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Parquet approach to nonlocal vertex functions and electrical conductivity of disordered electrons
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A diagrammatic technique for two-particle vertex functions is used to describe systematically the influence
of spatial quantum coherence and backscattering effects on transport properties of noninteracting electrons in
a random potential. In analogy with many-body theory we construct parquet equations for topologically
distinct nonlocal irreducible vertex functions into which thelocal one-particle propagator and two-particle
vertex of the coherent-potential approximation~CPA! enter as input. To complete the two-particle parquet
equations we use an integral form of the Ward identity and determine the one-particle self-energy from the
known irreducible vertex. In this way a conserving approximation with~Herglotz! analytic averaged Green
functions is obtained. We use the limit of high spatial dimensions to demonstrate how nonlocal corrections to
the d5` ~CPA! solution emerge. The general parquet construction is applied to the calculation of vertex
corrections to the electrical conductivity. With the aid of the high-dimensional asymptotics of the nonlocal
irreducible vertex in the electron-hole scattering channel we derive a mean-field approximation for the con-
ductivity with vertex corrections. The impact of vertex corrections onto the electronic transport is assessed
quantitatively within the proposed mean-field description on a binary alloy.
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I. INTRODUCTION

Randomness in the chemical composition or due to
fects in solids causes elastic scatterings of charge car
that influence significantly their motion and reduce their m
bility. To describe the effects of randomly distributed scatt
ers reliably one has to use approximations taking satisfa
rily into account quantum coherence between scatte
events. In particular, self-consistence between one- and
particle functions is needed if we want to assess the rol
backscatterings and the backflow on transport propertie
electrons in a random potential.

A simplest possibility to account for quantum coheren
is to sum all multiple scatterings on a single scatterer
self-consistent theory with all single-site scatterings is
coherent-potential approximation~CPA!, which was devel-
oped in the end of the 1960s.1,2 It is a mean-field approxi-
mation for disordered~noninteracting! electrons. It provides
a local coherent potential~self-energy! that, in the thermody-
namic limit, comprises the effects of the random potential
the motion of the single electron. The CPA, as other me
field theories, however, suppresses spatial coherence
tween distinct scattering centers and the moving electr
feel the influence of the random potential only via an av
aged medium.

CPA has proven very successful in the description of o
electron properties at the model level as well as in reali
calculations of random alloys.3,4 Although this approxima-
tion can as well describe two-particle averaged functio
due to the lack of spatial coherence, it fails to capture ba
scattering effects on the transport coefficients and the e
trical conductivity. The two-particle CPA vertex does not d
pend on the transfer momentum between the incoming
the outgoing particles and hence the CPA conductivity
duces in the single-band bulk systems to a contribution fr
a single particle-hole bubble. There are no vertex correcti
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to the electrical conductivity within the standard single-ba
CPA.5

Vertex corrections to the single-bubble one-electron c
ductivity are important in various situations. In low dime
sions (d<2) or for sufficiently strong disorder they lead t
Anderson localization.6 Further on, tunnel conductance o
transport through multilayered dirty metals are essentia
influenced by vertex corrections.7 To obtain more realistic
results for the electronic transport in dirty metals one has
go beyond the standard CPA to the conductivity and deve
approximations containing spatial quantum coherence
backscattering contributions.

There is a long history of efforts to improve upon th
mean-field CPA description of disordered electrons.8 Most of
them concentrate on single-particle properties and impr
upon the CPA in the self-energy~coherent potential!. A natu-
ral extension of the single-site theory is to use clusters s
consistently embedded in an averaged medium. Howe
apart from the traveling-cluster approximation,9,10 extensions
in the lattice space fail to warrant global analytic propert
of the solution and hence spurious effects can emerge.11,12

Only recently a cluster expansion in momentum space
suggested that warrants analytic~Herglotz! properties of the
resulting averaged propagators and the self-energy at
stage.13 Cluster approximations with self-energy diagram
improve also two-particle vertex functions. However, clus
approximations reduce spatial quantum coherence only
discrete set of lattice sites or momenta. Such approximat
then remain perturbative in the coherence range and ca
lead to Anderson localization to which we need long-ran
coherence with infinite-many backscattering or ‘‘crosse
diagrams.14,15

Using cluster approximations to improve upon the me
field transport properties means that we have first to ext
the one-electron calculation scheme. A tremendous effor
the one-particle level is to be exerted to obtain signific
changes in transport properties. Cluster expansions are h
not very effective in calculating quantum coherence effe
in the electrical conductivity. It is more efficient to develo
©2001 The American Physical Society15-1
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approximations directly for two-particle functions.
A suitable framework for developing two-particle a

proximations is a parquet approach devised within quan
many-body theory.16–19 It is an advanced scheme of summ
tion of Feynman~many-body! diagrams based on renorma
izations of two-particle vertex functions. Its main idea is
utilize ambiguity in the definition of the two-particle irreduc
ibility. Each two-particle irreducibility, i.e., the way pairs o
one-particle propagators are cut without disconnecting
diagram, defines a scattering channel and a Bethe-Salp
equation for the full two-particle vertex. Since different tw
particle channels are topologically inequivalent, a solution
the Bethe-Salpeter equation from one channel~reducible
function! is irreducible in the other channels where it is us
in the input~integral kernel! in the respective Bethe-Salpet
equations. Thereby a set of coupled, nonlinear self-consis
equations for the two-particle irreducible vertices~parquet
equations! is obtained. Parquet equations have been app
onto various many-body problems, but no significant attem
has been made to use the parquet-type renormalizatio
Feynman diagrams in disordered systems.

In this paper we develop a parquet approach to syst
with noninteracting electrons subjected to a random po
tial. We show how to construct controlled approximatio
directly for the two-particle vertex using the idea of parqu
diagrams. Since the parquet construction applies only to n
local propagators, we start from the limit of high spatial d
mensions where the diagonal and off-diagonal one-part
propagators separate and the CPA becomes exact.21 Beyond
this limit we construct parquet equations for two-particle
reducible vertices from Bethe-Salpeter equations with a p
turbed nonlocal one-particle propagator and the local tw
particle vertex as input. Next we use a Ward identity
determine the self-energy and the full one-particle avera
propagator from the calculated vertex functions. This s
consistent procedure warrants conservation laws and ana
properties of the one-particle functions whenever the so
tions to the two-particle parquet equations are analytic.

The unrestricted system of parquet equations is
soluble in general. We hence resort to high spatial dim
sions where the two-particle self-consistence is natur
suppressed and one obtains the asymptotic form of the
particle vertex in closed form.22,20We use this explicit resul
to derive a mean-field approximation for the electrical co
ductivity containing vertex corrections. We then choose
binary alloy to make quantitative assessments of the imp
of vertex corrections on the bulk conductivity.

The paper is organized as follows. We derive in Sec. II
parquet equations for vertex functions of disordered e
trons. In Sec. III we show how Ward identities can be used
determine the self-energy from a given irreducible ver
function so that we preserve conserving character of the
proximation. The electrical conductivity with the irreducib
vertex function in the electron-hole scattering channel is
rived in Sec. IV where we use the result to construct a me
field approximation for the electrical conductivity with ve
tex corrections. In Sec. V we first quantitatively assess
mean-field approximation with vertex corrections on an
ample of a binary alloy in high spatial dimensions. Then
11511
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reliability of mean-field approximations in realistic calcul
tions of bulk transport properties of metallic alloys is briefl
discussed.

II. CALCULATION OF THE VERTEX FUNCTION

We use a tight-binding Anderson model of noninteracti
spinless electrons moving in a random, site-diagonal po
tial Vi described by a Hamiltonian

ĤAD5(̂
i j &

t i j ci
†cj1(

i
Vici

†ci . ~1!

