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Energy-band structure of GaAs and Si: Asps® k-p method
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A twenty-bandk - p Hamiltonian taking into account the spin-orbit coupling is used to describe the valence
band and the first two conduction bands all over the Brillouin zone. The basis functiorsp¥telike
functions used in linear combination of atomic orbitals. To get the right dispersion up to the Brillouin zone
edge, the influence of other bandksl{ands$ is mimicked via Luttinger-like parameters in the valence band and
in the conduction band. The method is applied to GaAs and Si. A satisfying agreement is obtained near the
band extrema as well in the direct gap semicondu@@aAs as in the indirect gap semiconduct@i). In
particular, while thek- p Hamiltonian parameters are adjusted to get the longitudinal mass 0.92 of the silicon
conduction band, the transverse mass, which results from the calculation without further adjustment, is equal
to 0.19 which is the experimental value.
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[. INTRODUCTION als but which takes into account the influence of other levels,
for exampled levels, via Luttinger-like parameters. We call

The methods to calculate the band structures of semicorthe method thep’s*** d”’ k-p method. The purpose of this
ductors(SC9 can be schematically divided in two sets. Thearticle is to show the efficiency of thep®s***d” k-p
first set contains theories with few adjustable parametermethod to describe the band structure which is of interest in
such as the pseudopotential methagid the linear muffin-  transport studies. The method is applied to two examples, a
tin-orbital methodf In the best case only one adjustable pa-direct gap SQGaAs and an indirect gap SCSi) as in Ref.
rameter, the forbidden band gap, is required. By contrast th8. Indeed we are mainly interested to describe the bottom of
second set contains adjustable parameter theories, namehe first two conduction band€Bs) and the top of the va-
the linear combination of atomic orbitdlsand the k-p lence bandVB) which play the main part in different trans-
method® In linear combination of atomic orbitals it is not port phenomen&The layout of the article is as follows: The
possible to account for the indirect forbidden gap if only firstprinciple of the calculation is first decribed. The choice of
neighbor interactions are taken into accouittis then nec- parameters and their influence on the results are then pre-
essary to use second neighbor interactions. From the viewsented. The efficiency and the limits of the present method
point of numerical calculation the method of linear combina-are finally discussed.
tion of atomic orbitals was greatly improved by Voet al®
who showed that the introduction of “localized pseudo-
orbitals” of ssymmetr)(;%mderlyings in the SC crystal of"'; Il. THE sp’s*** d” k -p HAMILTONIAN
in group theory notatioh is very efficient to account for the I . .
first conduction band dispersion. The calculations are much We start from the 1414 Hamiltonian given in Ref. 9

simpler than those taking into account second neighbor inhich takes into account théyy, T'gy, I'sc, I'zc, andl'sc

teractions because it is a tight-bindiigB) method. The ![ﬁvells\;vFlrﬁ v\\;el?g?hth?/gon:éﬁﬁvell}x Vth'Cih dgscrtlt;)er? Vv
pseudo-orbitals are calles* so that the Vogl method is beeioo tﬁZFe ?e ol t?le H:m'lton'(;?]ede'm?agg'o?]as ?]lg e16e
known as thesp®s* model® Each orbital enters either as a W gy [EVEL fton ! lonl W L0

