
PHYSICAL REVIEW B, VOLUME 64, 115209
Thermodynamic fluctuations of site energies and occupation numbers
in the two-dimensional Coulomb glass
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The equilibrium thermodynamic fluctuations of site energies and site occupation numbers in a disordered
two-dimensional system of localized classical interacting electrons, known as the Coulomb glass, are studied.
Using computer simulations, it is shown that the configuration of occupied sites within the Coulomb gap
persistently changes with time, even at temperatures much lower than the Coulomb gap width. A related effect
is the fluctuations in the site energies, which are much larger than the temperature, and are of the order of the
Coulomb gap width. Numerical arguments are presented that no thermodynamic glass phase transition occurs
aboveT50, so that at long enough timescales the system will always be in thermal equilibrium. The strong
fluctuations in the occupation numbers and site energies are interpreted in terms of a drift of the system within
the complex structure of phase space, which is characteristic of glassy systems. Such a drift could provide a
new mechanism of electron diffusion, as long as the equilibration time of the system is short enough. However,
in realistic systems with tunneling between sites there may be two different regimes. In the first regime the
system is effectively frozen in one of the minima of phase space and the regular Efros-Shklovskii hopping is
responsible for transport. Our results are applicable to the second regime where the localization length isj
@1/T. This may shine light on the issue of a possible metal-insulator transition in 2D systems.

DOI: 10.1103/PhysRevB.64.115209 PACS number~s!: 72.20.Ee, 64.70.Pf, 75.10.Nr
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I. INTRODUCTION

The role of electron-electron interactions in strongly d
ordered localized electron systems has long been an a
area of research, following the pioneering papers by Po
and Srinivasan.1 While much still remains controversial, pa
ticularly regarding the relevance of interactions
transport,2–5 it is generally accepted that interactions play
important role in such systems. Of particular importance
the fact that the long range Coulomb interaction is not eff
tively screened at large distances, thus leading to the
called Coulomb gap in the density of single particle sta
~DS! near the Fermi level.2

Another important effect of interactions is that the pha
space of the many particle system has a so-called pse
ground state~PS! structure, first described by Baranovsk
et al.,6 and recently studied7–9 in connection with slow relax-
ation times. These PS’s are similar in nature to the lo
energy minima of glassy systems. In fact the analogy
tween the electron system and spin glasses was pointed
by Davieset al.10 in the early 1980’s using different argu
ments. Subsequently, the term ‘‘Coulomb glass’’ or ‘‘Ele
tron glass’’ has become widely used to describe interact
strongly disordered electron systems. Recently, experime
confirmation of this analogy has been obtained through
observation of glassy dynamics in electron systems.11,12

In this paper we study the thermodynamic properties
the two-dimensional~2D! classical Coulomb glass usin
Monte Carlo simulations. Our main observation is that
configuration of occupied sites within the Coulomb g
changes with time, even though the shape of the gap itse
time independent. This persistent change of the configura
0163-1829/2001/64~11!/115209~11!/$20.00 64 1152
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of occupied sites occurs even at temperatures which
much lower then the Coulomb gap width. A related effect
the fluctuations in the site energies, the magnitude of wh
is much larger than the temperature.

It is important that all these results do not follow from th
picture of elementary excitation and diffusion in such a s
tem proposed in Ref. 2. Consider the soft ‘‘pair’’ excitatio
which are close pairs of occupied and vacant sites. The
citation itself is a transition of the electron from one site
the other. They create a dipole potential which change
energy of nearest site by the energyI of the nearest neighbo
interaction. However the relative fraction of such soft ex
tations isT/A, whereA is the energy of disorder. Thus atI
'A the average magnitude of the displacement in the ene
space is of the order ofT. We show below that at largeA the
situation is similar. Compact many electron excitations g
the same result because they are also dipole excitations
their number is also proportional toT. The excitations with
large distance between vacant and occupied sites give
less displacement because their number is proportional toT2

due to the Coulomb gap, even if they are combined with
compact excitations.

Thus, we have done a completely new observation wh
requires a new explanation. To interpret these results we
that while the various PS’s are low in energy, they have v
different sets of occupation numbers.

To get a very rough idea about PS consider the Wig
crystal on a square lattice with filling factor 1/2. In fact the
are two states with the same energy and completely diffe
occupation numbers. The meaning of PS in disordered
tem can be very roughly understood as the Wigner cry
with defects.
©2001 The American Physical Society09-1
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Thus, as the system drifts from one PS to another while
thermal equilibrium, many electrons are transfered betw
different sites, giving rise to the large fluctuations we o
serve. Since the energy distances between PS’s are sma
motion persists up to a very low temperature if the system
in equilibrium. The distances between PS’s sharply decre
with the reciprocal size of the system.7 Unfortunately, the
exact law is unknown. The thermodynamic fluctuations
energy that provide the change of the PS’s are of the orde
T•L, whereL is a linear size of the 2D sample. Then th
motion should persist up to zero temperature for the infin
system. As we show below the time, that is necessary to
these fluctuations, increases exponentially with decrea
temperature, but this time is size independent. This is
basis of the new mechanism which we propose.13

A crucial ingredient of the above picture is the assumpt
that there is no finite temperature thermodynamic glass t
sition in the system. In the thermodynamic limit, such a tra
sition would prevent the system from reaching thermal eq
librium below the transition temperature, thus limiting th
validity of our results to finite size samples. In fact, no su
transition has been observed either experimentally or
merically in the 2D Coulomb glass. Furthermore, this syst
has much in common with various 2D spin glass mode
where there is strong numerical evidence that no finite te
perature thermodynamic transition occurs.14,15 In the current
work we present results which support such a conclusion
the 2D Coulomb glass as well. In Sec. IV D we show that
all available low temperatures there is a critical size of
systemLc , such that the equilibration time is independent
L at L.Lc . Both the equilibration time andLc increase with
decreasing temperature. One can also show thatLc'1/T.
This suggests the existence of the glass transition atT50 as
in the case of 2D spin-glass system.

