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Gas of elastic quantum strings in 2+1 dimensions: Finite temperatures
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Motivated by the stripes of the high: cuprates the problem was introduced recently of a system of free
elastic quantum strings interacting via a hard-core condition embedded Indmensions. At zero tempera-
ture this system is always a solid due to “quantum-entrogim” “kinetic” ) interactions which dominate at
long wavelengths. The high-temperature limit of this problem corresponds with thermally meandering elastic
lines in two dimensions and this system is well known to be dominated by literal entropic interactions. Here we
analyze in detail what happens in between zero and high temperature. We identify a “renormalized classical”
intermediate regime where the on-string fluctuations have become predominantly quantum mechanical. Sur-
prisingly, the entropic interactions keep their high-temperature nature in this regime. At a low, but finite
temperature the quantum-mechanical kinetic interactions take over rather suddenly. Despite their origin in
long-wavelength quantum fluctuations these are not affected by thermal fluctuations when temperature is low
enough.
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[. INTRODUCTION One of us recently suggested an ansWetue to an order-
out-of-disorder mechanism, the ultimate faith of this gas is
The focus of quantum condensed matter has been tradihat it solidifies always at zero temperature. This can be ei-
tionally on systems of particlelike excitations. Recently thether viewed as a 2 1D extension of the mechanism respon-
evidence has been growing that at least in the strongly intessible for the algebraic order in thet11D Luttinger liquid, or
acting electron systems as realized in correlated oxides inteas a quantum version of the classical entropic repulsions fa-
esting types of quantum-mechanical self-organizations armiliar from the statistical physics of lines and membratfes.
taking place on mesoscopic time and length scales. Although central result of Ref. 13 is that this string solid should be
these are fluctuating textures, there exists substantial empirtharacterized by a long-wavelength compression modulus
cal evidence that they bear a direct relationship with thewvhich depends on the average string separationa stretch
static stripe phases. exponential fashiony~exp(—Ad¥) with «~2/3. This argu-
The stripe phase is a different form of electronic orderment was based on an elegant, but nonexact, self-consistent
which is found in doped Mott-insulating oxidé®Because of phonon method introduced quite some time ago by
topological reason$the carriers bind to linelike textures in Helfrich’* in the context of biological membranes. The
the 2+ 1 dimensionalD) cuprates and nickelates, and thesestretched exponential turns out to reflect a highly untrivial
“rivers of charge” are separated by Mott-insulating magneticand counterintuitive phenomenon. Usually entropic interac-
domains. The static stripes are reasonably well understood &iens emerge from short distance physics. The essence of the
generic instabilities of the doped Mott-insulating state. mechanism is that entropy is paid at collisions because of the
However, experimental results suggest that on intermediatieard-core condition, and collisions occur at short distances.
scales(nanometer length scales; 10-meV energy scalgs For the case of elastic quantum strings this is qualitatively
the electron system in the cuprate superconductors tends thfferent. A single string shows algebraic order and for this
stripe ordef: to flow away to the anomalous physics of high- reason its long-wavelength fluctuations are the most danger-
T. superconductivity at larger distances and longer times. lpbus ones. According to the Helfrich method, these long-
is often speculated that the high-superconducting state is wavelength on-string fluctuations are responsible for the in-
in one or the other way related to this quantum disorderedluced modulus? Very recently, this result was confirmed in
stripe statgthe “dynamical stripes}. a numerical simulation by Nishiyanta,finding «=0.8 in-
On the theoretical side, the obvious problem is that littlestead ofa=2 as would follow from the argument based on
is known in general about a “complex” quantum state of simple collisions.
matter of the kind suggested by the dynamical stripe phe- The main focus of this paper is on tfieite-temperature
nomenology. This motivated us to look into the following physics of this quantum string gas. This finite-temperature
elementary question: what can be said in general on thbehavior is in itself rather untrivial. At zero temperature the
physics of a gas of quantum fluctuating elastic lines in tworigidity in the system is driven by a gain &netic energy
embedding space dimensions? These lines can be altermassociated with long-wavelength on-string fluctuations. At
tively called string3 1 and to have a meaningful definition the same time, the high-temperature, fully classical limit cor-
of a gas it is natural to let these strings merely interact via amesponds with the problem of elastic lines meandering over
excluded volumeor noncrossingcondition! the 2D plane due to thermal fluctuations. This is a classic
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statistical physics problem which is fully understood:*°It Il. CHARACTERISTIC SCALES: THE COLLISION
is also characterized by a net coarse-grained modulus, now PICTURE

proportional to the square of temperature, originating in lit- One can acquire some insight regarding the origin of en-

