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Electron localization in the insulating state: Application to crystalline semiconductors
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We measure electron localization in different materials by means of a ‘‘localization tensor’’, based on Berry
phases and related quantities. We analyze its properties, and we actually compute such tensor from first
principles for several tetrahedrally coordinated semiconductors. We discuss the trends in our calculated quan-
tity, and we relate our findings to recent work by other authors. We also address the ‘‘hermaphrodite orbitals’’,
which are localized~Wannier-like! in a given direction, and delocalized~Bloch-like! in the two orthogonal
directions: our tensor is related to the optimal localization of these orbitals. We also prove numerically that the
decay of the optimally localized hermaphrodite orbitals is exponential.
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I. INTRODUCTION

A nonmetal is distinguished from a metal by its vanishi
conductivity at low temperature and low frequency: we u
here the term ‘‘insulator’’ to include any nonmetal, like th
semiconducting materials that are the case studies act
addressed in this work.

Within classical physics, the qualitative difference b
tween an insulator and a metal is attributed to the natur
the electronic charge: either ‘‘bound’’~Lorentz model for in-
sulators! or ‘‘free’’ ~Drude model for metals!. In other words,
electrons arelocalized in insulators anddelocalizedin met-
als. In a milestone paper published in 1964, W. Kohn ch
acterized the insulating state of matter in a way that is re
niscent of the classical picture: he gave evidence that
main feature determining the insulating behavior of matte
electron localization in the ground-state wave function.1 Al-
though this work mainly addressedcorrelatedmany-electron
systems, its message is very relevant even for materials
which an independent-electron description is quite adequ
as the semiconductor crystals studied here. Recently a n
measure of electron localization—different from Kohn
one—was proposed by Resta and Sorella,2 hereafter cited as
RS. Their approach is deeply rooted into the modern the
of polarization.3–7

Metals and insulators reveal their qualitative differen
when static dielectric polarization is addressed. Suppose
expose a finite macroscopic sample to an electric field,
inserting it in a charged capacitor. In metals polarization
trivial: universal, material-independent, due to surface p
nomena only~screening by free carriers!. Therefore polariza-
tion in metals isnot a bulk phenomenon. The opposite is tr
for insulators: macroscopic polarization is a nontrivi
material-dependent, bulk phenomenon. We can there
phenomenologically characterize an insulator, in very g
eral terms, as a material whose ground-state wave func
sustains a nonzero bulk macroscopic polarization whene
the electronic Hamiltonian is noncentrosymmetric. If t
Hamiltonian is instead centrosymmetric, the polarizat
vanishes but remains a well-defined bulk property, at v
ance with the metallic case. The phenomenological link
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tween macroscopic polarization and insulating behavior w
first pointed out and exploited—taking advantage of t
modern theory of polarization3–7—by RS in 1999. This ap-
proach is based on Berry phases and related concepts.8 Even
the RS paper, like Kohn’s 1964 one, mostly concerns co
lated systems. Furthermore, in order to keep the presenta
simple and concise, most results are explicitly shown in o
dimension, while thed-dimensional formulation is only
sketched in the final paragraphs of RS. In the present pa
we provide more details on how the RS theory of localiz
tion works in three dimensions, specializing to a system
noninteracting electrons, like the band insulators chosen
case studies here.

Some other important papers must be mentioned at
point. In 1997 Marzari and Vanderbilt,9 hereafter cited as
MV, while not addressing metals at all~and hence their dif-
ference from insulators!, establish, nonetheless, some resu
that are relevant to the present viewpoint. In a very rec
comprehensive paper10 Souza, Wilkens, and Martin—
hereafter cited as SWM—generalize and extend in vari
ways the main finding of RS: we adopt here some of th
notations. Finally, after this work was completed, we beca
aware of Ref. 11, whose conclusions bear some implicati
for our results shown in Sec. VI.

The paper is organized as follows. In Sec. II we define
basic ingredients providing both polarization and localiz
tion, namely, the expectation values of the many-body ph
operatorszN

(a) for the three Cartesian coordinates, Eq.~4!. In
Sec. III, following RS, we show how the modulus ofzN

(a)

defines a very meaningful quantity, the localization tens
for which we adopt the SWM notations: such tensor is fin
in insulators and diverges in metals. In Sec. IV we disc
the main properties of the localization tensor, and in Sec
we present first-principle calculations for several elemen
and binary semiconductors: the main trends are analyzed
Sec. VI we calculate orbitals that are optimally localized in
given direction, and whose average quadratic spread c
cides with the localization tensor. We also heuristically che
the exponential localization of these orbitals, which we c
‘‘hermaphrodite orbitals’’. In Sec. VII we draw our mai
conclusions. In the Appendix we consider a molecule o
©2001 The American Physical Society02-1
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cluster and we discuss our localization tensor therein, sh
ing its relationship to some results of Boys localizati
theory,12 well known in quantum chemistry.13

II. MANY-BODY PHASE OPERATORS

We are addressing here, as it is done by MV, a crystal
system of independent electrons, having in mind a Ko
Sham~KS! scheme. The properties of interest, namely, m
roscopic polarization and electron localization, are not pr
erties of the individual KS orbitals: instead, they are glob
properties of the occupied KS manifold. As shown in Refs
and 7, it proves formally convenient to deal with a man
body wave functionC, obtained as a Slater determinant
occupied orbitals. This determinant is uniquely determin
by the manifold of the occupied orbitals and is invariant
unitary transformation of these orbitals among themselv
for instance, in insulating crystals, an important transform
tion of this class converts the occupied Bloch orbitals in
Wannier functions.14 Quantities that can be expressed sol
in terms ofC are invariant in form under such transform
tions.