Since the standard Coulomb glass Hamiltonian itself d
not contain any dynamics, we employ dynamics which dif
from the physical dynamics of a typical system, but are s
nificantly faster. Namely, we assume that the hopping pr
ability is independent of a distance between sites. Theref
nonequilibrium phenomena, and particularly transport, c
not be studied directly by the methods discussed here.

However, the results of our work may have importa
implications for transport nonetheless. The size of a sampL
plays the role of the maximum hopping length in our sim
lation. Speaking about a real system with the localizat
radiusj one can think thatL in our simulations is an analo
of j in the real system. Since our simulation shows equ
bration atL.1/T, one can conclude that in the real infini
system it appears atj.1/T. Thus, our results are applicab
to the real system atj.1/T. At smaller T the system is
frozen in one of the PS and the transport mechanism sh
be Efros-Shklovskii~ES! hopping. Note that the exponent i
the ES hopping becomes of order of one atjT'1. The
freezing of the system into one PS can be considered as
kinetic transition.

Thus, our results are especially significant near
insulator-metal transition, where the localization length
large and transitions between different PS’s are fast. In s
a case it is reasonable to expect that the fluctuations we
11520
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described become more and more relevant, even to the p
where they may change the nature of transport.

In fact, it has been demonstrated both for pure system16

and systems with disorder,17 that such fluctuations may
change the mechanism of the conductivity from percolat
to diffusion because the random potential is time depend
Thus, a connection may exist between glassy dynamics
the metal insulator transition, especially in 2D systems~See
also Ref. 18!.

The paper is organized as follows. In Sec. II we pres
the Hamiltonian of the Coulomb glass and derive two ex
theorem connected with this Hamiltonian. Both of them a
applicable in the thermal equilibrium and they serve as
criteria of the equilibrium. One of them show that avera
occupation numbers are given by the Fermi function which
very unusual for a system with interaction. In Sec. III t
computer simulations are described in detail. The results
the simulations and their interpretation are presented in S
IV and a summary in Sec. V. In this section we also disc
experiments on two-dimensional insulator metal transition
connection with our results.

II. THE HAMILTONIAN AND SOME EXACT PROPERTIES

For the purpose of our study we use the standard C
lomb glass Hamiltonian2 given by

H5(
i

f ini1
1

2 (
iÞ j

e2

r i j
~ni2n!~nj2n!. ~1!

The electrons occupy sites on a 2D lattice,ni50,1 are the
occupation numbers of these sites andr i j is the distance
between sitesi and j. The quenched random site energiesf i
are distributed uniformly within an interval@2A,A#. To
make the system neutral each site has a positive backgro
chargene, wheren is the average occupation number, i.
the filling factor of the lattice. In the current work we assum
electron-hole symmetry, so that we only consider the cas
half filling n51/2.

Hereafter we take the lattice constanta to be our length
unit ande2/a as our energy unit. Using these units, the sin
particle energy at sitei is given by

e i5f i1(
j

1

r i j
~nj2n!. ~2!

The Coulomb gap in the DS around the Fermi level
strongly disordered interacting electron systems has b
studied extensively.2,6,10,19,20In the 2D case at zero tempera
ture, the DS near the Fermi level is linear in energy a
obeys the mean field law

D~e!5
2

p
ueu ~3!

at A@1, while the width of the gap is of the order ofEg
;1/A.21,22 As the temperature increases the gap is smea
at energies smaller than the temperature.10,23 It was shown21

that the caseA51 can be considered as representative
9-2
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largeA behavior since substantial deviation from the law E
~3! appears only at very low energy.

Another important result for the Coulomb glass Ham
tonian is that the average occupation number of a site w
energy e is given by the Fermi function. This result wa
obtained from an approximate self-consistent equation,24 al-
though it has been noted that an exact proof is possib21

Due to the strong electron-electron interaction this is no
all obvious, and we thus provide this proof here. The aver
occupation number of sites with energye can be calculated
by considering a single sitei 51 and calculating its averag
i
i
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d
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d
0
c
t
o
w
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occupation number̂n1& subject to the constraint that it ha
the required energye. By definition, this is given by

^n1&5
Tr$n1exp@2~H2m( ini !/T#d~e2e1!%

Tr$exp@2~H2m( ini !/T#d~e2e1!%
~4!

Herem is the chemical potential. Note thatm50 at n51/2
due to electron-hole symmetry. The Hamiltonian given
Eq. ~1! can be written in the formH5n1e11H8, whereH8
does not depend onn1. This enables us to separate out T1
which is the trace over the variablen150,1, thus obtaining
^n1&5
Tr1$n1exp@2n1~e2m!/T#%Tr8$exp@2~H82m( i8ni !/T#d~e2e1!%

Tr1$exp@2n1~e2m!/T#%Tr8$exp@2~H82m( i8ni !/T#d~e2e1!%
5

Tr1$n1exp@2n1~e2m!/T#%

Tr1$exp@2n1~e2m!/T#%
. ~5!
,
se,

ge
s

ution

q.
Here Tr8 and (8 stand for the trace and sum over allni
exceptn1. From Eq.~5! we readily obtain the Fermi function

^n1&5 f ~e![
1

11exp@~e2m!/T#
. ~6!