The values of the random potentialVi are site independen
and obey a disorder distributionr(V). I.e., a function de-
pending on the random potentialVi is averaged via

^X~Vi !&av5E
2`

`

dVr~V!X~V!. ~2!

Solving the problem of disordered electrons in thermod
namic equilibrium amounts to finding the averaged free
ergy defined as

Fav52kBT^ ln Tr exp$2bĤAD~ t i j ,Vi !%&av , ~3!

where the trace Tr runs over the electronic degrees of f
dom in the Fock space. However, the averaged free en
does not contain the entire information about the disorde
system. In particular we cannot derive transport proper
and the response to disturbing external forces from it.
need to know averaged products of Green functions for
ferent energies. To include external perturbations into
thermodynamic description we introduce a new quan
Vn(E1 ,E2 , . . . ,En ;U). It is a generalized averaged gran
potential withn energy states coupled via an external pert
bationU. We define

Vn~E1 ,E2 , . . . ,En ;U !

52kBTK ln Tr expH 2b (
i , j 51

n

~ĤAD
( i ) d i j

2EiN̂
( i )d i j 1DĤ ( i j )!J L

av

, ~4!

where we assigned to each~complex! energyEi a separate
Hilbert state space andDĤ ( i j )5(klUkl

( i j )ck
( i )†cl

( j ) . Potential
Vn(E1 ,E2 ,En ;U) is a generating functional for average
products of Green functions up to thenth order. In practice,
within linear-response theory we will use only one- and tw
particle Green functions, i.e.,Vn(E1 ,E2 , . . . ,En ;U) is ex-
panded up toU2.

Averaged Green functions~propagators! are fundamental
quantities with the aid of which we can calculate all chara
teristics of the disordered system. We can use moment
good quantum numbers, since translational invariance is
stored for the averaged quantities. Averaged propagators
5-2
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PARQUET APPROACH TO NONLOCAL VERTEX . . . PHYSICAL REVIEW B64 115115
then be expressed as sums of Feynman diagrams for d
dered systems in analogy to the standard many-b
diagrams.23

The averaged one-particle propagator is represented
the aid of the self-energy or a coherent potentialS(k,z) that
comprises the influence of fluctuations of the rand
potential onto the motion of the single electron. We write

G~k,z!5
1

z2e~k!2S~k,z!

5
1

N (
i j

e2 ik(Ri2Rj )^@z1̂2 t̂2V̂# i j
21&av , ~5!

where the first equality expresses the Dyson equation c
necting the irreducible one-particle function~self-energy!
with the one-particle averaged propagator.

The averaged two-particle propagator is defined as

Gi j ,kl
(2) ~z1 ,z2!5^@z11̂2 t̂2V̂# i j

21@z21̂2 t̂2V̂#kl
21&av ~6!

to which we define the Fourier transform to momentu
space as follows:

G(2)~k1 ,z1 ,k2 ,z2 ;q!5
1

N (
i jkl

e2 ik1Riei (k11q)Rj

3e2 i (k21q)Rkeik2RlGi j ,kl
(2) ~z1 ,z2!.

~7!

The two-particle Green functionG(2)(k1 ,z1 ,k2 ,z2 ;q) con-
tains also uncorrelated motion of two separate particles.
actual measure of a correlated motion of two particles i
vertex function

G~k1 ,z1 ,k2 ,z2 ;q!

5G21~k1 ,z1!G21~k2 ,z2!@G(2)~k1 ,z1 ,k2 ,z2 ;q!2d~q!

3G~k1,z1!G~k2,z2!#G21~k11q,z1!G21~k21q,z2!.

~8!

In analogy to the Dyson equation for the one-parti
propagator we can represent the two-particle vertex with
aid of a two-particle irreducible vertexL and a Bethe-
Salpeter equation. Unlike the one-particle case, the Be
Salpeter equation is not defined unambiguously wheneve
work with nonlocal propagators. This fact we utilize later
the parquet construction. For the present moment we take
Bethe-Salpeter equation in the electron-hole channel des
ing multiple scatterings of a pair of an electron and a h
and write

G~k1 ,z1 ,k2 ,z2 ;q!

5L~k1 ,z1 ,k2 ,z2 ;q!1
1

N (
q9

L~k1 ,z1 ,k2 ,z2 ;q9!

3G~k11q9,z1!G~k21q9,z2!G~k11q9,z1 ,

k21q9,z2 ;q2q9!. ~9!
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The one- and two-particle irreducible functions, i.e., se
energyS(k,z) and vertexL(k1 ,z1 ,k2 ,z2 ;q) are the quanti-
ties that we have to approximate in order to determine
one- and two-particle characteristics of a disordered syst
The two functions are not completely independent. In a c
serving and thermodynamically consistent approximation
have a generalized differential Ward identity24

L~k1 ,z1 ,k2 ,z2 ;q!5
dS~k1 ,z1 ,k2 ,z2 ;U !

dG~k11q,z1 ,k21q,z2 ;U !
U

U50

.

~10!

We could use it for the determination of the irreducible ve
tex if we knew explicitly the self-energy as a functional
the averaged propagator in the presence of the external
turbanceU. It is rarely the case. We, however, show in Se
III how to use an integral form of the Ward identity to dete
mine the self-energy from the known irreducible vertexL. It
is then sufficient to construct an approximation for the tw
particle irreducible vertexL, which will be done in the
following subsections.

A. Local approximation

We start building approximations to the two-particle ve
tex function from a local solution where we completely lo
momentum dependence. The local approximation means
we use only site-diagonal one-particle propagators in the
turbation diagrammatic expansion for the irreducible fun
tions. The local approximation is best derived within t
Baym-Kadanoff renormalized perturbation expansion in
limit of high spatial dimensionsd→`.22 In this limit we
have the following asymptotics for the one-partic
functions:

G5Gdiag@d0#1Go f f@d21/2#, (5(diag@d0#1(o f f@d23/2#
~11!

leading to separation of the diagonal~local! and the off-
diagonal ~nonlocal! parts. In the strict limitd5` we can
completely neglect the off-diagonal elements and recover
CPA for the self-energy. The defining equation in the pr
ence of the external local disturbanceU reads

Ĝ~z1 ,z2 ;U !5^@Ĝ21~z1 ,z2 ;U !1Ŝ~z1 ,z2 ;U !2V̂i #
21&av ,

~12!

whereĜ(z1 ,z2 ;U)5N22(k1k2
Ĝ(k1 ,z1 ,k2 ,z2 ;U) is the lo-

cal element of the matrix one-particle propagator. The ma
character is forced by the external disturbance which mi
different complex energies. Since we are interested only
averaged two-particle functions in equilibrium, we can res
to two energies and a two-by-two matrix
5-3
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V. JANIŠ PHYSICAL REVIEW B 64 115115
Ĝ21~k1 ,z1 ,k2 ,z2 ;U !

5S z12e~k1!2S~z1! U2S~z1 ,z2 ;U !

U2S~z2 ,z1 ;U ! z22e~k2!2S~z2!
D ,

~13!

wheree(k) is the lattice dispersion relation.
We use the Ward identity~10! to determine the two-

particle irreducible vertex in equilibrium

L~z1 ,z2!5
dSU~z1 ,z2!

dGU~z1 ,z2!
U

U50

5
1

G~z1!G~z2! F12 K 1

11~S~z1!2Vi !G~z1!

3
1

11~S~z2!2Vi !G~z2!L
av

21G . ~14!

The full vertex function is then determined from the Beth
Salpeter Eq.~9! where the one-particle propagators are
placed with the local ones. The integral equation reduce
an algebraic one and we obtain an explicit representatio

g~z1 ,z2!5
L~z1 ,z2!

12L~z1 ,z2!G~z1!G~z2!
. ~15!

For later convenience we denoted the full local two-parti
vertex with the lower caseg.

