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Absolute external photoluminescence quantum efficiency of theslorthoexciton in Cu,O
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The photoluminescence quantum efficiency of the yellow serge®rthoexciton in CyO, including its
phonon sidebands, was measured in an Ulbricht sphere. The obtained efficiency values betWesd 10 °
are remarkably low. The nhonmonotonous temperature dependence is analyzed.
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I. INTRODUCTION II. EXPERIMENTAL RESULTS AND DISCUSSION

We examined a polished, naturally grown sample of high
quality with a surface of~1 mn? and a thickness of
~500 um. The Is excitons were created by excitation with
a cw dye-laser at w=2.25 eV in the absorption continuum
of the yellow series. Based upon a laser intensity of
1.9 Wi/cnt and assuming a lifetime of several 1Q0s for
Fhe paraexcitons, we estimate the density to be in the
Mnge of 18%cne. A spatially integrating spheréJlbricht
i _ . X spherg was mounted in a cryostat to collect the whole lumi-
exysts.onIy. one ve_ry.wea[k“zs ph_onqn a_sssteo_l 5|depand, nescence, independent of the angle of emission. With this
while its direct radiative recombination is forbidden in all set-up we are able to determine the external quantum effi-
orders. The orthoexciton can either recombine directly in iency 7,,,(T) which is the ratio between the flux of the
quadrupole tran;ition, or via a phonqn aSS?Sted process. AaEmitted I;’[‘ photons and the absorbed laser photons. For de-
_though aX, replica for_ each Odd'pa”ty opt|cal_phon_on €X- tails of the experimental set-up and the evaluation procedure
ists, the PL spectrum is strongly dominated by, assisted see, e.g., Refs. 6,7. Due to the extremely low absorption
recombination. The concerned optical pflonon has a quite flgdyefficient of CyO in the spectral region of interest, there
dispersion and its absorption/emissionkisndependent in  occurs almost no self-absorption. Therefore the external
the vicinity of thel" point. Therefore the line shape of the quantum efficiency is identical with the internal one.

I' ,-assisted luminescence directly reflects the energetical Figure 1 showsz,,(T) in the range 6 KT<90 K,
distribution of orthoexcitons. For the same reason the inteintegrated over the whole spectral range of the phonon as-
grated intensity of this peak is proportional to the total num-sisted % luminescence. The by far dominant contribution
ber of orthoexcitons,(T). comes from thd’;, phonon assisteX, luminescence. The

Orthoexciton and paraexciton can scatter into each othenfluence of the other PL sidebands is negligible and does not
via a two phonon assisted conversion process, originally praaffect the following evaluations.
posed by Caswell and Yu First we want to call attention to the remarkably low val-
ues of yym, lying between 10* and 10°°. TheT  assisted
X, luminescence is even weaker by some orders of magni-

Cuprous oxide is a semiconductor with a direct gag (
~2.17 eV atT=10 K) at thel" point. Due to its small
Bohr radius, the excitonic ground state=1 is split by
electron-hole exchange interaction into the 1 orthoexci-
ton (X,) and theJ=0 paraexciton X,) which is assumed to
lie 12 meV lower in energy?

Cuw,O luminescence spectra have been comprehensive
discussed in several publicatioh&For the paraexciton there

up: Xpt+LOELA—X,,

down: X,—LO*LA—X,, (1)
. . o (nlum/ %)
where +/— describe the absorption/emission of a phonon. 0010
The involved LO phonon is either of symmetiy;, (E ' ' f '
~13.4 meV) ol',5 (E~11.4 meV). The energy mismatch 0.008 L mpitrange o
is compensated by the LA phonon. The two processes . ‘
and down can be described by the corresponding transition 0.006 | ~ ‘
ratesU(T) andD(T). This yields coupled rate equations for
the X, and X, population, with the steady-state solution 0.004 1 oD
6 Fit:nhmo<e b
GO(U + ’}’p) 0.002 ; 7
n,= (2 SN - AE = 9.3meV
° (U70+D')’p+')’o7’p) 0 Ao ) ‘
0 20 40(T/K) 60 80 100