bonding state or an anti-bonding state which means that tr;%\/e keep the notation dFy group(GaAs so thftrﬁ\ﬁr’ F7X’
model is a ten band model. Taking into account the spirt 8v: Lsc: I'7c, I'sc are to be understood &% , I'7 , I'g
leads to a twenty band model. Janetal? improved the 17 T's» T's in Op group (Si). The 16<16 Hamiltonian
method taking into account levels which allows us to cure leads to monotonic band energies. Itis necessary to take into
most ofsp3s* shortcomings. The method used by Jancu is ccount states whqse energy is larger th_alj the Igrgest energy
sp’s*d TB method. In the following, TB will stand as a ©Of the 16<16 Hamiltonian to find any minimum iX or L
shorthand notation of the Jancu's method. In thep directions. The Hamiltonian is then enlarged to include two
method, the use of 15 basis statask=0), without taking further levels, four with spin; theg-like level, which is a
into account the spin, allows one to account for the bandonding level of symmetry's, and thes; -like level, which
structure of silicon and germanium as shown in Ref. 4. Thds an antibonding level of symmetiysc . The dimension of
k-p method was also used for a better understanding othe Hamiltonian includingsg and sy is 20: it is thek-p
linear-muffin-tin method via a 1616 k-p Hamiltonian’  Hamiltonian, calledH,,, in a sp’s* model framework.
Other calculations including spin and using ax3@0 k-p  Theses* levels, which have been introduced by Veglal?
Hamiltonian were also uséd. to mimic the influence of the second neighbors, allow one to
In this article, we propose &-p method which uses a obtain nonmonotonic bands and, finally, to reproduce the
20x 20 basis as isp’s* linear combination of atomic orbit- correct position of the first CB at th¥ point. However the
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T 5, |4) tributions of the far levels are included by Luttinger-like pa-
£l 5y |B) rameters ¥l in the {I'g,,I'7} matrix and y{; in the
1"3 4 o {I'gc,I'7c} matrix. These parameters are written a§
1 Ta Li r }"sc |Xe)¥e)lze) wherej=vi or ci in the following. They!"s which describe
o Lop, e the interaction of the VB or the CB with far-levels in thi,
‘ PPH Hamiltonian are adjustable parameters as well. The relations
i : Ty Tye 15) between the Luttinger-like parameteﬁ, the matrix ele-
P P ments P and Py, the forbidden band gaEg=E(I"¢c)
l : v?{_ FSV} Ty |X)|7).|2) —E(I'gy), the valence spin-orbit splittingA=E(Tgy)
, - w —E(I'7v), Ecc=E(I'7¢c) —~E(I'ec), Ac=E(I'gc)
F —E(I';¢), and the Luttinger parametets are given in Ref.
\ Loy Tyy |S)) 9. These relations are exact if the spin-orbit splitting is neg-

ligible with respect to the direct forbidden band gap as it is
FIG. 1. Wave functions in thep®s*** d”’ k-p model atk=0.  the case in silicon. In GaAs, the relations given in Ref. 9 are
We use the notation df4 group (GaAs so thatT'gy, I'sy, Tgy,  slightly modified'® If the far-level contributions were not

Tec, T'rc, T'gc are to be understood d% , I';, I's, I';, Ts,  taken into account, we would merely hayd'=—1 if j
Iy in Oy, group(Si). The interband matrix elements are schemati-=31 or c1, 7,]!“:0 if j=v2,c2,03,c3. We defineE,
cally indicated. The Luttinger-like parametey§ in the{I'g, ,I' 7} =E(sk)—E(I'sy) andEg=E(s})—E(I'sy) as well.

levels andyg} in the {T'gc,T'7c} levels are also indicated. The en- * : : .
ergies used in the text arBg—E(I'sc)— E(Tgy): A=E(Tgy) The mg effective mass of the CB results from the inter

- i _ 7 , 7 . ; action with thel';y, andI'g, VB’s (Kane formula via the

_ Eg{ ;’ )_ EI(EFG;;;EEEI::C)E(SEE()FflcE)(’Fis__ AE"(I;?]%)SG Eérl:grcg;)iésEgre matrix elemen®, and from the interaction with thé;c and
I'sc CB’s (similar to the Kane formulavia P’,** and from

the interaction with far-levels. In the present paper we do not

take into account the far-level influence so the is merely

given by

positive excepEgc in silicon.

s* levels are not sufficient to describe thepoint and even
less the second CB.
Thek-p H,, Hamiltonian gives back the same result for

the X point and the same shortcomings for the other pointsas —° — 1 4 E(i + ; _E(L + i) )

Vogl's method does. Instead of increasing the Hamiltonian mj 3\Ec EgtA] 3 \EgctAc Egc
dimension by taking into account tiddevels, as it was made (1)

in the TB method, we have chosen to introduce the main ) )

contributions from far levelgpractically thed levels inside We did not take any adjustable parameter for the lowest

H.,o via Luttinger-like parameters which play a part in the I'sv CB. The free electrc’)n mass, is thus only modified by
I';y andT'gy levels and in thd'5c andT'gc levels: We call  the influence oPg andPg but not by the contribution of far

this new HamiltoniarHZ,. In the sp®s** d” k-p model, levels and thdqy mass*is given by an equation similar to
“d"” reminds us that that-level influence is taken into ac- EQ.(1). Concerning the* states, described here by) and
count via second order perturbation. |B), a free electron term#ik?/2m,) was first used, then a

