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The equilibrium thermodynamic fluctuations of site energies and site occupation numbers in a disordered
two-dimensional system of localized classical interacting electrons, known as the Coulomb glass, are studied.
Using computer simulations, it is shown that the configuration of occupied sites within the Coulomb gap
persistently changes with time, even at temperatures much lower than the Coulomb gap width. A related effect
is the fluctuations in the site energies, which are much larger than the temperature, and are of the order of the
Coulomb gap width. Numerical arguments are presented that no thermodynamic glass phase transition occurs
aboveT=0, so that at long enough timescales the system will always be in thermal equilibrium. The strong
fluctuations in the occupation numbers and site energies are interpreted in terms of a drift of the system within
the complex structure of phase space, which is characteristic of glassy systems. Such a drift could provide a
new mechanism of electron diffusion, as long as the equilibration time of the system is short enough. However,
in realistic systems with tunneling between sites there may be two different regimes. In the first regime the
system is effectively frozen in one of the minima of phase space and the regular Efros-Shklovskii hopping is
responsible for transport. Our results are applicable to the second regime where the localization Iéngth is
>1/T. This may shine light on the issue of a possible metal-insulator transition in 2D systems.
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[. INTRODUCTION of occupied sites occurs even at temperatures which are
much lower then the Coulomb gap width. A related effect is

The role of electron-electron interactions in strongly dis-the fluctuations in the site energies, the magnitude of which
ordered localized electron systems has long been an active much larger than the temperature.
area of research, following the pioneering papers by Pollak It is important that all these results do not follow from the
and Srinivasan.While much still remains controversial, par- picture of elementary excitation and diffusion in such a sys-
ticularly regarding the relevance of interactions totem proposed in Ref. 2. Consider the soft “pair” excitations
transport°it is generally accepted that interactions play anwhich are close pairs of occupied and vacant sites. The ex-
important role in such systems. Of particular importance iscitation itself is a transition of the electron from one site to
the fact that the long range Coulomb interaction is not effecthe other. They create a dipole potential which change the
tively screened at large distances, thus leading to the sa@nergy of nearest site by the eneligyf the nearest neighbor
called Coulomb gap in the density of single particle statesnteraction. However the relative fraction of such soft exci-
(DS) near the Fermi level. tations isT/A, whereA is the energy of disorder. Thus kt

Another important effect of interactions is that the phase~A the average magnitude of the displacement in the energy
space of the many particle system has a so-called pseudspace is of the order af. We show below that at largk the
ground state(PS structure, first described by Baranovskii situation is similar. Compact many electron excitations give
et al.® and recently studi€d®in connection with slow relax- the same result because they are also dipole excitations and
ation times. These PS’s are similar in nature to the locatheir number is also proportional fb The excitations with
energy minima of glassy systems. In fact the analogy belarge distance between vacant and occupied sites give even
tween the electron system and spin glasses was pointed olass displacement because their number is proportioriEd to
by Davieset all in the early 1980’s using different argu- due to the Coulomb gap, even if they are combined with the
ments. Subsequently, the term “Coulomb glass” or “Elec- compact excitations.
tron glass” has become widely used to describe interacting, Thus, we have done a completely new observation which
strongly disordered electron systems. Recently, experimentagquires a new explanation. To interpret these results we note
confirmation of this analogy has been obtained through théhat while the various PS’s are low in energy, they have very
observation of glassy dynamics in electron systéhié. different sets of occupation numbers.

In this paper we study the thermodynamic properties of To get a very rough idea about PS consider the Wigner
the two-dimensional(2D) classical Coulomb glass using crystal on a square lattice with filling factor 1/2. In fact there
Monte Carlo simulations. Our main observation is that theare two states with the same energy and completely different
configuration of occupied sites within the Coulomb gapoccupation numbers. The meaning of PS in disordered sys-
changes with time, even though the shape of the gap itself i'tm can be very roughly understood as the Wigner crystal
time independent. This persistent change of the configuratiowith defects.
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Thus, as the system drifts from one PS to another while irdescribed become more and more relevant, even to the point
thermal equilibrium, many electrons are transfered betweewhere they may change the nature of transport.
different sites, giving rise to the large fluctuations we ob- In fact, it has been demonstrated both for pure systems
serve. Since the energy distances between PS’s are small tiigd systems with disordéf, that such fluctuations may
motion persists up to a very low temperature if the system i¢hange the mechanism of the conductivity from percolation
in equilibrium. The distances between PS’s sharply decread® diffusion because the random potential is time dependent.
with the reciprocal size of the systelnfortunately, the Thus, a connection may exist between glassy dynamics and
exact law is unknown. The thermodynamic fluctuations ofthe metal insulator transition, especially in 2D systdt8ee
energy that provide the change of the PS's are of the order ¢#so Ref. 18.

T-L, whereL is a linear size of the 2D sample. Then the ~The paper is organized as follows. In Sec. Il we present
motion should persist up to zero temperature for the infinit¢he Hamiltonian of the Coulomb glass and derive two exact
system. As we show below the time, that is necessary to ségeorem connected with this Hamiltonian. Both of them are
these fluctuations, increases exponentially with decreasingpPplicable in the thermal equilibrium and they serve as a
temperature, but this time is size independent. This is théfiteria of the equilibrium. One of them show that average
basis of the new mechanism which we prop&e_ occupation numbers are given by the Fermi function which is

