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Electron localization in the insulating state: Application to crystalline semiconductors
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We measure electron localization in different materials by means of a “localization tensor”, based on Berry
phases and related quantities. We analyze its properties, and we actually compute such tensor from first
principles for several tetrahedrally coordinated semiconductors. We discuss the trends in our calculated quan-
tity, and we relate our findings to recent work by other authors. We also address the “hermaphrodite orbitals”,
which are localizedWannier-like in a given direction, and delocalize¢@loch-like) in the two orthogonal
directions: our tensor is related to the optimal localization of these orbitals. We also prove numerically that the
decay of the optimally localized hermaphrodite orbitals is exponential.
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[. INTRODUCTION tween macroscopic polarization and insulating behavior was
first pointed out and exploited—taking advantage of the
A nonmetal is distinguished from a metal by its vanishingmodern theory of polarizatidn’—by RS in 1999. This ap-
conductivity at low temperature and low frequency: we useproach is based on Berry phases and related cont&sn
here the term “insulator” to include any nonmetal, like the the RS paper, like Kohn’s 1964 one, mostly concerns corre-
semiconducting materials that are the case studies actualljted systems. Furthermore, in order to keep the presentation
addressed in this work. simple and concise, most results are explicitly shown in one
Within classical physics, the qualitative difference be-dimension, while thed-dimensional formulation is only
tween an insulator and a metal is attributed to the nature ofketched in the final paragraphs of RS. In the present paper
the electronic charge: either “boundl.orentz model for in- We provide more details on how the RS theory of localiza-
Su|ato|’$ or “free” (Drude model for meta)sm other words, tion works in three dimensions, Specializing to a system of
electrons ardocalizedin insulators anddelocalizedin met-  honinteracting electrons, like the band insulators chosen as
als. In a milestone paper published in 1964, W. Kohn charcase studies here.
acterized the insulating state of matter in a way that is remi- Some other important papers must be mentioned at this
niscent of the classical picture: he gave evidence that theoint. In 1997 Marzari and Vanderbilthereafter cited as
main feature determining the insulating behavior of matter igMV, while not addressing metals at aénd hence their dif-
electron localization in the ground-state wave funcfioki- ference from insulatojsestablish, nonetheless, some results
though this work mainly addressedrrelatedmany-electron that are relevant to the present viewpoint. In a very recent
systems, its message is very relevant even for materials féiomprehensive papér Souza, Wilkens, and Martin—
which an independent-electron description is quite adequaté&ereafter cited as SWM—generalize and extend in various
as the semiconductor crystals studied here. Recently a novéfdys the main finding of RS: we adopt here some of their
measure of electron localization—different from Kohn’s notations. Finally, after this work was completed, we became
one—was proposed by Resta and Sorelereafter cited as aware of Ref. 11, whose conclusions bear some implications
RS. Their approach is deeply rooted into the modern theor§or our results shown in Sec. VI.
of polarization®~’ The paper is organized as follows. In Sec. Il we define the
Metals and insulators reveal their qualitative differencebasic ingredients providing both polarization and localiza-
when static dielectric polarization is addressed. Suppose wiéon, namely, the expectation values of the many-body phase
expose a finite macroscopic sample to an electric field, sapperators? for the three Cartesian coordinates, E4). In
inserting it in a charged capacitor. In metals polarization isSec. Ill, following RS, we show how the modulus d{‘,")
trivial: universal, material-independent, due to surface phedefines a very meaningful quantity, the localization tensor,
nomena onlyscreening by free carrigrsTherefore polariza- for which we adopt the SWM notations: such tensor is finite
tion in metals inota bulk phenomenon. The opposite is truein insulators and diverges in metals. In Sec. IV we discuss
for insulators: macroscopic polarization is a nontrivial, the main properties of the localization tensor, and in Sec. V
material-dependent, bulk phenomenon. We can thereforere present first-principle calculations for several elemental
phenomenologically characterize an insulator, in very genand binary semiconductors: the main trends are analyzed. In
eral terms, as a material whose ground-state wave functioBec. VI we calculate orbitals that are optimally localized in a
sustains a nonzero bulk macroscopic polarization whenevegiven direction, and whose average quadratic spread coin-
the electronic Hamiltonian is noncentrosymmetric. If thecides with the localization tensor. We also heuristically check
Hamiltonian is instead centrosymmetric, the polarizationthe exponential localization of these orbitals, which we call
vanishes but remains a well-defined bulk property, at varihermaphrodite orbitals”. In Sec. VIl we draw our main
ance with the metallic case. The phenomenological link beeonclusions. In the Appendix we consider a molecule or a
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cluster and we discuss our localization tensor therein, showwhere the product runs over all occupied bands and all mesh
ing its relationship to some results of Boys localizationpoints, A is the antisymmetrizer operator, and the factor en-
theory? well known in quantum chemistry. sures that thé&l-body wave function is normalized to one on
the hypercube of side. If, instead, the system is metallic,
then the many-body wave functioh can still be written in
the form of Eq.(3), but where not all the Bloch vectors of a
We are addressing here, as it is done by MV, a crystallingiven band are included in the product.
system of independent electrons, having in mind a Kohn- According to Refs. 2 and 7, the key quantities to deal with
Sham(KS) scheme. The properties of interest, namely, macboth macroscopic polarization and electron localization are
roscopic polarization and electron localization, are not propexpectation values of “many-body phase operators”. For a
erties of the individual KS orbitals: instead, they are globalthree-dimensional system there are three such operators, one
properties of the occupied KS manifold. As shown in Refs. 2for each Cartesian direction. We indicatezgd , wherea is
and 7, it proves formally convenient to deal with a many-a Cartesian index, their ground-state expectation values:
body wave functio¥’, obtained as a Slater determinant of
occupied orbitals. This determinant is uniquely determined
by the manifold of the occupied orbitals and is invariant by z(h}<)=<\If|ei(2’T’L)iZ1 X[y, (4)
unitary transformation of these orbitals among themselves:
for instance, in insulating crystals, an important transformaand analogously foy andz directions. This remarkably com-
tion of this class converts the occupied Bloch orbitals intopact expression is very general and applies as it stands even
Wannier functiong? Quantities that can be expressed solelyto correlated and/or disordered systems: here we specialize to
in terms of ¥ are invariant in form under such transforma- a crystalline system of independent electrons, whose wave
tions. function ¥ assumes the form of E@3), where the product
Throughout this work—with the exception of the indices have to be differently specified in the insulating and
Appendix—we adopt periodic Born-von-Kaan boundary metallic cases.
conditions(BvK) on a large cell, multiple of the crystalline We may conveniently recaxﬁ]‘) as an overlap
elementary cell. The quantities of interest are intensive and

