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Power-law localization in two and three dimensions with off-diagonal disorder
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We describe the nonconventional localization of the midbandE50 state in square and cubic finite-bipartite
lattices with off-diagonal disorder by solving numerically the linear equations for the corresponding ampli-
tudes. This state is shown to display multifractal fluctuations, having many sparse peaks, and by scaling the
participation ratio we obtain its disorder-dependent fractal dimensionD2 . A logarithmic average correlation
function grows asg(r );h ln r at distancer from the maximum amplitude and is consistent with a typical
overall power-law decayuc(r )u;r 2h whereh is proportional to the strength of off-diagonal disorder.

DOI: 10.1103/PhysRevB.64.113107 PACS number~s!: 71.23.An, 73.21.2b, 73.20.Jc
s

a

en

ic
s

h

ue

v

b
it

ca
et
-
e
R
r

th
ed
ira
o-
s
in
ro
si
-

ap

-
2
a

ct
ll

id

We
ite
des
y

t de-
tion

law

ay

D

u-

es

of

ng
. In

ies

at-

ites
re

i-
It is well-known that off-diagonal disorder in the neare
neighbors of one-dimensional~1D! lattice is responsible for
anomalous localization of the corresponding state at the b
centerE50.1–4 The log-amplitude lnuciu at sitei executes a
random walk and the typical wave function decays expon
tially at distance r from its maximum asuc(r )u;exp
(2aAr ), with a a disorder-dependent parameter. TheE50
is a special state arising from a sublattice symmetry, wh
can exist in the presence of off-diagonal disorder and cau
the Hamiltonian to change sign under the transformationc i
→(21)ic i . This symmetry exists in bipartite lattices wit
two sublattices one connected to the other1,5–8 and is also
known as chiral symmetry. The corresponding eigenval
appear in pairs with energies (E,2E) and since the band
center E50 is a special energy the corresponding wa
function can be easily constructed.

In 2D and 3D bipartite systems, such as square or cu
lattices, the question of localization at the band center w
off-diagonal disorder is not resolved as in 1D and the de
of the wave-function amplitude from its maximum is not y
firmly established. It is believed5–9 that nonexponential de
cay occurs in 2D and even absence of decay in 3D wh
extended states exist for weak disorder. The approach of
5 predicted exp(2gAln r) decay in every dimension highe
than one, which is rather weaker than a power law. The
oretical interest in this problem has been recently reviv
On one hand, due to the related problem of random D
fermions10,11 that, however, starts from a different zer
disorder limit. In the case of off-diagonal disorder one ha
Fermi surface with many points forming a square while
the problem of Dirac fermions only four points exist at ze
energy without disorder. In the former case the pure den
of states atE50 has the well-known two-dimensional log
singularity while in the Dirac case the density of states
proaches zero at the band center.11 On the other hand, the
study of localization with off-diagonal disorder could be im
portant for understanding properties of several realistic
systems, such as states in semiconductor quantum wells
high-mobility silicon metal-oxide-semiconductor field-effe
transistors,12 current-currying states in quantum Ha
effect,13,14 etc.

In this report we present an exclusive study of the m
band E50 state in 2D~squared! and 3D ~cubic! bipartite
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lattices with disorder in the nearest-neighbor hoppings.
compute the coefficients of the wave function for large fin
systems and obtain the participation ratio. The amplitu
are shown to display multifractal fluctuations with man
scattered peaks, characterized by a fractal dimension tha
pends on the strength of disorder. An appropriate correla
function is shown to behave asg(r );h ln r where h also
depends on the strength of disorder. It implies a power-
decayuc(r )u;r 2h of the peak heights from the maximum
peak, in contrast to the typical one-dimensional dec
uc(r )u;exp(2aAr ).

We consider a tight-binding Hamiltonian in 2D and 3
lattices with random nearest-neighbor hoppings

H5(
~ i j !

~ t i j ci
†cj1H.c.!, ~1!

whereci is the annihilation operator of an electron on thei th
site and the nearest-neighbor hopping integralst i j are real
positive random variables satisfying the probability distrib
tion

P~ ln t i j !5
1

W
for 2

W

2
< ln t i j <

W

2
. ~2!

