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Parquet approach to nonlocal vertex functions and electrical conductivity of disordered electrons
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A diagrammatic technique for two-particle vertex functions is used to describe systematically the influence
of spatial quantum coherence and backscattering effects on transport properties of noninteracting electrons in
a random potential. In analogy with many-body theory we construct parquet equations for topologically
distinct nonlocal irreducible vertex functions into which thecal one-particle propagator and two-particle
vertex of the coherent-potential approximati@PA) enter as input. To complete the two-particle parquet
equations we use an integral form of the Ward identity and determine the one-particle self-energy from the
known irreducible vertex. In this way a conserving approximation Wiilerglotz analytic averaged Green
functions is obtained. We use the limit of high spatial dimensions to demonstrate how nonlocal corrections to
the d=« (CPA) solution emerge. The general parquet construction is applied to the calculation of vertex
corrections to the electrical conductivity. With the aid of the high-dimensional asymptotics of the nonlocal
irreducible vertex in the electron-hole scattering channel we derive a mean-field approximation for the con-
ductivity with vertex corrections. The impact of vertex corrections onto the electronic transport is assessed
quantitatively within the proposed mean-field description on a binary alloy.
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[. INTRODUCTION to th% electrical conductivity within the standard single-band
CPA!

Randomness in the chemical composition or due to de- Vertex corrections to the single-bubble one-electron con-

fects in solids causes elastic scatterings of charge carriefiiictivity are important in various situations. In low dimen-

that influence significantly their motion and reduce their mo-Sions @=2) or for sufficiently strong disorder they lead to

bility. To describe the effects of randomly distributed scatter/\nderson localizatiofl. Further on, tunnel conductance or

. S . . transport through multilayered dirty metals are essentially
ers r'el|ably one has o use approximations taking SatISfa(?t%fluenced by vertex correctioisTo obtain more realistic

- ) Nesults for the electronic transport in dirty metals one has to
events. In particular, self-consistence between one- and t"‘go beyond the standard CPA to the conductivity and develop
particle functions is needed if we want to assess the role pproximations containing spatial quantum coherence and
backscatterings and the backflow on transport properties dfackscattering contributions.
electrons in a random potential. There is a long history of efforts to improve upon the
A simplest possibility to account for quantum coherencemean-field CPA descrip_tion of dis_ordered eIe_ctr%M;os; of
is to sum all multiple scatterings on a single scatterer. Ahem concentrate on single-particle properties and improve
self-consistent theory with all single-site scatterings is theé/Pon the CPAin the self-energgoherent potential A natu-
coherent-potential approximatioitPA), which was devel- ral extension of the single-site theory is to use clusters self-
oped in the end of the 19602 It is a mean-field approxi- consistently embedded in an averaged medium. However,
) : ; . . apart from the traveling-cluster approximativtf,extensions
mation for disorderednoninteracting electrons. It provides

) . in the lattice space fail to warrant global analytic properties
a local coherent potentiéself-energy that, in the thermody- of the solution and hence spurious effects can e

namic Ilmlt, comprises the effects of the random potential OMonly recently a cluster expansion in momentum space was
the motion of the single electron. The CPA, as other meansuggested that warrants ana|y¢}¢erg|otj properties of the
field theories, however, suppresses spatial coherence begesulting averaged propagators and the self-energy at each
tween distinct scattering centers and the moving electronstage'® Cluster approximations with self-energy diagrams
feel the influence of the random potential only via an averimprove also two-particle vertex functions. However, cluster
aged medium. approximations reduce spatial quantum coherence only to a
CPA has proven very successful in the description of onediscrete set of lattice sites or momenta. Such approximations
electron properties at the model level as well as in realistidh€N remain perturbative in the coherence range and cannot
calculations of random alloyk' Although this approxima- ead to Anderson localization to which we need long-range

. , . . __coherence with infinite-many backscattering or “crossed”
tion can as well describe two-particle averaged funCt'onSdiagram§4'15
due to the lack of spatial coherence, it fails to capture back- Using cluster approximations to improve upon the mean-

scattering effects on the transport coefficients and the elegge|q transport properties means that we have first to extend
trical conductivity. The two-particle CPA vertex does not de-yhe one-electron calculation scheme. A tremendous effort at
pend on the transfer momentum between the incoming anghe one-particle level is to be exerted to obtain significant
the outgoing particles and hence the CPA conductivity rechanges in transport properties. Cluster expansions are hence
duces in the single-band bulk systems to a contribution fronhot very effective in calculating quantum coherence effects
a single particle-hole bubble. There are no vertex correctiongy the electrical conductivity. It is more efficient to develop
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approximations directly for two-particle functions. reliability of mean-field approximations in realistic calcula-
A suitable framework for developing two-particle ap- tions of bulk transport properties of metallic alloys is briefly

proximations is a parquet approach devised within quantundiscussed.

many-body theory®~*°It is an advanced scheme of summa-

tion of Feynman(many-body diagrams based on renormal- Il. CALCULATION OF THE VERTEX FUNCTION

izations of two-particle vertex functions. Its main idea is to ) o ) ]

utilize ambiguity in the definition of the two-particle irreduc- e use a tight-binding Anderson model of noninteracting

ibility. Each two-particle irreducibility, i.e., the way pairs of SPinIess electrons moving in a random, site-diagonal poten-

one-particle propagators are cut without disconnecting thdal Vi described by a Hamiltonian

diagram, defines a scattering channel and a Bethe-Salpeter

equqtion for the full two—partic;le vertex. _Since different two- Aap= 2 tijCiTCj + E ViCiTCi (1)
particle channels are topologically inequivalent, a solution of G i

the Bethe-Salpeter equation from one chantreducible o

function is irreducible in the other channels where it is usedThe values of the random potentid| are site independent
in the input(integral kernel in the respective Bethe-Salpeter @nd obey a disorder distributiop(V). I.e., a function de-
equations. Thereby a set of coupled, nonlinear self-consisteRending on the random potentid| is averaged via
equations for the two-particle irreducible verticgmarquet
equations is obtained. Parquet equations have been applied
onto various many-body problems, but no significant attempt
has been made to use the parquet-type renormalization of

Feynman diagrams in disordered systems. Solving the problem of disordered electrons in thermody-

_In this paper we develop a parquet approach to systemgamic equilibrium amounts to finding the averaged free en-
with noninteracting electrons subjected to a random potenergy defined as

tial. We show how to construct controlled approximations
directly for the two-particle vertex using the idea of parquet E = —kaT{INTrexol — BA xn(ti: V. 3
diagrams. Since the parquet construction applies only to non- av 8T A=A ao(ti Vi)haw ©

local propagators, we start from the limit of high spatial di- where the trace Tr runs over the electronic degrees of free-
mensions where the diagonal and off-diagonal one-particlglom in the Fock space. However, the averaged free energy
propagators separate and the CPA becomes ékBetyond  does not contain the entire information about the disordered
this limit we construct parquet equations for two-particle ir- system. In particular we cannot derive transport properties
reducible vertices from Bethe-Salpeter equations with a perand the response to disturbing external forces from it. We
turbed nonlocal one-particle propagator and the local twoneed to know averaged products of Green functions for dif-
particle vertex as input. Next we use a Ward identity toferent energies. To include external perturbations into the
determine the self-energy and the full one-particle averageghermodynamic description we introduce a new quantity
propagator from the calculated vertex functions. This Se|fQV(E1’E2’ ... E,;U). Itis a generalized averaged grand

consistent procedure warrants conservation laws and analytgotential with» energy states coupled via an external pertur-
properties of the one-particle functions whenever the solupationU. We define

tions to the two-particle parquet equations are analytic.