II. MANY-BODY PHASE OPERATORS

N

have a well defined thermodynamic limit, while the wave Z&X):<qf|@>, (5)
function itself becomes an ill-defined mathematical object in 5
that limit. whereV is the Slater determinant of a different set of Bloch

For the sake of simplicity, we assume a simple cubic celspinorbitals,
of sidea and a large BvK cell of side =Ma. More general
structures can be dealt with using scaling, similarly to what T//nqs(r):ei(z’T’Ma)Xl/fnqs(r), (6)
is shown, e.g., in Ref. 4 or in SWM. The thermodynamic
limit corresponds tdVl — <0, while practical calculations are and analogously for the b&pin-down ones. According to a
performed at finite, and possibly large, values. The spin well-known theorem, the overlap between two single-

orbitals  (spin-up andy (spin-down may be chosen of the determinant wave functions is equal to the determinant of the
Bloch form. In the finite system there ak allowed Bloch ~ NXN overlap matrix built out of the occupied spin orbitals.

vectorsgs, arranged on a regular mesh in the unit reciprocaSince the overlaps between different-spin spin orbitals van-
cell, wheres=(s,,S,,S3) and ish, and those between equal-spin ones are identical in pairs,

we can write
21

Gs=11=(51.52,80), $,=0L...M-1. (1 2{)=(dets)?, (7)

whereS is the overlap matrix between spatial orbitals, hav-
We adopt a plane-wave-like normalization for the Bloch or-ing sizeN/2=n,M?3. Its elements are
bitals:

1 ~
Shag ' =—f dr g2, (1) ¥, (1)
1 Nqg,n"qgr 3 nq, n'qg
(Wng,| %’qs)zL3J’Bche”dr¢:‘cqs(r)¢n’qsr(r):5nn'5ss', s L3 JBvKcell s s

2 1 x
2 e BVKCe”drunqs(r)unrqs,(r)
If the system is insulating with, doubly occupied bands,
there areN=2n,M? independent spin orbitals, out of which X ex i(2_7X+ et ®)
we write a single-determinant many-body wave function for Ma Gs Ys '
N electrons:

where theu’s are the periodic functions in the Bloch orbitals.

The matrixS is very sparse: in fact, given the geometry of
— i » the gg's on the regular reciprocal medlsee Eq.(1)], the
V=Al1 = ¢ng tna, 3 _ ; >48 )l e
ns L30T overlap integrals in Eq8) are nonvanishing only i§;=s;
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+1, s,=s,, andsz=s;. We express the nonvanishing ele- calization is measured by a squared localization length in one
ments in terms of a small overlap matr of size n, dimension, and by a “localization tensor” in three dimen-
Xny, as sions. This tensor is an intensive quantity, has the dimensions
of a squared length, and measures the localization of the
1 many-electron system as a whole: in the present case, it is a
Shn(@,9") =(Ung|Unrq) =— f ”dru:q(r)un’q’(r)- (9  global property of the occupied KS manifold. The localiza-
a Jee tion tensor is finite for insulators and diverges for metals.
Owing to the sparseness 6f its determinant factors into In the very recent SWM paptit is shown, among other
products of determinants of small matricés things, that the RS localization tensor is related to the mean-
In the insulating case we use the wave function of B)).  square quantum fluctuation of the polarization: it is a second
where all the Bloch vectors of a given band are occupied: theumulant moment, which can be very elegantly extracted
factorization is then from a moment-generating function. We adopt throughout
notations inspired by SWM, and we indicate the localization
tensor asr ,r g)., where the subscript stays for “cumulant”.
For a material having cubic or tetrahedral symmetry, like the
semiconductors considered in the present case studies, the