eral entropic interactions. The question is, how to connecf, . ranisions in terms of a simple physical picture. The
th_e zero-temperature limit with the h|gh-.temp.erature imit?p5sic idea is that the world lindgarticles or world sheets
Since the order at zero temperature is driven by 10ng{stringg once in a while collide when they meander in space-
wavelength fluctuations one could be tempted to argue that gme. Entropy (high temperature or kinetic energy(zero
any finite temperature the entrOpiC interactions should tak%mperaturbis pa|d at these collisions because of the non-
over—at sufficiently long wavelength, thermal fluctuationscrossing condition. This raises tHéee) energy, and this
usually overwhelm quantum fluctuations for any finite tem-energy increase translates into repulsive interactions at
perature. If this would be the correct answer there could be gynger distances. Although this argument turns out to be not
potential problem with the argument of Ref. 13. To show thatquite right for the zero-temperature string gas, it is qualita-
the string gas solidifies at zero temperatures it has to bgyvely correct at high temperatures. In this section we will
demonstrated that dislocations cannot proliferate. It is wellse this argument to obtain a crude picture of the physics at
known that in the classicdhigh-temperature limjtdisloca- || temperatures, which will be refined in the next sections
tions always proliferate. The effective elastic constant using Helfrich’s self-consistent phonon method.
and under this condition the criterium for the Kosterlitz- The String gas is defined as a system of nonintersecting
Thouless(KT) transition (binding of dislocationsis never  ejastic quantum strings embedded i 2D space-time. In
satisfied”***° However, upon adding any tension of nonen-path-integral language this corresponds with the statistical
tropic origin the KT transition immediately shifts to a finite physics of a system of nonintersecting, elastic world sheets.
temperature and the zero-temperature state is protectef addition, since it follows self-consistently from the theory
against free dislocations. One of‘@imsserted that the in- that dislocations do not proliferate at zero temperature the
duced modulus is nonzero at zero temperature due to thgrings can be considered to be directed alongytis from
quantum fluctuations and this modulus can therefore servghe on set. The transversal displacements of the strings are
the purpose of protecting the crystallinity of the ground stateparametrized in terms of a field;(y,r) describing the mo-
Here we address these matters by analyzing the finitajon of theith string in thex direction (r is imaginary time,

Starting from the high-temperature, classical regime one first

enters a renormalized classical regime where the quantum- DY, T)<Po(y, 7)< - <n(Y,T). 1)

mechanical nature of the on-string fluctuations becomes nQr tition functi itten in the f f a functional
ticeable because temperature is lower than the characteristé1e partition function written in the form of a functiona

Debye temperature of the on-string modes. Naively ondlt€dralis

would expect either a qualitative change in the nature of the N

entropic interactions as compared to the high-temperature Z=H H qusi(y’T)eXp{_S/ﬁ},
limit, or at the least a quantitative change in the sense that =1y

numerical factors in the classical result for the induced
modulus become different. We were quite surprised to find 1J

that in fact the induced modulus is not changed at all. As we )
will explain, the reason turns out to be that the fluctuations
driving the entropic interactions occur at frequencies whichwhere the temperaturé is expressed in energy unitg (
are low as compared to the quantum UV cutoff. Upon further=kg=1). In Eq.(2) p. is the linear mass density aixq the
lowering temperature, suddenly the quantum-kinetic interacstring tension, such that=+/3./p. is the on-string sound
tions take over, at a temperature scale associated with theelocity. As in Ref. 13, a lattice regularization with lattice
zero-temperature modulus. This quantum modulus protectsonstanta is chosen, such that the average interstring dis-
itself: despite its origin in long-wavelength on-string fluctua- tance isd=a/n, wheren is the density of strings. The ultra-
tions, it carries an associated energy scale and when tempendelet (UV) momenta and frequency cutoffs on a single
ture becomes lower than this scale the thermal fluctuationstring (i.e., for the intrastring vibrationsare thereforeQ
freeze out. As a result, in this low-temperature regime the= w/a andws=cQs, respectively. Throughout this paper we
thermal contributions appear as corrections to the zerodse as a convention a subsciwhen a quantity relates to a
temperature modulus. single string and a subscrigtwhen it relates to the system
The plan of the paper is as follows. In Sec. Il the string(“gas”) of strings.
gas model is specified, and the dimensionless parameters Let us now turn to the collision argument. Since the
governing the crossovers between the different temperaturgrings only interact via a nonintersection condition it is ob-
regimes are estimated using the simple collision picture. Irvious that at sufficiently short times and distances the strings
Sec. lll the Helfrich methott is introduced and used to re- behave like a noninteracting system because collisions do
fine the estimates for the characteristic scales of Sec. Il. Imot occur. A characteristic scalgollision length can be
Sec. IV the behavior of the induced modulus in the variousdentified where the probability of a collision becomes of
regimes are derived and discussed in detail. In the concludsrder unity and at larger scales the physics is set by the
ing section we put our findings in perspective. collisions. At every collision an entropy kg (at highT) or
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a kinetic energy~#% (at T=0) is paid and an estimate fol- the UV cutoff of the on-string mode<);,ws). Hence upon
lows for the induced modulus by dividing this characteristiclowering temperature one will reach an on-string Debye tem-
(free) energy cost by the characteristic distandg.(Hence perature below which the quantum-mechanical nature of the
all that has to be calculated is the collision length and thisnodes on the string will become noticeable. This cutoff fre-
can be determined by evaluating the mean square of thguency isws=(7/a)\>//p, defining a dimensionless ratio
single string meandering amplitudg¢(y) — ¢(0)]°) as a  (i=kg=1),
function of a distancey between two points on a string.
Equating this quantity with the square of the average inter- W 3
string distanced one obtains a characteristic distancel. VST T T T
(and timer.=I./c) where the probability for a collision to P
occur becomes of order unity. ]
After Fourier transforming the single string action we ar- _ 1herefore whenv>1 one enters a regime where the