XV~ | avevx. @

The unrestricted system of parquet equations is not QY(Eq,Ey, ... E,:U)
soluble in general. We hence resort to high spatial dimen-
sions where the two-particle self-consistence is naturally L
suppressed and one obtains the asymptotic form of the two- =- kBT< InTr exp{ —3”_21 (HRL3;

particle vertex in closed forff?°We use this explicit result
to derive a mean-field approximation for the electrical con-

ductivity containing vertex corrections. We then choose a —EiN(‘)éij+AI:|(‘j))J> , (4)
binary alloy to make quantitative assessments of the impact

of vertex corrections on the bulk conductivity. )

The paper is organized as follows. We derive in Sec. Il theVhere we assigned to eacbompley energyE; a separate
parquet equations for vertex functions of disordered elecHilbert state space andHW=x,,U{{)c{"Tc). Potential
trons. In Sec. Il we show how Ward identities can be used td2"(E;,E,,E, ;U) is a generating functional for averaged
determine the self-energy from a given irreducible vertexproducts of Green functions up to th¢h order. In practice,
function so that we preserve conserving character of the apwithin linear-response theory we will use only one- and two-
proximation. The electrical conductivity with the irreducible particle Green functions, i.eQ"(E;,E,, ... E,;U) is ex-
vertex function in the electron-hole scattering channel is depanded up tdJ2.
rived in Sec. IV where we use the result to construct a mean- Averaged Green function@ropagatorsare fundamental
field approximation for the electrical conductivity with ver- quantities with the aid of which we can calculate all charac-
tex corrections. In Sec. V we first quantitatively assess theeristics of the disordered system. We can use momenta as
mean-field approximation with vertex corrections on an ex-good quantum numbers, since translational invariance is re-
ample of a binary alloy in high spatial dimensions. Then thestored for the averaged quantities. Averaged propagators can

av
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then be expressed as sums of Feynman diagrams for disor- The one- and two-particle irreducible functions, i.e., self-
dered systems in analogy to the standard many-bodgnergy(k,z) and vertexA(kq,z;,k,,25;q) are the quanti-
diagrams> ties that we have to approximate in order to determine the

The averaged one-particle propagator is represented withne- and two-particle characteristics of a disordered system.
the aid of the self-energy or a coherent potentigk,z) that  The two functions are not completely independent. In a con-
comprises the influence of fluctuations of the randomserving and thermodynamically consistent approximation we
potential onto the motion of the single electron. We write have a generalized differential Ward identfty

G(k,Z)=m 62(ky,21,ky,25;U)

1 A<k1,zllk2,zz;q>:5G(k1+Q-21,k2+Q-Zz;U) U0
=N 2 e A, 6 (10

where the first equality expresses the Dyson equation CORye could use it for the determination of the irreducible ver-

necting the irreducible one-particle functidself-energy oy it we knew explicitly the self-energy as a functional of

with the one-particle averaged propagator. the averaged propagator in the presence of the external dis-
The averaged two-particle propagator is defined as turbanceU. It is rarely the case. We, however, show in Sec.

) A a1l A A ee_q Il how to use an integral form of the Ward identity to deter-

GiJ,kl(21122):<[211_t_v]ij [221-t=V]yDa (6) mine the self-energy from the known irreducible vertexit
to which we define the Fourier transform to momentumiS th_en s_uff|C|en_t to construct an_apprc_JX|mat|on for_the two-
space as follows: particle irreducible vertexA, which will be done in the
following subsections.

G(Z)(kllzlikZIZZ;q): i 2 eiiklRiei(lirq)Rj
N i A. Local approximation

><e*'(k2+Q)Rke'k2R'Gij%L|(Zl,Zz)- We start building approximations to the two-particle ver-
7) tex function from a local solution where we completely lose

momentum dependence. The local approximation means that

The two-particle Green functio®)(k;,z;,k»,2,;q) con-  we use only site-diagonal one-particle propagators in the per-
tains also uncorrelated motion of two separate particles. Theurbation diagrammatic expansion for the irreducible func-
actual measure of a correlated motion of two particles is aions. The local approximation is best derived within the

vertex function Baym-Kadanoff renormalized perturbation expansion in the
limit of high spatial dimensionsl—.?? In this limit we
I'(ky,21,k2,22;0) have the following asymptotics for the one-particle

=G Y(k1,20)6 Hko 2 Bk 71, ko 200) () (UNCNONS

X G(ky,21)G(K2,2,) ]G Hky+q,21)G (ko +0,2,).
(k1,21)G(k2,2,)] (ki+0,z1) (ko+q 2)8 G GIRO] 1+ GO d 2], 3= sdagdo]+30l[d~37]
) (11)
In analogy to the Dyson equation for the one-particle

propagator we can represent the two-particle vertex with th‘f‘eading to separation of the diagondbcal) and the off-

aid of a two-particle irreducible verted and a Bethe- giagonal(nonloca) parts. In the strict limitd=c we can
Salpeter equation. Unlike the one-particle case, the Bethgompletely neglect the off-diagonal elements and recover the
Salpeter equation is not defined unambiguously whenever Wepa for the self-energy. The defining equation in the pres-
work with nonlocal propagators. This fact we utilize later in oce of the external local disturbandereads

the parquet construction. For the present moment we take the

Bethe-Salpeter equation in the electron-hole channel describ-

ing multiple scatterings of a pair of an electron and a hole A A — /TA-1 . & a7 1-1

and erte G(ZlszlU) <[G (21522!U)+2(211221U) VI] >?§1_’2)

I'(kq,21,k2,25:0)
whereG(z;,2,;U)=N"25,  G(Kk1,21,kz,2,;U) is the lo-

1
=A(kq,21,K0,25;0) + N 2 A(ky,21,K5,25;9") cal element of the matrix one-particle propagator. The matrix
q’ character is forced by the external disturbance which mixes
X G(Ky+q",21)G(Kp+q",2) [ (Ky+ ", 24, different complex gnergies: Sinc;e we are interested only in
averaged two-particle functions in equilibrium, we can resort
k,+9",2,;9—0"). (9)  to two energies and a two-by-two matrix
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&Y(ky,21,K0,25:U) two electror_ns(holgs)._ Diagramm_atically it means that we
connectspatially distincttwo-particle scattering events with
z1—e(ky))—2(z;) U—2(z1,25;U) antiparallel or parallel pairs of one-particle propagators. Mul-
U=3(2,,21:U)  zp—e(ky)—3(2,))’ tiple scatterings of pairs of the same type define a channel of

the two-particle irreducibility. We call a diagram two-particle
(13 irreducible if it cannot be split into separate parts by cutting
simultaneously either electron-hole or electron-electron
propagators. The two definitions of the two-particle irreduc-
ibility lead to topologically inequivalent irreducible func-
tions and to different Bethe-Salpeter equations for the full
83u(24,25) vertex. In each Bethe-Salpeter equation the two-particle
Z1,25) —m functions are interconnected via one-particle propagators in a
uieLee2 different manner. We can generically represent the Bethe-
1 { < 1 Salpeter equations as

“Gm6m)| \ T E@m - Ve

wheree(k) is the lattice dispersion relation.
We use the Ward identityf10) to determine the two-
particle irreducible vertex in equilibrium

A(

F(kl,Zl,kz,zz;Q):KQ(klyzlykz,22;Q)
1

_1 ~ L
A“ I'l(k k ).
X1+(2(22)_Vi)G(Zz)>av ' (4 +[AGGOT](ky,21,k2,22;0)

(16)

The full vertex function is then determined from the Bethe- S
Salpeter Eq(9) where the one-particle propagators are re- We used® for the channel-dependent multiplication of the
placed with the local ones. The integral equation reduces tBvo-particle functions. Herél is the irreducible vertex in
an algebraic one and we obtain an explicit representation the & channel with perturbed propagatds It relates to the
standard irreducible vertex functioh® from Bethe-Salpeter
A(zy,25) equations with full one-particle propagators as follows:

N )= K7 262Gz P

. - A%(ky,z1,k2,2550)

For later convenience we denoted the full local two-particle
vertex with the lower casg. =A%Kq,21,K2,22:9)

Note that the above local approximation coincides with _
the CPA only for the self-energy and the local part of the — —[A“G'°%(z)G'*%(z) OA*] (Kq,21.K,2250).  (17)
vertex function. The CPA two-particle vertex is obtained
from Eq. (9) where only the irreducible verteX(z;,z,) is
assumed local, but not the one-particle propagatdisre
we deliberately separated the contribution from the off-
diagonal propagator. We describe it within the parquet ap-
proach as a correction to the local approximation to theé?
vertex function.