2= detS=] detS(ds 115,805, 5,5 (10

We get a more compact notation upon defining localization tensor is isotropic: its only independent element
o o is (x?).. Its expression is provided by RS, whose Etg)
Aq(x)zT(1,0,0)= M_(l’o'o)’ (11)  Wwe recast here as
a
2
which is the vector connecting nearest-neighaguoints in (x2) = — E(L) |n|2§“x)|2, (13
the x direction. We have then N\2m
and the thermodynamic limit is understood. For a mel
zQ0Y2=1] detS(gs+Ag™,qs). (120 vanishes and the localization tensor is formally infinite, even
s at finite N. For an insulator, whose wave function has the

In the metallic case, instead, taf’s are identically zero. form of Eq.(3), we get from Eq(12)

This is easily understood by looking at the simple case with

only one band. Suppressing the band index the small overlap |Z(X)| = H detS(gs,gs+ Aq¥)S(qs,as+Aq™);  (14)
matrix becomes & numberS(q,q’), and Eq.(10) becomes

a product ofc numbers, with no determinant to evaluate. In

an insulator this product runs over the whqglemesh, and all (X2 o= —
factors are nonzero; in a metal the analogous product runs ¢
only on theq's within the Fermi surface. Looking at the

definition of S(q,q’), Egs.(8) and(9), it is clear that there Equations(14) and(15) are the typical expressions imple-
exists at least one occupieg, adjacent to the Fermi sur- mented in our test-case calculations discussed below. The

face such thas(qslqs) vanishes for a|bccup|ed $. This thermodynamK: limit is obtained as usual ff—o and

is enough to imply thaz("?) vanishes as well. takes, not surprisingly, the form of an integral performed

The complex numbers(N“) are ground-state expectation ©Ver the reciprocal unit cell, or equivalently over the first
qualitatively discriminate between insulators and metals: 2
they are in fact nonvanishing in the former materials, and (x 2>

c
that there is a qualitative difference in the organization of the
electrons in their ground state. It is remarkable that, in the d
—E Unq| 50" un 9/ o ——Uprg|Ung) |- (16)

before the thermodynamic limit is taken.
The proof is relatively straightforward, starting from E6)

2

anM

a
In|z{P)2. (15)

values, and do not access any spectral information. Yet the§jfillouin zone. The integral is
J J
d Upgl=—u
vanishing in the latter ones. This shows, according to RS, Ny(27 )3j Q(E <(9qX "] gax nq>
present case, such difference shows up alreadinia N,

IIl. ELECTRON LOCALIZATION and discretizing integrals and derivatives on the mesh de-
fined in Eq.(2).
In centrosymmetric materials the expectation valmféé Expressions such as E(L6) and similar ones had ap-

are real(provided the origin is chosen at a centrosymmetricpeared in the literature befotéjn relation to Wannier func-
site), while in noncentrosymmetric materials they are in gen-ions. By means of an expression of this kind, MV define a
eral complex: their phases define then the Cartesian compground-state quantit2, that sets a lower bound for the sec-
nents of the macroscopic polarization in suitable uhftén ~ ond (spherical moments of the Wannier functioisMore
the metallic case the{®’s vanish and the polarization is ill precisely, for an insulator withy, occupied bandghencen,,
defined, in agreement with the phenomenological viewpoinWannier functions per cellsuch second moment is no
illustrated in Sec. |. We address electron localization usingsmaller in average thafd, /n,,. It is worth mentioning at this
the moduli of these san‘lé\,“)’s. Following RS, electron lo- point that the logic of the MV paper goes backwards with

115202-3



SGIAROVELLO, PERESSI, AND RESTA PHYSICAL REVIEW B4 115202

respect to the present approach: first they provide a coralgebra appearing in Ref. 14: for a different argument prov-

tinuum theory, and then they discretize for computationaing the same result, see the Appendix.

purposes. Their discretization is different from Ed.5), We have arrived at Eq(19) considering an insulating

which emerges naturally from the present formulation startcrystal so far. In this case we know, under general

ing from the remarkably compact E€L3). Both discretiza- arguments®8thatP(r,r’) is asymptotically exponential in

tions obviously converge to the sarve— limit: their con-  the argumentr-r’|: this confirms that the integral over all

vergence properties are different, though. space in Eq(19) converges and the localization tensor is
Specializing MV to a cubic material, RS have found thetherefore finite. At this point, it is worthwhile to apply the

simple relationshif), = 3ny(x?). : notice thatx?). is inten-  general form of Eq(19) to the metallic case. For the sim-

sive, while(), is not such. Building upon MV's work, we are plest metal of all, the free-electron gas, the density matrix is