A crucial ingredient of the above picture is the assumptiorvery unusual for a system with interaction. In Sec. Ill the
that there is no finite temperature thermodynamic g|ass trarpomputer simulations are described in detail. The results of
sition in the system. In the thermodynamic limit, such a tranthe simulations and their interpretation are presented in Sec.
sition would prevent the system from reaching thermal equilV and a summary in Sec. V. In this section we also discuss
librium below the transition temperature, thus limiting the €xperiments on two-dimensional insulator metal transition in
validity of our results to finite size samples. In fact, no suchconnection with our results.
transition has been observed either experimentally or nu-
merically in the 2D Coulomb glass. Furthermore, this system|. THE HAMILTONIAN AND SOME EXACT PROPERTIES
has much in common with various 2D spin glass models,
where there is strong numerical evidence that no finite tem- For the purpose of our study we use the standard Cou-
perature thermodynamic transition occift$? In the current  lomb glass Hamiltonighgiven by
work we present results which support such a conclusion for 1 o
the 2D Coulomb glass as well. In Sec. IV D we show that for _ - s _
all available low temperatures there is a critical size of the H_Ei Pinit 2 .Z;&J rij (ni=»)(n;=v). @
systemL ., such that the equilibration time is independent of
L atL>L.. Both the equilibration time and, increase with ~ The electrons occupy sites on a 2D lattiog=0,1 are the
decreasing temperature. One can also show lthat1/T. occupation numbers of these sites andis the distance
This suggests the existence of the glass transitidh=ad as  between sites andj. The quenched random site energigs
in the case of 2D spin-glass system. are distributed uniformly within an intervgl—A,A]. To

Since the standard Coulomb glass Hamiltonian itself doe§1ake the system neutral each site has a positive background
not contain any dynamics, we employ dynamics which differchargeve, wherev is the average occupation number, i.e.,
from the physical dynamics of a typical system, but are sigthe filling factor of the lattice. In the current work we assume
nificantly faster. Namely, we assume that the hopping probelectron-hole symmetry, so that we only consider the case of
ability is independent of a distance between sites. Therefordalf filling »=1/2.
nonequilibrium phenomena, and particularly transport, can- Hereafter we take the lattice constanto be our length
not be studied directly by the methods discussed here. unit ande®/a as our energy unit. Using these units, the single

However, the results of our work may have importantparticle energy at siteis given by
implications for transport nonetheless. The size of a sample
plays the role of the maximum hopping length in our simu- _ E 1
lation. Speaking about a real system with the localization €= it j G(nj_v)' )
radius¢é one can think thak in our simulations is an analog
of £ in the real system. Since our simulation shows equili-The Coulomb gap in the DS around the Fermi level of
bration atL>1/T, one can conclude that in the real infinite strongly disordered interacting electron systems has been
system it appears @t>1/T. Thus, our results are applicable studied extensivel§>%°2%n the 2D case at zero tempera-
to the real system af>1/T. At smaller T the system is ture, the DS near the Fermi level is linear in energy and
frozen in one of the PS and the transport mechanism shoulabeys the mean field law
be Efros-Shklovski(ES) hopping. Note that the exponent in
the ES hopping becomes of order of one&i~1. The
freezing of the system into one PS can be considered as a a
kinetic transition.

Thus, our results are especially significant near theat A>1, while the width of the gap is of the order &
insulator-metal transition, where the localization length is~1/A.?1?> As the temperature increases the gap is smeared
large and transitions between different PS’s are fast. In sucht energies smaller than the temperatdr&.It was showA*

a case it is reasonable to expect that the fluctuations we hatbat the caseA=1 can be considered as representative of

2
D(e)="1¢ ®
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large A behavior since substantial deviation from the law Eqg.occupation numbe¢n,) subject to the constraint that it has

(3) appears only at very low energy. the required energy. By definition, this is given by
Another important result for the Coulomb glass Hamil-

tonian is that the average occupation number of a site with Tr{nexd —(H—uZin)/T]8(e—€1)}

energy e is given by the Fermi function. This result was N1)= Tr{exd — (H—u=n)/T]8(e—€;1)} )

obtained from an approximate self-consistent equétiaa;

though it has been noted that an exact proof is posélble. Here u is the chemical potential. Note that=0 at v=1/2
Due to the strong electron-electron interaction this is not atlue to electron-hole symmetry. The Hamiltonian given by
all obvious, and we thus provide this proof here. The averag&q. (1) can be written in the fornH=n,e;+H’, whereH’
occupation number of sites with energycan be calculated does not depend on;. This enables us to separate ouf Tr
by considering a single siie=1 and calculating its average which is the trace over the variabfg=0,1, thus obtaining

~ Tr{miexp —ny(e— w)/TITr' {exd — (H' = u2{n)/T]o(e—€1)}  Tri{niexg —ny(e—u)/T]}

) e —ma(e w TR Tr ex—(H /) Tloe—en) | Tralext—nate=w/T]}

®

Here Tf and X' stand for the trace and sum over all wheren; denotes the occupation number @r example
exceptn,;. From Eq.(5) we readily obtain the Fermi function the first site of the system{x) denotes thermal averaging,

andx denotes disorder averaging. In the noninteracting case,
(n)=f(e)= ' 6) the site energy just includes the random enedgy and is
1+exd(e—w)/T] time independent, thus leading {0,)=f(¢,). After per-
forming the disorder average, the distribution of the average
occupation numbepy(n) in the noninteracting system is
given by