Throughout this work—with the exception of th
Appendix—we adopt periodic Born-von-Ka`rmàn boundary
conditions~BvK! on a large cell, multiple of the crystallin
elementary cell. The quantities of interest are intensive
have a well defined thermodynamic limit, while the wa
function itself becomes an ill-defined mathematical objec
that limit.

For the sake of simplicity, we assume a simple cubic c
of sidea and a large BvK cell of sideL5Ma. More general
structures can be dealt with using scaling, similarly to w
is shown, e.g., in Ref. 4 or in SWM. The thermodynam
limit corresponds toM→`, while practical calculations are
performed at finite, and possibly large,M values. The spin
orbitalsc ~spin-up! andc̄ ~spin-down! may be chosen of the
Bloch form. In the finite system there areM3 allowed Bloch
vectorsqs , arranged on a regular mesh in the unit recipro
cell, wheres[(s1 ,s2 ,s3) and

qs5
2p

Ma
~s1 ,s2 ,s3!, sa50,1, . . . ,M21. ~1!

We adopt a plane-wave-like normalization for the Bloch
bitals:

^cnqs
ucn8qs8

&5
1

L3EBvK cell
drcnqs

* ~r !cn8qs8
~r !5dnn8dss8 ,

~2!

If the system is insulating withnb doubly occupied bands
there areN52nbM3 independent spin orbitals, out of whic
we write a single-determinant many-body wave function
N electrons:

C5A)
n,s

1

L3
cnqs

c̄nqs
, ~3!
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where the product runs over all occupied bands and all m
points,A is the antisymmetrizer operator, and the factor e
sures that theN-body wave function is normalized to one o
the hypercube of sideL. If, instead, the system is metallic
then the many-body wave functionC can still be written in
the form of Eq.~3!, but where not all the Bloch vectors of
given band are included in the product.

According to Refs. 2 and 7, the key quantities to deal w
both macroscopic polarization and electron localization
expectation values of ‘‘many-body phase operators’’. Fo
three-dimensional system there are three such operators
for each Cartesian direction. We indicate aszN

(a) , wherea is
a Cartesian index, their ground-state expectation values:

zN
(x)5^Cuei (2p/L)(

i 51

N

xiuC&, ~4!

and analogously fory andz directions. This remarkably com
pact expression is very general and applies as it stands
to correlated and/or disordered systems: here we specializ
a crystalline system of independent electrons, whose w
function C assumes the form of Eq.~3!, where the product
indices have to be differently specified in the insulating a
metallic cases.

We may conveniently recastzN
(x) as an overlap

zN
(x)5^CuC̃&, ~5!

whereC̃ is the Slater determinant of a different set of Blo
spinorbitals,

c̃nqs
~r !5ei (2p/Ma)xcnqs

~r !, ~6!

and analogously for the bar~spin-down! ones. According to a
well-known theorem, the overlap between two sing
determinant wave functions is equal to the determinant of
N3N overlap matrix built out of the occupied spin orbital
Since the overlaps between different-spin spin orbitals v
ish, and those between equal-spin ones are identical in p
we can write

zN
(x)5~detS!2, ~7!

whereS is the overlap matrix between spatial orbitals, ha
ing sizeN/25nbM3. Its elements are

Snqs ,n8qs8
5

1

L3 EBvK cell
drcnqs

* ~r !c̃n8qs8
~r !

5
1

L3 EBvK cell
drunqs

* ~r !un8qs8
~r !

3expF i S 2p

Ma
x1qs8•r2qs•r D G , ~8!

where theu’s are the periodic functions in the Bloch orbital
The matrixS is very sparse: in fact, given the geometry

the qs’s on the regular reciprocal mesh@see Eq.~1!#, the
overlap integrals in Eq.~8! are nonvanishing only ifs15s18
2-2
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ELECTRON LOCALIZATION IN THE INSULATING . . . PHYSICAL REVIEW B64 115202
11, s25s28 , ands35s38 . We express the nonvanishing el
ments in terms of a small overlap matrixS, of size nb
3nb , as

Snn8~q,q8!5^unquun8q8&5
1

a3 Ecell
drunq* ~r !un8q8~r !. ~9!

Owing to the sparseness ofS, its determinant factors into
products of determinants of small matricesS.

In the insulating case we use the wave function of Eq.~3!,
where all the Bloch vectors of a given band are occupied:
factorization is then

zN
(x)1/25detS5)

s
detS~qs111,s2 ,s3

,qs1 ,s2 ,s3
!. ~10!