now ready to generalize the localization tensor to material&nown exactly®

of arbitrary symmetry as

%jl(kF“_r,D

1
a P(r.r’)=5p(r.,r')= ; (20)
nq> 2 2 kF|I’—I’ |

V. d
<rarﬁ>cznb(2W)3qu(; <@unq

- E < Ung
n,n’

u
ddp

Replacement of Eq20) into Eq. (19) results in a diverging
iu ) > iu u 17) integral, thus confirming that our localization tensor is for-
a9, "\ agqg M) mally infinite in this paradigmatic metal. Other, more realis-
tic, metals feature this same divergence.
whereV, is the cell volume. Notice that the imaginary part  The fact that the density matrip(r,r’) is short-range in
of the integrand in Eq(17), being antisymmetric i, can-  the variabler-r’ has been named “nearsightedness” by W.
cels in the integral, such that the localization tensor is realkohn!” The second moment expression in Ef9) shows
Even the offdiagonal elements, as defined in @), have a  that our localization tensor is indeed a meaningful quantita-
finite-N counterpart in terms of many-body phase operatorstive measure of such nearsightedness. We are going to ana-
For an insulating crystal of arbitrary symmetfy, as de- lyze below the major trends over an important class of ma-
fined by MV equalsn,, times the trace of our localization terials: tetrahedral semiconductors. We mention at this point
tensor(r,rg)c. In a metal, expressions like Eq&l6é) and  that a conceptually different measure of the nearsightedness
(17) do not make much sense, consistently with the fact thaef a given electronic ground state focuses instead on the
our finite:N expression, Eq(13), is formally infinite atanyN  exponent governing the exponential decay@fr’) in insu-
value. lators: some case studies have been recently investiffat@d.
We have already observed that some of our findings are
closely related to the previous work by MV. These authors’
main interest were the “optimally localized Wannier func-
We have already emphasized that the localization tensor igons”, i.e., those localized orbitals that minimize the average
a property of the occupied KS manifold as a whole. Thespherical moment. They prove, among other things, that such
main quantity that defines such manifold is tligpin- moment is strictly larger than the trace of our localization
integrated single-particle density matrig, which coincides tensor. Building on their results, it is straightforward to at-
with twice the projectoP over the occupied KS orbitals: this tribute a similar meaning to the tensor itself: for any trans-
projector is invariant by unitary transformations of the orbit- formation of the occupied orbitals into a set of unitarily
als. Using Bloch eigenfunctions the projector reads, for arequivalent ones, the second moment in a given direction can

IV. PROPERTIES OF THE LOCALIZATION TENSOR

insulator withn,, occupied bands, be no smaller than the localization tensor, projected in that
direction.

1 1 ™ Since we are going to apply our results to cubic materials

P(r,r')= Ep(l’,l”)Z P 2 f dqz,/;nq(r)w:q(r’). only, we focus on those orbitals that minimize in average the

guadratic spreadsecond momentin the x coordinate. The
(18 present formalism makes the definition of these orbitals par-
ticularly simple: they are in fact the eigenfunctions of the
position operatorx, projected over the occupied manifold.
Calling E=PxP this operator, its expression in the Schro
dinger representation is:

The localization tensofin the thermodynamic limjt has
been written as a Brillouin-zone integral in E@.7). This
integral can be identically transformed into a particularly
simple expression whose only ingredienfis

1 —_ ! n n n n !
Mol g)e=m5— drf dr'(r—r") o (r—r") 4 P(r,r")|?, =(r.r )If dr”P(r,r")X"P(r",r"). (21
< ﬂ>c 2nbJ‘ceII all space ( Jal )'8| ( )l all space
(19

Notice thatx is incompatiblewith BvK boundary conditions
which is the second moment of tligquaredl density matrix — and its matrix elements over Bloch states are ill defined;
in the coordinate-r’. The proof of the equivalence between nonethelessZ is—in insulators—a well-defined operator,
Eqg. (19 and Eqg.(17) can be worked out using the same which maps any vector of the occupied manifold into another
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vector of the same manifold. This fact owes to the exponen 3
tial localization ofP in Eq. (21). 28
The relationship betweef and the orbitals optimally lo- a b
calized in thex direction is easily proved borrowing some _ ,,t
results from MV; for a different argument leading to the®y ¢
. . . =
same proof, see the Appendix. We also notice an importar® st
difference with respect to the three-dimensional localizatior~ 16}
explicitly considered by MV. While the trace of the localiza- 14 F
tion tensor provides bwer boundfor three-dimensional lo- 12 b
calization, its elemen(ix?)., provides instead a genuimeini-
mumfor one-dimensional localizatioin a cubic material o8 e——e our calculation
This qualitative difference owes to the fact that, while one ~ °°} =——= MV calculation
can manifestly diagonalizBxP, one cannot simultaneously ol
diagonalizePxP, PyP, andPzP. o . ‘ . ‘ ‘ . ‘ ‘ .
We end this section about the properties of the localiza e 2 4 8 B 0 2 14 18 1B 20
tion tensor with a most important issueis,r 5). a measur- M’
able quantity? The answer, due to SWM, is “yes”. They
prove the identity:

26 |

(2?)c

FIG. 1. Convergence of the squared localization length with the
size of the sampling grid, for the case of GaAs. We compare our
discretized formula with the one used by MV, using a genuinely
A J”dw 22) cubic grid: the labeM’ meansM’XM'XM’ within MV nota-

——| —Re , .
2men,Jo @ Tap(@) tions.