This disorder is commonly used in 1D since it guarante
always positive hoppingst i , j with typical variation of the
random elementsW that is believed to be a good measure
the strength of off-diagonal disorder in any dimension.15,16

If, instead, we choose to distribute directlyt i j between
2W/2 to 1W/2 the disorder can never be made stro
enough since no energy scale remains in the Hamiltonian
the following we consider off-diagonal disorder from Eq.~2!
and ignore diagonal disorder by setting the site energ
equal to zero.

A bipartite lattice consists of two interconnected subl
tices A and B with the random hoppingst i j connecting the
sites of one sublattice to the sites of the other.8 It was shown1

that a finite system withnA sites on sublatticeA andnB sites
on sublatticeB(nB.nA) has at leastnB2nA linearly inde-
pendent eigenfunctions with eigenvalues exactlyE50.
Moreover, the amplitudes of these states vanish on the s
of sublatticeA. In the present study we consider finite squa
and cubic lattices with theirL-site edges along the main d
©2001 The American Physical Society07-1
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rections in 2D and 3D. In the calculationsL is odd and Di-
richlet boundary conditions are applied with sublatticeA
having L221/2@(L321)/2# sites and sublatticeB has L2

11/2(L311/2) sites for the square~cube!. According to Ref.
1 only oneE50 state exists in this case with finite amplitud
on sublatticeB and zero amplitude on sublatticeA. The cor-
responding amplitudes satisfy the linear system of equat

(
d,~ j 1dPB!

t j , j 1dc j 1d50 for all j 5A, ~3!

whered is summed over the nearest neighbors of sitej so
that j 1d belongs to the sublatticeB where the amplitude is
finite. The total number of equationsL221/2@(L321)/2#
derived from theA sites allows to obtain theL211/2@(L3

11)/2# amplitudes on theB sites. This procedure suffices t
determine uniquely theE50 state since the the normaliza
tion conditionS i uc i u251 accounts for the one missing equ
tion.

We have solved numerically the linear system of eq
tions~3! for different strengthsW of off-diagonal disorder. In
Fig. 1 typical pictures of the logarithmic amplitudes of th
E50 wave function in 2D are shown that display frac
characteristics. Similar fractal patterns are obtained for
examined disorder strengths in 2D and 3D. The logarithm
amplitude for very weak disorder~small W! is periodically
distributed in Fig. 1~a!, the fractal character of the state
obvious for intermediate disorderW in Fig. 1~b! and for
higher values of disorder~largeW! the area with significan
amplitude becomes vanishingly small fraction of the total
Fig. 1~c!. The latter case implies stronger decay of theE
50 state, similar to what one expects for ordinary-localiz
states with strong-diagonal disorder. However, the impor
difference to conventional localization is that the maximu
is not concentrated in a small region of space, but m
maxima of almost similar heights exist. These peaks w
relatively large amplitude are randomly scattered over sp
and exist also for large disorder@Fig. 1~c!#. Therefore, we
can conclude that theE50 state in the presence of of
diagonal disorder shows unusual localization properties.

First, we investigate the fractal structure of the norm
ized wave function by computing the inverse participati
ratio

p5(
i

uc i u4;L2D2, ~4!

where the scaling ofp with sizeL defines the fractal dimen
sion D2 . It is well known that extended states are spa
filling with D25d, the space dimension, and localized sta
are pointlike withD250. The probability distributions of the
ln p for various finite-sizeL systems over a sufficient numbe
of disorder configurations are shown in Fig. 2 to be similar
the ones reported in Ref. 17. For example, in Fig. 2~b! we
plot the distributions for the intermediate disorder stren
W51 that are roughly invariant in shape as the sizeL gets
larger and a sudden drop occurs for small values of lnp with
a tail for large lnp. We focused on the peaks of such dist
butions by determiningpmax from the maximum probability
11310
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of p as suggested in Ref. 17. Thepmax shift towards lower
values by increasing the size so that the variation of t
typical value ofp according to Eq.~4! is shown in the insets
of Fig. 2 where we plot ln(pmax) vs lnL. The obtained fractal
dimension forW51 is D2'1.55.