For the rest of the paper, the Fermi enefgys taken as zero
due to our assumption that the system is at half filling.
We thus find that at low temperatures a site changes it

occupation number when its energy crosses the Fermi T AT 1

level. The site energy fluctuations described in Ref. 13 and Po(N)= 5% m®[e (n""=1)-1]
elaborated on in Sec. IV B, mean that part of the sites in the

system often change their occupancy, even at low tempera- x0[1-e MT(n"1-1)], (8)

tures. This leads to an interesting question regarding the digypere® is the Heavyside step function. From E@) it is

tribution of average occupation number in the system. In th,5qy 1o see that as the temperature decreases, the distribution

noninteracting case it is clear that as the temperature dg5scomes sharply peaked around the values 0 and 1.
creases, the average occupancy of most sites should be 0 oryye now consider the interacting case. Referring to Eq.
1, and the probability to find a site with average ocecupancy 7y e may write

near 1/2 decreases. However, in the interacting system the
situation is much more complicated and the distribution of 1
the average occupation number is nontrivial. We will now p(n)=
derive an analytic expression for the distribution of average

A ( Trnexp(—H/T)
ISR e ey

occupation numberp(n), defined as the probability that a ©)
site will have time averaged occupanoy This function is WhereN is the number of sites, and is the Hamiltonian
given by given by Eq.(1). The Hamiltonian may be written ad
=n,;¢,+H’, whereH’ does not depend o, and then
p(n)=48((ny)—n), (7)  Eq.(9) takes the form

1 J’A . s Zn —0aN1€X(—N1$1/T)G(N1, b2, . .. . bN)
(ZA)N _A ¢q1---dpydl n Enlzoylexq_n1¢1/T)g(nl,¢2, codN)

p(n)=

) exp— ¢/ T)g(Lds, - ) )
g(O,sz, v !¢N)+exq_¢)1/T)g(1i¢21 e 1¢N)

A
:f de,- - 'd¢N5<n
-A

1
1t a(d,, ... .bnexp ¢, /T’

:jA d¢1"'d¢N5<n (10
—-A
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whereg(ny, @y, ..., on)=Tr'exp(—H'/T), a=g(0,¢,, . .., dn)/9(1,d5, .. . ,dN), and Tt signifies trace oven,, ... ny.
Next we may perform the integration ovey;, which gives us

A T
:fAdd’z'”dd’N@[eA/T(n1_1)_a][a_em(nl_l)][1+aexp(¢1/T)]—1{1—[1+aexp(¢1/T)]—1}’
1y
where ¢, is the solution to the equation[1 . THE COMPUTATIONAL PROCEDURE

+ aexp(p,/T)] *=n, and O(x) is the step function. Note
that for the sake of brevity we have dropped the argument§Or
b5, ..., pN from a. Using this definition for¢,, one im-
mediately obtains

To study the equilibrium properties of the system we per-
m Monte Carlo(MC) simulations using the Metropolis
algorithm. In our simulations we allow infinite range hop-
ping, limited only by the system size. The hopping rate for
an electron from an occupied to an unoccupied site does not
depend on the distance between these sites but only on the

T A

p(n)= N—f dgy- - -dpy® energy difference between the initial and final configurations.
(2A)"n(1—n)/-A The use of such transition rates greatly decreases the
X[AT(N" 1= 1)— a]O[a—e AT(n"1-1)]. equilibration time of the system compared to short range

hopping transitions, and thus enables us to efficiently study
(120  the equilibrium behavior of the system. Once the system has
reached thermal equilibrium, averaging over the simulation
Now, the integrand can take the values 0 or 1 and therefordiMe is equivalent to ensemble averaging for the Hamiltonian
the final result may be written as of Eq. (1)._ Hov_vever, the simulation time dogs not reflect thg
physical time in a Coulomb glass system, since the dynamics
in the physical system is expected to be different. Related
approaches are commonly used to study the thermodynamics
p(n)= A mg(A,T,n), (13 of various spin glass modet&Note that the temporal behav-
ior of nonequilibrium processes, such as transport properties,
are expected to depend on the dynamics, and therefore can-
not be studied using this approach.
The details of the simulations are as follows: The simula-
tions are performed on a square latticdNof L X L sites with
a=expAF/T), (14) periodic boundary co_nditi_ons. In this torus geometry, the dis-
tance between two sites is taken as the length of the shortest
) ) _ path between them. Each site is assigned a random energy
whereAF is the difference of the free energy of the Hamil- #; , according to the distribution described following E).
tonianH' between configurations in which site 1 is occupiedfqr the case of half fillingr=0.5), N/2 electrons are distrib-
and unoccupied. Since this energy difference only containgteq randomly amongst th¥ sites, and then the system is
the interaction energy between site 1 and all the other sites, Hllowed to evolve according to the Metropolis dynamics. In
must satisfyl AF|<A for A>1. This means that as long as each step we randomly select one occupied site and one un-
A>1, and as long asis not too close to 0 or 1, one can put occupied site. We then examine the move in which the elec-
{=1 in Eq.(13). Therefore, under these conditions, we ob-tron in the occupied site hops to the unoccupied site and
tain the same result as in the noninteracting SyStem. In Se€a|cu|ate the Chang,be in the tota' energy Of the System due

IV B below we show that the numerical evaluationf{fn)  to this move. The MC attempt to perform this move is ac-
satisfies the noninteracting resliEq. (8)] even forA=1.  cepted with probability

This can be considered as further evidence that the Aase
=1 is representative of systems wit» 1

It is important to note that the results of E¢8) and(13) p=exd —max0A¢€)/T], (15)
were both obtained under the assumption that the system is
in thermal equilibrium. This may be incorrect if there is a
finite temperature glass transition and if the temperature isr rejected with probability + p. After an accepted move is
below the transition temperature. Thus, it is interesting tgperformed all the single site energies are updated accord-
calculate these guantities numerically, and compare with thangly. We define a single MC sweep as a serieblabnsecu-
analytic results presented here. Such a comparison will béve MC attemptgaccepted or rejectedThe MC time unit is
considered in Sec. IV B. then defined as the time elapsed during a single MC sweep.