<rarﬁ>c:
where (_Taﬁ is the Cond_UC'[iVity tensor. Notice that the Ieft' Mza, Corresponding to a mesh in reciproca| space with
hand side, as emphasized throughout the present work, IS\, ,M,,M, points: this allows an easier control of conver-
property of the electroniground statewhile the right-hand gence.
side is a measurable property related to electranicita- We start evaluating at the mesh points the Hermitian ma-
tions therefore Eq(22) must be regarded as a sum rule. Thetices
frequency integral in Eq22) diverges in metals and is finite

in insulators, as obviously expected. Since in the latter ma- As=S'(0s,9s+ A" S(qs, gs+ Ag™); (25)
terials there is a gap for electronic excitations, E29) im-
mediately leads to the inequality then Eqs(14) and(15) are written as
ﬁvc o My M, C2M My
(rr <—f dw Rea 4(w), (23 X2) = -—= IndetA, |. (26
B>C 277(32I’1b8g 0 p ( >C MyMz s;=1 s3=1 4772nb 512=1 s (26

whereg, is the direct gap. Using then the oscillator-strength

) A, In general convergence is fast My, M,, and slower in
sum rule, Eq(23) for a cubic material is cast as

M,. The expression in parentheses in E2p) is precisely
2 the one-dimensional expression discussed in detail by RS,

(x?) < , (24)  and the three-dimensional one simply obtains from it as an
2Mee g average in thedy,q,) plane.
Below, we investigate the trends in both members of this First we show in Fig. 1 the convergence of our expres-
inequality for our test-case materials. sions over a genuinely cubic grid, which coincides with the
one used by MV in their evaluation of the quantify,
_ 2 . - . .
V. CALCULATED LOCALIZATION TENSORS —3nb<x >C. They use a different discretization of the same

k space integral: both calculations converge to the same lo-

We have studied several tetrahedrally coordinated crystakalization tensor, although our discretization, based on Egs.
line materials, from the group IV, 1I-V, and 1I-VI, having the (14) and(15), converges faster. All the following results have
diamond and zinc-blende structure. The first-principles calbeen obtained using noncubic grids, as in E§), in order
culations have been performed within density-functionalto achieve faster convergence.
theory in the local-density approximation, using pseudo- We have systematically calculated well-converged local-
potential$' and plane waves. We implement a trivial exten-ization tensors for several elemental and binary semiconduc-
sion of the formulas presented above, using a rectangulagrs. In Fig. 2 we plot the localization tensors versus the
unit cell instead of a simple cubic one: we thus describe theight-hand member of the inequality in E4), where for
diamond and zinc-blende structures by means of a tetragongie gape4 we have used botti) the theoretical andi) the
cell with a lattice constanf in the basal plane and experimental values. In cage the inequality owes to an
= \/2a. There are four atoms per unit cell, whose projectionsexact sum rule anthustbe satisfied: we are therefore check-
on thec axis are equispaced; for the sake of consistency witling the internal consistency of the calculations. Also, it may
the formal results, we take along thec axis andyz in the  be noticed that the inequality is very strongly verified. In
basal plane. We then use a BvK cell of siddgc, Mya, and  case(ii) there is noa priori guarantee that the inequality is
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'l
4F ,l' Ge o ¢ ¢ ¢
sb e AAs GaAs Gads * 0 s 1 1 2
’ ® 7nSe °Alds .
- ® L3 —_—
2 Ry A.IP o * °ZnSe AlP 1/emm (Ry 1)
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’,/ C. Oc £
0 n Lo Lisaslas 1 I e al e i lossaly alad 1 e oy H H H
0o S T o o s 14 15 18 FIQ. 3. Tren(_js_ of the squared Io_callzatlon length vs the inverse
1 experimental minimum gap. The lines connect the isoelectronic
1/e, (Ry™7) series MgS-AIP-Si and ZnSe-GaAs-Ge, and the isovalent one
C-Si-Ge.