)

rive at the standard result, high-frequency on-string modes are freezing out, and we call
this the renormalized classical regime. Since the on-string

{[p(y)— #(0)]?) modes drive the meandering of the string one would expect
that something happens with the entropic interactions around

_ 2371 —cogkv)1d k vs=1. As it turns out, however, the induced modulus contin-
f<|¢k| 4! ky)] ues to show its high-temperature behavior while even the

" prefactors are not affected. This counter-intuitive fact might
:J (1/2+n,)[1—cogky)]d k be understood qualitatively on the basis of E@g.and (6).
pcck Let us estimate the characteristic energy of the on-string
wla # mode, which has a wavelength of order of the collision
Nf {1/2+(exq'ﬁc|(/T]—]_)_l}d k. ®) length ;'  wgo =hc/l.~%cT/d?S,. This implies that
mly PcCK this energy scales down linearly with the temperatiire
while it corresponds with théower boundin energy on the
modes which contribute to the collision length. Modes with

Consider first Eq.(3) in the high-temperaturdclassical

fmit, lower energy have a wavelength larger than the collision
mhc length and do therefore not contribute. Hence, instead of
™ (4) having all modes contributing to the thermal fluctuations, for
vs<1 only modes with frequencied o= acoT<w<T
The mean-square meandering amplitude becomes contribute. At first sight one would expect this to give rise to
2 a gross change. However, on closer inspection one finds it to
{[e(y)—¢(0)1) be more subtle. A first requirement is that,,<1, other-
mla # wise the contribution of the thermal fluctuations would be
- f oL L/2+ (exdfickiT] - 1)~ dk completely quenched out. To estimatg,;, we recall that the
mly Pe importance of quantum fluctuations in the string gas is mea-
wla § Ty sured by the dimensionless ratio
~f [1/2—1/2+T/(#ick)]d k~ <. (5
wly chk 2C A
Equating this tal? yields for the collision length. the well- Mg:m' ®
known resuft?>13 ¢
TI /5 ~d2, ©) corresponding with the ratio of with the dimensionful

quantities characterizing the problem: the coupling constant
In the classical context, the induced modulus follows directlyof the gas or the “de Boer paramete'sr.,hg has to be small
by dividing the free-energy cost associated with the colli-compared to unity because otherwise quantum fluctuations
sions~TS~TX (1/,) X kg (11, is the collision densityby  become important at the lattice scale, and the continuum de-
the characteristic lengtti (interstring separationThus Egs.  scription fails. Using Eq(6) we find immediately thaty.
(5) and (6) lead to an estimateBocT?/d3. This shows the = wco/T~uyg<1! Hence the window in the mode spec-
correct dependence on temperature and density. Alterndrum contributing to the thermal meandering is in this sense
tively, this directed 2D string gas can also be interpreted as krge and it remains large regardless the fact that temperature
system of ¥ 1D hard-core bosons which is in turn equiva- becomes less thaag, at least initially.
lent to noninteracting spinless fermion gas. In the latter, the It is still so that the short-wavelength modes with fre-
collision length corresponds with the Fermi energy and usingjuencyw>T are no longer available for the thermal mean-
these trivial spinless-fermion results one finds that the estidering. However, a simple calculation shows that their con-
mate for the high-temperature limit of the string gas is quali-tribution is exponentially small. Consider again E@®),
tatively correct:® realizing that only the zero-point contribution matters for
The high-temperature limit is defined as usual as the remomenta in the interval /(% c) <k< m/a while the thermal
gime where temperature is larger than the highest phonoeontribution dominates in the intervat/l . <k<T/(%cC).
frequency which is in our case clearly corresponding withCarrying out the integrals,
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nla The T nite temperature$<T,. This finding suffices to protect the
([p(y)— ¢(O)]2>~1/2f K f 5 solidification of the string gas at zero temperature because
TiticPcC wly pc(ck) the dislocations can only proliferate at a Kosterlitz-Thouless

transition at a temperaturBc;~ T, according to the exact

A  whc Ty
~ \ + + 2y result of Pokrovsky and Talapd¥.
2pcclr' aT a3, O(pd?) 9 y p
The logarithmic term in Eq(9) is due to the quantum zero- Ill. CHARACTERISTIC SCALES ACCORDING TO
point string meandering coming from the modes with- T HELFRICH'S METHOD

while the second term corresponds with the thermal mean-
dering. Equating expression in E@) to d? we find a renor-
malized classical resu(b):

As explained in Ref. 13, within the Helfrich schetfi¢he
avoidance condition Eq.1) is dropped, and a self-
consistently determined effective rigidiB is introduced in-
Tl /3 ~d[1+0(u)], (10) stead. The parametBrgoverns the interstring interactions in

) . _ ) the effective long-wavelength actidy;¢, which substitutes
provided that the logarithmic term is small. For this to be¢,, the exact actiors as defined in Eq2)

true, the temperature should be above a classical-to-quantum

crossover temperatufe,<< wg. At sufficiently low tempera- 1

ture eventually the logarithm will dominate and we can Seffzif drdx dy[ p(,4)%+ 2 (dyh) >+ B(dyh)?].
therefore estimatd@, by neglecting the second term in Eq. (14)
(9) and equating the logarithm @Y. It follows that

mwhc 2
TON TGX - ; .