Note that the above local approximation coincides w
the CPA only for the self-energy and the local part of t
vertex function. The CPA two-particle vertex is obtain
from Eq. ~9! where only the irreducible vertexL(z1 ,z2) is
assumed local, but not the one-particle propagators.5 Here
we deliberately separated the contribution from the o
diagonal propagator. We describe it within the parquet
proach as a correction to the local approximation to
vertex function.

B. Nonlocal contributions: Parquet approach

To go beyond the local approximation we have to dist
guish two one-particle propagators. First, we have the pro
gator from the local approximation that we denoteGloc(k,z),
from which we actually need only the local eleme
Gloc(z)5N21(kG

loc(k,z). This propagator is defined b
the Dyson equation with the local self-energyS(z) from Eq.
~12! with U50. Second, we have to introduce a new prop
gator G(k,z) that is defined by the Dyson equation with
nonlocal self-energyS(k,z) to be determined later. It is
treated in the equations for the two-particle vertex as an
ternal function with appropriate analytic properties. In t
expansion beyond the local approximation we use a p
turbed propagatorG̃(k,z)5G(k,z)2Gloc(z) to avoid mul-
tiple summations of single-site diagrams contained in
local approximation.

We classifynonlocalcontributions to the two-particle ver
tex by the type of the correlated two-particle propagati
We either simultaneously propagate an electron and a ho
11511
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two electrons~holes!. Diagrammatically it means that w
connectspatially distincttwo-particle scattering events wit
antiparallel or parallel pairs of one-particle propagators. M
tiple scatterings of pairs of the same type define a channe
the two-particle irreducibility. We call a diagram two-partic
irreducible if it cannot be split into separate parts by cutti
simultaneously either electron-hole or electron-elect
propagators. The two definitions of the two-particle irredu
ibility lead to topologically inequivalent irreducible func
tions and to different Bethe-Salpeter equations for the
vertex. In each Bethe-Salpeter equation the two-part
functions are interconnected via one-particle propagators
different manner. We can generically represent the Bet
Salpeter equations as

G~k1 ,z1 ,k2 ,z2 ;q!5L̃a~k1 ,z1 ,k2 ,z2 ;q!

1@L̃aG̃G̃(G#~k1 ,z1 ,k2 ,z2 ;q!.

~16!

We used( for the channel-dependent multiplication of th
two-particle functions. HereL̃a is the irreducible vertex in
thea channel with perturbed propagatorsG̃. It relates to the
standard irreducible vertex functionLa from Bethe-Salpeter
equations with full one-particle propagators as follows:

La~k1 ,z1 ,k2 ,z2 ;q!

5L̃a~k1 ,z1 ,k2 ,z2 ;q!

2@L̃aGloc~z1!Gloc~z2!(La# ~k1 ,z1 ,k2 ,z2 ;q!. ~17!

Although the irreducible functions are different in differe
channels the solution of the Bethe-Salpeter equations m
always be the same, the full two-particle vertexG. The ma-
trix multiplication in momentum space in the electron-ho
and electron-electron channels, respectively, explicitly re

@X̂GG•Ŷ#~k1 ,z1 ,k2 ,z2 ;q!

5
1

N (
q9

X~k1 ,z1 ,k2 ,z2 ;q9!G~k11q9,z1!

3G~k21q9,z2!Y~k11q9,z1 ,k21q9,z2 ;q2q9!,

~18a!

@X̂GG+Ŷ#~k1 ,z1 ,k2 ,z2 ;q!

5
1

N (
q9

X~k1,z1,k21q9,z2;q2q9!G~k11q2q9,z1!

3G~k21q9,z2!Y~k11q2q9,z1 ,k2 ,z2 ;q9!. ~18b!

Electron-hole and electron-electron channels are not
only inequivalent representations of multiple two-partic
scatterings. If we allow for hopping between distant sites
no longer can distinguish between multiple scatterings
distinct electron-hole pairs or nonlocal self-scatterings o
single particle, i.e., scatterings between the incoming and
5-4
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outgoing particles at the two-particle vertex. We hence h
to introduce a third two-particle irreducibility and Beth
Salpeter equation. We call this third type of two-particle sc
terings ‘‘vertical channel,’’ since we renormalize only on
line of the pair and the ladder of multiple scatterings gro
‘‘vertically’’ above ~below! the two-particle vertex. We can
write the third multiplication scheme for two-particle qua
tities for the upper particle line~with energyz1)

@X̂GG!Ŷ#~k1 ,z1 ,k2 ,z2 ;q!

5
1

N (
k9

X~k1 ,z1 ,k11q,z1 ;k92k1!G~k9,z1!

3G~k91q,z1!Y~k9,z1 ,k2 ,z2 ;q! ~18c!

and for the lower one~with energyz2)
p
c
n

11511
e

t-

s

@X̂!GGŶ#~k1 ,z1 ,k2 ,z2 ;q!

5
1

N (
k9

X~k1 ,z1 ,k9,z2 ;q!G~k9,z2!G~k91q,z2!

3Y~k9,z2 ,k91q,z2 ;k22k9!. ~18d!

In the vertical channel only one energyz1 or z2 is renormal-
ized. The vertical channel hence splits into two, upper a
lower parts according to whether we renormalize the first
the second energy in the pair.

Using the above multiplication schemes for different tw
particle channels we can write down the correspond
Bethe-Salpeter equations explicitly. We choose a subsc
a56 for complex half-planes from which we take the pa
ticle energy. We use the standard diagrammatic represe
tion for these equations and obtain for the electron-hole
electron-electron channels
~19a!

~19b!
le
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The Bethe-Salpeter equation in the vertical channel is s
into two. First we account for self-scattering vertex corre
tions to the upper line and then the same for the lower o
We then have

~19c!

~19d!
lit
-
e.

Note that it is the irreducible vertex from the electron-ho
channelLeh that determines the kernel of the integral Eq
~19c! and ~19d!. The new vertexLv enters only via the ab-
solute term. The irreducible verticesLv and Leh are not
generally equal and it is useful for our construction
distinguish the vertical channel from the other two.

In all these equations the double-prime momenta
summed over. The full lines stand for the perturbed propa
tors G̃(k,z). Otherwise we would encounter multiple sum
mations of single-site scatterings. Separation of the local
nonlocal contributions is important, since in the local a
proximation the three channels coincide. This can be s
from Eq.~18! when we insert a local propagator. This fact
physically obvious, since we cannot distinguish between
particle and the hole in single-site multiple scatterings. T
electron and the hole propagators are equal. There is
one two-particle irreducible vertexL(z1 ,z2) in the local
approximation~CPA!.

We now use the topological inequivalence of the thr
channels. This means that a reducible function from o
channel is irreducible in the other ones. If we denoteI the
completely irreducible two-particle vertex25 we can write
5-5
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V. JANIŠ PHYSICAL REVIEW B 64 115115
L̃a~k1 ,z1 ,k2 ,z2 ;q!

5I ~k1 ,z1 ,k2 ,z2 ;q!1 (
a8Þa

„G~k1 ,z1 ,k2 ,z2 ;q!

2L̃a8~k1 ,z1 ,k2 ,z2 ;q!…, ~20a!

since the reducible function is a difference between the
and the irreducible vertex from a given channel. We use
Bethe-Salpeter Eqs.~19! on the right-hand side of Eq.~20a!
from the correspondinga8 channel to get rid of the full
vertex. We then obtain a set of equations for the chan
dependent irreducible verticesL̃a. The completely irreduc-
ible vertex is input to these so-called parquet equations.
lowest-order contribution to the input function is the loc
two-particle vertexg. The parquet equations in a gener
form are

L̃a~k1 ,z1 ,k2 ,z2 ;q!5g~z1 ,z2!1 (
a8Þa

$12@L̃a8G̃G̃#(%21

3@L̃a8G̃G̃(L̃a8#~k1 ,z1 ,k2 ,z2 ;q!.