FIG. 2. Squared localization length vs the inverse direct gap

(theoretical and experimenjalfor several elemental and binary f .14 btai h orbitals by i . f th
semiconductors. The inequality of EQ4) is strongly verified. The unctions,™ one obtains such orbitals by integration of the

points corresponding to Si and Ge with the theoretical gaps are oﬁlOCh 0ne§ over .one component o'nly ,0f the B_IOCh, vector.
of scale. The resulting orbitals are Wannier-like in one direction and

Bloch-like in the other two: they can be therefore called

e . . . “hermaphrodite orbitals”. Because of the same reasons as
verified, particularly given the fact that the experimental gap, ordinary Wannier functions, such hermaphrodite orbitals

is systematically larger than the KS one. Nonetheless, there nonunique: we focus here on those hermaphrodite orbit-

localization tensor is obtained here as a pure ground-staﬁS which are optimally localized in the direction. It has

property, and it i.S well knoyvn t_hat dengity-functional theory been shown above that, in the thermodynamic limit, these
in the local-density approximation provides a good represen- ’ '

tation of the ground state, though not of the excitatitnis. orb_itals are eigenfunctions of th? opgraﬁ)r Ea. (21)’. and .
is therefore interesting to verify that even for caii¢ the their centers are the corrgspondmg eigenvalues. It is expedi-
inequality in Eq.(24) is strongly verified for all the materials ent to consider the modified operator
considered.

The localization tensor ranges roughly between 1 and®———————— 7 T
3 boh? for all the materials considered, diamond being the
most localized and germanium the most delocalized. Thi A

trend is qualitatively expected, in agreement with SWM’s so |
statement that “the larger the gap, the more localized the
electrons are”. However, this is a trend more than a stric
rule, and indeed a few materials show irregularities. Bette .. |
trends are obtained when comparing families of materials

either isoelectronic series or isovalent series. In order to er (\
hance such regularities, we have heuristically tried a few
different laws. In Fig. 3 we plot our localization tensor ver-
sus 1¢,, using the minimum gaps instead of the direct ones
here monotonical trends are very perspicuous.

40

20

VI. MAXIMALLY LOCALIZED Cc
HERMAPHRODITE ORBITALS ) ?

. -

0 . . . . . .
Si S8 S Si S S Si Si S S S Si S S S Si

We actually perform localizing transformations on the
Bloch orbitals. At variance with the most standard approach, FIG. 4. Hermaphrodite orbitals for Si. The quantity displayed is
we focus on orbitals that are localized in one direction only,n,(x), defined as the/z average of the square modulus of the
say x, while they are completely delocalized in tlgez di-  orbital w; , s, for s,=s3=0, and for the fouj values localizing
rections. By analogy with the standard theory of Wannierwithin the same cell.
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X
<Wj,sz,s3|X2|Wj,sz,s3>c= _?In|zj,sz,s3|2- (29
8o r Taking now the average over all orbitals, and calling this
quantityA2,, we get

XX

60 | 1 My M, 2 npMy

Nox= - . In|z; 21, (30
xx MyM, 522:1 532:1 4772nb ,Zl | l'32’53| (30)

40 We then notice thatvj,szy53 are the eigenvectors é hence
the expectation valuequ,53 are the corresponding eigen-

values. Since the product of the eigenvalues equals the de-
terminant, standard manipulations prove that the average
¢ spread\ 2, equals indeed the lower bour@?). as given in
> Eq. (26).
P vV VS VY Vvl There is a suptlety about th(_a d|ggonal|zat|on of. thg ;ub—
matrices ofS, which are the projection over a certain finite-
FIG. 5. Hermaphrodite orbitals for GaAs. The quantity dis- dimensional manifold of the operatef®™Mx9X Although
played isnj,(x), defined as thgz average of the square modulus the operator is unitary, its projection is not a unitary matrix,
of the orbitalw; s, s, for s,=s3=0, and for the fourj values  hence the eigenvectors are not exactly orthogonal, as instead

20

localizing within the same cell. honest localized orbitals must be: this is not a serious prob-
lem. In fact the larger thévl,, the closer to unitarity the

_ matrix becomes: we know that the modulus of its determi-
E(r,r’)=f dr”P(r,r")el@mMeX"p(r7 vy - (27)  nant differs by one for a term of the ordemM,, hence the

all space modulus of each eigenvalue differs by one for a term of the

order 1M2. We recover exact orthonormality in the thermo-
which to leading order in M, has the same eigenfunctions dynamic limit; in our calculations already &,=20 devia-
asE, and simply related eigenvalues. tions from orthogonality are hardly noticeable.
When considering a finite sample with BvK boundary We have calculated the orbitahea)sr83 for several crys-

conditions—or equivalently a discrete grid in the reciprocalta|line semiconductors: to the purpose of display, we call the

unit cell—the Oper_atOE as in Eq(21) is useless because yz average oij'52’53|2 asnloc(x), where the indices remain
the operatox therein becomes ill defined. Instead the Opera'implicit At fixed (s,,s3) we have, given our double cell
~ . 2193 3 ]

tor £ is well defined, provided the value M, is consistent 8M, orbitals centered on a BvK period of length,c. There

with the choice of the grid. The integral in E(7) is now  are, however, at most four different shapes, and one obtains
performed over the BvK cell andot over all space; the all the functions upon translations in tRalirection(by mul-
projector projects over the finite occupied manifold, havingtiples of c/2) of the four basic ones: this is not surprising,
dimensiomyM,M M. Choosing the Bloch functions as the since the genuine unit cell is one-half of our computational