As we shall see in the following sections, this estimateTipr
is actually flawed, while the correct answer is the stretche
exponential following from the Helfrich self-consistent pho-

Here (x,y,7) is the coarse grained, long-wavelength dis-

placement field taking over from the bare fiely, ), and

>=23./d, p=p./d. The self-consistency equation from

which the induced rigidityB can be determined is nothing
Ise than the well-known relation between the free enérgy
f an elastic medium and its compression modulus,

(11)

non method. However, for the purpose of crude estimations it 2

, . ; I (AF(B)/V)
suffices. T, is small compared to the on-string Debye tem- —dz—z_ (15)
perature, because,<1 and as long a$> T, the logarithm ad

can be neglected. As long as this is the case nothing changgﬁerev is the system’s real-space volume, i.e., in the case of

as compargd to the high-temperature I|m|t, because @4s. ._two-dimensional space the aréa-L?, whereL is the linear
and(6) are just the same! Hence we arrive at the counterin-,. . X .

o - i . dimension of this space. The free-energy differeAd&(B)
tuitive result that the collision density and thereby the N defined as
duced modulus is insensitive to the freezing out of the on-
:c,rtng?]dmodes in the renormalized classical region in between AF(B)=F(B)—F(B=0)=—TIn{Z(B)/Z(B=0)!.

0 Wg.

Finally, at temperature§<T, quantum mechanics is ex- . _ . .

pected to take over. The wavelength of the thermally excited\F(B) is most conveniently derived using the standard pro-
modes are now large as compared to the collision length sgedure, representing the free field as a set of noninteracting

by the quantum fluctuations. Therefore we can neglect thguantum harmonic oscillators with frequencies
Bose factor in Eq(3) completely,
wq= 205+ Ba, 17)

defined for wave vectoré in momentum space bound by
12 LW cutoffs: [qy|<m/a=Qs; |qx|sw/dnEQg, where Qs
) ) i ) andQgq are the cutoffs along and perpendicular to the string
Equating the latter estimate i we find an exponentially  girection, respectivelyp~1 is a “fudge-factor,” correcting
large, though finite, value of the collision length for inaccuracies coming from short distance mode-coupling
> effects!® Using this representation f@,;, one easily ob-
Ic~aex;{—
o

) (13)  tains familiar expressions for the partition functiérand the
Thus an effective quantum-meandering induced repulsion is

free energyF of an ideal gas of harmonic oscillatdfs
expected to be exponentially small but finite in the zero- Z=]1 exp— Broy/2)(1—exp— Bhwg}) L,
temperature limit. We repeat, this last estimate is flawed as q d 4

the comparison with numerical results shows. In any other

regard we will find that the simple estimates presented in this fiwg
section are consistent with the results of the more involved F=—ThZ=2 T“LkBTzq: IN(1=exp{— Bhwg})
Helfrich method. This includes the basic observation that the

zero-temperature induced modulus survives at small but fi- =Fo+Ft, (18

5 la ﬁ 1 ﬁ
(L) $(0)] >~L/ym§d = oehn

q
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where =1/T. In the thermodynamic limiLQs>1, LQ, To complete the analysis of the dimensionless parameters
>1, and the momentum summation in E&8) can be sub- characterizing this problem, we notice that there are actually
stituted with an integration, leading to the following expres-two coupling constants. The first one arises already on the

sion forAF(B)(A=1), level of the bare strings, and it parametrizes the importance
of quantum physics for an isolated string,
) 1 [(Qs Qg )
AF(B)/L*= Zj deJ day ms="hl(pccac), (22
(277) 7Q5 7Qg

5 5 . and we notice that this is related to the coupling constant of
X[ Va7 +Ba; B \/qu} Tp the string gas, Eq(8), through,

I (VS YV )
2 2Jp | m2ZB g
Vp P pg= <2 2= 1l (pcd?). (23
5 f J dx It now becomes directly clear Whng<1 the ratio
TN (a/d)?<1 while the meaning ofts=1 is that the quantum
77 fluctuations become strong on the scale of the lattice con_stant
VX y Y T |(stVg)} thereby invalidating the notion of a single continuum string.
22 Interestingly, the single string parameteg arises natu-
_ rally in the Helfrich method when the self-consistency Eq.