For the rest of the paper, the Fermi energym is taken as zero
due to our assumption that the system is at half filling.

We thus find that at low temperatures a site changes
occupation number when its energye crosses the Ferm
level. The site energy fluctuations described in Ref. 13
elaborated on in Sec. IV B, mean that part of the sites in
system often change their occupancy, even at low temp
tures. This leads to an interesting question regarding the
tribution of average occupation number in the system. In
noninteracting case it is clear that as the temperature
creases, the average occupancy of most sites should be
1, and the probability to find a site with average occupan
near 1/2 decreases. However, in the interacting system
situation is much more complicated and the distribution
the average occupation number is nontrivial. We will no
derive an analytic expression for the distribution of avera
occupation numbersp(n), defined as the probability that
site will have time averaged occupancyn. This function is
given by

p~n!5d~^n1&2n!, ~7!
ts

d
e
a-
is-
e
e-
or

y
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f

e

where n1 denotes the occupation number of~for example!
the first site of the system,̂x& denotes thermal averaging
andx̄ denotes disorder averaging. In the noninteracting ca
the site energy just includes the random energyf1, and is
time independent, thus leading to^n1&5 f (f1). After per-
forming the disorder average, the distribution of the avera
occupation numberp0(n) in the noninteracting system i
given by

p0~n!5
T

2A

1

n~12n!
Q@eA/T~n2121!21#

3Q@12e2A/T~n2121!#, ~8!

whereQ is the Heavyside step function. From Eq.~8! it is
easy to see that as the temperature decreases, the distrib
becomes sharply peaked around the values 0 and 1.

We now consider the interacting case. Referring to E
~7!, we may write

p~n!5
1

~2A!NE2A

A

df1•••dfNdS n2
Tr n1exp~2H/T!

Tr exp~2H/T! D ,

~9!

where N is the number of sites, andH is the Hamiltonian
given by Eq. ~1!. The Hamiltonian may be written asH
5n1f11H8, whereH8 does not depend onf1, and then
Eq. ~9! takes the form
p~n!5
1

~2A!NE2A

A

df1•••dfNdS n2
(n150,1n1exp~2n1f1 /T!g~n1 ,f2 , . . . ,fN!

(n150,1exp~2n1f1 /T!g~n1 ,f2 , . . . ,fN! D
5E

2A

A

df1•••dfNdS n2
exp~2f1 /T!g~1,f2 , . . . ,fN!

g~0,f2 , . . . ,fN!1exp~2f1 /T!g~1,f2 , . . . ,fN! D
5E

2A

A

df1•••dfNdS n2
1

11a~f2 , . . . ,fN!exp~f1 /T! D , ~10!
9-3
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whereg(n1 ,f2 , . . . ,fN)[Tr8exp(2H8/T), a[g(0,f2 , . . . ,fN)/g(1,f2 , . . . ,fN), and Tr8 signifies trace overn2 , . . . ,nN .
Next we may perform the integration overf1, which gives us

p~n!5
1

~2A!NE2A

A

df2•••dfNQ@eA/T~n2121!2a#Q@a2e2A/T~n2121!#
T@11a exp~f1 /T!#2

a exp~f1 /T!

5E
2A

A

df2•••dfNQ@eA/T~n2121!2a#Q@a2e2A/T~n2121!#
T

@11a exp~f1 /T!#21$12@11a exp~f1 /T!#21%
,

~11!
n

or

il-
ed
in
s
s

ut
b

Se

e

m
a

e
t
th

l b

er-

p-
for
not
the

ns.
the
ge

udy
has
ion
ian
he
ics

ted
mics
-
ties,
can-

la-

is-
rtest
ergy

is
In
un-

lec-
and
e
c-

ord-

ep.
where f1 is the solution to the equation @1
1a exp(f1 /T)#215n, and Q(x) is the step function. Note
that for the sake of brevity we have dropped the argume
f2 , . . . ,fN from a. Using this definition forf1, one im-
mediately obtains

p~n!5
T

~2A!Nn~12n!
E

2A

A

df2•••dfNQ

3@eA/T~n2121!2a#Q@a2e2A/T~n2121!#.

~12!

Now, the integrand can take the values 0 or 1 and theref
the final result may be written as

p~n!5
T

2A

1

n~12n!
z~A,T,n!, ~13!

where 0,z,1. Now, according to the definition ofa given
above, we may rewrite it as

a5exp~DF/T!, ~14!

whereDF is the difference of the free energy of the Ham
tonianH8 between configurations in which site 1 is occupi
and unoccupied. Since this energy difference only conta
the interaction energy between site 1 and all the other site
must satisfyuDFu!A for A@1. This means that as long a
A@1, and as long asn is not too close to 0 or 1, one can p
z51 in Eq. ~13!. Therefore, under these conditions, we o
tain the same result as in the noninteracting system. In
IV B below we show that the numerical evaluation ofp(n)
satisfies the noninteracting result@Eq. ~8!# even for A51.
This can be considered as further evidence that the casA
51 is representative of systems withA@1

It is important to note that the results of Eqs.~6! and~13!
were both obtained under the assumption that the syste
in thermal equilibrium. This may be incorrect if there is
finite temperature glass transition and if the temperatur
below the transition temperature. Thus, it is interesting
calculate these quantities numerically, and compare with
analytic results presented here. Such a comparison wil
considered in Sec. IV B.
11520
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III. THE COMPUTATIONAL PROCEDURE