where 0<{<1. Now, according to the definition af given
above, we may rewrite it as
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Each one of the simulations presented below starts with 0.5 7 =005, D500
an initial waiting period oft,, MC sweeps, in order to allow oT = 0.05, DS({¢)) ALY
the system to reach thermal equilibrium. Only then we begin 04 1 «T=0.15DS(e) .0.0”': geaoy
to perform measurements on the system at constant time in- 03 °T =015, Ds“e).).o:ou go”
tervals, until the simulation is terminated aftgg,, MC wv Ll
sweeps. We have takep andt,y, to be large enough so that [ 02 lsesao®id Eogo "8020 Dop‘raooo‘
all the results presented in this paper are independent of both. LA oo go.lo /".,,4
We also take care to avoid size effects in our simulations. 01 t° oo.°.°‘ 000 L.
Two size effects are known for the Coulomb glass ae? ’ 0.00.0.05 0.10 0.15
simulations® The first is Fermi energy fluctuations in a finite 0.0 : ‘ S s
lattices with different disorder realizations, which are of the 00 02 0‘;nergg‘6 08 10

order of A/\/N. In our simulation this effect is small. The
other size effect is related to the Coulomb interaction. At G 1. The DS and the density of average site energies, for
zero temperature the DS of E(Q) is maintained by the gifferent temperatures and fak=1. Only possitive energies are
possibility for an electron to hop a distance 1/e. Inafinite  shown due to particle hole symmetry. Inset: the temperature depen-
lattice the hopping distance is limited lhywhich leads to a  dence of the DSsolid marks and the density of average energies
hard gap fore<1/L. To avoid this we make sure thd@t (hollow marks.

>1/L, which leads to temperature smearing of the size ef-

fect. In general, unless stated otherwise, the simulations wel@sults are shown in Fig. 2, where it can be seen that the
performed on a lattice of siz&=50 for T=0.1, andL curves are well fitted by the Fermi function.

=100 for 0.05<T<1. We have found that these valuesLof In Fig. 3 we present the simulation results for the distri-
are more than sufficient to ensure that all our resultsLare bution of the average occupation numbp(®), defined by
independent. Eq. (7), together with the theoretical predictions which apply

Finally, as with all simulations of this kind, the results under equilibrium conditions. To generate this graph we cal-
need to be averaged overdifferent realizations of the ran- culate, for each site, the time averaged site occup&ngy
dom site energie§¢;}. Unless stated otherwise, the value and then calculate the distribution function. The excellent
P=100 was used throughout, since it was found that thisagreement ofn(e) and p(n) with theoretical expressions
provided for sufficient disorder averaging. provides evidence that the system is in thermal equilibrium.

The measurements we perform on the system can be di-
vided into two categories. The first category consistthef-
mal averageswhere the measured quantity is averaged over _ _ _ o
the entire simulation. An example of this kind of measure- We now turn to the central topic of this Section, which is
ment is the density of stat¢®S), where at each time interval the study of the thermodynam|c fluctuatlon_s within the Cou-
we measure the distribution of site energi2ée) and then l0omb gap. These fluctuations can be seen in a few ways. One
calculate the thermal averag®(e)). The second category IS the time depem_jen(;e of the single particle energies, which
consists ofevolution measurementsvhere we follow the We call spectral diffusion. _ N
evolution of a set of sites that were selected at some initial 10 Study the spectral diffusion, we first equilibrate the
time, after the first,, MC sweeps. An example of such a System duringt,, MC sweeps. Then we mark all the sites
measurement is to choose at the initial time all the sites foWhose single particle energies are in a narrow intef#|
which the single site energhEq. (2)] lies within a chosen

B. Spectral diffusion

range. The energy distribution of these sites is then extracted 1O s
as a function of time in order to examine whether these sites %
remain in the same energy range or diffuse. The standard 08 |
deviation of this energy distribution is then calculated and
presented as a function of time. 2 0.6
go.
< (4
IV. THE SIMULATION RESULTS AND DISCUSSION % oT = 0.05,n(¢) g,
o . S 0.4 F oT =0.05,n((e)
A. Coulomb gap and distribution functions n(e) and p(n) oT = 0.1, nfe) P
In order to test our numerical procedure, we first studied 02 | °T =0.1,n(()
the DS (D(e)) at different temperatures. Our results are *T =0.15,n(¢)
shown in Fig. 1, where the Coulomb gap is clearly observed. oT = 0.15, n({e))

The shape of the gap is consistent with previous resUf.
The slope of the linear part of the curve is approximatety 2/
in agreement with Eg3). In the inset of Fig. 1 we show the
temperature dependence B e=0), which appears to be FIG. 2. Site occupancy as a function of site energy, and average
linear in the temperature range studied. site occupancy as a function of average site energy, for different

As an additional test, we have calculated the time averag@mperatures and fgk=1. The solid lines are the Fermi functions
of the site occupancy as a function of enekg)ye)). The  for the three shown temperatures.

0.0 —
-1.0 -0.5 0.0 0.5 1.0
Energy
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20 m 1.8 |
1.8 1.6
1.6 U 14
1.4 4 1.2
ii » 1.0
12k Roost
§ 1.0 + .“ 06 |
08 94 04
0.6 [4° 0.2 [ 8 -
041 0012 08 04 00 04 08
0.2 r Energy
0.0 i
00 02 04 06 08 10 FIG. 5. Final energy distribution of sites initially in the energy
(n) range[ E.—W,E.+W]. Diamonds ) are forE.;=0, W=0.05,

T=0.05. Sgaured()) are forE,=0.3, W=0.1, T=0.05. Triangles
FIG. 3. Probability distribution of average site occupation num-(A) are for T=0.1, E;.=0 and W=0.05. The arrows mark the
bers, forA=1 and different temperatures. The solid lines refer topositions and widths of the two initial distributions of test sites
the theoretical prediction, as discussed in Sec. Il. which were used. All results are féx=1.