(15) for the induced rigidityB(d) is written in dimensionless

The first term corresponds with the zero-temperature quarf@rm:
tum contribution to the free energyf), while the second

term (A1) contains the thermal contributions, proportional to _ i 2’9A(Z'S’§)
Z= g 7 S s ) (24)
I(vg,vg)= fvsdyfvgdxm 1=expl— VX7 HyT) . where the dimensionless variables are defined as follows:
" Jo 0 1-exp{—y}
(20 Q a B a? AF
) . S=—=—, z=S=, A(z,5,{)=7—"—. (25
Besides the prefactor in front of temperature enters only Qs nd 3 hos |2

through the upper bounds in the integrals, E20). vs we

encountered already in the previous section as the dimen- This demonstrates that, is the quantity setting the over-
sionless on-string Debye temperature Ef). The interesting  all scale of the problem—everything else follows from the
point is that we have also to introduce a dimensionless ratigelf-consistency condition. Summarizing, we have estab-
associated with the Debye temperature for the fluctuationished that the string gas problem is characterized by four

perpendicular to the strings: dimensionless quantities. Besides the coupling consfants
and ug, governing the zero-temperature physics, we also
vg=(ml nd)\/ﬁl(T\/E)=wg /T, (21)  find the two Debye temperatureg and v4 governing the

balance between quantum and thermal fluctuations. There are
whereaw plays the role of frequency cutofbebye tempera-  altogether three regimesa) v,>1, the low-temperature,
ture) for the interstring vibrations along theaxis. This cut-  quantum dominated regimé)) v<<1, the high-temperature
off has to be determined self-consistently because it ObVIreg|me dominated by thermal fluctuations) vy<1<ws,
ously depends on the induced rigidity itself. This is athe renormalized classical regime where the dynamics is
complicating factor. Thisog is of crucial importance for bal-  quantum mechanical at short distances while the system as a

ancing the relative importance of thermal and quantum flucwhole still behaves as if it is in the high-temperature limit.
tuations, while at the same time it is itself determined by this

balance. We will demonstrate later thay in fact acts ac-
cording to the naive expectations. WhEmecomes less than
wg the frequency window available for thermal fluctuations
quickly diminishes and the quantum fluctuations take over In this section we will analyze in detail the behaviors of
completely already at a finite temperature. All what remainghe induced moduli in the various temperature regimes as
is to calculate self-consistently whay, is and this will turn follow from the Helfrich method. In the first two subsections
out to be proportional to the zero temperatBefor any  we will revisit the zero-temperature and high-temperature re-
temperature such that,>1. gimes which were already analyzed by one otiis the last
Another matter is the renormalized classical regime, detwo sections we approach the intermediate temperature
fined by wg<T<ws. We will find that the self-consistent renormalized classical regime both from the high-
phonons do confirm the arguments of the previous sectiortemperature and low-temperature side, demonstratingithat
the induced modulus is highly insensitive to the differencethe induced modulus does not change upon entering the
between the quantum-mechanical versus classical nature oénormalized classical regime from the high-temperature
the “high”-frequency phonons. side, while(ii) v is actually finite, with the implication that

IV. INDUCED MODULI FROM LOW TO HIGH
TEMPERATURE
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the zero-temperature quantum rigidity already takes over at ecovers the full exponential. This logarithm finds in turn its

small but finite temperature.

A. Zero temperature: Quantum-entropic rigidity

Let us first evaluate the free energy Ef9) at zero tem-
perature. It reduces t4, and this becomes with logarithmic
accuracy:

Wy>

2
A
B
127 vy

(26)

2\/_f dyf dx

y4y

QSJ’ }

772

_ QB {
T 1202p3 N

This result illustrates the crucial observation in Ref. 13 that

the dominating contribution td\, originates in thelong-

wavelengthon-string quantum fluctuations. The logarithm

lives at the lower limityy of the y integration, associated

with the long-wavelength on-string fluctuations with mo-

mentum g, (y = vg)=vT\p/\V=~Qy/B/X. At the same

time, however, this free energy is dominated by large inter-

string momentag,(x=vy)=r,T\p/\B~Qg, and in this

regard it is a short-wavelength physics, as in the high-

temperature regiménext subsection A more careful evalu-
ation of the integral in Eq(26) yields

= QSB 2In 20> +E
 24m2\p3, QB 3/

Substituting the estimate E(6) in the self-consistency Eq.
(15) we find the following equation for the induced rigidity

(27)

B:
B #| Q s
2 2 2 Iny —5
d?  9d?| 247%\pS | Q2B
52 mC ( B)I d( B) a2 (28)
=—— —|Injd| —= .
0d?| 247°3 .\ d? d?) »°3.

Taking as an ansatz f@(d)/d’=exg —®(d)], Eq. (28) can
be solved with exponential accura@yuasiclassical approxi-
mation, which is valid whenu, is small. It follows that®

d

) 54 1/3 1 2/3
B=Ad"exp — n ? RTINS
Ms

a
) 5413 1
=Adex -n ; M_llg .

g

(29

Hence, instead d8~exp(—A/u,) as followed from the “na
ive” collision argument of Sec. I(Eq. 13, the Helfrich

origin in the long-wavelength on-string fluctuations which
are particularly dangerous for the zero-temperature elastic
strings, reflecting the algebraic order of a single string. In the
collision language there is no room for these on-string long-
wavelength fluctuations and the Helfrich method suggests
therefore a qualitatively different physics behind the induced
quantum modulus. This seems now confirmed by a numeri-
cal S|mulat|on According to the numerical work of
Nishiyama®® B~ exp(—A'd?) with =0.80§1), very close

to our predlctlon,B 2/3 and very different from the naive
expectationB=2. We believe that the small difference be-
tween the numerical result and our result is due to “fluctua-
tion” corrections; Helfrich’s method has the structure of a
mean-field theory and it should be possible to construct a
perturbation expansion based on the difference between the
exact action Eq(2) and the “saddle-point” action Eq14).