Although the irreducible functions are different in different
channels the solution of the Bethe-Salpeter equations must
always be the same, the full two-particle veriéxThe ma-

trix multiplication in momentum space in the electron-hole
nd electron-electron channels, respectively, explicitly reads

[XGGeY](ky,21,K2,2,;0)

B. Nonlocal contributions: Parquet approach 1
== 2 X(K1,21,K2,2;9")G(K;y +0",2y)

To go beyond the local approximation we have to distin- N o
guish two one-particle propagators. First, we have the propa-
gator from the local approximation that we den&t&°(k,z), XG(ka+09",2,)Y(k1+q",21,ko+9",2,;0—0"),
from which we actually need only the local element (189

G'°%(z) =N"12,G'°°(k,z). This propagator is defined by
the Dyson equation with the local self-enegyz) from Eq.
(12) with U=0. Second, we have to introduce a new propa-
gator G(k,z) that is defined by the Dyson equation with a

[XGGeVY](ky,21,K2,25;0)

nonlocal self-energy® (k,z) to be determined later. It is =N Z” X(ky,z1,k2+0",22;0—q")G(ky+9—q",2;)
treated in the equations for the two-particle vertex as an ex- q

ternal fpnction with appropriate ana[ytic_properties. In the X G(ky,+0q",2,)Y(k1+q—q",2;,k»,25:9").  (18b)
expansion beyond the local approximation we use a per-

turbed propagato6(k,z)=G(k,z) —G'°%(z) to avoid mul- Electron-hole and electron-electron channels are not the
tiple summations of single-site diagrams contained in theonly inequivalent representations of multiple two-particle
local approximation. scatterings. If we allow for hopping between distant sites we

We classifynonlocalcontributions to the two-particle ver- no longer can distinguish between multiple scatterings of
tex by the type of the correlated two-particle propagationdistinct electron-hole pairs or nonlocal self-scatterings of a
We either simultaneously propagate an electron and a hole @ingle particle, i.e., scatterings between the incoming and the
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outgoing particles at the two-particle vertex. We hence have [S(*GGAY](kl

. . o = z21,k2,25;9)
to introduce a third two-particle irreducibility and Bethe-

Salpeter equation. We call this third type of two-particle scat- 1 , , ,

terings “vertical channel,” since we renormalize only one N %; X(k1,21,K",25;0)G(K",2,) G (K" +0,25)
line of the pair and the ladder of multiple scatterings grows

“vertically” above (below) the two-particle vertex. We can XY (k",z, kK" +q,z5;k,—K"). (180

is renormal-
ized. The vertical channel hence splits into two, upper and
R R lower parts according to whether we renormalize the first or
[XGGxY](ky,21,k5,25;Q) the second energy in the pair.

Using the above multiplication schemes for different two-

write the third multiplication scheme for two-particle quan- | the vertical channel only one energy or z,
tities for the upper particle linéwith energyz;)

1 particle channels we can write down the corresponding
N > X(ky,21,ky+0,21;K" — k) G(K",21) Bethe-Salpeter equations explicitly. We choose a subscript
K a=* for complex half-planes from which we take the par-
X G(K"+0,21)Y(K", 21 ,K»,2,:0) (18¢ ticle energy. We use the standard diagrammatic representa-
tion for these equations and obtain for the electron-hole and
and for the lower onéwith energyz,) electron-electron channels
ak ak+q Ktq'
Tour = Ak, + Ak, Caw (196)
k,+q”
o'k ok +q
ak ak+q kiqeg'
Tow - Alezea’ + Agea/ Cow (1 9 b)
o'k o'k +q
kl+ql}

The Bethe-Salpeter equation in the vertical channel is spliNote that it is the irreducible vertex from the electron-hole
into two. First we account for self-scattering vertex correc-channelA®" that determines the kernel of the integral Egs.
tions to the upper line and then the same for the lower ong190 and(19d). The new vertexA” enters only via the ab-
We then have " solute term. The irreducible vertice§’ and A" are not
generally equal and it is useful for our construction to
ak ak+q distinguish the vertical channel from the other two.
K In all these equations the double-prime momenta are

k" +q

Y, = Ayl o+ ek+q summed over. The full lines stand for the perturbed propaga-
FU

tors G(k,z). Otherwise we would encounter multiple sum-
oK oK +q mations of single-site scatterings. Separation of the local and
nonlocal contributions is important, since in the local ap-
proximation the three channels coincide. This can be seen
from Eq.(18) when we insert a local propagator. This fact is
physically obvious, since we cannot distinguish between the
ok ak+q particle and the hole in single-site multiple scatterings. The
electron and the hole propagators are equal. There is only
. o one two-particle irreducible vertex(z;,z,) in the local

g approximation(CPA).

Ay We now use the topological inequivalence of the three

channels. This means that a reducible function from one
o'k’ +q channel is irreducible in the other ones. If we denbtae

(19d  completely irreducible two-particle vert&xwe can write

ok o'k +q
(199

ak ak+q

aa’

o'k o'k’ +q
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~ PA i : loc
Aa(Ky,21,K2,25:0) that again is a funct_|on o6'°¢ from Eq. (15). jl'heilatter
propagator is determined from the local approximation, CPA.
The former is treated here as a function of a self-energy

=I(k1,zl,k2,22;q)+a§a (I'(k1,21,k2,22:0) > (k,z) which we connect to the vertex functions later on.
Parquet Eqs(20b) form a set of nonlinear integral equations
—7\“'(k1,21,k2,22;Q)), (20a self-consistently determining the two-particle irreducible

. . o _ vertex functionsA 4[3;G'°°].

since the reducible function is a difference between the full o parquet equations represent a substantial extension of
and the irreducible vertex from a given channel. We use the,qa |ocal approximation. They are, however, much more dif-
Bethe-Salpeter Eqg19) on the right-hand side of Eq208 et 1o solve than cluster or other short-range extensions of

from the corresponding:’ channel to get rid of the full o cpa at the one-particle level. To get a feeling of how a
vertex. We then obtain a set of equations for the channel

- Solution to the parquet equations looks we resort to the
dependent irreducible vertices”. The completely irreduc- asymptotic limitd— where the corrections to the local
ible vertex is input to these so-called parquet equations. Thertex y(z;,z,) in Eq. (20b) asymptotically vanisk? The
lowest-order contribution to the input function is the local two-particle self-consistence becomes asymptotically insig-

two-particle vertexy. The parquet equations in a generic nificant and such a situation can be dealt with exactly.
form are