for the X, density’ G, is the generation rate of orthoexci-
tons, caused by laser excitatiop, and y,, are the loss rates FIG. 1. External quantum efficiency,,, integrated over the
of orthoexcitons/paraexcitons due to other processes such agge 1.94—2.07 eV. The solid line shows a fit according to(8.
nonradiative recombination or recombination at defects anéh the range 35-60 K. Note that the valueqf,, is represented in
are expected to be roughly temperature independent. percent.
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tude. This explains why this signal is experimentally hard to (T]lum/ %)
measure, especially in a time-resolved manner. 0.002
The anomalous temperature dependence, first observed in )
Ref. 8, can be explained by th&,< X, conversion mecha-
nism discussed before. StartingTat 0 K, it is evident that
the up-conversion is “frozen” =0) because there are no
LO phonons to be absorbed. But also down conversion is 0.001
reduced fofT— 0 for the following reasons. As already men-
tioned, two different LO modesI{,s and I';;) come into Lo e 20000200000 2]
guestion to participate at the down-conversion process. The
energy of thel',.--mode is smaller than the ortho-para split- 0 ‘ ; ;
ting. Thus, even at low temperatures, this mechanism works 0 5 10 (T/K) 20 5 30
at least under the spontaneous emission of a LA phonon.
Considering thel';,-mode the energy of which is FIG. 2. Determination of the temperature dependench (&)
~1.4 meV greater than the ortho-para splitting, the situationn the case of negligible up conversiofi€15 K) using Eq.(4).
changes. If the kinetic energy of the orthoexciton falls below

1.4 meV, this process is only possible by the absorption of an  p; higher temperaturesT(>80 K) the Iargelz values re-

acoustical phonon. Assuming an average kinetic energy Qfyce the probability of direct radiative recombination while
2KT one finds a corresponding temperature~ell K. A hq nrohability of recombination at defects increases. There-
further diminution of temperature reduces the, assisted fore Eq.(3) is no longer sufficiently fulfilled in this tempera-
down-conversion channel, caused by the decreasig density gfre range.

LA phonons. This explains the shape 9f(T) in the low | the limit T<15 K (U~0) Eq. (2) yields

temperature rangel(< 15 K). Raising the temperature from

6 up to 15 K increases the contributionIof, assisted down

conversion while the up conversion stays negligible. Conse- Mum(T) < No(T) U v+ D(T)]. 4
quently in this rangey,,(T) decreases continously.

Between 15 and 20 K, up-conversion starts and a furthefhe theoretical temperature dependence of down-conversion
increase of temperature repopulatesXdevel. In the range  is predicted to be D(T)«T¥2 Using Eq. 4 andD(T)
30<T<70 K a thermal quasi-equilibrium is established be-=a- T, we findD(T) e T*">(Fig. 2 in good agreement with
tween theX, and X, levels. In this temperature regime theory.
ortho- and para-level behave similar to a “simple” two-level
system and th&, density should approximately follow

e fitTange T o 1

IIl. SUMMARY
no(T)ocmum(T)ocﬂ%?“’(m), 3) We deter_m_ined the temperature qlependent abso_lute_PL
D(T) quantum efficiency of the yellow series 1s-orthoexciton in

where AE is the ortho-para splitting. On the one hand ourCt%O- The qualitative temperature dependence found in Ref.
data fulfills the functional relation of E43) in a convincing 8 Was confirmed, but the resulting activation energy slightly
manner, on the other hand we fiddE~ (9.3+0.2) meV, in deviates. At low temperature3 €15 K) the _evaluate(_j tem-
disagreement with the measurement of Kreingolur re- ~ Perature dependence of the down-conversion I4(E) is in

sult should be distinctly more exact than that in Ref. 8, be-900d agreement with theofy.

cause we used an Ulbricht sphere and much more data points
to determine AE. Since the ortho-para splitting oAE

~12 meV has been repeatedly confirntédye do not want

to question this value. The slight deviation might be ex- The authors thank the Deutsche Forschungsgemeinschaft
plained by a weak temperature dependencésgfy,, v,  for financial support, and G.M. Kavoulakis and A. Mysyrow-
[Eq. (2)] or by a strained sample. icz for valuable discussions.
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