To study the equilibrium properties of the system we p
form Monte Carlo~MC! simulations using the Metropolis
algorithm. In our simulations we allow infinite range ho
ping, limited only by the system size. The hopping rate
an electron from an occupied to an unoccupied site does
depend on the distance between these sites but only on
energy difference between the initial and final configuratio

The use of such transition rates greatly decreases
equilibration time of the system compared to short ran
hopping transitions, and thus enables us to efficiently st
the equilibrium behavior of the system. Once the system
reached thermal equilibrium, averaging over the simulat
time is equivalent to ensemble averaging for the Hamilton
of Eq. ~1!. However, the simulation time does not reflect t
physical time in a Coulomb glass system, since the dynam
in the physical system is expected to be different. Rela
approaches are commonly used to study the thermodyna
of various spin glass models.25 Note that the temporal behav
ior of nonequilibrium processes, such as transport proper
are expected to depend on the dynamics, and therefore
not be studied using this approach.

The details of the simulations are as follows: The simu
tions are performed on a square lattice ofN5L3L sites with
periodic boundary conditions. In this torus geometry, the d
tance between two sites is taken as the length of the sho
path between them. Each site is assigned a random en
f i , according to the distribution described following Eq.~1!.
For the case of half filling~n50.5!, N/2 electrons are distrib-
uted randomly amongst theN sites, and then the system
allowed to evolve according to the Metropolis dynamics.
each step we randomly select one occupied site and one
occupied site. We then examine the move in which the e
tron in the occupied site hops to the unoccupied site
calculate the changeDe in the total energy of the system du
to this move. The MC attempt to perform this move is a
cepted with probability

p5exp@2max~0,De!/T#, ~15!

or rejected with probability 12p. After an accepted move is
performed all the single site energies are updated acc
ingly. We define a single MC sweep as a series ofN consecu-
tive MC attempts~accepted or rejected!. The MC time unit is
then defined as the time elapsed during a single MC swe
9-4
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Each one of the simulations presented below starts w
an initial waiting period oftw MC sweeps, in order to allow
the system to reach thermal equilibrium. Only then we be
to perform measurements on the system at constant tim
tervals, until the simulation is terminated aftert total MC
sweeps. We have takentw andt total to be large enough so tha
all the results presented in this paper are independent of b

We also take care to avoid size effects in our simulatio
Two size effects are known for the Coulomb gla
simulations.6 The first is Fermi energy fluctuations in a fini
lattices with different disorder realizations, which are of t
order of A/AN. In our simulation this effect is small. Th
other size effect is related to the Coulomb interaction.
zero temperature the DS of Eq.~3! is maintained by the
possibility for an electron to hop a distancer .1/e. In a finite
lattice the hopping distance is limited byL which leads to a
hard gap fore,1/L. To avoid this we make sure thatT
.1/L, which leads to temperature smearing of the size
fect. In general, unless stated otherwise, the simulations w
performed on a lattice of sizeL550 for T>0.1, andL
5100 for 0.05<T,1. We have found that these values ofL
are more than sufficient to ensure that all our results arL
independent.

Finally, as with all simulations of this kind, the resul
need to be averaged overP different realizations of the ran
dom site energies$f i%. Unless stated otherwise, the valu
P5100 was used throughout, since it was found that t
provided for sufficient disorder averaging.

The measurements we perform on the system can be
vided into two categories. The first category consists ofther-
mal averages, where the measured quantity is averaged o
the entire simulation. An example of this kind of measu
ment is the density of states~DS!, where at each time interva
we measure the distribution of site energiesD(e) and then
calculate the thermal average^D(e)&. The second categor
consists ofevolution measurements, where we follow the
evolution of a set of sites that were selected at some in
time, after the firsttw MC sweeps. An example of such
measurement is to choose at the initial time all the sites
which the single site energy@Eq. ~2!# lies within a chosen
range. The energy distribution of these sites is then extra
as a function of time in order to examine whether these s
remain in the same energy range or diffuse. The stand
deviation of this energy distribution is then calculated a
presented as a function of time.

IV. THE SIMULATION RESULTS AND DISCUSSION

A. Coulomb gap and distribution functions n„e… and p„n…

In order to test our numerical procedure, we first stud
the DS ^D(e)& at different temperatures. Our results a
shown in Fig. 1, where the Coulomb gap is clearly observ
The shape of the gap is consistent with previous results.10,19

The slope of the linear part of the curve is approximately 2p
in agreement with Eq.~3!. In the inset of Fig. 1 we show th
temperature dependence ofD(e50), which appears to be
linear in the temperature range studied.

As an additional test, we have calculated the time aver
of the site occupancy as a function of energy^n(e)&. The
11520
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results are shown in Fig. 2, where it can be seen that
curves are well fitted by the Fermi function.

In Fig. 3 we present the simulation results for the dist
bution of the average occupation numbersp(n), defined by
Eq. ~7!, together with the theoretical predictions which app
under equilibrium conditions. To generate this graph we c
culate, for each site, the time averaged site occupancy^ni&
and then calculate the distribution function. The excelle
agreement ofn(e) and p(n) with theoretical expression
provides evidence that the system is in thermal equilibriu

B. Spectral diffusion

We now turn to the central topic of this Section, which
the study of the thermodynamic fluctuations within the Co
lomb gap. These fluctuations can be seen in a few ways.
is the time dependence of the single particle energies, wh
we call spectral diffusion.