% (K . ) ( ) 2 ( [K 'éé]@} N C. Asymptotic limit of high spatial dimensions
“(k1,21,K2,22;0) = ¥(21,25) + 1-[A* -

e We know that the off-diagonal, nonlocal elements are
I scaled to zero in high dimensions and loose their weight with
X[A* GGOAY J(ky,21,k5,25;0). respect to the local oné8 However, when summed over the

(20b) lattice sites they can produce finite contributions even in the
limit d=<. It is the case of the two-particle vertex. In the
Special attention should be paid to the vertical chanaél, |eading asymptotic order the irreducible vertices in the
=v, where we have a two-step construction and Bethegethe-Salpeter equations become local and coincide with
Salpeter Egs(19¢) and(19d. The second term on the right- y(z, z,). The asymptotic behavior of the full vertex then
hand side of Eq.(20b should be replaced by{1  depends upon which matrix element we calculate. We obtain
—[ASGGx} TAY{1—+[GGA®M} " 1-Av. different asymptotic solutions in different channels that we
Equations(20) constitute the parquet approximation for denotelI’®.?? The corresponding asymptotic Bethe-Salpeter
the irreducible vertices for the given one-particle propagatorgquations in the three channels have the following diagram-

G(k,z), G'°%(z) and the local two-particle vertex(z;,z,),  matic representation
|
ok ak+q
K+’
ret, = Yoar + Yaa! reh,
, (219
a'k’ a'k’ + g K+q
ak ak-+q
k+q-q"
Ff,‘u,: Yaa! Yoo Fffu:
= +

o'k’ ok’ +q (Zlb)

k/ +qll
ok
ak ak+q
Yac R
Ktq
re, = Yoo + ak+q
re,
o'k oK +q o (210)
o'k ok’ +q
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ak ak+q (23) to another form with full one-particle propagators,
ok kg which is more appropriate for finite-dimensional systems.
Lo We denote a two-particle bubble
T = e, |+ ok 1
k" I
X (Gz1.2) = 2 G(kz)G(gxk,zp). (25
o'k o'k’ +q k
oK +q If we further use relatiof15) we obtain a new representation

“ for the two-particle vertex

(210
The one-particle propagator in the high-dimensional Bethe-
Salpeter equations equals the CPA solutioB(k,z)
=G'°%(k,z), or 2(k,z)=2°PA(z). We sum over the inter-

I(kq,21,k2,25;0)

mediate momenta in the Bethe-Salpeter equations. The non- =A(z1,2,) 1
local part ofG'°°(k,z) cannot be neglected and contributes 1-A(zy,2) x " (kKo—Ky;21,25)
to the leading asymptotic behavior of the solution for fixed
two-particle momenta. _ 2
The Bethe-Salpeter equatioffl) in high dimensions be- 1-A(21,2,)G(21)G(2,)

come algebraic and can be solved in closed form. If we de- 5
note I 1-A(z,2)G(z)G(z)

i=1 [l_A(ZI !Zi)XJr(q;Zi vzi)]

1 +
Yi(q;zl,22)=N§k: G°'(k, )G (q=k,zp), (22 1-A(z1,25)G(z1)G(2z3)
the solutions in the three channels are
1
+ , (26)
reh(q;zy,2,) = Y(21,22) . (239 1-A(z1,25) x (ki tky+0;21,25)
1-¥(21,2)Y ' (0;21,2,) : . ,
whereA(z;,2,) is the CPA irreducible vertex.
Note that the asymptotic solution for the two-particle ver-
Te(q:2,,2,) = 1(21,27) (23p  tex can no longer be represented via a single Bethe-Salpeter
1-v(21,2,)Y(Q;21,25) equation. It is because we have three asymptotically equally
important but topologically different contributions. Each of
2 1 them is marked by a different fixed two-particle momentum.

(a;21,20)= v(z1.2) [ ] :
=1[1-%z,z)Y"(9:2,2)]

(239 [ll. WARD IDENTITIES AND THE SELF-ENERGY
In the preceding section we derived a closed set of par-

asvmototic solutions we obtain in the limit of high s atialequet equations determining the irreducible two-particle ver-
ymp gnh sp tex functions from the given propagatog'°(z) and

dimensions. Each solution is characterized by a two-patrticl . o
conserved momentum. They are in the notation from the pre%-;(k’z)' The former is the site-diagonal part of the CPA

) : B propagator but the latter has not yet been specified. It is
ceding subsectionk,—kz, ki+Kp+q, and d for the determined by a self-ener@y(k,z) from the Dyson Eq(5).
electron-hole, electron-electron, and the vertical channel, re;

. S ) : SWe have not yet demanded any relation between the self-
spectively. The full verteX' in high dimensions reduces to a :
energy and the vertex functions. We, however, know that

The three different vertex functions represent the thre

sum thermodynamic consistence demands that the irreducible
T(Ky.21 . K».2o ) =T K, — Ko 2y .2,) + T8k, + K one- and two-particle functions be not independent. They are

(k.21.kz.27:0) (ki—kzi21.2;) (kitk related by the differential Ward identit{10). To turn the
+0;21,25) +1%(q;21,22) — 2v(21,25), parquet equations into a conserving approximation we have

(24) to fulfill the Ward identity and relate the self-energy to the
solution of the parquet equations. The functional differential
where we had to subtract appropriately the local vertex tadentity (10) is of little practical help in calculating the self-
avoid double counting. Note that the CPA vertex as derivedgnergy from the irreducible two-particle functions. Fortu-
by Velicky® equalsI'®" and does not correspond to the lead-nately there are integral forms of the Ward identity relating
ing high-dimensional asymptotics of the exact two-particleone- and two-particle averaged functions that can be
vertex. used to determine the self-energy from a known two-particle
Representation23) uses the natural high-dimensional irreducible vertex.
separation of the diagonal and off-diagonal parts of the one- A first integral Ward identity was derived by Velickyn
particle propagator. We can rewrite the asymptotic solutiorthe framework of the coherent-potential approximation. It
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holds quite generally beyond the CPA and reads in our

i > do' IM3(k,0)
notation ReX(k,w, )=P| — ——mm—. (29b)
— T 0 —w
(2) —— T AG e self-energy from the cut along the real axis can be ana-
>, G (21,22) AleG.k, (279 ~ The self from th long the real axis can b
]

lytically continued to energies in the upper and lower com-
plex half-planes. The one-particle perturbed propagat-

where Az=2z,—-2,, AG;;=G;j(z1) —Gjj(z2). We show in :
the appendix that this identity is a consequence of compIetqc;:efé%rgi;lheevi?trg;evti:qﬁ()b) can now be defined from the

ness of the eigenstates of the Hamiltonian and hence of prob-

ability conservation. This identity can be rewritten in mo- Sk _ — (k) =S (K -1_ loc

mentum space G(k,w,) [w+ e(k) 2( ,a)+)] Gw,) (30)
1 ) 1 with the self-energy from Eq29) and the local propagator
N 2 Gz kzzi)=- 1;[G(kz)~CG(kz)]  from Eq.(12.

Equationg29) and(30) complete the parquet approach to
(27b . . . )
disordered systems and make it a consistent and conserving

Ward identity(27) is inconvenient for application, since it SCheme_apprOXimQting sim_ultaneou_sly both the one- and
connects one- and two-particle averaged functions. We bettdyo-particle irreducible functions. Neither the Bethe-Salpeter
have a relation between irreducible one- and two-particld=ds- (200 nor Egs.(29) violate analytic properties, unless
functions like Eq.(10). An integral form of such a Ward there is a transition to another phase such as Anderson local-

identity was proven diagrammatically by Vollhardt and ization. The analyticity of the parquet approximation in the

Wolfle?” and reads diffusive reg_ime is then completely determin(_ad by its input,
the two-particle local CPA vertex(z;,z,) that is known to
3(Kq1,21) —2(Kp,2,) possess Herglotz analyticity.