—W,E.+W)] within the Coulomb gap as “test sites.” We fol- distribution is asymmetric, namel§.#0. In this case, the
low the evolution of the distribution of these energies as theasymptotic distribution is also asymmetric, however, it is
simulation proceeds. In Fig. 4 we present the standard deviaearly as broad as the symmetric distributions. Moreover,
tion of this energy distributionSe(t—t,) as a function of while the initial asymmetric distribution consists of only
time, for E;=0, W=0.05, and different temperatures. As sites with positive energie@noccupied sites the final dis-
can be seen from the figure, after some number of MQribution also includes sites with negative enerd@escupied
sweeps, the standard deviation saturates. In the inset of Fig.sites.

we plot the saturated value of the standard deviation as a Another way to observe spectral diffusion is to measure
function of temperature. Note that the temperature deperthe time average of the single-particle energy at isite;),
dence is quite weak, and in all cases that standard deviaticomd the standard deviation at the same sit¥,

is much larger than the temperature. We have also checked ‘/<62i >—<€i>2- We perform this calculation for all sites and
that the DS of the test sites reaches an asymptotic form aftejreate a functior ((€)). This function is shown in Fig. 6 for
the saturation time. This asymptotic form is shown in Fig. 5A=1 and several temperatures. It is found that for all sites,
for E;.=0, W=0.05, at two different temperatures. Note thatthe standard deviation of the single-particle energies is much
the final energy distribution covers most of the Coulomb gaplarger than the temperature. Moreover, for sites with energies
although the initial distribution was centered in a small re-near the Fermi level the standard deviation is 2 times
gion at the center of the gap. This is in spite of the fact thatarger than for other sites.

the temperature is much smaller than the gap width. We have we understand this picture in the following way. Sites

also studied the dependence of the final diStribUtiOﬁ\Mn with |argeA are expected to be “active” sites which Change
and have found that the results are independe ébr W

<0.1. Also shown in Fig. 5 is an example where the initial 06 . .
e A=1,T=0.15
0.8 . . : , 0.5 - e, " A=1,T=0.1
07| T=0.15 ] n o4 e ‘oo, 4 A=1,T=005
X " ,
0.6 B &, Sose,
0.5 T=01 % 03 |
0.8 2
g 04 06 [ JRTLLL
031 Zoal °° 3z 02
o2 = o2t 1 . <
: 0.0 ) ‘ 0.1
0.1 ¢ 000 005 _0.10 0.15
0.0 . 0.0 : : '
0 500 1000 1500 2000 2500 0.0 0.5 1.0 L5
MC Sweeps (e)A
FIG. 4. The standard deviatiode, of the distribution of test FIG. 6. Site energy standard deviation as a function of site av-

site energies, as a function of time, far=1 and for three different erage energyA({€)), for various values oA andT. For A>1 the
temperatures. The test sites were chosen in the initial energy rangemperature is given by =0.05A, and we used a system size of
[ —0.05,0.03, Inset: the saturated valuk,, of the standard devia- L=200, and a number of disorder realizatidhs 20. Only possi-
tion as a function of temperature. tive energies are shown due to particle hole symmetry.