We get a more compact notation upon defining

Dq(x)5
2p

L
~1,0,0!5

2p

Ma
~1,0,0!, ~11!

which is the vector connecting nearest-neighborq points in
the x direction. We have then

zN
(x)1/25)

s
detS~qs1Dq(x),qs!. ~12!

In the metallic case, instead, thezN
(a)’s are identically zero.

This is easily understood by looking at the simple case w
only one band. Suppressing the band index the small ove
matrix becomes ac numberS(q,q8), and Eq.~10! becomes
a product ofc numbers, with no determinant to evaluate.
an insulator this product runs over the wholeqs mesh, and all
factors are nonzero; in a metal the analogous product
only on theqs’s within the Fermi surface. Looking at th
definition of S(q,q8), Eqs.~8! and ~9!, it is clear that there
exists at least one occupiedqs , adjacent to the Fermi sur
face, such thatS(qs ,qs8) vanishes for alloccupied s8. This
is enough to imply thatzN

(a) vanishes as well.
The complex numberszN

(a) are ground-state expectatio
values, and do not access any spectral information. Yet
qualitatively discriminate between insulators and meta
they are in fact nonvanishing in the former materials, a
vanishing in the latter ones. This shows, according to R
that there is a qualitative difference in the organization of
electrons in their ground state. It is remarkable that, in
present case, such difference shows up already atfinite N,
before the thermodynamic limit is taken.

III. ELECTRON LOCALIZATION

In centrosymmetric materials the expectation valueszN
(a)

are real~provided the origin is chosen at a centrosymme
site!, while in noncentrosymmetric materials they are in ge
eral complex: their phases define then the Cartesian com
nents of the macroscopic polarization in suitable units.2,7 In
the metallic case thezN

(a)’s vanish and the polarization is il
defined, in agreement with the phenomenological viewpo
illustrated in Sec. I. We address electron localization us
the moduli of these samezN

(a)’s. Following RS, electron lo-
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calization is measured by a squared localization length in
dimension, and by a ‘‘localization tensor’’ in three dime
sions. This tensor is an intensive quantity, has the dimens
of a squared length, and measures the localization of
many-electron system as a whole: in the present case, it
global property of the occupied KS manifold. The localiz
tion tensor is finite for insulators and diverges for metals

In the very recent SWM paper10 it is shown, among other
things, that the RS localization tensor is related to the me
square quantum fluctuation of the polarization: it is a seco
cumulant moment, which can be very elegantly extrac
from a moment-generating function. We adopt through
notations inspired by SWM, and we indicate the localizati
tensor aŝ r ar b&c , where the subscript stays for ‘‘cumulant’
For a material having cubic or tetrahedral symmetry, like
semiconductors considered in the present case studies
localization tensor is isotropic: its only independent elem
is ^x2&c . Its expression is provided by RS, whose Eq.~18!
we recast here as

^x2&c52
1

N S L

2p D 2

lnuzN
(x)u2, ~13!

and the thermodynamic limit is understood. For a metalzN
(x)

vanishes and the localization tensor is formally infinite, ev
at finite N. For an insulator, whose wave function has t
form of Eq. ~3!, we get from Eq.~12!

uzN
(x)u5)

s
detS†~qs ,qs1Dq(x)!S~qs ,qs1Dq(x)!; ~14!

^x2&c52S a

2p D 2 1

2nbM
lnuzN

(x)u2. ~15!

Equations~14! and~15! are the typical expressions imple
mented in our test-case calculations discussed below.
thermodynamic limit is obtained as usual forM→` and
takes, not surprisingly, the form of an integral perform
over the reciprocal unit cell, or equivalently over the fir
Brillouin zone. The integral is

^x2&c5
a3

nb~2p!3E dqS (
n K ]

]qx
unqU ]

]qx
unqL

2 (
n,n8

K unqU ]

]qx
un8qL K ]

]qx
un8qUunqL D . ~16!

The proof is relatively straightforward, starting from Eq.~16!
and discretizing integrals and derivatives on the mesh
fined in Eq.~1!.

Expressions such as Eq.~16! and similar ones had ap
peared in the literature before,14 in relation to Wannier func-
tions. By means of an expression of this kind, MV define
ground-state quantityV I that sets a lower bound for the se
ond ~spherical! moments of the Wannier functions.9 More
precisely, for an insulator withnb occupied bands~hencenb
Wannier functions per cell! such second moment is n
smaller in average thanV I /nb . It is worth mentioning at this
point that the logic of the MV paper goes backwards w
2-3
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SGIAROVELLO, PERESSI, AND RESTA PHYSICAL REVIEW B64 115202
respect to the present approach: first they provide a c
tinuum theory, and then they discretize for computatio
purposes. Their discretization is different from Eq.~15!,
which emerges naturally from the present formulation st
ing from the remarkably compact Eq.~13!. Both discretiza-
tions obviously converge to the sameM→` limit: their con-
vergence properties are different, though.