The advantage of the parquet approach to disordered sys-
tems is that we do not need to bother about the diagrams
contributing to the self-energy to obtain a consistent approxi-
mation with the proper analytic behavior of the averaged
X[G(ki+0d,2) = G(ka+0d,22)].  (28)  Green function® An explicit sufficient condition for analy-
ticity of a solution of the parquet approximation from Eq.

1
= N zq AEh(klyzl,kz,Zzim

The diagrammatic derivation of the Vollhardt-Vile identity

(28) utilizes a symmetry of the Anderson disordered model(zga) IS

but does not _establish a d.ir’e.ct reI_ation to conserva}tion laws ANk, 0, Ko :q)=0. (31)

as the derivation of the Velickiglentity (27). We show in the _ . .

appendix that the Vollhardt-Wite identity with k, =k, fol- It can be checked in each step of iterations toward the full

lows directly from Eq.(27) and the Bethe-Salpeter equation. Solution of the parquet approximation for the one- and two-
At least this simplified form of the Vollhardt-Wite identity ~ Particle irreducible functions.
can be shown to be a consequence of probability
conservatiort® IV. ELECTRICAL CONDUCTIVITY

To complete the parquet approximation for the two-
particle irreducible vertex functions we can use EzB) for
ki=k, the boundary values of the complex energies alon
the real axis. We chosg=w, andz,=w_ wherew.=w
+in and »\,0. We obtain a relation

The CPA constitutes a rather good approximation for the
one-particle self-energy but completely fails to incorporate
%oherence in the propagation of pairs of particles. The em-
phasis in the parquet approach is hence laid on a systematic
construction of diagrammatic approximations for nonlocal
two-particle functions, in particular those determining trans-

Im2(ko.) port properties and reflecting Anderson localization. In this
1 section we show how a solution of the parquet ap-
=N kE A®"(K,w, K,w_k—k)IMG(K',w.), proximation can be used in the calculation of the electrical
' conductivity.
(299 We use a Kubo formula for the electrical conductivity

. . . with the current-current correlation function. df,,; is the
determ!nlng the Imaginary part O.f the self-e_nergy along thecomplex conductivity andI ,; the current-current correla-
real axis from the known irreducible vertex in the electron—tion function we can write B

hole channel. A similar formula can be derived for the irre-

ducible vertex from the electron-electron channel, cf. the ap- i

pendix. 0ap(q,E+)= £ llap(q.E+), (32
Next we rely on analytic properties of the self-energy in

the upper and lower complex half-planes and determine itsvhere againE,=E+i0". The current-current correlation

real part along the real axis from the Kramers-Kronig rela-function can be expressed via a Kubo formula with the full

tion two-particle vertex”,
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e 1 To avoid such a situation we represent the conductivity in
I, 5(0ivm) = — — 2 [da(e(k+q)—e(—k)) a different way’® We utilize the Bethe-Salpeter equation in
af m 2 2 a ;
4m” N® the electron-hole channel to represent the veltexia the
X3 K +a) — el — kN KaT irreducible on_e,A : Insertmg_ its formal solut|on_ into Eq.
plel a) el ))Ike (35 we obtain a new, equivalent representation for the
* conductivity
X > {G(K,iwy)G(K+q,iwn+ivm)
n=-—wx

2

X[ak=k")+T(K i, K+ q,i(wn+vm); K —K) Reaaﬁ=f—w N2 v, (Kva(k') X (—07)Gy(K)G (k)

XG(K o) Gk +qiogtivyll. (33 ok
X{1-[A5IG,G ]} (kKiK' —k), (36)
Here w,=(2n+1)#T and v,=2m#T are Matsubara fre-
guencies. . eh
We are actually interested only in the real part of theWheerﬁ we glenciteo!GU(k)f G+(k’EF+"’O ) and A,
complex conductivity for real energies. We can then analyti-— " (K.Er+100" k",Eg+i70":q). At Ieas;[hfor not too
cally continue the expression on the right-hand side of EgStrong disorder, the norm of the operafpk,;G,G|<1.

(33). For the real part of the conductivity we obtain Hence the conductivity remains in this representation non-
negative and free of spurious unphysical behavior. However,
Reo,4(a,E) unlike formula(35), representatiof36) is implicit and its
application is conditioned by our ability to solve the Bethe-
e? 1 Salpeter integral equation in the electron-hole channel
=TI 2 (W oK+ Q) Fvo(K))(va(k +a)+vg(k"))  explicitly.
Xi. 2 Gi_ 2 TJOC d_w flw+E)—f(w) A. Asymptotic expression in high dimensions
205 2 % T E To be explicit in the assessment of the contributions of the
X{G(k,w+ic0")G(k+q,w+E+ir0") two-particle vertex to the electrical conductivity we again
resort to the limit of high spatial dimensions where we know
X[8(k=k")+T(k,w+io0", the vertex and the self-energy explicitly. We use a hypercubic

lattice with a  dispersion relation e(k)=—t/
(2d)¥?s9_,cosk,, where the group velocity isv (k)
XG(k',w+ic0)G(k',w+i707)]}, (34  =t/(2d)Y?sink,. Further on we use an analytic representa-
tion for the two-particle bubble in high dimensions where it
wheref(E) is the Fermi function and we denoted the groupcan be represented via a double Gaussian int&gral
velocity v (k) =m~1d9e(k)/ ok, ando, 7=+ 1. In most situ-
ations the static optical conductivitygE0,E=0) at zero

k+q,0+E+i70";k’ —k)

temperature is of interest. Expressit®4) reduces in this X7 (0;21,2,) = —sgr(lm z;Im z,)
case to .
xf d\1dN,0(N1Imz1) O(Nolm Z,)
e’ 1 7”3
Reaaﬁzﬂm k,Ek’ valkjuglk );r (mo7) X expli[N1X(zy) + N\ oX(22)]
X G(K,Eg+io0")G(k,Eg+i70T)[ s(k—k") — 3N NS 20 X(9)]), 37

+T(k,Eg+ic0" k,Eg+ir0";k" —k) _ g _
with x(z) =z—3(z), X(g) =1/d%}_,cos(,), and the Heavi-
XG(k',Eg+ic0")G(k',Eg+i70")]. (39  side step function is9(x). Only parallel conductivity sur-
vives on a hypercubic lattice and the integrals over the
We immediately see that the vertex functiBbrcontributes to Brillouin zone of squares of the Ve|ocity factorize, i.e.,
the conductivity only if it depends on the transfer momentum
k' —k. It is due to the symmetrg(k)=e(—k) andv (k)
=—-v,(—k). Since the CPA vertex does not depend on the
transfer momentum, the vertex corrections to the single- ; va(k)zGo(k)Gr(k+Q):EXUT(Q)- (38)
bubble electrical conductivity vanish in the CPA treatment.
Equation(35) is not appropriate for approximate calcula-
tions of the electrical conductivity. The vertex corrections Using the above representations and simplifications in
contained inl" are addedto the single-bubble conductivity Egs.(26) and(35) we obtain after straightforward manipula-
so that their negative contributions may reverse the positivéions an explicit asymptotic formula for the conductivity in
sign of the conductivity, thus leading to unphysical behaviorhigh spatial dimensions,

