d4
l 19 190 o Ad-—e 2
pr—~—Ip T fe'q's—dzs , 1-r y—+7+1 .
i dq i dq <5 Pozrr 01p= ha? 4 Poor’ ,00p
=(P-a)(P"- A x1(a) — x2(q)p-p’, (A3) Hq
where forqd>1 FIy 1) 5" Mooer oce- (B5)
37 Similarly,
xal@=2 2 2:242 2
k= YTha u 24 -
3 Mo-1p 0-1P= 1_T_¥_ZUXQ'Z M ooe’ 00p »
2m(—256)%(4k+1)(4k+3)I'2 k+ 2 k+7 H
X ¥? 1
Fz(%)rz(g (K-+1)1 ¥+ 4qak+s pO—lP/,O—lP:[l_rﬁlq 8 T2 g/ |Pooe o
q~
(A4) +i(y— 1) ' — Moo oo (B6)
and
; I A Y 1 ( yryge '¢a ue“"u)wI
_ _ — ' =—\1 - ' ,
3 2m(—256)(4k+1)I" k+4 I'“| k+ 00P’,01P \/E 2 2, 00P’,00P
X2(0)= - kZO 1 3
- FZ(—)FZ(— (k+1)1dg¥k+agakss v+l s a
4 4 (A5) Poor’ 01p=! ﬁrH[Q' (X=1Y)IPoop’ 00
On the other hand, fogd<1, Eq.(A3) behaves as, eny . . .
+ —(X—iyY)Mgoer op; B7
, 34T (3/4) \/E( Y)Mooer oop (B7)
|®=— ———p.p'. (AB)
xd ) .
M 1 [ yryg€®  uevu "
I 0— =—|1 - ’ y
APPENDIX B: DIPOLE MATRIX ELEMENTS 00P".0=1P \/E 2 2ry 007,00
Notice that the dipole moment matrix elements obey the y—
symmetry relation Pooe’ 0-1p=1 ﬁrH[Q' (X+1Y) 1Poop’ op
pnmP,n'm’P’:p:rmrpr,nmp- (B1)
ery ~ .~ ~ _
Some special cases of overlap and dipole moment matrix + E(xﬂy)Moop,’oop, (B8)
elements follow. For the diagonal elements,
202 42402 24020y
M oo OCP:ei('y/4)q~(rp+rp/)—u2/8rﬁ—72r'2_|q2/8, (B2) Mg o 10— — Yr2qei?ea  y2eize Mo o
’ o 8 8r? o
whereu=rp—rp, and H
r2.q%ei2¢a

Pooer oong(err oo +ir 2 yq) el (A8 (Tt rp) — (74 Dria’ss

e _ -
:E(rP+rP'+|r|2-|7q)MOOP’,O(P (B3)

Popr 0-1p= — (¥ + 1)Tpoop',oop

eriqe ¢

+iT(x+i9)moop,,oop. (B9)
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