Specializing MV to a cubic material, RS have found t
simple relationshipV I53nb^x

2&c : notice that̂ x2&c is inten-
sive, whileV I is not such. Building upon MV’s work, we ar
now ready to generalize the localization tensor to mater
of arbitrary symmetry as

^r ar b&c5
Vc

nb~2p!3 E dqS (
n K ]

]qa
unqU ]

]qb
unqL

2 (
n,n8

K unqU ]

]qa
un8qL K ]

]qb
un8qUunqL D , ~17!

whereVc is the cell volume. Notice that the imaginary pa
of the integrand in Eq.~17!, being antisymmetric inq, can-
cels in the integral, such that the localization tensor is r
Even the offdiagonal elements, as defined in Eq.~17!, have a
finite-N counterpart in terms of many-body phase operato

For an insulating crystal of arbitrary symmetry,V I as de-
fined by MV equalsnb times the trace of our localizatio
tensor^r ar b&c . In a metal, expressions like Eqs.~16! and
~17! do not make much sense, consistently with the fact t
our finite-N expression, Eq.~13!, is formally infinite at anyN
value.

IV. PROPERTIES OF THE LOCALIZATION TENSOR

We have already emphasized that the localization tens
a property of the occupied KS manifold as a whole. T
main quantity that defines such manifold is the~spin-
integrated! single-particle density matrixr, which coincides
with twice the projectorP over the occupied KS orbitals: thi
projector is invariant by unitary transformations of the orb
als. Using Bloch eigenfunctions the projector reads, for
insulator withnb occupied bands,

P~r ,r 8!5
1

2
r~r ,r 8!5

1

~2p!3 (
n51

nb E dqcnq~r !cnq* ~r 8!.

~18!

The localization tensor~in the thermodynamic limit! has
been written as a Brillouin-zone integral in Eq.~17!. This
integral can be identically transformed into a particula
simple expression whose only ingredient isP,

^r ar b&c5
1

2nb
E

cell
drE

all space
dr 8~r2r 8!a~r2r 8!buP~r ,r 8!u2,

~19!

which is the second moment of the~squared! density matrix
in the coordinater -r 8. The proof of the equivalence betwee
Eq. ~19! and Eq.~17! can be worked out using the sam
11520
n-
l

t-

ls

l.

s.

at

is
e

n

algebra appearing in Ref. 14: for a different argument pr
ing the same result, see the Appendix.

We have arrived at Eq.~19! considering an insulating
crystal so far. In this case we know, under gene
arguments,15–18thatP(r ,r 8) is asymptotically exponential in
the argumentur -r 8u: this confirms that the integral over a
space in Eq.~19! converges and the localization tensor
therefore finite. At this point, it is worthwhile to apply th
general form of Eq.~19! to the metallic case. For the sim
plest metal of all, the free-electron gas, the density matrix
known exactly19

P~r ,r 8!5
1

2
r~r ,r 8!5

3n0

2

j 1~kFur2r 8u!

kFur2r 8u
. ~20!

Replacement of Eq.~20! into Eq. ~19! results in a diverging
integral, thus confirming that our localization tensor is fo
mally infinite in this paradigmatic metal. Other, more real
tic, metals feature this same divergence.

The fact that the density matrixr~r ,r 8! is short-range in
the variabler -r 8 has been named ‘‘nearsightedness’’ by W
Kohn.17 The second moment expression in Eq.~19! shows
that our localization tensor is indeed a meaningful quant
tive measure of such nearsightedness. We are going to
lyze below the major trends over an important class of m
terials: tetrahedral semiconductors. We mention at this p
that a conceptually different measure of the nearsightedn
of a given electronic ground state focuses instead on
exponent governing the exponential decay ofr~r ,r 8! in insu-
lators: some case studies have been recently investigated18,20

We have already observed that some of our findings
closely related to the previous work by MV. These autho
main interest were the ‘‘optimally localized Wannier fun
tions’’, i.e., those localized orbitals that minimize the avera
spherical moment. They prove, among other things, that s
moment is strictly larger than the trace of our localizati
tensor. Building on their results, it is straightforward to a
tribute a similar meaning to the tensor itself: for any tran
formation of the occupied orbitals into a set of unitari
equivalent ones, the second moment in a given direction
be no smaller than the localization tensor, projected in t
direction.

Since we are going to apply our results to cubic mater
only, we focus on those orbitals that minimize in average
quadratic spread~second moment! in the x coordinate. The
present formalism makes the definition of these orbitals p
ticularly simple: they are in fact the eigenfunctions of t
position operatorx, projected over the occupied manifold
Calling J5PxP this operator, its expression in the Schr¨-
dinger representation is:

J~r ,r 8!5E
all space

dr 9P~r ,r 9!x9P~r 9,r 8!. ~21!

Notice thatx is incompatiblewith BvK boundary conditions
and its matrix elements over Bloch states are ill defin
nonetheless,J is—in insulators—a well-defined operato
which maps any vector of the occupied manifold into anot
2-4
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ELECTRON LOCALIZATION IN THE INSULATING . . . PHYSICAL REVIEW B64 115202
vector of the same manifold. This fact owes to the expon
tial localization ofP in Eq. ~21!.