2
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- t2 t4 (62 y4 to the conductivity. We hence have to take its leading asymp-
—ZRegw:—d<||m G+|2)——2 ; totics into account. We derive it if we solve the Bethe-
e 2 16d Gh Salpeter equation in the electron-hole channel A5 in-
5 stead forl", i.e., A®"=T{«[GGI']+1} . Using vertexI"
y < 1 > 1 from Eq. (24) one finds in the orde®(1/d)
(1+G+(2+_Vi))2 av
(|G, |2 1 A®N(Ky,21,kp,22:0)
+
G, |2 <|l+G+(2+—Vi)|2> - ] =A(21,2) +(1-A(21,2,)G(21)G(2,))?
av
2112 X[T(Ky,21,K2,2550) — (ko —Ky1321,25)]. (40)
(G < 1 > L
G2 | \1+G(Z=V)I?[ In the limit d— o the momentum convolutions decouple. To
- derive the leading asymptotic contribution from the nonlocal
_ 2<G+> < 1 > B part of A®" to the conductivity we have to calculate the mo-
G2 (1+G, (3. —V))? N ' mentum convolutions at the level of ord®(1/d) so that the

velocities appear in squares and the momentum integrals do

(39 not vanish. Keeping only the leading-order terms in the ex-
pansion of the denominator in E¢36) we end up with a

where we used abbreviationgG,)=N"'3,G(k,Er  mean-field-like expression for the dc conductidity

+i0"), (G%)=N"'2,G(k,Er+i0")? and 3 =3(E

+i0"). The one-particle propagators are the CPA ones cal-

culated with the self-energy from the local approximation e’ <U§GUGT>

(12). Conductivity(39) depends explicitly only on the disor- Regaazﬂ ; (—a7) l—(UZG G)A® , (413

der distribution and the dimensionality. The vertex contribu- aTommer

tion, proportional ta#/d?, has a negative sign and we cannot

guarantee positivity of the conductivity. Although the vertexwhere(v2G,G,)=N"1Zv ,(k)?G,(k)G (k) and

corrections are negligible in the limd—« they may turn

the overall sign of the conductivity negative for a fixed finite

dimensiond. Whether conductivity(39) for a fixed dimen- o L o eh o

sion is positive or negative depends on the band filing and (o7 = N % 50.(K) oK) A (kKiK' =K).

the disorder distribution and strength. Vanishing of the ' “ ¢ (41b)

asymptotic conductivity in this representation does not indi-

cate Anderson localization but merely a limit upon the di-

mension below which formulé39) cannot be applied. The irreducible vertex\ ®" is taken from Eq(40). The one-
particle propagators are those from the local, coherent-

) ) _ potential approximation, since it is the local irreducible ver-
B. Mean-field expression for vertex corrections tex A that determines the leading high-dimensional
to the electrical conductivity asymptotics of the self-energy in E29a. However, only
The limit of high spatial dimensions is usually used in terms with odd symmetry with respect to time inversion con-
order to set a mean-field approximation for a physical quantribute to the vertex corrections to the conductivity and we
tity. We showed in the preceding subsection that the vertekave to go to the leading order of the nonlocal part68f to
corrections are asymptotically less important than the onesubstantiate them. If one resorts to the local vertei Eq.
electron, single-bubble term. But the vertex corrections may(41) one recovers the CPA conductivity of the single
in finite dimensions, turn static optical conductivity negative. electron-hole bubble.
Expression(35) with the asymptotic solution for the vertex = Conductivity (41) with the CPA one-particle propagator
function in high dimensions is hence unsuitable for servingcan be called a mean-field approximation for the conductiv-
as a mean-field approximation, since physical consistence dy with vertex corrections, since the vertex corrections are
the result is not guaranteed. We can take the leading singleletermined from the asymptotic limit of high spatial dimen-
bubble term as a mean-field approximation for the conducsions. It can be applied in finite dimensions €ox 2 with the
tivity as is actually common in the literature. Or, when we appropriate lattice structure determined by the Brillouin
are interested in the impact of vertex corrections, we have taone. Note that the verteA®" from Eq. (40) contains a
use representatio(86) and evaluate its leading asymptotic diffusion pole from the electron-electron channel and the in-
behavior in high spatial dimensions as suggested recéntly. tegral in Eq.(41b) diverges ind<2. Hence the mean-field
The limit of high spatial dimensions enables one to solvedescription of vertex corrections breaks down there. In these
the Bethe-Salpeter equation in the electron-hole channel exew dimensions, where Anderson localization is expected,
plicitly. We need only its leading asymptotic order. Note thatwe have to use the full two-particle self-consistent parquet
only the nonlocal part of the vertek®"(k,k;k’ —k) having  approximation in order to take properly into account the in-
odd parity with respect to reflections knandk’ contributes  fluence of the diffusion pole.

2
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V. MEAN-FIELD VERTEX CORRECTIONS tatively the influence of the mean-field vertex corrections on
IN A BINARY ALLOY the conductivity and to demonstrate physical consistency of
approximation(41), i.e., overall non-negativity of the con-
ductivity, we further simplify expressiofd1). We approxi-
. . . . mate the momentum integrals by their high-dimensional
Mea_n-fleld expression for the co_nductmty with ve_rtex asymptotics, i.e., we replace the momentum integrals by in-
corrections(41) demands the evaluation of momentum inte-egrals with the density of states. We use the same steps as in
grals over the Brillouin zone to determine the averaged vesec. || C when deriving the high-dimensional asymptotics of
locity and the derivative of the vertex®". This must be the conductivity. Using vertetd0) we straightforwardly de-
done numerically for each particular lattice. To assess qualirive

A. High-dimensional approximation

eZtZ) (—0o7)(G,G,)
8md) &7 t_ _ 2\ ~2\ 2\2_ 2\2

Re(TMZ(

where(G,G.) is defined as in Eq39). The vertices\ andy are calculated in the local approximation from Sec. Il A. We can
explicitly sum over the indices, 7 and obtain

e’t?
47rd

2
2 (1.1 e (G

t t
1+ 55 (G DA (1=A |G, )y (GO -2 Rely. (G3)")]  1-55(G2)°A%,

Reaaaz(

(43

For the explicit numerical calculations we choose a binary 0=G(z)3—2zG(z)?+ (1—A%+7%)G(z)— (z— (1—2x)A)
alloy with the site-diagonal disorder distribution (463

p(V)=x6(V—A)+(1-x)6(V+A). (44)  with

To simplify the relation between the one- and two-particle
functions we further choose a model density of states of a
d=c Bethe instead of a hypercubic lattice. It is character-
ized by an equation

S(2)=z—-G(z)—G(z) ~. (46b)

We resort to real frequencids,=E+ic0" and take ad-
vantage of explicit representations of two-particle functions

1 via one-particle local propagators
G(2)=——==, (45)

z—G(2) G,G.
where we set the hopping=1 with the energy band (G,Gr)= 1-G,G, (47)
e(—2,2). The self-energy for complex energies in this
model is then determined from a cubic equation and

A,= ! ! 48

7 G,G, X 1—x (48)

(E-G,-A)E-G.—A) (E-G.+A)(E-G.+A)

We use the above formulas together with a numerical sofunction of energy for a fixed concentratior* 0.5 and two
lution to the self-energy from Ed46) in Eq. (43) to reach  values of the variance of the random potentidisorder
guantitative results for the electrical conductivity. In particu- strength. We see that the vertex corrections in general lower
lar we are interested in the impact of vertex corrections ontahe single-bubble conductivity and hence the electron-
the CPA conductivity. We set the formal parameter of theelectron multiple scatterings dominate. There are, however,
lattice dimensiord= 3 in Eq.(43). Figure 1 shows the CPA situations where the vertex corrections due to electron-
and the mean-field conductivity with vertex corrections as alectron and hole-hole multiple scatterings may dominate
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x=0.5, A=0.7 x=0.5, A=1.2
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FIG. 1. Real part of the static conductivity as a function of energy for concentratidh5 and two values of disorder strength
=0.7 andA=1.2.