To study the spectral diffusion, we first equilibrate th
system duringtw MC sweeps. Then we mark all the site
whose single particle energies are in a narrow interval@Ec

FIG. 1. The DS and the density of average site energies,
different temperatures and forA51. Only possitive energies ar
shown due to particle hole symmetry. Inset: the temperature de
dence of the DS~solid marks! and the density of average energi
~hollow marks!.

FIG. 2. Site occupancy as a function of site energy, and aver
site occupancy as a function of average site energy, for diffe
temperatures and forA51. The solid lines are the Fermi function
for the three shown temperatures.
9-5
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2W,Ec1W# within the Coulomb gap as ‘‘test sites.’’ We fol
low the evolution of the distribution of these energies as
simulation proceeds. In Fig. 4 we present the standard de
tion of this energy distributionde(t2tw) as a function of
time, for Ec50, W50.05, and different temperatures. A
can be seen from the figure, after some number of M
sweeps, the standard deviation saturates. In the inset of F
we plot the saturated value of the standard deviation a
function of temperature. Note that the temperature dep
dence is quite weak, and in all cases that standard devia
is much larger than the temperature. We have also chec
that the DS of the test sites reaches an asymptotic form a
the saturation time. This asymptotic form is shown in Fig
for Ec50, W50.05, at two different temperatures. Note th
the final energy distribution covers most of the Coulomb g
although the initial distribution was centered in a small
gion at the center of the gap. This is in spite of the fact t
the temperature is much smaller than the gap width. We h
also studied the dependence of the final distribution onW,
and have found that the results are independent ofW for W
,0.1. Also shown in Fig. 5 is an example where the init

FIG. 3. Probability distribution of average site occupation nu
bers, forA51 and different temperatures. The solid lines refer
the theoretical prediction, as discussed in Sec. II.

FIG. 4. The standard deviation,de, of the distribution of test
site energies, as a function of time, forA51 and for three different
temperatures. The test sites were chosen in the initial energy r
@20.05,0.05#, Inset: the saturated valuedesat of the standard devia
tion as a function of temperature.
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distribution is asymmetric, namely,EcÞ0. In this case, the
asymptotic distribution is also asymmetric, however, it
nearly as broad as the symmetric distributions. Moreov
while the initial asymmetric distribution consists of on
sites with positive energies~unoccupied sites!, the final dis-
tribution also includes sites with negative energies~occupied
sites!.

Another way to observe spectral diffusion is to meas
the time average of the single-particle energy at sitei, ^e i&,
and the standard deviation at the same site,D i

5A^e i
2&2^e i&

2. We perform this calculation for all sites an
create a functionD(^e&). This function is shown in Fig. 6 for
A51 and several temperatures. It is found that for all sit
the standard deviation of the single-particle energies is m
larger than the temperature. Moreover, for sites with energ
near the Fermi level the standard deviation is 223 times
larger than for other sites.

We understand this picture in the following way. Sit
with largeD are expected to be ‘‘active’’ sites which chang

-

ge

FIG. 5. Final energy distribution of sites initially in the energ
range@Ec2W,Ec1W#. Diamonds (L) are for Ec50, W50.05,
T50.05. Sqaures (h) are forEc50.3, W50.1, T50.05. Triangles
(n) are for T50.1, Ec50 and W50.05. The arrows mark the
positions and widths of the two initial distributions of test sit
which were used. All results are forA51.

FIG. 6. Site energy standard deviation as a function of site
erage energyD(^e&), for various values ofA andT. For A.1 the
temperature is given byT50.05/A, and we used a system size o
L5200, and a number of disorder realizationsP520. Only possi-
tive energies are shown due to particle hole symmetry.
9-6
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their occupation frequently as their energies cross the Fe
level. The changes in the occupation numbers of these
are accompanied by a reorganization of the local configu
tion of occupied sites, which in turn is responsible for t
larger value ofD in a manner similar to the polaron effec
On the other hand, the sites with smallerD are ‘‘passive’’
sites, and change their energy only in response to the ran
time dependent potential created by the active sites. In
context of passive and active sites, it is instructive to defi
the quantityEw as the energy at whichD(^e&)5^e&. The
meaning of this is that sites which satisfy^e&,Ew have en-
ergy fluctuations larger then their average energy, and th
fore are active. From Fig. 6 it is also apparent that these s
have larger value ofD, thus supporting our understandin
that these are indeed the active sites of the system.

The width of the maximum in Fig. 6 may indicate that th
active sites are predominantly within the Coulomb gap. T
is reasonable, since the occupation number of sites within
gap is strongly affected by interactions. However, atA51 all
characteristic energies, including the gap width, are of or
unity. To check whether the active sites are indeed within
gap, we estimate the dependence ofD on A for A.1 and
compare it with simulations. The width of the gapEg de-
creases withA asEg;1/A. The electron density within the
gap isng;*0

1/Aede;1/A2. If active sites make up a finite
portion of all sites in the gap, they create a time depend
potential with the mean square value

D2;ngE
1

A

r 22rdr;A22ln A/A2. ~16!

Here the logarithmic integral has been cutoff at the screen
radius, which is proportional to the reciprocal density
statesA.26,27Note that this simple estimate does not take in
account the polaron type effect mentioned earlier, and t
applies only to the random potential felt by passive sites.
have performed simulations for 1<A<4 and plotted the re-
sults of DA/Aa ln A11 against^e&A. The temperature for
each value ofA is T50.05/A, keeping it constant in units o
the gap width. If our hypothesis is correct we should be a
to choose the parametera in such a way that all curves co
lapse in one, at least for large energies where the pas
sites reside. One can see from Fig. 6 that indeed suc
collapse occurs fora51.5.