B. High-temperature classical regime:v,<v <1

Consider now the high-temperature, fully classical regime
vg<vs<1, where all mode frequencies are small compared
to temperature. In this limit the integralin Eq. (20) be-

comes
| ‘fvsd ngd | L2y
(Vs vg)= 0 y 0 X 1—exp -y}

vs o[, [PHY? Ty
~—j dyf dx -5
0 0 2 2

+1( Vs, Vg),

(30

where

v Y K22
T(vs,vgwf dyf gdxln( Y ) (31)

0 0
Thus from Eqgs(30) and(19) it is obvious that at high tem-
perature, such that;<vs<1, thel term splits into two parts
with the opposite signs. Theegativepart of the integral
exactly cancels thé\, part in the free energpF, in Eq.

(19), while the positive parT(vs,vg) plays the role of the
high-temperature, “classical” limit of the free energy:

3 .
5B
The integration ovey in the integral in Eq.31) is domi-
nated by the intervay <vy<vs. Therefore the upper inte-
gration limit overy could be made infinite with minor mis-
take: vs— 0. After that, the integral is made dimensionless
by a change of integration variables: vgx" andy—vgy’.

In this way, v4 can be scaled out from the double integral
and we find

AF(B)/L?~

(32

(VSvVg)-

I =const< v . (33

method yields a stretched-exponential dependence on the
coupling constantuy. This stretched exponential comes The const can be calculated exactly to be equat/ Sub-
from the logarithm in Eq(27); upon neglecting this log one stituting Eq.(33) into Eq. (32) we find
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AF(B)/LZ ’n’T\/E B fn’T\/E (34) 0.98 T T T T T T T T
4d2772\/§ 4d3/2772\/2—c'
Substituting this result into the self-consistency Ej5) v=0.02
yields B _
B 92 #T\B (35 v=0.04
dZ &dZ 4d3/27]2\/2_c : "ee.
Using as an ansatz for the unknown functiBfd) =Cd*, 094 - 008 I
one finds from Eq(35) ~ ’
E.E 0.96 - v=0.02
e
9m2T? T
= . (36) 092 |- 094 | ]
3. a3 v=0.04
To be valid it should be checked if this result is consistent 092
with the initial assumptiorvy<1. Substituting Eq(36) in
the definition ofry and demanding thaty;<1 we find 090 - 090 | i
3w 0.88 : ‘ : ‘
Vngg/TI(ﬂ'/nd)\/E/(T\/;)I—s,u,g~,u,g<1 (37 0.0 20 40 6.0 8.0 100
n
which is indeed consistent with the general condition that o Lo v v 00w

. 0.0 0.2 0.4 0.6 0.8 1.0 1.2 14 1.6 1.8 2.0
,Ll/g< 1in Eq (23) T/@a

The solution(36) can actually be directly checked using
the fact that the high temperature limit of the directed string FIG. 1. Dependence df (7v3/4) onvg =T/ w for two differ-
gas in 2+1D is actually the same problem as the zero-ent values ofvy: v;=0.02 andv,=0.04.
temperature system of hard-core bosons #1D. As dis-
cuss_e_d in Re_f. 13, the latter can be considered as the COMsmperature regiméSec. 1), we failed to find a closed ana-
pactified version of the former, where temperature plays thg i solution for the induced modulus at intermediate tem-

role ol;‘ wrappinglup one %fthe dim%nsio?ﬁ. 'tl'he ]ILD hgd geratures. We recall that the renormalized classical regime is
core boson problem can beé mapped on the Trivial probiem Ooyqineq ayy<1<vg which means that the on-string Debye

noninteracting spmles; fer”?'O”S |n+11D_.. Rewriting Eq.. temperature is now large as compared to temperature. The
(36) in terms of the dimensionful quantities characterizing S . :
largeness ofvg makes it impossible to expand the integral

+ in- . . . .
Igfp; rtiilz ng n%oé;a gr?:?i?] ggmass of the bosorid, in in Eq. (19 in a way it was done in Eq30), because now the
integration variabley is not <1 in the region Ky<v,. To
put it another way, the difference between the two cases is

92 #2 due to the quantum zero-point contributions, because when
Big(d)= — 3 (38 vs>1 the on-string fluctuations have entered the quantum
7" Md regime. Nevertheless, guided by the discussion in Sése#