basis in the occupied manifold, the matrix elementEcdre ~ One- We find that the different shapes are actually always
nothing else than the matrig defined in Eq(8). Therefore four, with the only exception of an elemental semiconductor
in the discrete case the hermaphrodite orbitals that achievd S2=S3=0. In this very special case the different shapes
optimal localization in thex direction are simply obtained by &re only two, the orbitals are centered at the bond center, and
diagonalizing the matrixS. Since, as already observed, thet_helr densities are cent_rosymmetrlc: the corresp_ondmg func-
matrix is already diagonal is, ands;, the problem is re- 1ONSNi(X) are shown in Fig. 4 for the case of Si. The most
duced toM,M, independent diagonalizations of submatricesgeneral case is exemplified by Fig. 5: it shows the four dif-

of sizen,M,. We characterize our orbitals @s s s, where ferent nip(x) for the case of GaAs, again &=s;=0.
. . . . 23 None of these fouw orbitals is therefore centered at a sym-
(s,,583) is a two-dimensional Bloch index arjdis a one-

X . LT . ; metry site, and none is centrosymmetrical, although they are
dimensional Wannier-like index, withj<nyM,. y y g y

. ) ! ) ... obviously symmetrically related to each other. About the ac-
We are going to vgrn‘y that these orb!tals mdeed MINIMIZE, 5| value of the guadratic spreéid the x direction of each
the average quadratic spread in one-dimension. If we deﬂngf the w’s, we have found as a general feature that the least
localized ones are those fes=s3=0, i.e., at thd" point in
_ the two-dimensional reciprocal space.

Zjsp.857 vaK Ce”dr|Wi,sz,sa(r)|29'(2"/MX°)X, (28) We now address the long-standing issue of exponential
localization. Exact general results only exist for the genuine
one-dimensional case, where W. Kohn has proved lond’ago

then according to RS the quadratic spread of one given hethat the Wannier functions that minimize the quadratic

maphrodite orbital is spread(i.e., are optimally localizedhave an asymptotic ex-
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L FIG. 7. Exponential decay length, averaged over the two-
-18 dimensional meshs;,s3), vs our localization lengtiisquare root
s of the second cumulant momeniThe straight-line segments are

only a guide to the eye linking compounds of the same isoelectronic
series. The vertical bars are an estimate of the accuracy of the
interpolation scheme used to extract the value from the
asymptotic macroscopic averagemf.(x).

nearest periodic replica of a givemorbital is centered at a
distance of M,c from it: therefore the interesting
“asymptotic region” is accessible up to a distance somewhat
smaller thanM,c/2, as it clearly appears from Fig. 6. The
guantity of choice in order to “blow up” the exponential
behavior is obviously the logarithm of,.(x), which we plot
in Fig. 6 (thin solid lineg for the case of Ge and for two
different (s,,S3). It is seen that there is a wide region where
the plots have an overall linear behavior, with superimposed
-12 : : : : : : oscillations having the crystal periodicity along tkelirec-

FIG. 6. Exponential decay of two hermaphrodite orbitals for Ge.tion (¢/2 in the present cageThe slopes at differentsg,s3)
Thin lines correspond to the logarithm of two differemt(x), are very different, though; tha,.(x) with the slowest decay
defined as theyz average of the square modulus of the orbital corresponds ts,=s;=0 and therefore to the least localized,
Wjs, s, for the samej and two different points of the two- as we previously observed. Next, we filter the disturbing
dimensional meshs;,s3). The one with the slowest decay corre- periodic oscillations using our favorite tool of the macro-
sponds tes,=s;=0. Thick lines are the macroscopic averdgee  scopic averagé’ We tried both ways: filteringn,o(x) first
text) of In (). The lower panel is a magnification of the region and then taking the logarithm, or filtering i (x): the latter
indicated in the upper panel in order to better appreciate the lineaurns out to work best. The macroscopic filtering is also
behavior of Imy(X). shown in Fig. 6(thick solid lineg: it is easily realized, ex-
dpecially looking at the magnified plot in the lower panel, that
I);here is a sizeable region, spanning several cells, where the
plotted function looks accurately linear witl, hence
emoc(x)ocexp(tbx). We therefore demonstrate “experimen-
tally” the exponential localization of ouw orbitals. After we
became aware of Ref. 11, we checked that the power-law
prefactor suggested therein does not improve the quality of
our fits. It is hard to assess whether this is due to a basic
localized in thex direction, and therefore in a sense theydn‘ference between our case and a genuine one-dimensional

have one-dimensional character: nonetheless, they have %3¢ Or 10 the limited resolution achievable in our self-

genuine dependence on all three coordinates. Therefore é:lg?nsistent three-dimensional finite-size calculation. Finally,

analytic proof along the lines of Refs. 11 and 15 is not easil))r1 Fig. 7 we display some correlations between the localiza-

extended to our case. Instead, it is simple to use the samn I?hngi\ljv aréq the gxpolnennzl decay length &beraged
arguments as given in Ref. 23 in order to prove thatwur over the two-dimensional mesky(ss).
orbitals decay in th& direction faster than any inverse power
of x.