~20b!

Special attention should be paid to the vertical channel,a8
5v, where we have a two-step construction and Bet
Salpeter Eqs.~19c! and~19d!. The second term on the righ
hand side of Eq. ~20b! should be replaced by$1
2@L̃ehG̃G̃#!%21L̃v$12!@G̃G̃L̃eh#%212L̃v.

Equations~20! constitute the parquet approximation f
the irreducible vertices for the given one-particle propaga
G(k,z), Gloc(z) and the local two-particle vertexg(z1 ,z2),
11511
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that again is a function ofGloc from Eq. ~15!. The latter
propagator is determined from the local approximation, CP
The former is treated here as a function of a self-ene
S(k,z) which we connect to the vertex functions later o
Parquet Eqs.~20b! form a set of nonlinear integral equation
self-consistently determining the two-particle irreducib
vertex functionsLa@S;Gloc#.

The parquet equations represent a substantial extensio
the local approximation. They are, however, much more d
ficult to solve than cluster or other short-range extensions
the CPA at the one-particle level. To get a feeling of how
solution to the parquet equations looks we resort to
asymptotic limit d→` where the corrections to the loca
vertex g(z1 ,z2) in Eq. ~20b! asymptotically vanish.22 The
two-particle self-consistence becomes asymptotically ins
nificant and such a situation can be dealt with exactly.

C. Asymptotic limit of high spatial dimensions

We know that the off-diagonal, nonlocal elements a
scaled to zero in high dimensions and loose their weight w
respect to the local ones.26 However, when summed over th
lattice sites they can produce finite contributions even in
limit d5`. It is the case of the two-particle vertex. In th
leading asymptotic order the irreducible vertices in t
Bethe-Salpeter equations become local and coincide w
g(z1 ,z2). The asymptotic behavior of the full vertex the
depends upon which matrix element we calculate. We ob
different asymptotic solutions in different channels that
denoteGa.22 The corresponding asymptotic Bethe-Salpe
equations in the three channels have the following diagra
matic representation
~21a!

~21b!

~21c!
5-6
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“
~21d!

The one-particle propagator in the high-dimensional Bet
Salpeter equations equals the CPA solution,G(k,z)
5Gloc(k,z), or S(k,z)5SCPA(z). We sum over the inter-
mediate momenta in the Bethe-Salpeter equations. The
local part ofGloc(k,z) cannot be neglected and contribut
to the leading asymptotic behavior of the solution for fix
two-particle momenta.

The Bethe-Salpeter equations~21! in high dimensions be-
come algebraic and can be solved in closed form. If we
note

Y6~q;z1 ,z2!5
1

N (
k

Go f f~k,z1!Go f f~q6k,z2!, ~22!

the solutions in the three channels are

Geh~q;z1 ,z2!5
g~z1 ,z2!

12g~z1 ,z2!Y1~q;z1 ,z2!
, ~23a!

Gee~q;z1 ,z2!5
g~z1 ,z2!

12g~z1 ,z2!Y2~q;z1 ,z2!
~23b!

Gv~q;z1 ,z2!5g~z1 ,z2!)
i 51

2
1

@12g~zi ,zi !Y
1~q;zi ,zi !#

.

~23c!

The three different vertex functions represent the th
asymptotic solutions we obtain in the limit of high spat
dimensions. Each solution is characterized by a two-part
conserved momentum. They are in the notation from the p
ceding subsectionk12k2 , k11k21q, and q for the
electron-hole, electron-electron, and the vertical channel
spectively. The full vertexG in high dimensions reduces to
sum

G~k1 ,z1 ,k2 ,z2 ;q!5Geh~k12k2 ;z1 ,z2!1Gee~k11k2

1q;z1 ,z2!1Gv~q;z1 ,z2!22g~z1 ,z2!,

~24!

where we had to subtract appropriately the local vertex
avoid double counting. Note that the CPA vertex as deriv
by Velický5 equalsGeh and does not correspond to the lea
ing high-dimensional asymptotics of the exact two-parti
vertex.

Representation~23! uses the natural high-dimension
separation of the diagonal and off-diagonal parts of the o
particle propagator. We can rewrite the asymptotic solut
11511
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e-
n

~23! to another form with full one-particle propagator
which is more appropriate for finite-dimensional system
We denote a two-particle bubble

x6~q;z1 ,z2!5
1

N (
k

G~k,z1!G~q6k,z2!. ~25!

If we further use relation~15! we obtain a new representatio
for the two-particle vertex

G~k1 ,z1 ,k2 ,z2 ;q!

5L~z1 ,z2!H 1

12L~z1 ,z2!x1~k22k1 ;z1 ,z2!

2
2

12L~z1 ,z2!G~z1!G~z2!

1

)
i 51

2
12L~zi ,zi !G~zi !G~zi !

@12L~zi ,zi !x
1~q;zi ,zi !#

12L~z1 ,z2!G~z1!G~z2!

1
1

12L~z1 ,z2!x2~k11k21q;z1 ,z2!
J , ~26!

whereL(z1 ,z2) is the CPA irreducible vertex.
Note that the asymptotic solution for the two-particle ve

tex can no longer be represented via a single Bethe-Salp
equation. It is because we have three asymptotically equ
important but topologically different contributions. Each
them is marked by a different fixed two-particle momentu

III. WARD IDENTITIES AND THE SELF-ENERGY

In the preceding section we derived a closed set of p
quet equations determining the irreducible two-particle v
tex functions from the given propagatorsGloc(z) and
G(k,z). The former is the site-diagonal part of the CP
propagator but the latter has not yet been specified. I
determined by a self-energyS(k,z) from the Dyson Eq.~5!.
We have not yet demanded any relation between the s
energy and the vertex functions. We, however, know t
thermodynamic consistence demands that the irreduc
one- and two-particle functions be not independent. They
related by the differential Ward identity~10!. To turn the
parquet equations into a conserving approximation we h
to fulfill the Ward identity and relate the self-energy to th
solution of the parquet equations. The functional differen
identity ~10! is of little practical help in calculating the self
energy from the irreducible two-particle functions. Fort
nately there are integral forms of the Ward identity relati
one- and two-particle averaged functions that can
used to determine the self-energy from a known two-part
irreducible vertex.

A first integral Ward identity was derived by Velicky´5 in
the framework of the coherent-potential approximation.
5-7
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holds quite generally beyond the CPA and reads in
notation

(
j

Gi j , jk
(2) ~z1 ,z2!52

1

Dz
DGik , ~27a!

where Dz5z12z2 , DGi j 5Gi j (z1)2Gi j (z2). We show in
the appendix that this identity is a consequence of compl
ness of the eigenstates of the Hamiltonian and hence of p
ability conservation. This identity can be rewritten in m
mentum space

1

N (
q

G(2)~k,z1 ,k,z2 ;q!52
1

Dz
@G~k,z1!2G~k,z2!#.

~27b!

Ward identity~27! is inconvenient for application, since
connects one- and two-particle averaged functions. We be
have a relation between irreducible one- and two-part
functions like Eq.~10!. An integral form of such a Ward
identity was proven diagrammatically by Vollhardt an
Wölfle27 and reads

S~k1 ,z1!2S~k2 ,z2!

5
1

N (
q

Leh~k1 ,z1 ,k2 ,z2 ;q!

3@G~k11q,z1!2G~k21q,z2!#. ~28!