over the electron-hole crossed diagrams and cause an in- B. Applicability of mean-field approximations
crease in the CPA conductivity. It happens in the proximity in realistic calculations

of nonanalyticities in the local CPA vertex. The real part of  ~giculations in the preceding subsection served two pur-
A, for A=1/y2 goes through zero and displays a pole forposes. First, we demonstrated how to reduce numerically the
x=0.5. This singular behavior causes sharp mobility peaks a&lemanding expressiof1) to a typical mean-field formula
the band edges and irregularities near half-fillifg=0.  ysing only integrals over the density of states. Second, we
Such a behavior is observed only far=1/J2 andx~0.5. justified application of the mean-field expression for the
Figure 2 shows the same for an asymmetric concentratioBlectrical conductivity with vertex corrections as a first step
x=0.3. The mobility edges are now less pronounced and thpeyond the CPA conductivity. However, a natural question
conductivity fluctuations inside the energy band are naarises about applicability and reliability of mean-field ex-
longer symmetric. pressions in realistic calculations of transport properties of
Due to the structureless density of states of the Bethelloys and relevance of vertex correctiofieeyond CPA
lattice ind=o0, vertex corrections do not alter the CPA con- there.
ductivity significantly apart from the special situations influ-  As we already discussed, mean-field expression for the
enced by the singularity in the CPA vertéx, , . Figure 3  conductivity with vertex correction$41) is inapplicable in
shows the conductivity for the half-filled band as a functiondimensionsd<2 due to the presence of a nonintegrable
of concentratiorx. There is almost no significant difference Cooperon pole ak+k’=0 in the vertexA®"(k k’,q) from
between the conductivity with and without vertex correc-Eq. (40). In three dimensions this singularity is integrable
tions, except for concentrations=0.53% An analogous pic-  and mean-field theory can, in principle, deliver good numeri-
ture is obtained for the conductivity as a function of thecal results. A mean-field theory is reliable if the contribution
disorder strengthd, where the differences are significant to the conductivity from small momenta around the critical

only aroundA~1/y/2, Fig. 4. value k+k’=0 of the Cooperon pole does not dominate.
x=03, A=0.7 x=03, A=12
0.7 . . - . .
N mf-vc 0.45 mf-ve
06 X 1 0.4
05 | | 035 f
03t
g 04 1 g 025t
% o3t 1 & o2t
0z | | 015 f
01t
0.1 F T 005 |
0 0

E3

FIG. 2. Real part of the static conductivity as a function of energy for concentratioh3 and two values of disorder strengih
=0.7 andA=1.2.
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FIG. 3. Real part of the static conductivity as a function of FIG. 4. Real part of the static conductivity as a function of
concentration for the half-filled band amd=0.7. disorder strength for the half-filled band are-0.5.

This cannot be decided from the mean-field theory itself but
from small-momentum or long-distance approximations fac

torizing the singulaknonanalyti¢ contribution to the vertex (41) to assess quantitatively the role of the vertex correc-

func'uon. ApprOX|mat|on_s with a Iong—rgnge spatial COher'tions. However, the evaluation of E¢41b) is numerically
ence differ from mean-field, local theories where no prefer- C . . 7
ery demanding ind=3. It is meaningful to use explicit

ence in momenta is present and the spatial coherence is al ) . .
sent. To check applicability of the mean-field approximationmome_ntum mtegrals only '.f we ex_pect s_tron_gly nonuniform
in our approach we can use a small-momentum expansioﬂehav"_)r of the mtegrand in the first Br|II.oum zone. Whe_n
for the bubble functiony® (q;w+i0",w+i07), defined in the wglght of the pole in the vgrtex functions is small, it is
Eq. (25), in the representation of the vert&", Eq.(40). If ~ €xPedient to reduce the numerical expense. We use the sim-
the leading order of the small-momentum expansion propllflcanon justified by the asymptotic limit of high lattice
duces the conductivity of the order of the mean-field for-dimensions and replace the momentum integrals with energy
mula, then the mean-field approximation is qualitatively, and®ne€s as in the preceding subsection. Formé@ can be

If we know or expect that the effect of the Cooperon pole
s not critical for the static conductivity we can apply Eq.

to a certain extent also quantitatively, reliable. generalized to a typical mean-field form
Re(TalB
e? (VoG 1% (Vv gG2)
“\ox 2 2 ’NE 227 Re 2\A2 /22|
m 1+<vaUB|G+| VAL (1=AL |G )+ -(GH)[*—2 Re(y+ +(G%)%)] 1_<UaUBG+>A++<G+>

(49

where the lattice structure comes only via the density ohence have to add to a multiorbital generalization of (#8)
states. This formula, completely disregarding the existence contribution from terms with odd symmetry with respect to
of the diffusion and Cooperon poles, can be formally appliedhe time inversion absent in the one-orbital case. Following
in any lattice dimension. Ref. 34 we can represent the odd part of the conductivity as
In calculations of transport properties of alloys we have to
use more realistic electron models with orbital degrees of
freedom explicitly taken into account. This leads to a mul-
tiorbital situation to which the above expression is readily o o
generalizable. Each quantity is replaced by a matrix with X{L1=A X o0} Lm0 3G oG mim »
orbital indices and the multiplication is replaced by an ap- (50)
propriate matrix one. The multiorbital generalization of Eq.
(49 is not the only source of mean-field vertex corrections inwhereL,M are appropriate orbital indices. The CPA vertices,
realistic calculations. The multiorbital CPA also producespropagators, the bubble function and the velocityv are
vertex corrections as explicitly demonstrated in the framenow matrices in the orbital indices. Here we used the fact
work of the Korringa-Kohn-Rostoker CPA by ButfrWe that only the vertex™®" from the electron-hole channel con-

e? A A A o
Reaty'=7—2 (=on2 2 (0,6,6)i[x,-0)
oT LL" MM’
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tributes in the mean-field limit. Note that only the off- ok ak+q

diagonal elements of the velocity matrix can contribute to the A

conductivity, since the two velocitieglectrical currentsin “,g' ‘;}{’

the Kubo formula are not spatially correlated. Alaw x ,4' “o“ ,;f‘ ‘l\‘
The two parts of the mean-field conductivity Eq49) R N