This model is schematically representedat0 in Fig. 1. nonspherical correction term in the form d{k)=3(ky
In this figure, both the wave functions corresponding to thet k‘y‘+ k#)—k* was introduced as proposed in Ref. 1. Fol-
bands and the matrix elements are indica{&). and | X), lowing this approach, the results were not satisfying. The
[Y), |Z) are, respectivelyl';c (I'sc) andI'sy (I'gy,I'7y)  following energies were thus introduced in the diagonal ele-
orbital functions as usualS,) and|Xc), |Yc), |Zc) arel';y,  ments of pseudo-orbita* in HY;:
(T'ey) and I'sc (I'ge,I'7¢) orbital functions, respectively:

these eight functions correspond to 81 TB functions|A) #,2Kk2 , 12 KZkokS
and |B) are, respectivelys;-like and sj-like orbital func- Eu(k)=EBytays —+2lay—ay)Buy—— 74—
. ; o b Kk
tions of symmetryl';c (I'§c) and '}y (I'gy). The matrix

elements of interest ar®=(S|p,|iX), Ps=(Sy|p4iXc), 52 k§k§+ k§k§+ k2K2
Pa=(AlpdiX), Ps=(B|p,liXc), Px=(XclpAiY), P’ +3(ab—au)(1_ﬂu)2mo k?

=(SIpdliXc),  Ps=(SvIpdiX),  Pa=(AlpiXc), Pg

=(B|p,|iX). The matrix element®’, Pg, P,, Pg are equal

to zero in diamond structuréSi) and are nonzero in zinc +ay)
blende structuréGaAs. P, Ps, Pa, Pg, Px are nonzero in

both cases. Futhermore we define the related energies amereU=A or B and theas and theSs are adjustable pa-
usual, namely the energieEl)s are defined byES) — rameters.

=2m0/h2[P§’)]2.AII the matrix elements are real adjustable  Ey(k) is symmetric with respect t&,, k,, k, as it is
parameters. As dicussed in Ref. 7 most of them, like forthe case foff (k). There is neither more nor less justification
exampleP and Py, can be taken positive. Consistent resultswith the expression oE (k) than with the levelsy; them-
were obtained by taking only positive parameters. The conselves if not its effectiveness.

ﬁ2k2 2
) : 2
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TABLE |. Parameters used in tis®s*** d”’ k-p model. Thel's energies are taken from Ref. 12 and are
built-in in anyk- p theory.T'z, E=8C, 7C, 6C, 8V, 7V, 6V are notations ify group(GaAs and are to
be understood aBz, =87, 67, 77, 8%, 7*, 6" in O, group(Si): see text. The 25 other parameters are
calculated to obtain the band structure given in Figs. 2 and 3. Energies sEgImE,’,j are defined in Fig.

1 or are related to the matrix elemem§’ of Fig. 1 by ES)=(2m,/4%)[P{")]2. The parameters like, 8
[defined in Eq.(2)], y (Luttinger-like parametejsare without dimension except, and ez which are in
ev 1,

eV GaAs Si eV GaAs Si GaAs Si GaAs Si

Tgc/T; 4659 3400 E, 72 80 97 -065 -007 an -235 —4.80
I,c/T; 4488 3400 Eg 70 65 9" 020 003 a, -100 55
Tec/T; 1519 4185 E, 225 250 97 -026 -0.10 o4 018 0.0

Tgy /Ty 0 0 E, 0025 0 9% -015 -100 B, 078 0.395
I';y/T3  —0.341 -0.044 Epyx 150 100 5 0104 000 ag 140 0.75
FGV/Fg —-125 —-125 Eps 2.3 0 y’c"3 —0.267 —0.130 ap 1.40 0.25
Eps 0.2 0 ap 035  0.00
Epp 12.0 250 Bs  0.00 —2.88
Epp O 0
Epg 9.8 130
Epg O 0
Ill. RESULTS AND DISCUSSION the top of the VBs over a one eV scale and the lowest two

CBs over a 3 e\kcale in four directions namely X, T'L,

Now, we _give the value_s of the parameters use in oYK, XU. Indeed it is easy to get right results in theX
K-p calculations and describe the results for GaAs and SId{rection and almost as easy in thé directions. The diffi-

