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Power-law localization in two and three dimensions with off-diagonal disorder
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We describe the nonconventional localization of the midbrd state in square and cubic finite-bipartite
lattices with off-diagonal disorder by solving numerically the linear equations for the corresponding ampli-
tudes. This state is shown to display multifractal fluctuations, having many sparse peaks, and by scaling the
participation ratio we obtain its disorder-dependent fractal dimenBipnA logarithmic average correlation
function grows agy(r)~»Inr at distancer from the maximum amplitude and is consistent with a typical
overall power-law decayu(r)|~r~7 where 5 is proportional to the strength of off-diagonal disorder.
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It is well-known that off-diagonal disorder in the nearestlattices with disorder in the nearest-neighbor hoppings. We
neighbors of one-dimensionélD) lattice is responsible for compute the coefficients of the wave function for large finite
anomalous localization of the corresponding state at the barmglystems and obtain the participation ratio. The amplitudes
centerE=0.1"*The log-amplitude Ifw| at sitei executes a are shown to display multifractal fluctuations with many
random walk and the typical wave function decays exponenscattered peaks, characterized by a fractal dimension that de-
tially at distancer from its maximum as|¢(r)|~exp  pends on the strength of disorder. An appropriate correlation
(—ayr), with @ a disorder-dependent parameter. Ere O function is shown to behave agr)~ »Inr where » also
is a special state arising from a sublattice symmetry, whicttlepends on the strength of disorder. It implies a power-law
can exist in the presence of off-diagonal disorder and causetecay|¢(r)|~r~ 7 of the peak heights from the maximum
the Hamiltonian to change sign under the transformatipn peak, in contrast to the typical one-dimensional decay
—(—1)'y;. This symmetry exists in bipartite lattices with |h(r)|~exp(=ayr).
two sublattices one connected to the otftef and is also We consider a tight-binding Hamiltonian in 2D and 3D
known as chiral symmetry. The corresponding eigenvaluefattices with random nearest-neighbor hoppings
appear in pairs with energie€(—E) and since the band
centgrE=0 is a special energy the corresponding wave HIZ (tijc?cj+H.c.), 1)
function can be easily constructed. )

I'n 2D and 3D blpartlte Sys.tems’ such as square or Cu.b'ﬁ/hereci is the annihilation operator of an electron on itte
lattices, the question of localization at the band center with;;. 4 the nearest-neighbor hopping integtglsare real
off-diagonal d|sor_der IS not resolved asin 1D and_the deca3f>ositive random variables satisfying the probability distribu-
of the wave-function amplitude from its maximum is not yet tion
firmly established. It is believéd® that nonexponential de-
cay occurs in 2D and even absence of decay in 3D where 1 w
extended states exist for weak disorder. The approach of Ref. P(ntj)=g for —5=<Intj=<-. 2
5 predicted expf yyinr) decay in every dimension higher
than one, which is rather weaker than a power law. The theThis disorder is commonly used in 1D since it guarantees
oretical interest in this problem has been recently revivedalways positive hoppings; ; with typical variation of the
On one hand, due to the related problem of random Dira¢andom elementg/ that is believed to be a good measure of
fermiong®!! that, however, starts from a different zero- the strength of off-diagonal disorder in any dimensior®
disorder limit. In the case of off-diagonal disorder one has df, instead, we choose to distribute directty between
Fermi surface with many points forming a square while in—W/2 to +W/2 the disorder can never be made strong
the problem of Dirac fermions only four points exist at zeroenough since no energy scale remains in the Hamiltonian. In
energy without disorder. In the former case the pure densitjhe following we consider off-diagonal disorder from E2)
of states aE=0 has the well-known two-dimensional log- and ignore diagonal disorder by setting the site energies
singularity while in the Dirac case the density of states apequal to zero.
proaches zero at the band cerlte®n the other hand, the A bipartite lattice consists of two interconnected sublat-
study of localization with off-diagonal disorder could be im- tices A and B with the random hoppings; connecting the
portant for understanding properties of several realistic 2Csites of one sublattice to the sites of the ofhiewas shown
systems, such as states in semiconductor quantum wells atieht a finite system with, sites on sublatticé andng sites
high-mobility silicon metal-oxide-semiconductor field-effect on sublatticeB(ng>n,) has at leashg—n, linearly inde-
transistors? current-currying states in quantum Hall pendent eigenfunctions with eigenvalues exacky=0.
effect®>etc. Moreover, the amplitudes of these states vanish on the sites