The relationship betweenJ and the orbitals optimally lo-
calized in thex direction is easily proved borrowing som
results from MV; for a different argument leading to th
same proof, see the Appendix. We also notice an impor
difference with respect to the three-dimensional localizat
explicitly considered by MV. While the trace of the localiz
tion tensor provides alower boundfor three-dimensional lo-
calization, its element̂x2&c provides instead a genuinemini-
mum for one-dimensional localization~in a cubic material!.
This qualitative difference owes to the fact that, while o
can manifestly diagonalizePxP, one cannot simultaneousl
diagonalizePxP, PyP, andPzP.

We end this section about the properties of the locali
tion tensor with a most important issue: is^r ar b&c a measur-
able quantity? The answer, due to SWM, is ‘‘yes’’. The
prove the identity:

^r ar b&c5
\Vc

2pe2nb
E

0

`dv

v
Resab~v!, ~22!

where sab is the conductivity tensor. Notice that the lef
hand side, as emphasized throughout the present work,
property of the electronicground state, while the right-hand
side is a measurable property related to electronicexcita-
tions: therefore Eq.~22! must be regarded as a sum rule. T
frequency integral in Eq.~22! diverges in metals and is finit
in insulators, as obviously expected. Since in the latter m
terials there is a gap for electronic excitations, Eq.~22! im-
mediately leads to the inequality

^r ar b&c,
\Vc

2pe2nb«g
E

0

`

dv Resab~v!, ~23!

where«g is the direct gap. Using then the oscillator-streng
sum rule, Eq.~23! for a cubic material is cast as

^x2&c,
\2

2me«g
. ~24!

Below, we investigate the trends in both members of t
inequality for our test-case materials.

V. CALCULATED LOCALIZATION TENSORS

We have studied several tetrahedrally coordinated crys
line materials, from the group IV, III-V, and II-VI, having th
diamond and zinc-blende structure. The first-principles c
culations have been performed within density-functio
theory in the local-density approximation, using pseud
potentials21 and plane waves. We implement a trivial exte
sion of the formulas presented above, using a rectang
unit cell instead of a simple cubic one: we thus describe
diamond and zinc-blende structures by means of a tetrag
cell with a lattice constanta in the basal plane andc
5A2a. There are four atoms per unit cell, whose projectio
on thec axis are equispaced; for the sake of consistency w
the formal results, we takex along thec axis andyz in the
basal plane. We then use a BvK cell of sidesMxc, M ya, and
11520
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Mza, corresponding to a mesh in reciprocal space w
Mx ,M y ,Mz points: this allows an easier control of conve
gence.

We start evaluating at the mesh points the Hermitian m
trices

As5S†~qs ,qs1Dq(x)!S~qs ,qs1Dq(x)!; ~25!

then Eqs.~14! and ~15! are written as

^x2&c5
1

M yMz
(

s251

My

(
s351

Mz S 2
c2Mx

4p2nb
(

s151

Mx

ln detAsD . ~26!

In general convergence is fast inM y , Mz , and slower in
Mx . The expression in parentheses in Eq.~26! is precisely
the one-dimensional expression discussed in detail by
and the three-dimensional one simply obtains from it as
average in the (qy ,qz) plane.

First we show in Fig. 1 the convergence of our expre
sions over a genuinely cubic grid, which coincides with t
one used by MV in their evaluation of the quantityV I
53nb^x

2&c . They use a different discretization of the sam
k space integral: both calculations converge to the same
calization tensor, although our discretization, based on E
~14! and~15!, converges faster. All the following results hav
been obtained using noncubic grids, as in Eq.~26!, in order
to achieve faster convergence.

We have systematically calculated well-converged loc
ization tensors for several elemental and binary semicond
tors. In Fig. 2 we plot the localization tensors versus t
right-hand member of the inequality in Eq.~24!, where for
the gap«g we have used both~i! the theoretical and~ii ! the
experimental values. In case~i! the inequality owes to an
exact sum rule andmustbe satisfied: we are therefore chec
ing the internal consistency of the calculations. Also, it m
be noticed that the inequality is very strongly verified.
case~ii ! there is noa priori guarantee that the inequality i

FIG. 1. Convergence of the squared localization length with
size of the sampling grid, for the case of GaAs. We compare
discretized formula with the one used by MV, using a genuine
cubic grid: the labelM 8 meansM 83M 83M 8 within MV nota-
tions.
2-5
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verified, particularly given the fact that the experimental g
is systematically larger than the KS one. Nonetheless,
localization tensor is obtained here as a pure ground-s
property, and it is well known that density-functional theo
in the local-density approximation provides a good repres
tation of the ground state, though not of the excitations.22 It
is therefore interesting to verify that even for case~ii ! the
inequality in Eq.~24! is strongly verified for all the materials
considered.

The localization tensor ranges roughly between 1 a
3 bohr2 for all the materials considered, diamond being t
most localized and germanium the most delocalized. T
trend is qualitatively expected, in agreement with SWM
statement that ‘‘the larger the gap, the more localized
electrons are’’. However, this is a trend more than a st
rule, and indeed a few materials show irregularities. Be
trends are obtained when comparing families of materia
either isoelectronic series or isovalent series. In order to
hance such regularities, we have heuristically tried a f
different laws. In Fig. 3 we plot our localization tensor ve
sus 1/«g , using the minimum gaps instead of the direct on
here monotonical trends are very perspicuous.