Comparing this result with the exact results following from text after Eq.(9)), we calculated numerically the ratio of the
the spinless fermions one finds thiay= /6, indicating that  integrall to the high-temperature expressibin Eq. (33) in
the Helfrich self-consistent phonon method is remarkablythe renormalized classical region of parametgys 1<,

accurate. see Fig. 1. As one might expect, the ratio remains close to 1
and nearly constant in the wide interval of the values of the

C. Approaching the renormalized classical regime from the parameter vs at the two fixed values ofrg<l: v,
high-temperature side =0.02; 0.04. Namely, as is seen in Fig. 1, the interval of

In the previous two subsections we demonstrated that thgs S Starts in the classical regiomg<vs<0.5 and goes deep
Helfrich method was completely tractable analytically bothiNt the renormalized classical regiory<1<vs~20. Nev-
in the zero- and high-temperature limit. This is a lucky cir- ertheless, the ratit/I is ~0.95 (v4=0.04) or~0.96 (v4
cumstance because the equations are in principle quite cura=0.02) and changes by less than 2% of its value in the
bersome and the calculations only become straightforwarthterval 0.5<v,<20. Having this numerical evidence, we
because we could exploit the smallnessugf This becomes conclude that, within a numerical factor which is very close
different in the intermediate temperature regime. Despite théo unity, the high-temperature solution for the induced rigid-
expectation that also in this renormalized classical regiméty B, Eq. (36), remains valid in the renormalized classical
the answer is simple and actually the same as in the higlregime.
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D. Approaching the renormalized classical regime peratures. Hence there has to be a temperdiyrghere the
from low temperatures thermal fluctuations become of similar importance as the

As we already emphasized, it is a most crucial issue if th&luantum fluctuations. Thig, can be estimated from EG#1)
zero-temperature quantum-kinetic interactions survive at &Y ;aquatmg the leading temperature-dependent correction
finite temperature. Using the collision arguments, we already™ 1~ {0 the zero-temperature term,
argued in Sec. Il that this should be the case. However, we
also learned that these arguments fail qualitatively at zero Q3B In[ 2Qs\/§] 5| T2QgVp 7 42)
temperature. At the same time, as we discussed in Sec. IVA 2 3" 12
the Helfrich method indicates that the on-string long- 24m \/p_E Qg\/§ VE
wavelength fluctuations are decisive for the zero-temperaturgubstituting in Eq(42) the zero-temperature result f8r Eq.
rigidity—on general grounds one expects that any quantuni29), one finds
phenomenon related to long wavelength should be quite vul-

nerable to the finiteness of temperature and it is theredore 5413 1 /d\2B
priori unclear what to expect at a small but finite tempera- Tox VB~exp — 7;( —) 3
ture. Fortunately, it turns out that the Helfrich method re- T 2ps
mains tractable in this regime of small but finite temperature 13
; ; ; ; 54 1
and here we will derive a controlled solution for the induced =exp — 7 _) _ (43)
modulus in this regime. It turns out that the zero-temperature ™ 2,ué’3

modulus is robust at finite temperatures, up to a crossover

temperaturél, which is, however, different from the simple Hence we find that the elementary consideration in Sec. Il
estimate presented in Sec. II. leading to the estimate E@L1) is in essence correct, except

Let us consider the |Ow-tempera'[ure corrections to théhat the stretched exponential result has to be used for the
quantum result Eq(27). We assume that in this regime the zero-temperature modulus. Of cour3g,has the same status
induced modulus is finite so that a regime exists where temas og and a regime of small but finite temperatures exists
perature can become small as compared to the interstringhere v;>1 due to the zero-temperature quantum fluctua-
Debye temperature. We will find that this assumption is selftions. The physics behind this result can be deduced from the
consistently satisfied. Hence we are now dealing with thdow-temperature expansion E@1). In contrast to the renor-
limit 1 <vg<ws and in this case the double integral in Eq. malized classical regime entered BTy, the string gas

(20) can be rewritten as, in exponential accuracy, Debye temperaturesy acts according to the expectations.
For T<w, the fraction of the modes which are thermally
o vg 1—exp{— Vx2+y?} occupied diminishes quickly, making it possible to arrive at
I=1(vs,vg)= fo dyfo dxln 1T—exp—y! the simple expansion E@41). At the same time, it follows
from the form of this expansion that the long-wavelength
o * aspect of the zero-temperature modulus is not as simple as
”L dyfo dxIn(1—exp{— Vx*+y?}) discussed in the beginning of this subsection. Equatddn

still starts out with the unmodified zero-temperature result
o despite the fact that temperature is finite and this term should

_ngo dyIn(1—exp{—y}). (39 pe destroyed immediately if the argument that the long-

wavelength on-string fluctuations immediately lose their

Recalling the definition Eq(19), this leads to the following quantum character for any finite temperature would be cor-
estimate ((3)=1.202): rect. The resolution of this apparent paradox is that the free

energy is that of the effective21D medium and the zero-
_ T2Qq\p T T (§(3) temperature logarithm appears in the final answer, after inte-
V12 5B\ 27

At grating both interstring and intrastring momenta. This im-

plies a quantum rigidity for the system as a whole, and this in
(40) IR o0 ST

. ) ) ) turn leads to a diminishing of all thermal fluctuations, includ-
Combining this estimate with E27) the free energy be- g those acting along the strings. The implication is that
comes in the low-temperature limit there is still a length scale where the quantum-induced
modulus appears and when temperature becomes low enough

) if 1<vg<vs.