In this report we present an exclusive study of the mid-of sublatticeA. In the present study we consider finite square
band E=0 state in 2D(squaredl and 3D (cubic bipartite  and cubic lattices with theit-site edges along the main di-
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rections in 2D and 3D. In the calculatiohsis odd and Di-
richlet boundary conditions are applied with sublattise
having L2—1/2[(L3—1)/2] sites and sublattic® has L2
+1/2(L3+ 1/2) sites for the squar@uba. According to Ref.

1 only oneE=0 state exists in this case with finite amplitude
on sublatticeB and zero amplitude on sublattiée The cor-
responding amplitudes satisfy the linear system of equations

_ tj,j+§¢j+5=0 for all jéA, (3)
5,(j+eB)

where § is summed over the nearest neighbors of pit®
thatj + & belongs to the sublattice where the amplitude is
finite. The total number of equatiors®—1/2[ (L3—1)/2]
derived from theA sites allows to obtain th&?+ 1/2[ (L3
+1)/2] amplitudes on th& sites. This procedure suffices to
determine uniquely th&=0 state since the the normaliza-
tion condition;| /=1 accounts for the one missing equa-
tion.

We have solved numerically the linear system of equa-
tions (3) for different strength®V of off-diagonal disorder. In
Fig. 1 typical pictures of the logarithmic amplitudes of the
E=0 wave function in 2D are shown that display fractal
characteristics. Similar fractal patterns are obtained for all
examined disorder strengths in 2D and 3D. The logarithmic
amplitude for very weak disordésmall W) is periodically
distributed in Fig. 1a), the fractal character of the state is
obvious for intermediate disordéd in Fig. 1(b) and for
higher values of disordgitarge W) the area with significant

amplitude becomes vanishingly small fraction of the total in b) Wi
Fig. 1(c). The latter case implies stronger decay of the
=0 state, similar to what one expects for ordinary-localized 120 P - oy ! ! ! 3
states with strong-diagonal disorder. However, the important ] hﬁ-’ Ny ‘-,,-'" . i
difference to conventional localization is that the maximum 100, * 2 ”lﬂ'_‘) vt T
is not concentrated in a small region of space, but many S TR T e [
maxima of almost similar heights exist. These peaks with 8o fone vL AR
relatively large amplitude are randomly scattered over space ] B
and exist also for large disord¢Fig. 1(c)]. Therefore, we 60 i b |
can conclude that th&=0 state in the presence of off- | ®l
diagonal disorder shows unusual localization properties. 404 \ i
First, we investigate the fractal structure of the normal- | ;

ized wave function by computing the inverse participation 50 i
ratio

p:zi || 4~L P2, 4) & 20 40 w6=01o 80 100 120

FIG. 1. The logarithmic amplitude I of the E=0 wave func-
tion in 2D-squared lattices with off-diagonal disorder stren@h
=0.1,(b) W=1, and(c) W=10. The darkest regions cover areas

where the scaling ob with sizeL defines the fractal dimen-
sion D,. It is well known that extended states are spac

filling V_V'th, DZ:_d' the space dlmens_lpn, "fmd_ Ioc_allzed StateSyjith the higher Iny], between 0 and-1, and the lightest regions
are pointlike withD,=0. The probability distributions of the  ;,oa5 with the lowest Iy, between—12 and—13, while the vari-

In p for various finite-sizé systems over a sufficient number 5 gegrees of gray denote 13 linear scales.

of disorder configurations are shown in Fig. 2 to be similar to

the ones reported in Ref. 17. For example, in Fih)2ve  of p as suggested in Ref. 17. Tipg,, shift towards lower
plot the distributions for the intermediate disorder strengthvalues by increasing the size so that the variation of this
W=1 that are roughly invariant in shape as the dizgets  typical value ofp according to Eq(4) is shown in the insets
larger and a sudden drop occurs for small values pfwith  of Fig. 2 where we plot Ing,.) vs InL. The obtained fractal

a tail for large Inp. We focused on the peaks of such distri- dimension forW=1 is D,~1.55.