VI. MAXIMALLY LOCALIZED
HERMAPHRODITE ORBITALS

We actually perform localizing transformations on th
Bloch orbitals. At variance with the most standard approa
we focus on orbitals that are localized in one direction on
say x, while they are completely delocalized in they-z di-
rections. By analogy with the standard theory of Wann

FIG. 2. Squared localization length vs the inverse direct g
~theoretical and experimental!, for several elemental and binar
semiconductors. The inequality of Eq.~24! is strongly verified. The
points corresponding to Si and Ge with the theoretical gaps are
of scale.
11520
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functions,14 one obtains such orbitals by integration of th
Bloch ones over one component only of the Bloch vect
The resulting orbitals are Wannier-like in one direction a
Bloch-like in the other two: they can be therefore calle
‘‘hermaphrodite orbitals’’. Because of the same reasons
for ordinary Wannier functions, such hermaphrodite orbit
are nonunique: we focus here on those hermaphrodite o
als which are optimally localized in thex direction. It has
been shown above that, in the thermodynamic limit, the
orbitals are eigenfunctions of the operatorJ, Eq. ~21!, and
their centers are the corresponding eigenvalues. It is exp
ent to consider the modified operator

p

ut

FIG. 3. Trends of the squared localization length vs the inve
experimental minimum gap. The lines connect the isoelectro
series MgS-AlP-Si and ZnSe-GaAs-Ge, and the isovalent
C-Si-Ge.

FIG. 4. Hermaphrodite orbitals for Si. The quantity displayed
nloc(x), defined as theyz average of the square modulus of th
orbital wj ,s2 ,s3

, for s25s350, and for the fourj values localizing
within the same cell.
2-6
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J̃~r ,r 8!5E
all space

dr 9P~r ,r 9!ei (2p/Mxc)x9P~r 9,r 8!, ~27!

which to leading order in 1/Mx has the same eigenfunction
asJ, and simply related eigenvalues.

When considering a finite sample with BvK bounda
conditions—or equivalently a discrete grid in the reciproc
unit cell—the operatorJ as in Eq.~21! is useless becaus
the operatorx therein becomes ill defined. Instead the ope

tor J̃ is well defined, provided the value ofMx is consistent
with the choice of the grid. The integral in Eq.~27! is now
performed over the BvK cell andnot over all space; the
projector projects over the finite occupied manifold, havi
dimensionnbMxM yMz . Choosing the Bloch functions as th

basis in the occupied manifold, the matrix elements ofJ̃ are
nothing else than the matrixS defined in Eq.~8!. Therefore
in the discrete case the hermaphrodite orbitals that ach
optimal localization in thex direction are simply obtained by
diagonalizing the matrixS. Since, as already observed, th
matrix is already diagonal ins2 and s3, the problem is re-
duced toM yMz independent diagonalizations of submatric
of sizenbMx . We characterize our orbitals aswj ,s2 ,s3

, where

(s2 ,s3) is a two-dimensional Bloch index andj is a one-
dimensional Wannier-like index, with 1< j <nbMx .

We are going to verify that these orbitals indeed minimi
the average quadratic spread in one-dimension. If we de

zj ,s2 ,s3
5E

BvK cell
dr uwj ,s2 ,s3

~r !u2ei (2p/Mxc)x, ~28!

then according to RS the quadratic spread of one given
maphrodite orbital is

FIG. 5. Hermaphrodite orbitals for GaAs. The quantity di
played isnloc(x), defined as theyz average of the square modulu
of the orbital wj ,s2 ,s3

, for s25s350, and for the fourj values
localizing within the same cell.
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^wj ,s2 ,s3
ux2uwj ,s2 ,s3

&c52
c2Mx

2

4p2
lnuzj ,s2 ,s3

u2. ~29!

Taking now the average over all orbitals, and calling th
quantitylxx

2 , we get

lxx
2 5

1

M yMz
(

s251

My

(
s351

Mz S 2
c2Mx

4p2nb
(
j 51

nbMx

lnuzj ,s2 ,s3
u2D . ~30!

We then notice thatwj ,s2 ,s3
are the eigenvectors ofJ̃, hence

the expectation valueszj ,s2 ,s3
are the corresponding eigen

values. Since the product of the eigenvalues equals the
terminant, standard manipulations prove that the aver
spreadlxx

2 equals indeed the lower bound^x2&c as given in
Eq. ~26!.

There is a subtlety about the diagonalization of the s
matrices ofS, which are the projection over a certain finite
dimensional manifold of the operatorei (2p/Mxc)x. Although
the operator is unitary, its projection is not a unitary matr
hence the eigenvectors are not exactly orthogonal, as ins
honest localized orbitals must be: this is not a serious pr
lem. In fact the larger theMx , the closer to unitarity the
matrix becomes: we know that the modulus of its determ
nant differs by one for a term of the order 1/Mx , hence the
modulus of each eigenvalue differs by one for a term of
order 1/Mx

2 . We recover exact orthonormality in the therm
dynamic limit; in our calculations already atMx.20 devia-
tions from orthogonality are hardly noticeable.