Our very elongated BvK cells allow us to study the In the present work we provide the three-dimensional for-
asymptotic behavior heuristically on our calculated. The  mulation of the RS theory of electron localizatibspecial-

-8 |

ponential behavior. After the present work was complete
we became aware of Ref. 11, where the asymptotic expone
tial is shown to have a power-law prefactor. In three dimen
sions the problem is unsolved, with the exception of som
very special case$.It has been conjectured by MV that their
optimally localized Wannier functions enjoy three-
dimensional exponential localization: an analytical proof
looks very hard. Our hermaphrodite orbitalsare optimally

VII. CONCLUSIONS
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izing it to the case of independent KS electrons; we discuss 2

some of its relationships to the MV and SWM pap&t8and )\fx:N > (eilx
also (in the Appendix how it relates to Boys theory of lo- '
calization in molecule$’ We then implement the theory to 2
several materials in the class of tetrahedrally coordinated +3 2 <<Pi|X|<Pj>|2- (A4)
semiconductors. Among the results, we find that in general .

the calculated localization length is a monotonical functionThe first term in Eq(A4) is gauge invariant, since we can
of the gap, although a few materials show irregularities. Thadentically write

trend is more regular within a given familjsoelectronic or
isovalenj. Finally, we heuristically show that the orbitals
that are optimally localized in a given directigthermaph-
rodite orbitals” show exponential localization.

X|¢i)

1—; | ei)(eil

2 2

Na=Tr XPX(1—P)+ = > eilxlepl?,  (A5)
N N iZ

where “Tr” indicates the trace on the electronic coordinate.

The gauge-invariant term in EGA5) can be regarded as the
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2
APPENDIX: RELATIONSHIP TO BOYS LOCALIZATION <rarB>c:NTr roPrg(1—"P). (AB)
IN MOLECULES

We abandon here the BvK boundary conditions used If we look fgr the orbitals th_at minimize the_average
throughout this work, and we consider Brelectron system spread in thex d|regt|on, the s.olutlon,.after EQAS.)Z IS pro-
that is bounded in space. Both the orbitals and the many\_/lded _by those orbitals that _dlagona_llze the position operator
body wave function¥ are therefore exponentially vanishing x, projected over the occup|.ed mamfold. Obviously, a set of
at large distances. Supposing theis even and the state is a orthonormal orbitals that diagonalizéxP can always be

singlet, for independent particles the wave function is thefound’ sincePxP is a Hermitian2 operator. The .quad_ratic
Slater determinant spread of these orbitals equals)., the gauge-invariant

part in Eq.(A5). If we are interested instead in minimizing
the spherical second moment, in generaloaanotdiagonal-

ize simultaneouslyPxP, PyP, and PzP. Therefore the
spherical spread will be in generatrictly larger than the
Cartesian trace of the localization tensor. This is a key fea-
The orbitals enjoy no specific symmetry. Any unitary trans-tyre in the work of Boy$? and MV as well.

formation of the orbitals produces the same many-body e have defined the localization tensor in EA6). With
ground statémodulo an overall phagea specific choice of an obvious generalization of the previous arguments, this
the orbitals will be referred to as “choice of the gauge” in tensor provides in general the maximum localizabiiity@ny

the following. Obviously all ground-state properties aregijven direction An equivalent expression for the localization
gauge invariant. The density matrix is twice the projectoriensor is:

over the occupied orbitals,

1 - — —
W= m|<P1<Pl€02<P2' “ oNeN- (A1)

1
N/2 <rarﬁ>c=NJ' drfdr’(r—r’)a(r—r’)B|P(r,r’)|2,
p(r,r'>=2P<r,r'>=2§1 ei(DF(r). (A2 (A7)

which has the meaning of the second moment of the

We are interested in exploiting the gauge freedom in ordefsguared density matrix in the coordinater".
to express the ground state in terms of localized orbifals. At this point, we may think of a crystalline solid as of a
The standard Boys localizatithin molecules consists in Very large “molecule”, or a cluster, and take the thermody-
minimizing spherical second moments, in perfect analogy?@mic limit. Since bulk properties must be independent of
with MV, which can be regarded as the solid-state analog othe choice of boundary conditiorigither BvK or “free”),
Boys localization. Here instead we are mostly interested ithe density matrix and the localization tensor must be the
localizing in one given direction, say same as the one previously found in this work. And indeed, a

For any given choice of the single-particle orbitais the ~ dlance to Eq(19) shows that it coincides with the thermo-

average quadratic spread in thelirection is by definiton ~ dynamic limit of Eq.(A7) in the insulating case. As for the
metallic case, our previous findings bear an important mes-

N/2 sage concerning Boys localization. For a cluster of finite
A2 =2 132 0 — (o[ Xl 0 2). A3 size, no matter how large, one can doubtless build localized
N ;1 ((eiPleir=(eilxl e (A3) Boys orbitals. But our results prove that, in the laigémit,
the quadratic spread of these Boys orbitals diverges when-
We recast this identically as ever the cluster is metallic.
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