butions by determining,,,, from the maximum probability The behavior of this special state for off-diagonal disorder
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FIG. 2. The probability distribution for the logarithm of the
inverse participation ratio for th&=0 wave function in square
(2D) lattices with sizes. =23, 35, 71, 107, and 121. The inset
shows Infn,y) Vs InL for () W=0.1, (b) W=1, and(c) W=10.

is, somehow, reminiscent of the conclusions reached in Ref
18 where the 2D wave functions are multifractal in the pres-
ence of disorder for length scales shorter than the localiza:

tion length. For off-diagonal disorder a similar situation is
encountered since the usuyakponentigl localization length
is guaranteed to diverge Bt=0. Extensive numerical stud-

ies of the off-diagonal disorder in squared lattices that dis-

play the divergence of the localization lengthEa+0 and
other properties of the chirdt=0 state can be found in
Refs. 19 and 20. In Fig. 2 we plot the probability distribution
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FIG. 3. The correlation functiom(r) vs Inr in 2D for W
=0.1,1,3,5,7,8,9,10 from bottom to top and system-sizel21.
All curves can be fitted by straight linggr)~ »Inr+g and the
power-law exponent, is plotted as a function dfV in the inset.

of the inverse participation ratio foV=0.1, W=1.0, and
W=10 whereD, is well defined from the slope of the
almost-linear curve Ip,,,, vs InL in the investigated sizes.
For small disordeiW=0.1 we findD,~2, which implies an
almost-extended state, on the contrary, for strong disorder
W= 10 the logarithm of the typical inverse participation ratio
is close to zero, which implies strong localization wiih
~0.

Finally, we examine the typical decay of tlie=0 state
by introducing an appropriate correlation function. Follow-
ing the definition of Ref. 1 we have studied

|lﬂimax|
[

®)

g<r>=<ln > r=lr—=ri, .

wherei .4 IS the lattice site where the maximum amplitude
is located and the average.) is taken over a sufficient num-
ber of random configurations and various spatial directions.
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FIG. 4. The correlation functiog(r) vs Inr for 3D with W
=0.1,1,2,3,4,5,6,7,8,9,10 from bottom to top and system-kize
=21. The curves can be fitted by straight lirggs) ~ » Inr+ 8 and
the obtainedy is plotted in the inset as a function W¥.
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In 1D bipartite lattice, where the log amplitude of the=0 since nearby states might be extended if the disorder is weak.
state with off-diagonal disorder exhibits random-walk behav-n fact, % for both 2D and 3D is found to increase almost
ior, the correlation function ig(r)~ \r for larger.! In Fig.  linearly with W, shown in the insets of Figs. 3 and 4, where
3 we plotg(r) vs Inr in 2D by increasingV. These curves we establish the approximate relatiops-W/3 in 2D and
for not too smallr can be reasonably well fitted to the rela- »~W/9 in 3D.
tion g(r)= »Inr+ B, with parameters; and 8. For example, In summary, we have investigated tBe=0 wave func-
for W=1 we find =0.44=0.01, 8=1.51+0.02 and the tion for square and cubic lattices with off-diagonal disorder.
average amplitude asymptotically decays from its maximunihis zero-energy wave function in the adopted geometry ex-
as a power lawi(r)|~r~ 7. We conclude that the multifrac- ists for any disorder configuration and can be easily studied
tal amplitude pattern shows many random peaks while th@umerically. The wave-function amplitude is shown to dis-
power-law decay reflects the long-range decay of the peaglay many sharp peaks randomly scattered in space and is
heights from the highest peak. Instead, the amplitude focharacterized by the fractal dimensién, that strongly de-
short distances from each peak decays very sharply. pends on the strength of disorder. The amplitude from each
We have also obtained similar relatiogér)=»nInr+8  peak falls off very rapidly for short ranges but the heights of
for the cubic(3D) case by plottingy(r) vs In(r) for different  the peaks decay slowly from the main maximum via the
values of disorder wherg(r) still increases linearly with power lawr ™7, where 7 is almost linearly proportional to
Inr. This means that the corresponding amplitudes show the strength of disordeW. We have shown that the special
power-law decay from the maximum, for any finifé with E=0 chiral state in bipartite lattices, usually refered as “ex-
the exponenty proportional toW. The unusual power-law tended state,” has a critical nature and can also be described
localization of the midband state is rather surprising in 3D,as power law localized.
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