The diagrammatic derivation of the Vollhardt-Wo¨lfle identity
~28! utilizes a symmetry of the Anderson disordered mo
but does not establish a direct relation to conservation l
as the derivation of the Velicky´ identity ~27!. We show in the
appendix that the Vollhardt-Wo¨lfle identity with k15k2 fol-
lows directly from Eq.~27! and the Bethe-Salpeter equatio
At least this simplified form of the Vollhardt-Wo¨lfle identity
can be shown to be a consequence of probab
conservation.28

To complete the parquet approximation for the tw
particle irreducible vertex functions we can use Eq.~28! for
k15k2 the boundary values of the complex energies alo
the real axis. We chosez15v1 andz25v2 wherev65v
6 ih andh↘0. We obtain a relation

Im S~k,v1!

5
1

N (
k8

Leh~k,v1 ,k,v2 ;k2k8!Im G~k8,v1!,

~29a!

determining the imaginary part of the self-energy along
real axis from the known irreducible vertex in the electro
hole channel. A similar formula can be derived for the irr
ducible vertex from the electron-electron channel, cf. the
pendix.

Next we rely on analytic properties of the self-energy
the upper and lower complex half-planes and determine
real part along the real axis from the Kramers-Kronig re
tion
11511
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ReS~k,v1!5PE
2`

` dv8

p

Im S~k,v18 !

v82v
. ~29b!

The self-energy from the cut along the real axis can be a
lytically continued to energies in the upper and lower co
plex half-planes. The one-particle perturbed propag
or from the parquet Eqs.~20b! can now be defined from the
irreducible vertex via

G̃~k,v1!5@v12e~k!2S~k,v1!#212Gloc~v1!
~30!

with the self-energy from Eq.~29! and the local propagato
from Eq. ~12!.

Equations~29! and~30! complete the parquet approach
disordered systems and make it a consistent and conse
scheme approximating simultaneously both the one-
two-particle irreducible functions. Neither the Bethe-Salpe
Eqs. ~20b! nor Eqs.~29! violate analytic properties, unles
there is a transition to another phase such as Anderson lo
ization. The analyticity of the parquet approximation in t
diffusive regime is then completely determined by its inp
the two-particle local CPA vertexg(z1 ,z2) that is known to
possess Herglotz analyticity.29

The advantage of the parquet approach to disordered
tems is that we do not need to bother about the diagra
contributing to the self-energy to obtain a consistent appro
mation with the proper analytic behavior of the averag
Green functions.30 An explicit sufficient condition for analy-
ticity of a solution of the parquet approximation from E
~29a! is

Leh~k,v1 ,k,v2 ;q!>0. ~31!

It can be checked in each step of iterations toward the
solution of the parquet approximation for the one- and tw
particle irreducible functions.

IV. ELECTRICAL CONDUCTIVITY

The CPA constitutes a rather good approximation for
one-particle self-energy but completely fails to incorpora
coherence in the propagation of pairs of particles. The e
phasis in the parquet approach is hence laid on a system
construction of diagrammatic approximations for nonloc
two-particle functions, in particular those determining tran
port properties and reflecting Anderson localization. In t
section we show how a solution of the parquet a
proximation can be used in the calculation of the electri
conductivity.

We use a Kubo formula for the electrical conductivi
with the current-current correlation function. Ifsab is the
complex conductivity andPab the current-current correla
tion function we can write31

sab~q,E1!5
i

E
Pab~q,E1!, ~32!

where againE15E1 i01. The current-current correlation
function can be expressed via a Kubo formula with the f
two-particle vertexG,
5-8
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Pab~q,inm!5
e2

4m2

1

N2 (
k,k8

@]a~e~k1q!2e~2k!!

3]b~e~k81q!2e~2k8!!#kBT

3 (
n52`

`

$G~k,ivn!G~k1q,ivn1 inm!

3@d~k2k8!1G„k,ivn ,k1q,i~vn1nm!;k82k…

3G~k8,ivn!G~k81q,ivn1 inm!#%. ~33!

Here vn5(2n11)pT and nm52mpT are Matsubara fre-
quencies.

We are actually interested only in the real part of t
complex conductivity for real energies. We can then anal
cally continue the expression on the right-hand side of
~33!. For the real part of the conductivity we obtain

Resab~q,E!

52
e2

4

1

N2 (
k,k8

„va~k1q!1va~k!…~va~k81q!1vb~k8!!

3
1

2i (
s

s
1

2i (
t

tE
2`

` dv

p

f ~v1E!2 f ~v!

E

3$G~k,v1 is01!G~k1q,v1E1 i t01!

3@d~k2k8!1G~k,v1 is01,

k1q,v1E1 i t01;k82k!

3G~k8,v1 is01!G~k8,v1 i t01!#%, ~34!

where f (E) is the Fermi function and we denoted the gro
velocity va(k)5m21]e(k)/]ka ands,t561. In most situ-
ations the static optical conductivity (q50,E50) at zero
temperature is of interest. Expression~34! reduces in this
case to

Resab5
e2

4p

1

N2 (
k,k8

va~k!vb~k8!(
st

~2st!

3G~k,EF1 is01!G~k,EF1 i t01!@d~k2k8!

1G~k,EF1 is01,k,EF1 i t01;k82k!

3G~k8,EF1 is01!G~k8,EF1 i t01!#. ~35!

We immediately see that the vertex functionG contributes to
the conductivity only if it depends on the transfer moment
k82k. It is due to the symmetrye(k)5e(2k) and va(k)
52va(2k). Since the CPA vertex does not depend on
transfer momentum, the vertex corrections to the sing
bubble electrical conductivity vanish in the CPA treatmen

Equation~35! is not appropriate for approximate calcul
tions of the electrical conductivity. The vertex correctio
contained inG are addedto the single-bubble conductivity
so that their negative contributions may reverse the posi
sign of the conductivity, thus leading to unphysical behav
11511
i-
.

e
-

e
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To avoid such a situation we represent the conductivity
a different way.20 We utilize the Bethe-Salpeter equation
the electron-hole channel to represent the vertexG via the
irreducible one,Leh. Inserting its formal solution into Eq
~35! we obtain a new, equivalent representation for t
conductivity

Resab5
e2

4p
N2(

k,k8
va~k!vb~k8!(

st
~2st!Gs~k!Gt~k!

3$12@Lst
ehGsGt#•%

21~k,k;k82k!, ~36!

where we denotedGs(k)5G(k,EF1 is01) and Lst
eh

5Leh(k,EF1 is01,k8,EF1 i t01;q). At least for not too
strong disorder, the norm of the operatoriLst

ehGsGti&1.
Hence the conductivity remains in this representation n
negative and free of spurious unphysical behavior. Howe
unlike formula ~35!, representation~36! is implicit and its
application is conditioned by our ability to solve the Beth
Salpeter integral equation in the electron-hole chan
explicitly.

A. Asymptotic expression in high dimensions

To be explicit in the assessment of the contributions of
two-particle vertex to the electrical conductivity we aga
resort to the limit of high spatial dimensions where we kno
the vertex and the self-energy explicitly. We use a hypercu
lattice with a dispersion relation e(k)52t/
(2d)1/2(n51

d coskn , where the group velocity isva(k)
5t/(2d)1/2sinka . Further on we use an analytic represen
tion for the two-particle bubble in high dimensions where
can be represented via a double Gaussian integral32

x6~q;z1 ,z2!52sgn~ Im z1Im z2!

3E
2`

`

dl1dl2u~l1Im z1!u~l2Im z2!

3exp$ i @l1x~z1!1l2x~z2!#

2 1
4 @l1

21l2
212l1l2X~q!#%, ~37!

with x(z)5z2S(z), X(q)51/d(n51
d cos(qn), and the Heavi-

side step function isu(x). Only parallel conductivity sur-
vives on a hypercubic lattice and the integrals over
Brillouin zone of squares of the velocity factorize, i.e.,

(
k

va~k!2Gs~k!Gt~k1q!5
t2

2d
xst~q!. ~38!