AF(B)/L2= QgB 21n ZQS‘E § the wavelength of the typical thermal fluctuations becomes
2472\[p3, Qg\/E 3 large as compared to this length scale and thereby inconse-
quential for the induced modulus. In this sense the basic
T2Qg\/; ™ T3 [L(3) argument of Sec. Il survives in this self-consistent phonon
T NS 12 JE_B( 2 ) ' (41) language. Th&@, vsd dependence as expressed in @) is

plotted in Fig. 2. Based on the observation made in Sec. Il
It is directly clear that at sufficiently low temperatures thethat the dislocations can only proliferate at a Kosterlitz-
temperature-dependent corrections can be neglected in tfigouless temperatur@c+~T,, we consider Fig. 2 as the
self-consistency differential equation, which means that the@hase diagram of the directed hard-core string dgéd)
guantum modulus Eq27) remains valid at the lowest tem- plays a role of the solidification line, which separates the
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1+1D to be generic causes the true long-range order in the
string gas at zero temperature.

Here we focused mainly on the finite-temperature physics
of the quantum string gas. We found this to be a rather non-
trivial affair. The same basic mechanism which is responsible
for the zero-temperature kinetic interactions is responsible
for the entropic interactions at high temperature. We focused

entropic induced rigidity

-‘% on the question, how do these two regimes connect?

g Against our initial expectations we found out that quan-

2 tum mechanics takes over rather suddenly. We pointed out
that there is a temperature scale below which the quantum-

Lo mechanical nature of the string fluctuations becomes impor-

tant. However, we found that these quantum fluctuations are
initially completely hidden: the entropic interactions con-

tinue to behave as if the strings are fully classical. The reason
is that the typical string fluctuations responsible for the

induced modulus live at frequencies which also decrease
with temperature, in such a way that the quantum cutoff
stays effectively at infinity. As a result, the entropic inter-

actions stay in this renormalized classical regime in fact
unrenormalized.

One could now have the impression that thermal fluctua-
tions would continue to overrule the quantum fluctuations
down to the lowest temperatures. An additional motive could
be that the zero-temperature “stretched exponential modu-
lus” which has been confirmed by numerical simulations is

d (arb. units) due to long-wavelength on-string quantum fluctuations. One

FIG. 2. Phase diagram of the directed hard-core string gas: g/ou_ld anticipate that these Iong-wavelength quantum fluc-
solidification temperatur&, as function of the average interstring tuations would be extremely vulnerable to f|n|te-ten?p(.arature.
distanced. However, we found that the zero-temperature kinetic interac-

tions are self-protecting in the regime of small but finite
low-temperature long-range ordered state of the stringtemperatures. Below the scalg, which is set by the zero-
system atfT <T,(d) from the disordered string-gas state attemperature modulus, quantum mechanics starts to play a

quantum induced rigidity

the high temperature3>Ty(d). conventional role. BelowT, the phase space for thermal
fluctuations shrinks rapidly and thereby also the influence of
V. CONCLUSIONS the thermal fluctuations on the induced modulus. Hence,

) i while this conventional intuition failed badly at intermediate
In this paper we have presented results of a detailed studgmperatures, it is correct at temperatures less Tan

of a gas of elastic quantum strings if-2 dimensions, inter-  Of course, the above picture rests entirely on the self-
acting via a hard-core condition. The model mimics somegnsistent phonon method invented a long time ago by Hel-
essential features of a dynamical stripe state, arising in thgich. This approximate method is put here by us to the test
underdoped cuprate superconductors. From a more genefglan interesting way. However, we have confidence that the
perspective, it relates to the theme of entropic interactions afpove conclusions are trustworthy. After all, the hardest part
finite temperatures and quantum-kinetic interactions at zerg; ero temperature where according to the Helfrich method a
temperature. o _ truly different mechanism is at work, giving rise to the
Although in detail quite different, the physics at zero tem-gtretched exponential. Except for some small correction,
perature falls in the same category as, for instance, superefely due to “fluctuations around the mean-field,” this
change which is for good reasons also called kinetic exstretched exponential turns out to be correct. Given that the
change. Physics which is associated with kinetic energyyigh-temperature limit is also described rather accurately, it

(electron hoppat short distances becomes physics associatefas to be that the intermediate temperature regime is also
with order and potential energy at long distan¢astiferro-  gescribed accurately.

magnetism In the string gas, the short distance physics cor-
responds with the string fluctuations and the long distance
physics is that of long-range order, breaking translational
symmetry. As was emphasized in Ref. 13, the elastic string
gas in 2+1D is a close relative of the Luttinger liquid in This research was supported in part by the Foundation of
1+1D. The same order-out-of-disorder mechanism whichFundamental Research on MattEOM), which is sponsored
renders the algebraic order of the hard-core bose gas imy the Netherlands Organization of Pure Resed&hvO).
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