and (50) enable us to analyze the role of the vertex correc- s

tions. As found earlier in the literatu¥e®® the CPA vertex ~ “¥ ek

corrections Eq.(50) generally increase the single-bubble £ 5 | owest-order correction to the completely two-particle
conductivity. It is due to the fact that the CPA vertex function jrrequcible vertex . = v, from the parquet approximation. The
Ie" from Eq. (239 contains only direct electron-hole mul- double-dashed line is the CPA local vertgx,, . The internal fer-
tiple scatterings that generally amplify the diffusion. The mion lines stand for the CPA off-diagonal propaga®f'".
even part of the mean-field conductivity E@9) is more
complex. It contains contributions from multiple scattering random potential. Representing the two-particle vertex via
from the electron-electron and the vertical channels. Th@gethe-Salpeter equations and irreducible vertices in each
former represent crossed scatterings in the vertex function Qhannel and utilizing the topological inequivalence of these
coherent backscatterings that hinder the electron propag@epresentations we derived a closed set of coufpedquet
tion. They generate the positive term in the denominator oxquations for the irreducible vertices. The irreducible verti-
the right-hand side of Eq49). The scatterings from the ver-  ces from the parquet equations were used in an integral form
tical channel produce negative corrections in the denominagf the Ward identity to determine the self-energy of the par-
tor of Eq.(49) and increase the CPA conductivity. Itis hence quet solution. In this way we completed the parquet equa-
clear that conductivity Eq49) has a richer structure than the tions to an approximation consistently determining all one-
CPA odd term Eq(50) and can either increase or decreaseand two-particle functions. The input to the parquet approxi-
the one-particle conductivity depending on the values of thgnation are the local CPA one-particle propagator and the
CPA local vertex functions. local two-particle vertex. Neither the form of the parquet
Both contributions to the mean-field conductivity EQs. equations nor the Ward identity may cause unphysical
(49) and (50) are of the same order of magnitude and com-ponanalyticities in the solution. Solutions to the parquet ap-
parably elaborate in the numerical evaluation. Since theyyroximation hence inherit the analytic properties of the CPA
completely disregard the singular behavior of the verteXnput and are free of spurious, unphysical behavior.
function atk + k’=0 one cannot eXpeCt that the vertex cor- The proposed diagrammatic imp|ementation of non'ocal
rections calculated from this mean-field appI’OXimation will Corrections to the CPA aims primarily at improving the CPA
produce drastic changes in the one-particle or semiclassicgo-particle functions on a long-range scale. Although there
Boltzmann conductivity. This is even true in low dimensionsjs no obvious small parameter controlling the nonlocal cor-
in d=1,2. The low-dimensional calculatioisserve only il-  rections to the CPA, systematic improvements of the local
lustrative purposes and have no physical significance, sincgpproximation are controlled via diagrams to the completely
the mean-field description breaks down there. Mean-field aﬁwo_partide irreducible vertex. In the parquet approxima_
proximations can efficiently be applied to the bulk conduc-tion the input isl = y, the local vertex from Eq(15). A first
tivity of alloys, but only the sum of the even and odd con-correctionAl to the input of the parquet approximation is
tributions Eq.(49) and Eq.(50) can at least qualitatively proportional toy*(G°™)8, where G°'f is the off-diagonal
estimate the trend toward electron localization, if present. glement of the CPA propagator, see Fig. 5. It means that in
the weak-disorder limit the parquet approximation is exact
V. CONCLUSIONS up to \_/7 whereas CPA only t()_/3 in_ powers of the rar_1do_r_n
potential. The parquet approximation represents a significant
We have developed a diagrammatic theory for constructsystematic improvement of the CPA in the weak-disorder
ing systematic approximations to nonlocal two-particle ver-limit. We showed that beyond the weak-disorder limit the
tex functions of noninteracting electrons moving in a randonparquet approximation contains the exact asymptotics of the
potential. The underlying idea of our approach is to treatwo-particle functions up tal~2. This fact we used in pro-
separately diagonal, local and off-diagonal, nonlocal eleposing a mean-field approximation for the electrical conduc-
ments of the two-particle vertex. To this purpose we used thévity with vertex corrections.
asymptotic limit of high spatial dimensions. In the stritt It is not, however, the weak-scattering limit where the
=oo |imit only the local one-particle propagator is relevant assets of the parquet approach to disordered systems lie. The
and the solution contains only single-site scatterings and regparquet approach is in particular appropriate for apprehend-
duces to the coherent-potential approximation. Beyond thigng spatial quantum coherence and backscattering effects.
limit we utilized ambiguity in the definition of the two- The parquet approximation even in the first iteratibigh-
particle irreducibility. We classified the nonlocal contribu- dimensional asymptotigscontains an infinite number of
tions to the two-particle vertex according to the type of the“crossed” two-particle diagrams. The weak localization with
two-patrticle irreducibility to which they belong. Like many- the Cooperon pole and a long-range spatial coherence from
body theories there are three topologically inequivalent irrebackscatterings are included. Most importantly, however, the
ducibility channels according to which pairs of propagatorsparquet equations for the irreducible two-particle vertex
interconnect spatially distinct two-particle scatterings on thefunctions are fully self-consistent. They can adequately deal
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with poles and divergences in the vertex functions and casequence ofompletenessf the eigenstates of the Hamilton

hence significantly change the diffusive character of the eleceperator. Completeness of the eigenstates reftamiserva-

tronic transport in low dimensions and strong disorder. tion of probabilityand is a necessary prerequisite for conser-
We hope that the presented parquet approach can bridgation of energy and other physical quantities.

the gap between the mean-field coherent-potential approxi- To prove the Ward identity28) with k;=k, we use the

mation on the one side and localization theories on the othaBethe-Salpeter equation in the electron-hole channel

side. Whether the parquet equations can actually describe the

localization transition must be decided by solving the full set ~(2) — B

of self-consistent coupled integral equations for the vertex G”vk'(zl’22)_Gll(zl)le(22)+i/jlzkm Gii(21) Gy (22)

functions and the self-energy. This has been left for future

research.

h 2
XAierjr’kr|r(zlyZZ)GJ(rj)’kkr(erzZ)' (A2)

We multiply it with the inverse one-particle propagators from
left and right and obtain

It is my pleasure to acknowledge numerous stimulating
and fruitful conversations with D. Vollhardt. | also benefited >, G| ()G (22)G(%) . (21,2,)
from discussions with B. VelickyJ. Kudrnovsky V. Drchal, i1’ '
and V. $icka on various aspects of the electronic transport
in random media. The work was supported in part by Grant
Nos. 202/98/1290 and 202/01/0764 of the Grant Agency of
the Czech Republic.

ACKNOWLEDGMENTS

h
=6”5k|+i/2k, ALY (20,22)GS) 0 (21,2). (A3)
Summing over the intermediate indices and using @)

we find
APPENDIX: ALGEBRAIC DERIVATION

OF WARD IDENTITIES _ _

2 G (206 ()G ) (21,2)
We use algebraic identities to prove Eg7) and the spe- il
cial case of Eq(28) with k;=k,.

1
The two-particle function can be defined as a matrix ele- = E[Gﬁl(zl)—Gijl(zz)].

ment of a tensofdirect productG(/)(z;,2,) =((ik|G(zy) We Eas(Ad) and (27) in Eq. (A3) and obtain th
A ; ’ - - e insert Egs. an in Eq. and obtain the
®G(2zy)]jl))a, Where the resolvent operator is defined a8 yesired identity for the self-energy

é(z)=[zi—f—\7]‘1 and the basis vectors are Wannier or-
bitals at the lattice sites. Using this lattice-space representa-
tion we define a “projection” onto the one-particle subspace
by equaling the basis states from the left and right Hilbert
space. When we sum over one set of indickes |) we re- It reads in momentum space
duce the direct product from the two-particle Hilbert space toE(k 2)—3.(K.2,)

an operator multiplication in the one-particle Hilbert space.”* "' “1 2
Ward identity(27) is then a consequence of an operator iden-
tity

(Ad)

AS =2 A 1(20,2)AG (A5)
j!k!

1
N > Ak, 21k, 255K = K)[G(K',2) ~G(K',2,)].
k/

[z,1-H] Y [z,1-A]! (AB)

Analogously we can derive a Ward identity for the vertex

_ -1 1 S1-1 1 S1-1
=(z,—2 z11—H —[z,1—H , -
(222 Hlz ] [z, 1" function from the electron-electron channel

(A1)
whereH =t+V. Identity (A1) holds for each configuration

of the random potentiaﬁ/ and after its configurational aver-
aging we obtain Eq27). Ward identity(27) is hence a con-

1
S(kiz) —2(—kz) = > A®&K,zy,—k',zyk' —K)
k!

X[G(k",z1) = G(=k',25)]. (A7)
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