Using the above representations and simplifications
Eqs.~26! and~35! we obtain after straightforward manipula
tions an explicit asymptotic formula for the conductivity
high spatial dimensions,
5-9
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p

e2
Resaa5

t2

2d
^uIm G1u2&2

t4

16d2
ReH ^G1

2 &4

G1
4

3F K 1

~11G1~S12Vi !!2L
av

21G 2

1
^uG1u2&2

uG1u2 F K 1

u11G1~S12Vi !u2
L

av

21G
3S u^G1

2 &u2

uG1u2 F K 1

u11G1~S12Vi !u2
L

av

21G
22

^G1
2 &2

G1
2 F K 1

~11G1~S12Vi !!2L
av

21G D J ,

~39!

where we used abbreviationŝ G1&5N21(kG(k,EF

1 i01), ^G1
2 &5N21(kG(k,EF1 i01)2, and S15S(EF

1 i01). The one-particle propagators are the CPA ones
culated with the self-energy from the local approximati
~12!. Conductivity~39! depends explicitly only on the disor
der distribution and the dimensionality. The vertex contrib
tion, proportional tot4/d2, has a negative sign and we cann
guarantee positivity of the conductivity. Although the vert
corrections are negligible in the limitd→` they may turn
the overall sign of the conductivity negative for a fixed fin
dimensiond. Whether conductivity~39! for a fixed dimen-
sion is positive or negative depends on the band filling a
the disorder distribution and strength. Vanishing of t
asymptotic conductivity in this representation does not in
cate Anderson localization but merely a limit upon the
mension below which formula~39! cannot be applied.

B. Mean-field expression for vertex corrections
to the electrical conductivity

The limit of high spatial dimensions is usually used
order to set a mean-field approximation for a physical qu
tity. We showed in the preceding subsection that the ve
corrections are asymptotically less important than the o
electron, single-bubble term. But the vertex corrections m
in finite dimensions, turn static optical conductivity negativ
Expression~35! with the asymptotic solution for the verte
function in high dimensions is hence unsuitable for serv
as a mean-field approximation, since physical consistenc
the result is not guaranteed. We can take the leading sin
bubble term as a mean-field approximation for the cond
tivity as is actually common in the literature. Or, when w
are interested in the impact of vertex corrections, we hav
use representation~36! and evaluate its leading asymptot
behavior in high spatial dimensions as suggested recent20

The limit of high spatial dimensions enables one to so
the Bethe-Salpeter equation in the electron-hole channe
plicitly. We need only its leading asymptotic order. Note th
only the nonlocal part of the vertexLeh(k,k;k82k) having
odd parity with respect to reflections ink andk8 contributes
11511
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to the conductivity. We hence have to take its leading asym
totics into account. We derive it if we solve the Beth
Salpeter equation in the electron-hole channel forLeh in-
stead forG, i.e., Leh5G$•@GGG#11%21. Using vertexG
from Eq. ~24! one finds in the orderO(1/d)

Leh~k1 ,z1 ,k2 ,z2 ;q!

5L~z1 ,z2!1~12L~z1 ,z2!G~z1!G~z2!!2

3@G~k1 ,z1 ,k2 ,z2 ;q!2Geh~k22k1 ;z1 ,z2!#. ~40!

In the limit d→` the momentum convolutions decouple. T
derive the leading asymptotic contribution from the nonlo
part of Leh to the conductivity we have to calculate the m
mentum convolutions at the level of orderO(1/d) so that the
velocities appear in squares and the momentum integral
not vanish. Keeping only the leading-order terms in the
pansion of the denominator in Eq.~36! we end up with a
mean-field-like expression for the dc conductivity20

Resaa5
e2

4p (
st

~2st!
^va

2GsGt&

12^va
2GsGt&^Lst8a&

, ~41a!

where^va
2GsGt&5N21(kva(k)2Gs(k)Gt(k) and

^Lst8a&5
1

N2 (
k,k8

d2

dva~k!dva~k8!
Lst

eh~k,k;k82k!.

~41b!

The irreducible vertexLeh is taken from Eq.~40!. The one-
particle propagators are those from the local, cohere
potential approximation, since it is the local irreducible ve
tex L that determines the leading high-dimension
asymptotics of the self-energy in Eq.~29a!. However, only
terms with odd symmetry with respect to time inversion co
tribute to the vertex corrections to the conductivity and
have to go to the leading order of the nonlocal part ofLeh to
substantiate them. If one resorts to the local vertexL in Eq.
~41! one recovers the CPA conductivity of the sing
electron-hole bubble.

Conductivity ~41! with the CPA one-particle propagato
can be called a mean-field approximation for the conduc
ity with vertex corrections, since the vertex corrections a
determined from the asymptotic limit of high spatial dime
sions. It can be applied in finite dimensions ford.2 with the
appropriate lattice structure determined by the Brillou
zone. Note that the vertexLeh from Eq. ~40! contains a
diffusion pole from the electron-electron channel and the
tegral in Eq.~41b! diverges ind<2. Hence the mean-field
description of vertex corrections breaks down there. In th
low dimensions, where Anderson localization is expect
we have to use the full two-particle self-consistent parq
approximation in order to take properly into account the
fluence of the diffusion pole.
5-10
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V. MEAN-FIELD VERTEX CORRECTIONS
IN A BINARY ALLOY

A. High-dimensional approximation

Mean-field expression for the conductivity with verte
corrections~41! demands the evaluation of momentum in
grals over the Brillouin zone to determine the averaged
locity and the derivative of the vertexLeh. This must be
done numerically for each particular lattice. To assess qu
ar

cle
f
er

is

so

u
nt
h

s

11511
-
-

li-

tatively the influence of the mean-field vertex corrections
the conductivity and to demonstrate physical consistency
approximation~41!, i.e., overall non-negativity of the con
ductivity, we further simplify expression~41!. We approxi-
mate the momentum integrals by their high-dimensio
asymptotics, i.e., we replace the momentum integrals by
tegrals with the density of states. We use the same steps
Sec. II C when deriving the high-dimensional asymptotics
the conductivity. Using vertex~40! we straightforwardly de-
rive
an
Resaa5S e2t2

8pdD(
st

~2st!^GsGt&

11
t2

2d
^GsGt&Lst~12LstGsGt!@gst^Gs

2&^Gt
2&2gss^Gs

2&22gtt^Gt
2&2#

, ~42!

where^GsGt& is defined as in Eq.~39!. The verticesL andg are calculated in the local approximation from Sec. II A. We c
explicitly sum over the indicess,t and obtain

Resaa5S e2t2

4pdD H ^uG1u2&

11
t2

2d
^uG1u2&L12~12L12uG1u2!@g12u^Gs

2&u222 Re~g11^G1
2 &2!#

2Re
^G1

2 &

12
t2

2d
^G1

2 &3L11
2 J .

~43!
ns
For the explicit numerical calculations we choose a bin
alloy with the site-diagonal disorder distribution

r~V!5xd~V2D!1~12x!d~V1D!. ~44!

To simplify the relation between the one- and two-parti
functions we further choose a model density of states o
d5` Bethe instead of a hypercubic lattice. It is charact
ized by an equation

G~z!5
1

z2G~z!
, ~45!

where we set the hoppingt51 with the energy bandE
P(22,2). The self-energy for complex energies in th
model is then determined from a cubic equation
y

a
-

05G~z!322zG~z!21~12D21z2!G~z!2~z2~122x!D!
~46a!

with

S~z!5z2G~z!2G~z!21. ~46b!

We resort to real frequenciesEs5E1 is01 and take ad-
vantage of explicit representations of two-particle functio
via one-particle local propagators

^GsGt&5
GsGt

12GsGt
~47!

and
Lst5
1

GsGt
2

1

x

~E2Gs2D!~E2Gt2D!
1

12x

~E2Gs1D!~E2Gt1D!