115209-6



THERMODYNAMIC FLUCTUATIONS OF SITE ENERGIE . .. PHYSICAL REVIEW B 64 115209

their occupation frequently as their energies cross the Fermi 0.6
level. The changes in the occupation numbers of these sites
are accompanied by a reorganization of the local configura-
tion of occupied sites, which in turn is responsible for the
larger value ofA in a manner similar to the polaron effect. 04t A
On the other hand, the sites with smallerare “passive”
sites, and change their energy only in response to the random
time dependent potential created by the active sites. In the
context of passive and active sites, it is instructive to define 02 ¢
the quantityE,, as the energy at which ((e))=(e). The Amin
meaning of this is that sites which satigfy)<E,, have en-
ergy fluctuations larger then their average energy, and there-
fore are active. From Fig. 6 it is also _apparent that these_snes 0-%‘00 0.05 0.10 015
have larger value ofA, thus supporting our understanding T .
that these are indeed the active sites of the system. emperature
The width of the maximum in Fig. 6 may indicate thatthe g, 7. Temperature dependence of quantities,, A, and
active sites are predominantly within the Coulomb gap. Thisg, for A=1. See text for a description of these quantities.
is reasonable, since the occupation number of sites within the
gap is strongly affected by interactions. Howeveratl all  changes at lowef, so that allA tends to zero, this happens
characteristic energies, including the gap width, are of ordedue to the finite size of the arrow.
unity. To check whether the active sites are indeed within the Another manifestation of the spectral diffusion is a sig-
gap, we estimate the dependenceAobn A for A>1 and nificant difference between the energyof a given site at a
compare it with simulations. The width of the g&j de-  given moment and the time average of the energy of this site
creases withA asEy~1/A. The electron density within the (e;). To see this we compare the average occupation number
gap isng~ [ ede~1/A%. If active sites make up a finite n(e) with the function(n)((e)). To generatgn)((e)) we
portion of all sites in the gap, they create a time dependerifirst calculate the time averaged site occupafigy and the
potential with the mean square value time averaged site energy;) for each site. Then for all sites
with given value of(e¢;) we calculate the average value of
(n;). On the other hana(e) is obtained by averaging the
occupation numbers of sites with the same energiea at
given moment of timeand as we have seen both analytically
Here the logarithmic integral has been cutoff at the screeningnd numerically, is just the Fermi function. In Fig. 2 we plot
radius, which is proportional to the reciprocal density of(n)({€)) together withn(€), and one can see that for a given
statesA.?®?’ Note that this simple estimate does not take intotemperature(n)((€)) is not as steep aén(e)) near zero
account the polaron type effect mentioned earlier, and thuenergy (the Fermi energy This is due to{(n)({€)) being
applies only to the random potential felt by passive sites. Wemeared by energy fluctuations. For example, a site with
have performed simulations forlIA<4 and plotted the re- ()>0 may spend part of the time below the Fermi energy
sults of AA/JalnA+1 against(e)A. The temperature for and, thus, enhance its occupancy.
each value of\ is T=0.05A, keeping it constant in units of Similarly, the distribution function of averaged energies,
the gap width. If our hypothesis is correct we should be abléD({e)) shown in Fig. 1, has a much less pronounced gap
to choose the parametarin such a way that all curves col- thanD(e). The reason is that the Coulomb gap exists for a
lapse in one, at least for large energies where the passiwdistribution of site energies taken #ie same moment of
sites reside. One can see from Fig. 6 that indeed such time Due to fluctuationsP({¢€)) is smeared because sites
collapse occurs foa=1.5. with small average energye) include sites which spend
The temperature dependence of the results of Fig. 6 imost of their time with larger energies, and thus have a
presented in Fig. 7. The curves markkg,, andA i, show higher density.
the maximal and minimal values of the standard deviation We understand the large energy fluctuation described
A((€)) as a function of temperature. The curve marlkggd above, and the large number of active sites implied by these
shows the width of the functioi ({€)), which was previ- fluctuations, as resulting from a drift of the system amongst
ously defined. All the quantities shown in Fig. 7 appear to behe different PS’s of phase space. Each PS is characterized
much larger than the temperature for the entire temperaturigy a unique set of sites forming the Coulomb gap. So that
range shown. Furthermore, it appears that bath, and when the system drifts from one PS to another the number of
A hax May tend to a finite value a6—0. We do not mean sites that change their occupancy is a finite fraction of the
that it happens at fixed size of an array. We suggest theumber of sites in the Coulomb gap. As the temperature
arguments below that it may be the case if the temperaturdecreases, the fluctuations of the total system eng(@y
decreases with increasing arrays. Here we can only mentiofC being the heat capacitance of the systelecrease, and
that our lowest temperatuie=0.05 may be a characteristic thus less PS’s are accessible to the system. However, it has
temperature which is connected to the size of the arrow onlybeen showhthat as the system size increases, the number of
Thus, if one expects that the observed linear dependend@S’s increases, and the energy separation between them de-

\

Energy

Ey

A
A2~ngj r?rdr~A"?lIn A/AZ. (16)
1
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creases. This means that at any given temperature, it is al- 0.6

ways possible to increase the system size so that there will be =09 .

many PS’s available amongst which the system can drift. We 0.5 '§0~7 N T | . o o
believe this to be the source of the temperature independent 05 — =t & *

. . . . . 0.4 [ ° 5
contribution to the site energy fluctuations described above. t e —
For the finite systems sizes we use in our simulatidngill $ 03 I . 7 °
decrease to zero whefC T becomes smaller than the typical ! 6 -
energy separation between PS’s. In order to observe the tem- 02t e
perature independent contribution Aoat very low tempera- sz
tures, it would be necessary to increase the system size be- 0.1 /,//
yond what is computationally feasible. However, we have T

: 0.0 : : :
taken care that there are no size effects for the temperature 0.00 0.05 0.10 0.15
range presented in Fig. 7. Temperature

We believe that the temperature dependence that can be
observed in Fig. 7 results from soft dipole excitations. These FIG. 8. The correlation function 4C., as a function of tem-
excitations are compact pairs of sites such that the energyerature folW=0.3 (solid circles andW= 0.6 (open circleg Also
change due to the transfer of an electron from one site of ahown are the theoretical curves forC.. in the case of a nonin-
pair to the other is very smaif The density of states of the teracting system, fow=0.3 (solid line) andW=0.6 (dashed ling
dipole excitations is %, so that the concentration of active The inset show<(t,,,t) as a function of the time, for T=0.05
excitations is~ T/A. These excitations not only contribute to (upper curv¢andT=0.1 (lower curve. A=1 in all cases.
the number of active sites, but also induce fluctuations of

passive site energies, leading to the linear temperature denjs saturated value a(t,,,). In the inset of Fig. 8 we
pendence ofA,, observed in Fig. 7. Indeed, each dipole show an example of such a saturation. We then incregse
creates a potentialy/r? at a passive site, wheneis the  ynil C(t,,*) becomes independent tjf, and thus obtain
distance between the site and the nearest dipole rand oyr estimate ofc,,

~1/E4~A is the size of the dipol& Using the estimate The results folC,, for the interacting system are shown in
above for the denSlty of active d|p0|e eXCltatlonS this |ead&he main part of F|g 8 as a function of temperature’ﬁor

to a slope ofA y,,(T) close to that in Fig. 7. =1, W=0.3, andW=0.6. The corresponding functions for
the noninteracting system, calculated directly from &),
C. Correlation function are also shown. We observe that the correlation for the inter-

rfcting system is much weaker than for the corresponding

Thus, the spectral diffusion shows that the configuratio _ )
noninteracting system at the same temperature.