The behavior of this special state for off-diagonal disord

FIG. 1. The logarithmic amplitude lnucu of theE50 wave func-
tion in 2D-squared lattices with off-diagonal disorder strength~a!
W50.1, ~b! W51, and~c! W510. The darkest regions cover are
with the higher lnucu, between 0 and21, and the lightest regions
areas with the lowest lnucu, between212 and213, while the vari-
ous degrees of gray denote 13 linear scales.
7-2
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is, somehow, reminiscent of the conclusions reached in R
18 where the 2D wave functions are multifractal in the pr
ence of disorder for length scales shorter than the local
tion length. For off-diagonal disorder a similar situation
encountered since the usual~exponential! localization length
is guaranteed to diverge atE50. Extensive numerical stud
ies of the off-diagonal disorder in squared lattices that d
play the divergence of the localization length atE50 and
other properties of the chiralE50 state can be found in
Refs. 19 and 20. In Fig. 2 we plot the probability distributio

FIG. 2. The probability distribution for the logarithm of th
inverse participation ratio for theE50 wave function in square
~2D! lattices with sizesL523, 35, 71, 107, and 121. The ins
shows ln(pmax) vs lnL for ~a! W50.1, ~b! W51, and~c! W510.
11310
f.
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of the inverse participation ratio forW50.1, W51.0, and
W510 where D2 is well defined from the slope of the
almost-linear curve lnpmax vs lnL in the investigated sizes
For small disorderW50.1 we findD2'2, which implies an
almost-extended state, on the contrary, for strong diso
W510 the logarithm of the typical inverse participation rat
is close to zero, which implies strong localization withD2
'0.

Finally, we examine the typical decay of theE50 state
by introducing an appropriate correlation function. Follow
ing the definition of Ref. 1 we have studied

g~r !5K ln
uc i max

u

uc j u
L , r 5ur j2r i max

u, ~5!

where i max is the lattice site where the maximum amplitud
is located and the average^...& is taken over a sufficient num
ber of random configurations and various spatial directio

FIG. 3. The correlation functiong(r ) vs lnr in 2D for W
50.1,1,3,5,7,8,9,10 from bottom to top and system-sizeL5121.
All curves can be fitted by straight linesg(r );h ln r1b and the
power-law exponenth is plotted as a function ofW in the inset.

FIG. 4. The correlation functiong(r ) vs lnr for 3D with W
50.1,1,2,3,4,5,6,7,8,9,10 from bottom to top and system-sizeL
521. The curves can be fitted by straight linesg(r );h ln r1b and
the obtainedh is plotted in the inset as a function ofW.
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In 1D bipartite lattice, where the log amplitude of theE50
state with off-diagonal disorder exhibits random-walk beh
ior, the correlation function isg(r );Ar for large r.1 In Fig.
3 we plotg(r ) vs lnr in 2D by increasingW. These curves
for not too smallr can be reasonably well fitted to the rel
tion g(r )5h ln r1b, with parametersh andb. For example,
for W51 we find h50.4460.01, b51.5160.02 and the
average amplitude asymptotically decays from its maxim
as a power lawuc(r )u;r 2h. We conclude that the multifrac
tal amplitude pattern shows many random peaks while
power-law decay reflects the long-range decay of the p
heights from the highest peak. Instead, the amplitude
short distances from each peak decays very sharply.

We have also obtained similar relationsg(r )5h ln r1b
for the cubic~3D! case by plottingg(r ) vs ln(r) for different
values of disorder whereg(r ) still increases linearly with
ln r. This means that the corresponding amplitudes sho
power-law decay from the maximum, for any finiteW, with
the exponenth proportional toW. The unusual power-law
localization of the midband state is rather surprising in 3
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since nearby states might be extended if the disorder is w
In fact, h for both 2D and 3D is found to increase almo
linearly with W, shown in the insets of Figs. 3 and 4, whe
we establish the approximate relationsh;W/3 in 2D and
h;W/9 in 3D.

In summary, we have investigated theE50 wave func-
tion for square and cubic lattices with off-diagonal disord
This zero-energy wave function in the adopted geometry
ists for any disorder configuration and can be easily stud
numerically. The wave-function amplitude is shown to d
play many sharp peaks randomly scattered in space an
characterized by the fractal dimensionD2 that strongly de-
pends on the strength of disorder. The amplitude from e
peak falls off very rapidly for short ranges but the heights
the peaks decay slowly from the main maximum via t
power law r 2h, whereh is almost linearly proportional to
the strength of disorderW. We have shown that the speci
E50 chiral state in bipartite lattices, usually refered as ‘‘e
tended state,’’ has a critical nature and can also be descr
as power law localized.
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