. ~48!
er
on-
ver,
on-
ate
We use the above formulas together with a numerical
lution to the self-energy from Eq.~46! in Eq. ~43! to reach
quantitative results for the electrical conductivity. In partic
lar we are interested in the impact of vertex corrections o
the CPA conductivity. We set the formal parameter of t
lattice dimensiond53 in Eq. ~43!. Figure 1 shows the CPA
and the mean-field conductivity with vertex corrections a
-

-
o
e

a

function of energy for a fixed concentrationx50.5 and two
values of the variance of the random potential~disorder
strength!. We see that the vertex corrections in general low
the single-bubble conductivity and hence the electr
electron multiple scatterings dominate. There are, howe
situations where the vertex corrections due to electr
electron and hole-hole multiple scatterings may domin
5-11
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FIG. 1. Real part of the static conductivity as a function of energy for concentrationx50.5 and two values of disorder strengthD
50.7 andD51.2.
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over the electron-hole crossed diagrams and cause an
crease in the CPA conductivity. It happens in the proxim
of nonanalyticities in the local CPA vertex. The real part
L11 for D51/A2 goes through zero and displays a pole
x50.5. This singular behavior causes sharp mobility peak
the band edges and irregularities near half-filling,E50.
Such a behavior is observed only forD'1/A2 andx'0.5.
Figure 2 shows the same for an asymmetric concentra
x50.3. The mobility edges are now less pronounced and
conductivity fluctuations inside the energy band are
longer symmetric.

Due to the structureless density of states of the Be
lattice in d5`, vertex corrections do not alter the CPA co
ductivity significantly apart from the special situations infl
enced by the singularity in the CPA vertexL11 . Figure 3
shows the conductivity for the half-filled band as a functi
of concentrationx. There is almost no significant differenc
between the conductivity with and without vertex corre
tions, except for concentrationsx'0.5.33 An analogous pic-
ture is obtained for the conductivity as a function of t
disorder strengthD, where the differences are significa
only aroundD'1/A2, Fig. 4.
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B. Applicability of mean-field approximations
in realistic calculations

Calculations in the preceding subsection served two p
poses. First, we demonstrated how to reduce numerically
demanding expression~41! to a typical mean-field formula
using only integrals over the density of states. Second,
justified application of the mean-field expression for t
electrical conductivity with vertex corrections as a first st
beyond the CPA conductivity. However, a natural quest
arises about applicability and reliability of mean-field e
pressions in realistic calculations of transport properties
alloys and relevance of vertex corrections~beyond CPA!
there.

As we already discussed, mean-field expression for
conductivity with vertex corrections~41! is inapplicable in
dimensionsd<2 due to the presence of a nonintegrab
Cooperon pole atk1k850 in the vertexLeh~k,k’,q! from
Eq. ~40!. In three dimensions this singularity is integrab
and mean-field theory can, in principle, deliver good nume
cal results. A mean-field theory is reliable if the contributio
to the conductivity from small momenta around the critic
value k1k850 of the Cooperon pole does not domina
FIG. 2. Real part of the static conductivity as a function of energy for concentrationx50.3 and two values of disorder strengthD
50.7 andD51.2.
5-12
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This cannot be decided from the mean-field theory itself
from small-momentum or long-distance approximations f
torizing the singular~nonanalytic! contribution to the vertex
function. Approximations with a long-range spatial coh
ence differ from mean-field, local theories where no pref
ence in momenta is present and the spatial coherence i
sent. To check applicability of the mean-field approximati
in our approach we can use a small-momentum expan
for the bubble functionx6(q;v1 i01,v1 i02), defined in
Eq. ~25!, in the representation of the vertexLeh, Eq. ~40!. If
the leading order of the small-momentum expansion p
duces the conductivity of the order of the mean-field f
mula, then the mean-field approximation is qualitatively, a
to a certain extent also quantitatively, reliable.

FIG. 3. Real part of the static conductivity as a function
concentration for the half-filled band andD50.7.
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If we know or expect that the effect of the Cooperon po
is not critical for the static conductivity we can apply E
~41! to assess quantitatively the role of the vertex corr
tions. However, the evaluation of Eq.~41b! is numerically
very demanding ind53. It is meaningful to use explicit
momentum integrals only if we expect strongly nonunifor
behavior of the integrand in the first Brillouin zone. Whe
the weight of the pole in the vertex functions is small, it
expedient to reduce the numerical expense. We use the
plification justified by the asymptotic limit of high lattice
dimensions and replace the momentum integrals with ene
ones as in the preceding subsection. Formula~43! can be
generalized to a typical mean-field form

FIG. 4. Real part of the static conductivity as a function
disorder strength for the half-filled band andx50.5.
Resab

5S e2

2p D H ^vavbuG1u2&

11^vavbuG1u2&L12~12L12uG1u2!@g12u^Gs
2&u222 Re~g11^G1

2 &2!#
2Re

^vavbG1
2 &

12^vavbG1
2 &L11

2 ^G1
2 &2J ,

~49!
to
ing
as

s,

act
-

where the lattice structure comes only via the density
states. This formula, completely disregarding the existe
of the diffusion and Cooperon poles, can be formally appl
in any lattice dimension.

In calculations of transport properties of alloys we have
use more realistic electron models with orbital degrees
freedom explicitly taken into account. This leads to a m
tiorbital situation to which the above expression is read
generalizable. Each quantity is replaced by a matrix w
orbital indices and the multiplication is replaced by an a
propriate matrix one. The multiorbital generalization of E
~49! is not the only source of mean-field vertex corrections
realistic calculations. The multiorbital CPA also produc
vertex corrections as explicitly demonstrated in the fram
work of the Korringa-Kohn-Rostoker CPA by Butler.34 We
f
e

d

o
f

-

h
-
.

s
-

hence have to add to a multiorbital generalization of Eq.~49!
a contribution from terms with odd symmetry with respect
the time inversion absent in the one-orbital case. Follow
Ref. 34 we can represent the odd part of the conductivity

Resab
odd5

e2

4p (
st

~2st!(
LL8

(
MM8

^v̂aĜsĜt&LL8@ x̂st
1 ~0!

3$12L̂stx̂st
1 ~0!%21#L8M8^v̂bĜsĜt&M8M ,

~50!

whereL,M are appropriate orbital indices. The CPA vertice
propagators, the bubble functionx, and the velocityv are
now matrices in the orbital indices. Here we used the f
that only the vertexGeh from the electron-hole channel con
5-13
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tributes in the mean-field limit. Note that only the of
diagonal elements of the velocity matrix can contribute to
conductivity, since the two velocities~electrical currents! in
the Kubo formula are not spatially correlated.

The two parts of the mean-field conductivity Eqs.~49!
and ~50! enable us to analyze the role of the vertex corr
tions. As found earlier in the literature34,35 the CPA vertex
corrections Eq.~50! generally increase the single-bubb
conductivity. It is due to the fact that the CPA vertex functi
Geh from Eq. ~23a! contains only direct electron-hole mu
tiple scatterings that generally amplify the diffusion. T
even part of the mean-field conductivity Eq.~49! is more
complex. It contains contributions from multiple scatteri
from the electron-electron and the vertical channels. T
former represent crossed scatterings in the vertex functio
coherent backscatterings that hinder the electron prop
tion. They generate the positive term in the denominator
the right-hand side of Eq.~49!. The scatterings from the ver
tical channel produce negative corrections in the denom
tor of Eq.~49! and increase the CPA conductivity. It is hen
clear that conductivity Eq.~49! has a richer structure than th
CPA odd term Eq.~50! and can either increase or decrea
the one-particle conductivity depending on the values of
CPA local vertex functions.