The parameters are listed in Table I. The energies of bands at .. )
o 2 . . Culties come when we try to reproduce results inlte and
k=0 are known? 25 adjustable parameters are present in,

our model compared to the 13 parameters used by Vogl in hItswo directions. The values of the parameters are determined

sp’s* linear combination of atomic orbitals modfel. E © P
, . " by the calculation in the four directions together and not by
The parameter values were first estimated by fitting our, . . . i
. four calculations successively. We did not succeed to repro
result_s at an energy near the forbidden band_gap at the cent&rjCe the details of the band structure beyond this 6 eV
of Brillouin zone then at the extremd and finally at the

extremal. The accuracy of the CB dispersion near the BriI_WIstQLJ:r—]rgfskrI:g d(i)ffi:orlottr)lleelj/]a\ll\l;aesoilflg qug;t]z(: n E)e;c?:c\)ltljrr]ﬁre
louin zone surface is strongly dependent on the paramet P Bv 9y .
. or the second VBXsy, degeneracy. At thé point, the first
values likee and 8 vs energy and on the values ¢f}, and . . ;
¥y vs effective masses. These features explain that som%B Lec Is the right ondsee the accuracy in Tablg but the
c3 S . econd CBLg is too high(in Si) as well as the oint
parameters are described with three figufEsble ). 6c gh(in Si) 4.5v P

) . of the first VB. In Ref. 3 the authors did point out that this
The band structure of GaAs and Si calculated accord'n%ystematic deviation of ¢ cannot be overcome because a

with ou_rk~ p model, are .ShOV.V” in Figs. 2 and 3, res’pecuveIY'nonspherical term cannot be produced correctly in a nearest-
Numerical results are given in Table Il. The band structure '%eighbor TB model. The second CB is correctly accounted
well reproduced on a width of about 6 eV, more preciselyg,, onyeenx andK but not betweei andI. This iast band

he XU directions while keeping a good accuracy in the first

6
Loe \se GaAs
ST \‘ Iic I:
. e [e ’
4 7C X _
s .l (‘C = 0
° E te
2ol o 3
4 1F Lec Xoc g =
of Tov T Iy I
% \\ ﬁ Fw "
-1 F
L A r A X UK x r L A r A X UK z r
Wave Vector Wave Vector

FIG. 2. The GaAs band structure, as calculated according to the FIG. 3. The Si band structure, as calculated according to the
presentsp®s**“ d”’ k-p model for four directions. presentsp®s*** d” k-p model for four directions.
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TABLE Il. Comparison of energies and masses obtained in the present wop (vith the sp®d®s*
tight-binding calculation$TB) and experimental valugexp). The TB results are taken from Ref. 3 and the
experimental data from Ref. 12. Table | parameters are fitted to get energiesg &nitudinal massesn,
transverse masses are calculated without further fitting. Masses are in electron free mass Xinit, i
A min €nergies in eV.

GaAs Si

k-p B expt k-p B expt
mc(Te) 0.067 0.067 0.067 m(Amin) 0.920 0.916
m,(Lg) 0.13 0.117 0.075 my(Lg) 0.176 0.16
m,(Xg) 0.22 0.237 0.27 my(Anmin 0.19 0.22 0.1905
X7¢ 2.210 2.328 235 Xsc 1.26 1.35
Xec 1.945 1.989 1.98 Ani 1.17 1.17 1.17
Xoy —2.870 —2.929 —-2.80 Xsy —3.55 -3.15 —2.90
Xev —2.968 —3.109 —2.88
Lec 5.625 5.047 57  Lgc 7.72 4.39 4.15
Lsc 1.841 1.837 185 L 2.24 2.14 2.40
Lasv —1.585 —1.084 —120 Lysy —2.02 —1.08 -1.2
Lev —1.780 —-1.33 —1.42 Lgy —2.05 -1.12 -12

results from the free electron dispersion(/2)[2—x,2  massm(A ) in Si is the right one when the parameters of
—x,0] (0<x<3/4) which stems from the (2a)[220] I'  Table | are fitted to account for thg, longitudinal mass. We
point whose energy is of the order of 20 eV above the botemphasize that this result is better than the TB results. This
tom of the first CB. Thid" point is out of the scope of the feature makes the present method reliable to describe the
alongXU are accounted for. As for the VB, the masses and the Luttinger parameters
The critical values extracted from our band structures argo shown in Table Ill. These two sets are not deduced one
given in the following. Our results are fitted on the energies; o another as it is usually the ca¥eThe masses are cal-