of occupied sites within the Coulomb gap persistently 4 X k .
changes in thermodynamic equilibrium. To obtain more in- NOt€ that by increasingV we include more sites in the
formation about this motion, one can study the correlatiorferrelation functionC... However, our results for the spec-
function of occupation numbers. We do this by constructmg”al diffusion indicate that most of these additional sites re-
a vectorD(t,) after t, MC steps have been performed, main passive a§—0. Thus,C.. should increase a/ in-
whose components are the occupation numbges all sites ~ CT€@S€s, as we indeed .observe comparing the resuli4/ for
within a given energy range- W,W]. The vector is normal- — 0-6 andw=0.3 (see Fig. 8 ,

ized so thatD(t,)-D(t,)=1. As the simulation proceeds, The most interesting result coming from the study of the
we check the occupation number of these same sites, COIqorrelatlon functiorC,, is the possibility of a finite value for
struct the vectorD(t,+1), and calculate the correlation My o(1~Cx). Clearly, such an extrapolation cannot be
function C(t,,,t)=D(t,)-D(t,+t). Correlation functions considered conclusive, however, one has to keep in mind the
analogous toC(t,,,t) are commonly used to measure the following points. First, while we have included in the defi-
similarity between different configurations in systems suchition of the correlation function only sites that were in the
as spin glasses. For two identical configuration€(t,, ,t) initial energy rang¢ —0.3,0.3, it is clear that many passive
=1, while if there is no correlatio(t,,,t) =0.5. Basically, sites are still included in this definition. These passive sites

we are interested i€, =lim___lim __C(t,,t), whichisa mask the behavior of the active sites and tend to increase the
measure of the similarity of two arb|trary states of the systen‘Forrelat'on Second, a finite value of ano(l C..) means
at thermal equilibrium. For a noninteracting system, that thermal motion continues down to zero temperature.
W oo This conclusion is consistent with the results obtained from
“wi(¢)de the spectral diffusion in Sec. IV B and we understand it in
:W’ (17 the same way: Namely, we expect that a nonzero value of

1-C,, may be obtained only if the size of the sample grows
wheref(¢) is the Fermi function. Thus, for the noninteract- with the decrease of temperature so t&T remains larger
ing systemC,,=1—T/W atW>T andC.=0.5 atT>W. than the energy separation between different PS'’s.
In order to evaluat€,. from the simulation, we measure It is important to point out that our results cannot be ex-
C(ty,t) as a function oft for a givent,,, and wait long plained by assuming that the excitations of the system are
enough so that(t,,,t) becomes independent bfWe denote  separated pairs of sites, with electrons hopping back and
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forth between the sites of each pair. This assumption would
mean that electrons are effectively localized in space. Since
the energy density of such excitations is constant at low en-
ergies, meaning the number of available excitations de-
creases linearly with temperature, one immediately obtains
that IimTHO(l—Cm)wT/W, as in the noninteracting system.

The same temperature dependence is obtained even if exci-
tations involve a few electrons that change their positions
simultaneously(so called many electron excitatfor). In

fact, any picture based upon confined separated excitations
which do not interact with each other would mean that

20 30 40 50 60 70 8

IimTﬁo(l—Cw)~T/W. Since our data definitely contradicts 18 F© 0
this temperature dependence, we conclude that such excita- - 12 ] .
tions cannot explain our results. 12 L
Thus, a nonzero value of lim (1-C.) can be ex- 10 -* : : :
. 0 _ o 10 20 30 40 50
plained only by a change of the electron configuration in the T

whole system, which cannot be broken into thermal motion

confined to separate clusters. This means that there is a finite FIG. 9. The equilibration rate; (in MC sweep$ as a function

portion of electrons that are not localized in some region oPf system sizé., for T=0.05(a), T=0.1(b), andT=0.15(c). The

space, but move around the whole system. We view thigefinition of the equilibration rate is given in Sec. IV D.

motion as another manifestation of the drift of the system

amongst the different PS’s of phase space. ber of spins. Specifically, one would not be able to reach
thermal equilibrium by just flipping two spins each time,
even if the distance between the two spins is allowed to be

D. The size dependence of the equilibration rate arbitrary.

An important question is whether the Hamiltonian of Eq.  For this reason we believe that if a finite temperature glass
(1) exhibits a finite temperature glass transition in 2D. If so,transition existed in the Coulomb glass with regular dynam-
then below the transition temperature the equilibration timdCs, it would also exist in the model studied here. To test this
should increase with system sizeand our results may also We have studied the size dependence of the equilibration rate
depend orL. Although all our results appear to saturate as &f our model. The equilibration rate may be defined using a
function of L, and we have presented evidence that the sysaumber of methods. The method we have chosen is to use
tem is in thermal equilibrium for the temperatures studied, ithe time dependence of the correlation functi@ft,,,t
would be instructive if we could directly study the size de- —ty) defined in the previous subsecti¢An example of
pendence of the equilibration time. such a function is shown in the inset of Fig. 8Ve have