The temperature dependence of the results of Fig.
presented in Fig. 7. The curves markedDmax andDmin show
the maximal and minimal values of the standard deviat
D(^e&) as a function of temperature. The curve markedEw
shows the width of the functionD(^e&), which was previ-
ously defined. All the quantities shown in Fig. 7 appear to
much larger than the temperature for the entire tempera
range shown. Furthermore, it appears that bothDmin and
Dmax may tend to a finite value asT→0. We do not mean
that it happens at fixed size of an array. We suggest
arguments below that it may be the case if the tempera
decreases with increasing arrays. Here we can only men
that our lowest temperatureT50.05 may be a characteristi
temperature which is connected to the size of the arrow o
Thus, if one expects that the observed linear depende
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changes at lowerT, so that allD tends to zero, this happen
due to the finite size of the arrow.

Another manifestation of the spectral diffusion is a s
nificant difference between the energye i of a given site at a
given moment and the time average of the energy of this
^e i&. To see this we compare the average occupation num
n(e) with the function^n&(^e&). To generatê n&(^e&) we
first calculate the time averaged site occupancy^ni& and the
time averaged site energy^e i& for each site. Then for all sites
with given value of^e i& we calculate the average value
^ni&. On the other handn(e) is obtained by averaging th
occupation numbers of sites with the same energies aa
given moment of time, and as we have seen both analytica
and numerically, is just the Fermi function. In Fig. 2 we pl
^n&(^e&) together withn(e), and one can see that for a give
temperaturê n&(^e&) is not as steep aŝn(e)& near zero
energy ~the Fermi energy!. This is due to^n&(^e&) being
smeared by energy fluctuations. For example, a site w
^e i&.0 may spend part of the time below the Fermi ener
and, thus, enhance its occupancy.

Similarly, the distribution function of averaged energie
D(^e&) shown in Fig. 1, has a much less pronounced g
thanD(e). The reason is that the Coulomb gap exists fo
distribution of site energies taken atthe same moment o
time. Due to fluctuations,D(^e&) is smeared because site
with small average energŷe& include sites which spend
most of their time with larger energies, and thus have
higher density.

We understand the large energy fluctuation descri
above, and the large number of active sites implied by th
fluctuations, as resulting from a drift of the system amon
the different PS’s of phase space. Each PS is character
by a unique set of sites forming the Coulomb gap. So t
when the system drifts from one PS to another the numbe
sites that change their occupancy is a finite fraction of
number of sites in the Coulomb gap. As the temperat
decreases, the fluctuations of the total system energyACT
(C being the heat capacitance of the system! decrease, and
thus less PS’s are accessible to the system. However, it
been shown7 that as the system size increases, the numbe
PS’s increases, and the energy separation between them

FIG. 7. Temperature dependence of quantitiesDmax, Dmin and
Ew for A51. See text for a description of these quantities.
9-7
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creases. This means that at any given temperature, it i
ways possible to increase the system size so that there w
many PS’s available amongst which the system can drift.
believe this to be the source of the temperature indepen
contribution to the site energy fluctuations described abo
For the finite systems sizes we use in our simulations,D will
decrease to zero whenACT becomes smaller than the typic
energy separation between PS’s. In order to observe the
perature independent contribution toD at very low tempera-
tures, it would be necessary to increase the system size
yond what is computationally feasible. However, we ha
taken care that there are no size effects for the tempera
range presented in Fig. 7.

We believe that the temperature dependence that ca
observed in Fig. 7 results from soft dipole excitations. Th
excitations are compact pairs of sites such that the en
change due to the transfer of an electron from one site
pair to the other is very small.28 The density of states of th
dipole excitations is 1/A, so that the concentration of activ
excitations is;T/A. These excitations not only contribute
the number of active sites, but also induce fluctuations
passive site energies, leading to the linear temperature
pendence ofDmin observed in Fig. 7. Indeed, each dipo
creates a potentialr 0 /r 2 at a passive site, wherer is the
distance between the site and the nearest dipole anr 0
;1/Eg;A is the size of the dipole.28 Using the estimate
above for the density of active dipole excitations, this lea
to a slope ofDmin(T) close to that in Fig. 7.

C. Correlation function

Thus, the spectral diffusion shows that the configurat
of occupied sites within the Coulomb gap persisten
changes in thermodynamic equilibrium. To obtain more
formation about this motion, one can study the correlat
function of occupation numbers. We do this by construct
a vector D(tw) after tw MC steps have been performe
whose components are the occupation numbersni of all sites
within a given energy range@2W,W#. The vector is normal-
ized so thatD(tw)•D(tw)51. As the simulation proceeds
we check the occupation number of these same sites,
struct the vectorD(tw1t), and calculate the correlatio
function C(tw ,t)5D(tw)•D(tw1t). Correlation functions
analogous toC(tw ,t) are commonly used to measure t
similarity between different configurations in systems su
as spin glasses.15 For two identical configurationsC(tw ,t)
51, while if there is no correlationC(tw ,t)50.5. Basically,
we are interested inC`5 lim

tw→`
lim

t→`
C(tw ,t), which is a

measure of the similarity of two arbitrary states of the syst
at thermal equilibrium. For a noninteracting system,

C`5
E 2W
W f 2~f!df

E 2W
W f ~f!df

, ~17!

where f (f) is the Fermi function. Thus, for the noninterac
ing systemC`512T/W at W@T andC`50.5 atT@W.