and on the masses given in Refs. 8, 12, 13 along the fou<§ulated from the dispersion curves while the Luttinger pa-

wave vecto_r d|rect|c_)ns as Stated ?bo"e- Fpr example, th|eameters are calculated via the set of the 25 adjustable pa-
curves are fitted to give the longitudinal massin the[ 100] rameters using formula like Eq9) of Ref. 9 or the ones of

direction to be equal to 0.92 in the first CB in siliconlat Ref. 10. When the Luttinger parameters are known the cal-

corresponding to the CB minimuna(,;,). The top of the VB | . ? i
is at thpeF poir?t while the bottom Of(tnl'l]rg CBis e‘i)ther at the culation of masses is straightforwaftiin the worst case the

point (GaAs or in the A direction (Si). Table Il shows the masses deduced from the Luttinger pqrameters differ from
results of the calculation with the parameters of the Table [1€ masses calculated from the dispersion curve by less than
and the comparison with TB theoretical results of Ref. 3 andt0%- This shows that our calculations are consistent even
experimental results given in Ref. 12. More specifically thethough the results are not excellent for the silicon VB.
values of them, transverse mass of the first CBlaandX is We now want to d|SCU$S -the value of t':i% parameter
given for GaAs and at and at thek(A ;) point of the first ~ which is highly controversial in GaAsH=0 in Si). In Ref.

CB minimum in Si. It is worth noting that the transverse 11, E}, is equal to 11 eV or 6 eV whether the perturbations

TABLE lll. Heavy and light masses for two directions and Luttinger parameters il §healence band.
The k-p masses result from the band structures given in Figs. 2 and 3. The correspondinginger
parameters result from the equations who link the to they'U”j and ycmj Luttinger-like parameters and tfig
andEpy parameters via the equations given in Ref. 9. The agreement between masses calculated from the
band structures and from Luttinger parameters is of the order of 10% in the worsnggSe See comments

in the text.

mr%?mo mrlmﬁl mllh0 0 m|1hll Y1 Y2 Y3
GaAs k-p) 0.46 0.95 0.089 0.085 7.07 2.40 3.05
GaAg 0.43 0.95 0.085 0.077 7.05 2.35 3.00
Si (k-p) 0.35 0.92 0.15 0.117 4.92 1.06 1.91
SP 0.29 0.88 0.20 0.135 4.26 0.38 1.56

8Reference 15.
bReference 12.
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due to far-level bands are taken into account or not. In Reflence bands and of the lowest two conduction bands, both in
9, Ep is equal to 2.36 eV. The influence & is all the terms of energies and masses. The contribution of the
larger as the magnitude of the wave vector is largeE, ~ pseudo-orbitals* along with the contribution of the far lev-

determines the energies both at the edge of the Brillouin zonels via modified Luttinger parameters was found to be deter-

and theE; _, splitting between the first and the second CB inminant for the conduction bands atand X points. Thes*
zinc blende structureH;_,=0 in diamond structude In levels give rise to nonmonotonic bands and the far-level con-

GaAs theE;_, splitting equals 0.2 e¥and the relevant tribution allows one to obtain the correct masses and ener-
wave vector isk;=0.34 A~1 in [100] direction.E,_, is  9ies. We have shown that some parameter values reported up

equal to M as far as the only matrix element to now p_revent to reproduce the dispersion on the BriIIou!n
P’ has to be considered. If we successively tike=11, 6, zone Wh'Ch Ie_ads us to propose new values. The condgctlon
236 we get E :2m244 3220 eV band dispersion is comparable to that obtained with a
' get E1-o= PLT Balemio) = 8 T2y & © sp’d®s* tight binding method. We emphasize that near the
Whatever the abov&} value,E;_, is far too large.E;_, band extrema thep?s*** d” k-p model leads to more pre-

=0.2 eV leads td=0.025 eV. The complete numerical cjse values, in particular for the masses at the bottom of the
calculation taking into account all the bands leads to thesjjicon conduction band. Thep®s*** d” k-p model is thus
same valueEp=0.025 eV and eventually gives the value efficient to calculate the band structures all over the Brillouin
E, »,=0.18 eV which is quite reasonable. On& is  zone for energies of interest in transport phenomena.
known, we use Eq(l) to get Ep. Finally we find Ep
=22.5 eV which is the value given in Table I.
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