We have calculated the orbitalswj ,s2 ,s3
for several crys-

talline semiconductors: to the purpose of display, we call
yz average ofuwj ,s2 ,s3

u2 asnloc(x), where the indices remain

implicit. At fixed (s2 ,s3) we have, given our double cel
8Mx orbitals centered on a BvK period of lengthMxc. There
are, however, at most four different shapes, and one obt
all the functions upon translations in thex direction~by mul-
tiples of c/2) of the four basic ones: this is not surprisin
since the genuine unit cell is one-half of our computatio
one. We find that the different shapes are actually alw
four, with the only exception of an elemental semiconduc
at s25s350. In this very special case the different shap
are only two, the orbitals are centered at the bond center,
their densities are centrosymmetric: the corresponding fu
tionsnloc(x) are shown in Fig. 4 for the case of Si. The mo
general case is exemplified by Fig. 5: it shows the four d
ferent nloc(x) for the case of GaAs, again ats25s350.
None of these fourw orbitals is therefore centered at a sym
metry site, and none is centrosymmetrical, although they
obviously symmetrically related to each other. About the
tual value of the quadratic spread~in thex direction! of each
of the w’s, we have found as a general feature that the le
localized ones are those fors25s350, i.e., at theG point in
the two-dimensional reciprocal space.

We now address the long-standing issue of exponen
localization. Exact general results only exist for the genu
one-dimensional case, where W. Kohn has proved long a15

that the Wannier functions that minimize the quadra
spread~i.e., are optimally localized! have an asymptotic ex
2-7
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ponential behavior. After the present work was complet
we became aware of Ref. 11, where the asymptotic expo
tial is shown to have a power-law prefactor. In three dime
sions the problem is unsolved, with the exception of so
very special cases.16 It has been conjectured by MV that the
optimally localized Wannier functions enjoy thre
dimensional exponential localization: an analytical pro
looks very hard. Our hermaphrodite orbitalsw are optimally
localized in thex direction, and therefore in a sense th
have one-dimensional character: nonetheless, they ha
genuine dependence on all three coordinates. Therefor
analytic proof along the lines of Refs. 11 and 15 is not ea
extended to our case. Instead, it is simple to use the s
arguments as given in Ref. 23 in order to prove that ouw
orbitals decay in thex direction faster than any inverse pow
of x.

Our very elongated BvK cells allow us to study th
asymptotic behavior heuristically on our calculatedw’s. The

FIG. 6. Exponential decay of two hermaphrodite orbitals for G
Thin lines correspond to the logarithm of two differentnloc(x),
defined as theyz average of the square modulus of the orbi
wj ,s2 ,s3

, for the samej and two different points of the two
dimensional mesh (s2 ,s3). The one with the slowest decay corr
sponds tos25s350. Thick lines are the macroscopic average~see
text! of ln nloc(x). The lower panel is a magnification of the regio
indicated in the upper panel in order to better appreciate the lin
behavior of lnnloc(x).
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nearest periodic replica of a givenw orbital is centered at a
distance of Mxc from it: therefore the interesting
‘‘asymptotic region’’ is accessible up to a distance somew
smaller thanMxc/2, as it clearly appears from Fig. 6. Th
quantity of choice in order to ‘‘blow up’’ the exponentia
behavior is obviously the logarithm ofnloc(x), which we plot
in Fig. 6 ~thin solid lines! for the case of Ge and for two
different (s2 ,s3). It is seen that there is a wide region whe
the plots have an overall linear behavior, with superimpo
oscillations having the crystal periodicity along thex direc-
tion (c/2 in the present case!. The slopes at different (s2 ,s3)
are very different, though; thenloc(x) with the slowest decay
corresponds tos25s350 and therefore to the least localize
as we previously observed. Next, we filter the disturbi
periodic oscillations using our favorite tool of the macr
scopic average.24 We tried both ways: filteringnloc(x) first
and then taking the logarithm, or filtering lnnloc(x): the latter
turns out to work best. The macroscopic filtering is al
shown in Fig. 6~thick solid lines!: it is easily realized, ex-
pecially looking at the magnified plot in the lower panel, th
there is a sizeable region, spanning several cells, where
plotted function looks accurately linear withx, hence
nloc(x)}exp(6bx). We therefore demonstrate ‘‘experimen
tally’’ the exponential localization of ourw orbitals. After we
became aware of Ref. 11, we checked that the power-
prefactor suggested therein does not improve the quality
our fits. It is hard to assess whether this is due to a ba
difference between our case and a genuine one-dimens
one, or to the limited resolution achievable in our se
consistent three-dimensional finite-size calculation. Fina
in Fig. 7 we display some correlations between the locali
tion length and the exponential decay length 1/b averaged
over the two-dimensional mesh (s2 ,s3).