Both contributions to the mean-field conductivity Eq
~49! and ~50! are of the same order of magnitude and co
parably elaborate in the numerical evaluation. Since t
completely disregard the singular behavior of the ver
function atk1k850 one cannot expect that the vertex co
rections calculated from this mean-field approximation w
produce drastic changes in the one-particle or semiclas
Boltzmann conductivity. This is even true in low dimensio
in d51,2. The low-dimensional calculations34 serve only il-
lustrative purposes and have no physical significance, s
the mean-field description breaks down there. Mean-field
proximations can efficiently be applied to the bulk condu
tivity of alloys, but only the sum of the even and odd co
tributions Eq. ~49! and Eq. ~50! can at least qualitatively
estimate the trend toward electron localization, if presen

VI. CONCLUSIONS

We have developed a diagrammatic theory for constru
ing systematic approximations to nonlocal two-particle v
tex functions of noninteracting electrons moving in a rand
potential. The underlying idea of our approach is to tr
separately diagonal, local and off-diagonal, nonlocal e
ments of the two-particle vertex. To this purpose we used
asymptotic limit of high spatial dimensions. In the strictd
5` limit only the local one-particle propagator is releva
and the solution contains only single-site scatterings and
duces to the coherent-potential approximation. Beyond
limit we utilized ambiguity in the definition of the two
particle irreducibility. We classified the nonlocal contrib
tions to the two-particle vertex according to the type of t
two-particle irreducibility to which they belong. Like many
body theories there are three topologically inequivalent ir
ducibility channels according to which pairs of propagat
interconnect spatially distinct two-particle scatterings on
11511
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random potential. Representing the two-particle vertex
Bethe-Salpeter equations and irreducible vertices in e
channel and utilizing the topological inequivalence of the
representations we derived a closed set of coupled~parquet!
equations for the irreducible vertices. The irreducible ve
ces from the parquet equations were used in an integral f
of the Ward identity to determine the self-energy of the p
quet solution. In this way we completed the parquet eq
tions to an approximation consistently determining all on
and two-particle functions. The input to the parquet appro
mation are the local CPA one-particle propagator and
local two-particle vertex. Neither the form of the parqu
equations nor the Ward identity may cause unphys
nonanalyticities in the solution. Solutions to the parquet
proximation hence inherit the analytic properties of the C
input and are free of spurious, unphysical behavior.

The proposed diagrammatic implementation of nonlo
corrections to the CPA aims primarily at improving the CP
two-particle functions on a long-range scale. Although th
is no obvious small parameter controlling the nonlocal c
rections to the CPA, systematic improvements of the lo
approximation are controlled via diagrams to the complet
two-particle irreducible vertexI. In the parquet approxima
tion the input isI 5g, the local vertex from Eq.~15!. A first
correctionDI to the input of the parquet approximation
proportional tog4(Go f f)6, where Go f f is the off-diagonal
element of the CPA propagator, see Fig. 5. It means tha
the weak-disorder limit the parquet approximation is ex
up to V7 whereas CPA only toV3 in powers of the random
potential. The parquet approximation represents a signific
systematic improvement of the CPA in the weak-disord
limit. We showed that beyond the weak-disorder limit t
parquet approximation contains the exact asymptotics of
two-particle functions up tod22. This fact we used in pro-
posing a mean-field approximation for the electrical cond
tivity with vertex corrections.

It is not, however, the weak-scattering limit where t
assets of the parquet approach to disordered systems lie
parquet approach is in particular appropriate for apprehe
ing spatial quantum coherence and backscattering effe
The parquet approximation even in the first iteration~high-
dimensional asymptotics! contains an infinite number o
‘‘crossed’’ two-particle diagrams. The weak localization wi
the Cooperon pole and a long-range spatial coherence f
backscatterings are included. Most importantly, however,
parquet equations for the irreducible two-particle vert
functions are fully self-consistent. They can adequately d

FIG. 5. Lowest-order correction to the completely two-partic
irreducible vertexI aa85gaa8 from the parquet approximation. Th
double-dashed line is the CPA local vertexgaa8 . The internal fer-
mion lines stand for the CPA off-diagonal propagatorGo f f.
5-14
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with poles and divergences in the vertex functions and
hence significantly change the diffusive character of the e
tronic transport in low dimensions and strong disorder.

We hope that the presented parquet approach can br
the gap between the mean-field coherent-potential appr
mation on the one side and localization theories on the o
side. Whether the parquet equations can actually describe
localization transition must be decided by solving the full s
of self-consistent coupled integral equations for the ver
functions and the self-energy. This has been left for fut
research.
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APPENDIX: ALGEBRAIC DERIVATION
OF WARD IDENTITIES

We use algebraic identities to prove Eq.~27! and the spe-
cial case of Eq.~28! with k15k2.

The two-particle function can be defined as a matrix e
ment of a tensor~direct! productGi j ,kl

(2) (z1 ,z2)5^^ ikuĜ(z1)

^ Ĝ(z2)u j l &&av where the resolvent operator is defined
Ĝ(z)5@z1̂2 t̂2V̂#21 and the basis vectors are Wannier o
bitals at the lattice sites. Using this lattice-space represe
tion we define a ‘‘projection’’ onto the one-particle subspa
by equaling the basis states from the left and right Hilb
space. When we sum over one set of indices (k5 j ) we re-
duce the direct product from the two-particle Hilbert space
an operator multiplication in the one-particle Hilbert spa
Ward identity~27! is then a consequence of an operator ide
tity

@z11̂2Ĥ#21
•@z21̂2Ĥ#21

5@z22z1#21$@z11̂2Ĥ#212@z21̂2Ĥ#21%,

~A1!

whereĤ5 t̂1V̂. Identity ~A1! holds for each configuration
of the random potentialV̂ and after its configurational aver
aging we obtain Eq.~27!. Ward identity~27! is hence a con-
r
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sequence ofcompletenessof the eigenstates of the Hamilto
operator. Completeness of the eigenstates reflectsconserva-
tion of probabilityand is a necessary prerequisite for cons
vation of energy and other physical quantities.

To prove the Ward identity~28! with k15k2 we use the
Bethe-Salpeter equation in the electron-hole channel

Gi j ,kl
(2) ~z1 ,z2!5Gi j ~z1!Gkl~z2!1 (

i 8 j 8k8 l 8
Gii 8~z1!Gll 8~z2!

3L i 8 j 8,k8 l 8
eh

~z1 ,z2!Gj 8 j ,kk8
(2)

~z1 ,z2!. ~A2!

We multiply it with the inverse one-particle propagators fro
left and right and obtain

(
i 8 l 8

Gii 8
21

~z1!Gll 8
21

~z2!Gi 8 j ,kl8
(2)

~z1 ,z2!

5d i j dkl1(
j 8k8

L i j 8,k8 l
eh

~z1 ,z2!Gj 8 j ,kk8
(2)

~z1 ,z2!. ~A3!

Summing over the intermediate indices and using Eq.~27!
we find

(
i 8 j l 8

Gii 8
21

~z1!Gll 8
21

~z2!Gi 8 j , j l 8
(2)

~z1 ,z2!

5
1

Dz
@Gil

21~z1!2Gil
21~z2!#. ~A4!

We insert Eqs.~A4! and ~27! in Eq. ~A3! and obtain the
desired identity for the self-energy

DS i l 5(
j 8k8

L i j 8,k8 l
eh

~z1 ,z2!DGj 8k8 . ~A5!

It reads in momentum space

S~k,z1!2S~k,z2!

5
1

N (
k8

Leh~k,z1 ,k,z2 ;k82k!@G~k8,z1!2G~k8,z2!#.

~A6!

Analogously we can derive a Ward identity for the vert
function from the electron-electron channel

S~k,z1!2S~2k,z2!5
1

N (
k8

Lee~k,z1,2k8,z2;k82k!

3@G~k8,z1!2G~2k8,z2!#. ~A7!
-
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