On the face of it this is not possible using the long rangefound that for any set of parameters, it is possible to fit this
hopping dynamics presented in Sec. IlI, since we cannot dgunction with a stretched exponent of the fof@(t,, ,t—t,,)
rive from them the physical equilibration time of the system.=A exp{—[(t—t,)/7]"}. While we do not necessarily attach
However, the existence of a finite temperature glass transgny physical significance to the stretched exponential form, it
tion in the system would mean that in the thermodynamicenables to derive a time scate which we define as the
limit, it would not be possible to reach thermal equilibrium equilibration time of system for the chosen set of parameters.
just using single particle excitations. Instead one would needs with all results presented in this paper, we take the wait-
to simultaneously move an infinite number of electrons toing timet,, to be large enough so thats independent of,,
overcome the energy barriers. For finite size systems this Our results are summarize in Fig. 9, where the equilibra-
would mean that the equilibration timén units of MC  tion time is plotted as a function of system size for three
sweepy for any dynamics involving only single particle ex- different temperature. All results are given fA=1. From
citations, would grow with the system size. This would bethese results it is clear that in the temperature range studied
true even if the hopping distance is infinite, as is the casdéere, namelyT=0.05, the equilibration times saturate as a
here. To understand this point more thoroughly, it is instrucfunction ofL. The value olL at which the equilibration times
tive to use the standard analogy between the Coulomb glasgecomel independent is the correlation length of the sys-
and spin glasse¥.In this analogy, occupied and unoccupied tem, and from Fig. 9 it appears that it is is inversely propor-
sites are mapped to spin up and spin down, and an electrdional to the temperature. In all our simulations we have
hop is equivalent to simultaneously flipping two spins. In thetaken care to ensure that the system &ize larger than the
case of regular short range dynamics, the two spins would beorrelation length. ThelL-independent equilibration times
close to each other, whereas in the case of long range dgtrongly increases with decreasing temperature, making it
namics the two spins may be located anywhere in the systendifficult to study temperatures below=0.05. However,
However, if a finite temperature glass transition existed, thesince atA=1 the temperaturd =0.05 is well below any
the only way to overcome energy barriers in the thermody+elevant energy scale, we conclude that there is no finite
namic limit would be to simultaneously flip an infinite num- temperature phase transition in the model studied here.
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V. SUMMARY AND CONCLUSION faster, and the mechanism discussed above may dominate

In thi h ted st tai | over VRH.
n IS paper we have presented strong computational eV~ 5 e pelieve that in a two-dimensional system there

dence that in a disordered 2D system of localized interactings 5 inetic transition, from a frozen state to an equilibrium
electrons in thermal equilibrium, the configuration of occu-giate The paper by Leviet al° gives a good confirmation
pied sites within the Coulomb gap persistently changes withyt this point. In that paper all hops at a distance smaller than
time. This effect perSIStS down to temperatures well belOV\éome |engt|*R have equa' probabmty, Wh||e |arger hops are
the Coulomb gap width, and it causes large temporal fluctuaforbidden. It has been shown that the conductivity behaves
tions of the site energies. The results are an exclusive progs exp—o/(RT)], wherea is some constant. In fadg plays
erty of the interacting system. Without interaction, only elec-here a role of the localization length One can think that
trons in a small interval of widthl would change their kinetic transition appears when exponent is of the order of 1,
occupation, and the site energy fluctuations would be of orwhich means thaf~1/T. We cannot observe this transition
derT. in our simulations since it is expected to depend on the
We argue that this effect may exist in the liflit-0, as  physical kinetics and not only on the Hamiltonian. However,
long as the sample size increases with decreasing temper&e may use the size effect on Fig. 9 to come to the same
ture so that the energy separation between local minima gionclusion: there is no equilibration if the maximum tunnel-
the total energy is much smaller than the thermal fluctuation#d lengthL is smaller than~ 1f£i _
of the total energy. We wish to emphasize that the results The data by Kravchenket al.”" supports the idea of such
presented here are not sufficient to prove this point, and i} kinetic transition. In this work it is shown that the resistiv-

fact such a proof is impossible using computational methoddty Of @ 2D silicon layer with different electron densities

Nevertheless, it is important to bear in mind that our simu-COllaPSes into two separate curves when plotted versig.
he resistivity on the insulating side increases at Ibwc-

lations have been carried out at temperatures much lowel

than the Coulomb gap width, and thus cover the regim&OrOIing o explo/T)*” The resistivity on the metallic side
which is attainable by current ,experiments. decreases as the temperature is reducedTAfT, both

The strong fluctuations described in this work are a prop_c:urves coincide and become temperature independent. For

erty of the Coulomb glass in thermal equilibrium. We havethe insulating curve we consida@vT, as £T (in our units,

presented evidence that there is no finite temperature gla ereg is the localization Ien'gth. We believe that the tem-'
transition in the 2D Coulomb glass, and thus thermal equiper_ature d_e.pend.ence of the insulating curve refleqts the ki-
' petic transition discussed above. Beldythe system is fro-

librium can be reached down to zero temperature. Howeverl,~ ", local mini d VRH t ¢ dominat
it is clear that as the temperature decreases, the equilibrati h In one local minimum an ransport dominates,
ading to the exponential temperature dependence. Above

time increases. This effect was observed in the long rang h ilib idlv leadi )
hopping model studied here, and should be even more pro-Ot e system equilibrates rapidly leading to temperature in-
ependent transport. The metallic conductivity at low tem-

nounced if more realistic short range hopping is used. Afj . ; )
thermal equilibrium, namely, when ?he sygﬁ)err? has enougl‘?er"’m.re and higher densitnetallic curvg cannot be under-
time to visit a macroscopically large portion of the PS’s,StOOOI in such a way.

there is a continuous rearrangement of the electronic con-
figurations, possibly leading to a different conductivity
mechanism. As the temperature is lowered, the system We are grateful to Z. Ovadyahu and A. Vaknin for many
freezes into one PS for a long time, and this mechanisnuseful discussions. One of U#é.L.E.) is grateful to A. I.
cannot compete with VRH transport. We believe this to belarkin and B. I. Shklovskii for fruitful discussions. The work
the reason for the well established experimental observatiowas funded by the US-Israel Binational Science Foundation
of VRH. At higher temperatures, the system equilibratesGrant No. 9800097.
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