In order to evaluateC` from the simulation, we measur
C(tw ,t) as a function oft for a given tw , and wait long
enough so thatC(tw ,t) becomes independent oft. We denote
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this saturated value asC(tw ,`). In the inset of Fig. 8 we
show an example of such a saturation. We then increastw
until C(tw ,`) becomes independent oftw , and thus obtain
our estimate ofC` .

The results forC` for the interacting system are shown
the main part of Fig. 8 as a function of temperature, forA
51, W50.3, andW50.6. The corresponding functions fo
the noninteracting system, calculated directly from Eq.~17!,
are also shown. We observe that the correlation for the in
acting system is much weaker than for the correspond
noninteracting system at the same temperature.

Note that by increasingW we include more sites in the
correlation functionC` . However, our results for the spec
tral diffusion indicate that most of these additional sites
main passive asT→0. Thus,C` should increase asW in-
creases, as we indeed observe comparing the results foW
50.6 andW50.3 ~see Fig. 8!.

The most interesting result coming from the study of t
correlation functionC` is the possibility of a finite value for
lim

T→0
(12C`). Clearly, such an extrapolation cannot b

considered conclusive, however, one has to keep in mind
following points. First, while we have included in the de
nition of the correlation function only sites that were in th
initial energy range@20.3,0.3#, it is clear that many passive
sites are still included in this definition. These passive s
mask the behavior of the active sites and tend to increase
correlation. Second, a finite value of lim

T→0
(12C`) means

that thermal motion continues down to zero temperatu
This conclusion is consistent with the results obtained fr
the spectral diffusion in Sec. IV B and we understand it
the same way: Namely, we expect that a nonzero value
12C` may be obtained only if the size of the sample gro
with the decrease of temperature so thatACT remains larger
than the energy separation between different PS’s.

It is important to point out that our results cannot be e
plained by assuming that the excitations of the system
separated pairs of sites, with electrons hopping back

FIG. 8. The correlation function 12C` as a function of tem-
perature forW50.3 ~solid circles! andW50.6 ~open circles!. Also
shown are the theoretical curves for 12C` in the case of a nonin-
teracting system, forW50.3 ~solid line! andW50.6 ~dashed line!.
The inset showsC(tw ,t) as a function of the timet, for T50.05
~upper curve! andT50.1 ~lower curve!. A51 in all cases.
9-8



u
in
e
de
in
.

ex
n

io
a

ts

c

th
io
fin

o
th
em

q
o

m
o
s
y
,
e-

g
d
m
ns
i

m
ee
t

th

-
be
as
uc
la
d
tr
he
d

d
te
he
dy
-

ch
e,
be

ass
m-
his
rate
g a
use

his

h
, it

ers.
ait-

ra-
ee

died
a

s-
or-
ve

s
g it

nite

THERMODYNAMIC FLUCTUATIONS OF SITE ENERGIES . . . PHYSICAL REVIEW B 64 115209
forth between the sites of each pair. This assumption wo
mean that electrons are effectively localized in space. S
the energy density of such excitations is constant at low
ergies, meaning the number of available excitations
creases linearly with temperature, one immediately obta
that lim

T→0
(12C`)'T/W, as in the noninteracting system

The same temperature dependence is obtained even if
tations involve a few electrons that change their positio
simultaneously~so called many electron excitation29,1!. In
fact, any picture based upon confined separated excitat
which do not interact with each other would mean th
lim

T→0
(12C`)'T/W. Since our data definitely contradic

this temperature dependence, we conclude that such ex
tions cannot explain our results.

Thus, a nonzero value of lim
T→0

(12C`) can be ex-

plained only by a change of the electron configuration in
whole system, which cannot be broken into thermal mot
confined to separate clusters. This means that there is a
portion of electrons that are not localized in some region
space, but move around the whole system. We view
motion as another manifestation of the drift of the syst
amongst the different PS’s of phase space.

D. The size dependence of the equilibration rate

An important question is whether the Hamiltonian of E
~1! exhibits a finite temperature glass transition in 2D. If s
then below the transition temperature the equilibration ti
should increase with system sizeL, and our results may als
depend onL. Although all our results appear to saturate a
function of L, and we have presented evidence that the s
tem is in thermal equilibrium for the temperatures studied
would be instructive if we could directly study the size d
pendence of the equilibration time.

On the face of it this is not possible using the long ran
hopping dynamics presented in Sec. III, since we cannot
rive from them the physical equilibration time of the syste
However, the existence of a finite temperature glass tra
tion in the system would mean that in the thermodynam
limit, it would not be possible to reach thermal equilibriu
just using single particle excitations. Instead one would n
to simultaneously move an infinite number of electrons
overcome the energy barriers. For finite size systems
would mean that the equilibration time~in units of MC
sweeps!, for any dynamics involving only single particle ex
citations, would grow with the system size. This would
true even if the hopping distance is infinite, as is the c
here. To understand this point more thoroughly, it is instr
tive to use the standard analogy between the Coulomb g
and spin glasses.10 In this analogy, occupied and unoccupie
sites are mapped to spin up and spin down, and an elec
hop is equivalent to simultaneously flipping two spins. In t
case of regular short range dynamics, the two spins woul
close to each other, whereas in the case of long range
namics the two spins may be located anywhere in the sys
However, if a finite temperature glass transition existed, t
the only way to overcome energy barriers in the thermo
namic limit would be to simultaneously flip an infinite num
11520
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ber of spins. Specifically, one would not be able to rea
thermal equilibrium by just flipping two spins each tim
even if the distance between the two spins is allowed to
arbitrary.