VII. CONCLUSIONS

In the present work we provide the three-dimensional f
mulation of the RS theory of electron localization,2 special-

.

l

ar

FIG. 7. Exponential decay length, averaged over the tw
dimensional mesh (s2 ,s3), vs our localization length~square root
of the second cumulant moment!. The straight-line segments ar
only a guide to the eye linking compounds of the same isoelectro
series. The vertical bars are an estimate of the accuracy of
interpolation scheme used to extract theb value from the
asymptotic macroscopic average ofnloc(x).
2-8
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ELECTRON LOCALIZATION IN THE INSULATING . . . PHYSICAL REVIEW B64 115202
izing it to the case of independent KS electrons; we disc
some of its relationships to the MV and SWM papers,9,10 and
also ~in the Appendix! how it relates to Boys theory of lo
calization in molecules.12 We then implement the theory t
several materials in the class of tetrahedrally coordina
semiconductors. Among the results, we find that in gen
the calculated localization length is a monotonical funct
of the gap, although a few materials show irregularities. T
trend is more regular within a given family~isoelectronic or
isovalent!. Finally, we heuristically show that the orbita
that are optimally localized in a given direction~‘‘hermaph-
rodite orbitals’’! show exponential localization.

ACKNOWLEDGMENTS

R.R. acknowledges partial support by ONR Grant N
N00014-96-1-0689.

APPENDIX: RELATIONSHIP TO BOYS LOCALIZATION
IN MOLECULES

We abandon here the BvK boundary conditions us
throughout this work, and we consider anN-electron system
that is bounded in space. Both the orbitals and the ma
body wave functionC are therefore exponentially vanishin
at large distances. Supposing thatN is even and the state is
singlet, for independent particles the wave function is
Slater determinant

C5
1

N!
uw1w̄1w2w̄2•••wN/2w̄N/2u. ~A1!

The orbitals enjoy no specific symmetry. Any unitary tran
formation of the orbitals produces the same many-bo
ground state~modulo an overall phase!: a specific choice of
the orbitals will be referred to as ‘‘choice of the gauge’’
the following. Obviously all ground-state properties a
gauge invariant. The density matrix is twice the projec
over the occupied orbitals,

r~r ,r 8!52P~r ,r 8!52 (
i 51

N/2

w i~r !w i* ~r 8!. ~A2!

We are interested in exploiting the gauge freedom in or
to express the ground state in terms of localized orbital13

The standard Boys localization12 in molecules consists in
minimizing spherical second moments, in perfect analo
with MV, which can be regarded as the solid-state analog
Boys localization. Here instead we are mostly interested
localizing in one given direction, sayx.

For any given choice of the single-particle orbitalsw i , the
average quadratic spread in thex direction is by definition

lxx
2 5

2

N (
i 51

N/2

~^w i ux2uw i&2^w i uxuw i&
2!. ~A3!

We recast this identically as
11520
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lxx
2 5

2

N (
i

^w i uxS 12(
j

uw j&^w j u D xuw i&

1
2

N (
iÞ j

^w i uxuw j&u2. ~A4!

The first term in Eq.~A4! is gauge invariant, since we ca
identically write

lxx
2 5

2

N
Tr xPx~12P!1

2

N (
iÞ j

u^w i uxuw j&u2, ~A5!

where ‘‘Tr’’ indicates the trace on the electronic coordina
The gauge-invariant term in Eq.~A5! can be regarded as th
xx element of a more general tensor, which turns out to
the molecular analog of our localization tensor. We use
same notation for molecules and for crystals,

^r ar b&c5
2

N
Tr r aPrb~12P!. ~A6!

If we look for the orbitals that minimize the averag
spread in thex direction, the solution, after Eq.~A5!, is pro-
vided by those orbitals that diagonalize the position opera
x, projected over the occupied manifold. Obviously, a set
orthonormal orbitals that diagonalizePxP can always be
found, sincePxP is a Hermitian operator. The quadrat
spread of these orbitals equals^x2&c , the gauge-invariant
part in Eq.~A5!. If we are interested instead in minimizin
the spherical second moment, in general wecannotdiagonal-
ize simultaneouslyPxP, PyP, and PzP. Therefore the
spherical spread will be in generalstrictly larger than the
Cartesian trace of the localization tensor. This is a key f
ture in the work of Boys,12 and MV as well.

We have defined the localization tensor in Eq.~A6!. With
an obvious generalization of the previous arguments,
tensor provides in general the maximum localizabilityin any
given direction. An equivalent expression for the localizatio
tensor is:

^r ar b&c5
1

NE drE dr 8~r2r 8!a~r2r 8!buP~r ,r 8!u2,

~A7!

which has the meaning of the second moment of
~squared! density matrix in the coordinater -r 8.

At this point, we may think of a crystalline solid as of
very large ‘‘molecule’’, or a cluster, and take the thermod
namic limit. Since bulk properties must be independent
the choice of boundary conditions~either BvK or ‘‘free’’!,
the density matrix and the localization tensor must be
same as the one previously found in this work. And indeed
glance to Eq.~19! shows that it coincides with the thermo
dynamic limit of Eq.~A7! in the insulating case. As for the
metallic case, our previous findings bear an important m
sage concerning Boys localization. For a cluster of fin
size, no matter how large, one can doubtless build locali
Boys orbitals. But our results prove that, in the largeN limit,
the quadratic spread of these Boys orbitals diverges wh
ever the cluster is metallic.
2-9
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