For this reason we believe that if a finite temperature gl
transition existed in the Coulomb glass with regular dyna
ics, it would also exist in the model studied here. To test t
we have studied the size dependence of the equilibration
of our model. The equilibration rate may be defined usin
number of methods. The method we have chosen is to
the time dependence of the correlation functionC(tw ,t
2tw) defined in the previous subsection~An example of
such a function is shown in the inset of Fig. 8!. We have
found that for any set of parameters, it is possible to fit t
function with a stretched exponent of the formC(tw ,t2tw)
5A exp$2@(t2tw)/t#a%. While we do not necessarily attac
any physical significance to the stretched exponential form
enables to derive a time scalet which we define as the
equilibration time of system for the chosen set of paramet
As with all results presented in this paper, we take the w
ing time tw to be large enough so thatt is independent oftw ,

Our results are summarize in Fig. 9, where the equilib
tion time is plotted as a function of system size for thr
different temperature. All results are given forA51. From
these results it is clear that in the temperature range stu
here, namelyT>0.05, the equilibration times saturate as
function ofL. The value ofL at which the equilibration times
becomeL independent is the correlation length of the sy
tem, and from Fig. 9 it appears that it is is inversely prop
tional to the temperature. In all our simulations we ha
taken care to ensure that the system sizeL is larger than the
correlation length. TheL-independent equilibration time
strongly increases with decreasing temperature, makin
difficult to study temperatures belowT50.05. However,
since atA51 the temperatureT50.05 is well below any
relevant energy scale, we conclude that there is no fi
temperature phase transition in the model studied here.

FIG. 9. The equilibration rate,t ~in MC sweeps!, as a function
of system sizeL, for T50.05 ~a!, T50.1 ~b!, andT50.15 ~c!. The
definition of the equilibration rate is given in Sec. IV D.
9-9
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V. SUMMARY AND CONCLUSION

In this paper we have presented strong computational
dence that in a disordered 2D system of localized interac
electrons in thermal equilibrium, the configuration of occ
pied sites within the Coulomb gap persistently changes w
time. This effect persists down to temperatures well bel
the Coulomb gap width, and it causes large temporal fluc
tions of the site energies. The results are an exclusive p
erty of the interacting system. Without interaction, only ele
trons in a small interval of widthT would change their
occupation, and the site energy fluctuations would be of
der T.

We argue that this effect may exist in the limitT→0, as
long as the sample size increases with decreasing temp
ture so that the energy separation between local minim
the total energy is much smaller than the thermal fluctuati
of the total energy. We wish to emphasize that the res
presented here are not sufficient to prove this point, an
fact such a proof is impossible using computational metho
Nevertheless, it is important to bear in mind that our sim
lations have been carried out at temperatures much lo
than the Coulomb gap width, and thus cover the regi
which is attainable by current experiments.

The strong fluctuations described in this work are a pr
erty of the Coulomb glass in thermal equilibrium. We ha
presented evidence that there is no finite temperature g
transition in the 2D Coulomb glass, and thus thermal eq
librium can be reached down to zero temperature. Howe
it is clear that as the temperature decreases, the equilibra
time increases. This effect was observed in the long ra
hopping model studied here, and should be even more
nounced if more realistic short range hopping is used.
thermal equilibrium, namely, when the system has eno
time to visit a macroscopically large portion of the PS
there is a continuous rearrangement of the electronic c
figurations, possibly leading to a different conductivi
mechanism. As the temperature is lowered, the sys
freezes into one PS for a long time, and this mechan
cannot compete with VRH transport. We believe this to
the reason for the well established experimental observa
of VRH. At higher temperatures, the system equilibra
.

ak

m-
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faster, and the mechanism discussed above may dom
over VRH.

Thus, we believe that in a two-dimensional system th
is a kinetic transition, from a frozen state to an equilibriu
state. The paper by Levinet al.30 gives a good confirmation
of this point. In that paper all hops at a distance smaller th
some lengthR have equal probability, while larger hops a
forbidden. It has been shown that the conductivity beha
as exp@2a/(RT)#, wherea is some constant. In fact,R plays
here a role of the localization lengthj. One can think that
kinetic transition appears when exponent is of the order o
which means thatj'1/T. We cannot observe this transitio
in our simulations since it is expected to depend on
physical kinetics and not only on the Hamiltonian. Howev
we may use the size effect on Fig. 9 to come to the sa
conclusion: there is no equilibration if the maximum tunn
ing lengthL is smaller than'1/T.

The data by Kravchenkoet al.31 supports the idea of suc
a kinetic transition. In this work it is shown that the resisti
ity of a 2D silicon layer with different electron densitie
collapses into two separate curves when plotted versusT/T0.
The resistivity on the insulating side increases at lowT ac-
cording to exp(T0 /T)1/2. The resistivity on the metallic side
decreases as the temperature is reduced. AtT.T0 both
curves coincide and become temperature independent.
the insulating curve we considerT/T0 as jT ~in our units!,
wherej is the localization length. We believe that the tem
perature dependence of the insulating curve reflects the
netic transition discussed above. BelowT0 the system is fro-
zen in one local minimum and VRH transport dominate
leading to the exponential temperature dependence. Ab
T0 the system equilibrates rapidly leading to temperature
dependent transport. The metallic conductivity at low te
perature and higher density~metallic curve! cannot be under-
stood in such a way.
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